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Abstract

It is now well known that a deep connection exists between soliton
equations and ODE’s of Painlevé type. As a consequence there has
been a significant re-emergence of interest in the study of such ODE’s
and related issues. In this paper we demonstrate that a novel class
of nonlinear ODE’s, Darboux-Halphen (DH) type systems, can be ob-
tained as reductions of the self-dual Yang-Mills (SDYM) equations.
We show how to find by reduction from SDYM the associated linear
pair for DH. This linear system is found to be monodromy evolving
which is different from the linear systems associated with the Painlevé
equations which are isomonodromy. The solution of the DH system
can be obtained in terms of Schwarzian equations which are them-
selves linearizable. The DH system has solutions which are related
to Painlevé equations but the solutions can have complicated analytic

singularities such as natural boundaries and dense branching.



1 Introduction

This paper emanates from the lectures one of us (MJA) gave at a meeting in
Cargese, Corsica organized during the summer of 1996 focusing on Painlevé
equations and related issues. The meeting was held partly in commemoration
of P. Painlevé’s work one century ago. Painlevé and his school were well
known at the end of the 19th century and early 20th century. But by the
1970’s many of the results, although published in leading journals, were not
known or appreciated by most mathematicians and physicists. The reader
may wish to review Painlevé’s collected works [17] for an in depth discussion
of his contributions and point of view.

However this situation changed dramatically with the recognition that
equations of “Painlevé type” were intimately connected with a class of in-
tegrable systems; i.e. soliton and related equations. Namely, it was demon-
strated that ordinary differential equations (ODE’s) obtained as reductions
of the well known soliton equations yielded ODE’s with the Painlevé Prop-
erty. Namely the solutions of the resulting ODE’s were free of movable
branch points. Moreover, similarity reductions of the best known soliton
equations often resulted in one of the classical second order Painlevé equa-
tions. Background information and a description of the research involving
Painlevé equations and their relationship to integrable soliton systems can
be found in [2, 4]. Ever since the discovery that such integrable systems and
Painlevé equations were deeply connected there has been a major research
effort which has involved many aspects of Painlevé equations. The scope of
the work and results are far too numerous to discuss here.

In this paper we will:



0.

1.

110

7.

describe, by example, some of the salient features of the connection
of integrable systems and Painlevé equations. Notably we discuss the
connection of the Inverse Scattering Transform (IST) to Painlevé equa-
tions and how one can obtain the linearization and solutions from this

connection.

discuss a generalized Darboux-Halphen (DH) system, which is a fifth
order ODE and which reduces to the classical third order DH system
first studied by Darboux in 1879 [11]. This equation was discussed in a
recent letter [5]. This system, which is a reduction of the self-dual Yang-
Mills equations (SDYM), has a compatible linear monodromy evolving
system. The reason for this can be traced to the fact that the reduction

from SDYM involves an infinite dimensional algebra: sdiff(3).

show how, for the first time, one can use the infinite dimensional algebra

in SDYM to deduce the compatible linear monodromy system for DH.

quote the main results of the monodromy analysis and demonstrate
that although the generalized DH system is linearizable and hence
integrable, nevertheless generically speaking the solution is densely
branched. Only when a constant of the motion takes on a denumer-
ably infinite set of values does the solution become single valued. In
this case the solution is expressible in terms of automorphic functions.
Indeed we note that in the special case of the classical third order DH
system, the solution is always single valued. However in this case the

solution contains natural boundaries in the complex plane.



2 Painlevé Equations and IST

In the Cargese lectures the importance of similarity reductions of PDE’s was
reviewed. Asymptotic analysis of Fourier integrals shows that the long time
behavior of linear evolution equations with constant coefficients yields the
fact that self-similar (i.e. similarity) solutions are leading order asymptotic
states in certain regions of space (e.g. [4]). In the well known soliton sys-
tems a similar situation arises. For example associated with the modified

Korteweg-de Vries (mKdV) equation,
Uy — 6uty + Uggy = 0, (1)
is the self-similar reduction,
u(x,t) = w(z/(3t)/%)/(3t)/° (2)

which upon substitution into equation (1) yields, after an integration, the

second (Pyy) of the six classical Painlevé equations,
w’ — 2w — 2w = a, (3)

where « is an arbitrary constant.

Ablowitz and Segur (see e.g. [4]) showed that equation (3) with o = 0
governed the dominant long time asymptotic state of the Cauchy problem
associated with mKdV equation (1), in the region |x/(3t)'/3| = O(1). Not
only can one associate the second Painlevé equation with mKdV, but the
association yields an integral equation governing a one-parameter family of

solutions to P;; which is relevant to the Cauchy problem of mKdV.



Namely the inverse scattering transform (IST) shows that the mKdV

equation can be solved (i.e. linearized) to the following integral equation
K(z,y;t) — F(z +y3t) / / (x,z; ) F(z + s;1)F(s + y; t)dzds = 0,

where

1 oo
F(z,t) = —/ r(k)exp(ikx + 8ik™)tdk

2T —00

and the solution to mKdV is given by
u(z,t) = 2K (x, z;t).

The long time asymptotic analysis of mKdV shows that to leading order
in the region: |z/(3t)'/3] = O(1), the solution of mKdV (1) satisfies equation

(3) with @ = 0 and the relevant solution of the P;; equation is linearized via:
Ky(z,y) — rodi(z +y) — (r)? [ [ Ky(x,z)Ai(z + s)Ai(s + y)dzds = 0

where Ai(x) is the well known Airy function whose integral representation is
given by
1 00
Ai(x) = 2—/ exp(ikz + ik®/3)dk

™

and the solution of Pj; is given by,
w(x) =2K4(z, )
This solution satisfies the following “connection” formulae (c.f. [2, 4]):

As z — +o0,

. To 7_335/2
w(x) ~ roAi(z) ~ 2ﬁx1/4 3



and as r — —o0,

do .
w(x) ~ = sin 0
where
dy = —(1/m)log(1 — (ro)?),

0 = (2/3)(—x)*? — (3/4)dglog(—x) + o,
0y = m/4—(3/2)d:log2 — arg[['(1 — id2/2)],

where I'(z) is the usual Gamma function.

Similarity reduction not only yields special solutions, but it is also the
mechanism for one to be able to obtain the isomonodromy problems, which
govern the general solution of the Painlevé equation. Indeed Flaschka and
Newell [12] showed that the similarity reduction of the compatible linear
system for mKdV also yields a compatible linear system monodromy problem
governing Pr;. Namely, equation (3) is the compatibility condition (¥;; =
WU,,) for the following system:

—i(4C% + 2 + 2w?)  4Cw + 2iw, + a7t
Yo = (4Cw—2iwz+oz§1 i(4C% + 2 + 2w?) ) v

()
v, = v,
w i

In principle the compatible isomonodromy system yields the complete solu-
tion of the mKdV equation.

We shall not dwell on this aspect of the problem since we prefer to discuss
a novel reduction of the self-dual Yang-Mills (SDYM) integrable system:
the generalized Darboux-Halphen (gDH) system. SDYM reductions alone

occupy a major aspect of the integrable systems literature. We only point
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out here that lower dimensional reductions of the four-dimensional SDYM
system yield virtually all the well known soliton equations (see e.g. [2]) and
all the classical Painlevé equations with their monodromy problems (see e.g.
[15]). Just as the reduction (2) of the mKdV linear system gives rise to the
isomonodromy problem for Py, the SDYM linear system under this novel
reduction yields a new class of monodromy evolving problems underlying the
gDH systems. The evolution of this monodromy system is such that the
temporal evolution of the scattering data can be tracked exactly and this
allows us to find the exact solution of the gDH system.

The results associated with DH type systems also have an important
connection in terms of Painlevé equations. Namely we will see that there is a
parameter in their associated linear systems. When this parameter vanishes,
the compatible linear system of DH reduces to an isomonodromy system
associated with one of the classical Painlevé equations. This isomonodromic
system is essential when solving the DH problem.

In this paper we present the solution of the following system of ODEs,

which we refer to as the generalized DH system:

W = wows — wi(wy +ws)+ o7,
LZJQ = W3Wi — u)g(u)g + wl) -+ 92,
w3 = wiwy — wy(wy +wa) — 09, (4)

¢ = wi(0—¢)—ws(0+09),
0 = wa(p —0) — ws(0 + ¢),

where the dots denote differentiation with respect to t. They correspond to

an off-diagonal Bianchi IX metric with self-dual Weyl curvature (see [5]). In

7



Chakravarty, Ablowitz, and Takhtajan [8], it was shown that this system
arises as a reduction of the SDYM equations. From the reduction process
we obtain a linear problem for the DH system from the linear problem for
SDYM. As outlined earlier in Chakravarty and Ablowitz [5], this linear prob-
lem, which has non-constant monodromy, allows us to solve the initial value
problem for the system (4) in terms of solutions of Schwarzian equations,
which arise in the theory of conformal mappings.

We remark that this system with 8 = ¢ =0, i.e.

wl = W3 — W1 (WQ + CU3),
Wy = wawy — walws + wi), (5)
(,Z}3 = Wi — wg(wl + u)g),

which we call the classical DH system, was originally analyzed by Darboux
[11] in the context of certain triply orthogonal surfaces. Shortly thereafter
the solution was found by Halphen [13]. The system is equivalent to the
Einstein field equations for a (complex) self-dual Bianchi IX spacetime with
diagonal metric. We also note that the symmetric combination of variables
y = —2(w; + we + ws) satisfies the Chazy equation (Chazy [9, 10]),
3 2 2
%:2;,%-3(%) , (6)

whose general solution possesses a natural boundary.



3 Darboux-Halphen Systems and Their Lin-
ear Problems as Reductions of SDYM

As mentioned in the introduction, the self-dual Yang-Mills equations (SDYM)
play a central role in the theory of integrable systems. In Chakravarty,
Ablowitz, and Clarkson [6, 7] it was shown that the classical Darboux-
Halphen system (5) is a reduction of SDYM with the gauge algebra siff(
SU(2)). In this section we discuss the SDYM equations and their reduction
to the generalized Darboux-Halphen system (4). We then go on to show that
a linear problem for the Darboux-Halphen system can be obtained from that
for SDYM. To our knowledge, all previously studied linear problems asso-
ciated with integrable systems of ODEs have been isomonodromy problems.
The linear problem obtained in this section, however, has nonconstant, i.e.
evolving monodromy data. It is important to stress that we do not impose
the evolving monodromy condition; rather it is a logical consequence of the
SDYM reduction.

For a given Lie algebra g corresponding to the Lie group G, let the gauge
potential 1-form A be given by

A= ZAH dx,,
“w

where the z, are coordinates on R?, A, R* — g, n =0,...,3. The

curvature 2-form F is given by
1
F = 3 > Fudz, Adz,,
[TRY

where

F.=0,A,-0A,—[A, A

9



and we define 9, = 2.
H Oxy

With respect to the standard coordinates on R*, the SDYM equations

associated with the gauge algebra g are
For = Fas, Foo = F3, Fos = Fia.

Alternatively, in terms of the so-called null coordinates

a=uxg+1iT, QO=1z0—1iT1, [(=x3+1T2, [=13— 1T,

SDYM becomes
Faﬁ :FaB :Fa&+F,BB:O7 (7)

where
1 . 1 .
A, = 5(AO —iA) A= §(A3 —iAy),

1 1

It is especially easy to see that equations (7) are the compatibility of the

system

(Oa —A0p)¥ = (As — AAp)V, (8)
(05 + 000 = (Ag+ AAa)T, ()

since
0= [0a — A3, 05 + A0a|¥ = {Fog + MN(Fuas + Fj3) + N2 Fa5} 0.
The SDYM equations are invariant under the gauge transformation
A, — b AL — hTO,Lh,

10



for any G-valued function h on R* since this induces the map F +— h~'Fh.
This gauge invariance extends to the linear problem (8-9) by the transfor-
mation ¥ +— h~10,

Consider the one-dimensional reduction in which the A,’s are functions
of xo =: t only. Choosing a gauge in which Ay = 0, the SDYM equations

reduce to

0 A1 + [Ag, A3] = 0,

0 Az + [A3, A1) = 0, (10)

0 As + [A1, As] = 0.
This is known as the Nahm system (see Nahm [16]).

If we choose the Lie algebra g to be su(2) and take
Ai(t) = —wi(t) X,
where the {X;};=1 23 is a basis for su(2) which satisfies [X;, X;] = >p €ijuXx,
then we obtain the system
W1 = Wows, Wo = W3w1, W3 = Wiws, (11)

where the dots denote differentiation with respect to t. This system, which
dates back to Lagrange, admits a general solution in terms of elliptic func-
tions. Equation (11) can be viewed (very loosely speaking) as an “unper-
turbed” version of the system (5).

Actually, since we are interested in the “off diagonal” system (4), we first
consider the “unperturbed” off diagonal system associated with it which is

obtained by assuming
—Ai(t) =Ti(1) = wi () X1 +0(1) Xz, —As(t) = To(t) = ¢(t) X1 +wa(t) Xo,

11



—Ay(t) = Ty(t) = ws(t) X, (12)

whereupon (10) implies

w1 = waws,

wa = wswi,

W3 = wiwy — O, (13)
0 = —Quws,
¢ = —buws.

As with equations (11), equations (13) are solvable in terms of elliptic func-

tions. Indeed, we note that
62 — ¢* = C?, wi —wi = E?
where C' and E are constants. The parameterizations
0 = Ccoshi(t), ¢=Csinhi(t), w; = FEcoshu(t), we= Esinhpu(t),

imply

V4+p=k and ¢ =asinh(20 — ),
where k is a constant, o = (C* + E* + 2C?E? cosh 2k) /4, and tanh 3 =
E?sinh 2k /(C? + E? cosh 2k). This equation can be solved via elliptic func-
tions. In our study of equation (4) we will deform (12) in equation (10)
appropriately.

In fact the Darboux-Halphen system arises from the Nahm system (equa-
tion 10) with a different choice of gauge algebra [6, 8]. We also again mention
that unlike equations (11) or (13), the solution of equation (4) or (5) is ex-
pressible in terms of Schwarzian functions; hence the structure of the solution

is more complicated.

12



We begin by briefly reviewing the double covering of SO(3) by SU(2).

Let
T3 T1 — 129 3
X = ( = Z Li0i,
i=1

T1 + 12 —3

be any trace-free Hermitian matrix, where x; € R and

N (0 i (10 y
Ul_(1 0)’ Uz_(z‘ 0)’ 03_(0 —1) (14)

are the Pauli matrices. For any g € SU(2) (i.e. ¢ is a unit determinant 2 x 2

matrix over C satisfying gg" = I),

Ys Y1~y .
y = , = gxg ", (15)
Y1 + 1y2 —Ys3

is also a trace-free Hermitian matrix. Furthermore, y? 4+ y2 +y3 = —dety =
—detx = z? + 22 + 22. In other words, the mapping O : (x1, 2, 73) —
(y1,Y2,y3) is in SO(3). Using the standard representation of O as a 3 x 3

matrix, the components, O;;, are given by
g loig = ZQ';‘(Q)UJ (16)
J

for all g € SU(2). The matrices g and O;; can be parameterized by the Euler
angles 6, ¢, 1 (see, for example, Vilenkin [19]):
e U0H/2cos(0/2)  —ie V)2 5in(0/2)
a ( —ie!@=¥)25in(0/2) P2 cos(0/2) )
and
coS ¢ cosY — sin¢siny cost —cos@siny —singcosypcosf  sinpsinf
O = | singcosy + cospsinycosf —singsiny + cospcospcos) —cospsin |,

sin 1 sin ¢ cos ¢ sin 6 cos 0

13



where 0 < 0 < 7, 0 < ¢ < 27, and —27 < ¢ < 27. Note that for this range
of the Euler angles SU(2) (parameterized by g) is covered once and SO(3)
(parameterized by O) is covered twice.

Choose the gauge algebra to be s0iff(SU(2)) with now
Az<t) = —j;i, where i = ZOU,‘TJ (17)
J

and the T; are given by (12), where {X;} are the standard left-invariant

vector fields generating su(2) which satisfy

X;(9) = 5290, (18)

2i
In this notation the X are given explicitly as vector fields in the Euler angles

(0, ¢,1) as

X, = cosw% + sin v cosec 98— — cot 6 sinwa—,

[9J0) oY
.0 0 9,
Xy = —smv,D% + cos 1) cosec 98—¢ — cot 0 cosz/)@,
0
X3 = R

Using the properties (18) (or equivalently X;(0;r) = >, Oj) it can be
shown that under the present reduction, the SDYM equations become the
gDH system (4) (see also [6, 8]). We note that if O;; is replaced by §;; in
equation (17) we recover the system (13). It is in this sense that equations
(4) are a perturbed form of equations (13).

Next we will find a linear problem associated with equation (4) from the

linear problem for SDYM. In (8-9) we take
—2A, =Ty =245, 2iAg=T —il, =T, —2iAs =Ty +iTy = T.

14



Noting 9,¥ = 0;¥ = 0,V /2, 0¥ = 95¥ = 0 and defining Ty, =0 /Ot, we
then obtain

(To +iTs +irTL) ¥ = 0, (19)

(Afo +iT — ixfg) U o= 0. (20)

We will find it convenient to parameterize A by writing it as a “projective

coordinate” A = 7! /7% Assuming ¥ to be a function of ¢t and A only, we

obtain the following linear pair from (19-20):
ll\I/ - 12\11 - O,
where

(ll lg) == (WO(T0+iT3)+i7T1T+ iWOT_ +7T1(T0—if3))
To+iTs  iT- -
= (7 7) ~ . =" HT
T Ty—iTy
T() = 6t and T:t = ,_fl + ZTQ
This linear problem is unfortunately too complicated to work with con-

cretely because T € s0iff(SU(2)). In order to simplify it, we first note from
equation (15) that equation (17) can be written as an SU(2) action:

T=gTg", (21)

Ty +iTy  iT-
T= :
T, Ty—iTy

Ty = &, Ty = Ty £ iTy. Equation (21) says T(¢) = gT(¢)g" for all
SU(2)-valued functions ¢.

where

15



Next we take two independent linear combinations of /; and Iy, only one

of which, M, contains a derivative with respect to t.

L o= (L 12)<_7;):(7T0 ﬂl)ng1<_7(:), (22)

M = (ll lg) (:;0) ) = (71-0 71'1)ng*1 (_Uz )7 (23)

0

where %! — 7'0® = 1 and we have used equation (21).

Define 74, 9, which we interpret as spinors (see e.g. [18]), as

70 7t 70 7t
= g,
v ot REE
and clearly 70" — 710" = 1. In this way the g-action is absorbed into the

A

spinors 74, 94, From (22-23) we see that these operators have an elegant

representation in terms of the spinors 74, v4,

L = Y m'Trg =) #'T Prp,

74, and 74

A,B A,B
M = Y 7T vg = 7T Pip,
A,B A,B

and where the dual spinors w4, v4, etc., are given by

A 0 1
WB:ZW €AB; €AB = .

A -1 0
We also note that by multiplication equations (22-23) become
—L = i{(#)T, +28°7' T3 — (7°)°T_}, (24)
—M = 0+ i{F" T + (70" + 70Ty — #0°T_} (25)
Notice that in the operators L and M we have moved the explicit g-depend-

ence from the operators ’TAB to the spinors 74, 4. This will help us simplify

the linear problem.

16



We need to take into account the action of T on the spinors #4 and o4,

which depend on g. Without this action of T on 74,94 — i.e. replacing

74— 1, 94— v4) we actually reduce to the unperturbed system (13).
Specifically, using equation (18), we obtain a convenient linear representation

of the X; =: 2%)/(\] on the space of #4 and o4

— 0 0
X. — ~A ) B ~A ) B 26
J Az’; <7T UJA 87?3 T v JJA 8@B> ) ( )

where 0, ? is the (A, B)-entry of the Pauli matrix o; (c.f. 14). Explicitly,

_ 9 9 9 B
. ~1 - ~0 ~ ~1 = ~0 ~
Xi= o+ T Y050 T g5

= 0 9 5 0
X, = i[#! -0 ~1 -0

2 = (” o0 "o U aw " 8171)’
5(\3 = 7?08——7?16—4_1708_ _@18_

ono ort 00 oot
Using equations (24-25), the operators L and M can be written as
L=—(@)c, M=-@+M) 7L
where
L=i{T =2\, + T}, M=AX_—il, and \=iz'/7".

The operators L, M still have the group action contained, but the represen-
tations are greatly simplified. Observe that the compatibility of the system

LV = MV = 0 is, after recombination and some calculation,
1L, M) = (V)2 (L, + £, M] + AL) = 0, (27)

where A = 7#1L0" — ' L7' — (2/71) M7 which depends only on X and t. It

is important to note that since the T; (through the )A(]) act on the 74 and

17



74, we cannot replace the equation LV = 0 with £¥ = 0 without changing

the compatibility conditions. Thus equation (27) reduces the compatibility
of L, M to a compatibility equation involving £, M which depend on the
“unperturbed” operators T; and .

Using the representation (26), we see that

A= 2 {[(wr +wn + 205) — (0 — )] — R[(wr —w2) (6 + )]}

and

XN =i(A24+1), X)) =X—1,  X3(\) =2\

We replace the operators )?z by the operators 371 = o0; + )/(\Z in order to
calculate the compatibility condition (27). In this extended algebra the Y;
form a suitable basis that can be multiplied by S\—dependent functions (the
original X; acting on (X, t) are not linearly independent when multiplied

by such functions). Explicitly, the Y; have the form

Y, = o1 +i(\2+1)105,
Yo = a4+ (N2 —1)10;,

Yy = o3+ 2)\05,

where the o; are the Pauli matrices (14). Thus equation (27) can now be

written as the compatibility condition for a system in ¢ and X only:

l

vV = —(M+vl)Y, (29)
subject to the condition
La(v) = Ap, (30)

18



where

~.

~. 0 i
1 0
5{(0&)\3+ﬁ+)\)5+11},
ar = (w1 —we)Xi(0+¢), Pr=wzxi(l— ),

w = wi4wy—2ws, PA)=ay+ (B4 6) 4+ Mo,
and the matrices [; and [ are given by

L=\X+Z, I=XNX+2\Z+Y,

X = —(¢ + iwl)al — (CUQ + i@)Ug,
Y = (QZ5 — iwl)al —+ (u)z — ie)O'g,

Z = —W303.

4 The Monodromy Evolving System and the
Solution of the Generalized DH System

In this section we recapitulate the main result and we shall summarize the
results of the monodromy analysis. Full details of the monodromy analysis
will be published separately. From (28-30) the linear monodromy evolving

system is given by

U, = (1/P)(ul — DV, (31)

1 1
\I/t = —(VI + §l1 + §f18)\)\1’, (32)

19



where

fl = 057)\3 + ﬂJr)\a

and we have dropped the tildes on the A’s. From (30) the parameter v

satisfies

o A
ox~ P
Detailed analysis of the linear system (31-32) shows that (33) governs the

(33)

evolution of the monodromy associated with W(\) [5].
We remark upon the important point that when 1 = 0 the system (31-32)
is isomonodromic. Indeed equation (31) has four singular points correspond-

ing to the zeros of P:

A1 =/(—=r+v)/d, Ao = —/(=1r —0)/d,

A3 = —\/(—=r+v)/0, A=/ (=1 —)/0, (34)
where we have defined r = w/,/ara, 6> = a_ /o, and v* = r* — 1. The fact
that equation (31) has four distinct singular points indicates that it is related
to the isomonodromy problem for the sixth Painlevé equation, Py [14]. The
canonical form of this isomonodromy problem has singularities at 0, 1, oo,
and s — the independent variable of Py;. To find s we map A to a new
spectral parameter, A, given by

coy L (Ae=A3) (A=A
M) = (A2 = A)(A = A3)

~ ~

So A(A1) = 0, A(X2) = 1, AM(A3) = o0, and we define the isomonodromy

variable s by
Q r+1
=AM N\g) = .
si= A0u) = (3)




This variable plays a central role in the solution of the gDH system. Although
will not go through the analysis in this paper we note that the Lax pair (31—
32) can be used to express w;, 0, and ¢ in terms of s and its derivatives. The
field equations (i.e. the system 4) are then used to show that s must satisfy a
third-order Schwarzian equation. Namely, the analysis of (31-32) establishes

the following:
(¢ —0)
w? —aa_

=g, (36)

where Cy is a constant. Also, it can be shown that

1/54+1\ s
Voo 51(:) (37)
§ §
o = - c{ -5, (38)
0—¢ = 4\/5(8({ ol (39)
ay = Kigeii“(t), (40)
where k4 are constants satisfying k,x_ = 1/4 and

(A

Equations (37-40) show that (w;+ws), w3, (¢—0)?%, and (wy —ws)?+(¢p+0)?
are rational functions of s, §, and 5. We see that we can solve for ) =
(w1, ws,ws, 0, ¢) in terms of s and its first and second derivatives. A direct
calculation shows that €2 is a solution of the gDH system if and only if the

following Schwarzian equation is satisfied:

2

{s,t} + %V(s) =0, (41)

=g (02 ()

21
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is the Schwarzian derivative and

1 1+C§+1+C§
2 s(s—1)  (s—1)%

V(s) =

This solution can be verified by direct substitution. It can be shown (see,
e.g., Ablowitz and Fokas [3]) that, although this equation is linearizable, in
general the solutions are densely branched! The general solution is single

valued only when Cy = 0 or Cy = i/n for some integer n.

5 Discussion

In this paper we have demonstrated how reductions of the SDYM equations
with an infinite dimensional gauge algebra lead to DH type systems. These
equations are linearized by monodromy evolving systems. Thus the gDH
system (4) is a reduction of the SDYM equations and is solvable via an asso-
ciated linear problem. The gDH system has been concretely linearized and
therefore must be considered to be integrable in terms of real variables. It
does not, however, share one of the other properties normally associated with
integrable systems obtained by reduction from soliton equations. In partic-
ular, solutions of the gDH system do not, in general, have “nice” singularity
structure in the complex plane. In the well-known special case of the clas-
sical DH system (0 = ¢ = 0) (5) admits solutions with a movable natural
boundary — a circle on the complex sphere across which the solution cannot
be analytically continued and whose center and radius depend on initial con-
ditions. Although these solutions possess movable singularities other than
poles, nevertheless they are single-valued in their domain of existence, hence

the classical system can still be considered to possess the Painlevé property.
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The general solution of the system (4), however, is densely branched in the
complex plane and is definitely not of Painlevé type. This example shows
that integrability as solvability via an associated linear problem does not
imply integrability in the complex plane (see also [1]). Nevertheless the gDH
system is deeply connected to the equations of Painlevé type as is demon-

strated here.
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