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Abstract

It is now well known that a deep connection exists between soliton

equations and ODE’s of Painlevé type. As a consequence there has

been a significant re-emergence of interest in the study of such ODE’s

and related issues. In this paper we demonstrate that a novel class

of nonlinear ODE’s, Darboux-Halphen (DH) type systems, can be ob-

tained as reductions of the self-dual Yang-Mills (SDYM) equations.

We show how to find by reduction from SDYM the associated linear

pair for DH. This linear system is found to be monodromy evolving

which is different from the linear systems associated with the Painlevé

equations which are isomonodromy. The solution of the DH system

can be obtained in terms of Schwarzian equations which are them-

selves linearizable. The DH system has solutions which are related

to Painlevé equations but the solutions can have complicated analytic

singularities such as natural boundaries and dense branching.
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1 Introduction

This paper emanates from the lectures one of us (MJA) gave at a meeting in

Cargese, Corsica organized during the summer of 1996 focusing on Painlevé

equations and related issues. The meeting was held partly in commemoration

of P. Painlevé’s work one century ago. Painlevé and his school were well

known at the end of the 19th century and early 20th century. But by the

1970’s many of the results, although published in leading journals, were not

known or appreciated by most mathematicians and physicists. The reader

may wish to review Painlevé’s collected works [17] for an in depth discussion

of his contributions and point of view.

However this situation changed dramatically with the recognition that

equations of “Painlevé type” were intimately connected with a class of in-

tegrable systems; i.e. soliton and related equations. Namely, it was demon-

strated that ordinary differential equations (ODE’s) obtained as reductions

of the well known soliton equations yielded ODE’s with the Painlevé Prop-

erty. Namely the solutions of the resulting ODE’s were free of movable

branch points. Moreover, similarity reductions of the best known soliton

equations often resulted in one of the classical second order Painlevé equa-

tions. Background information and a description of the research involving

Painlevé equations and their relationship to integrable soliton systems can

be found in [2, 4]. Ever since the discovery that such integrable systems and

Painlevé equations were deeply connected there has been a major research

effort which has involved many aspects of Painlevé equations. The scope of

the work and results are far too numerous to discuss here.

In this paper we will:
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i. describe, by example, some of the salient features of the connection

of integrable systems and Painlevé equations. Notably we discuss the

connection of the Inverse Scattering Transform (IST) to Painlevé equa-

tions and how one can obtain the linearization and solutions from this

connection.

ii. discuss a generalized Darboux-Halphen (DH) system, which is a fifth

order ODE and which reduces to the classical third order DH system

first studied by Darboux in 1879 [11]. This equation was discussed in a

recent letter [5]. This system, which is a reduction of the self-dual Yang-

Mills equations (SDYM), has a compatible linear monodromy evolving

system. The reason for this can be traced to the fact that the reduction

from SDYM involves an infinite dimensional algebra: sdiff(3).

iii. show how, for the first time, one can use the infinite dimensional algebra

in SDYM to deduce the compatible linear monodromy system for DH.

iv. quote the main results of the monodromy analysis and demonstrate

that although the generalized DH system is linearizable and hence

integrable, nevertheless generically speaking the solution is densely

branched. Only when a constant of the motion takes on a denumer-

ably infinite set of values does the solution become single valued. In

this case the solution is expressible in terms of automorphic functions.

Indeed we note that in the special case of the classical third order DH

system, the solution is always single valued. However in this case the

solution contains natural boundaries in the complex plane.
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2 Painlevé Equations and IST

In the Cargese lectures the importance of similarity reductions of PDE’s was

reviewed. Asymptotic analysis of Fourier integrals shows that the long time

behavior of linear evolution equations with constant coefficients yields the

fact that self-similar (i.e. similarity) solutions are leading order asymptotic

states in certain regions of space (e.g. [4]). In the well known soliton sys-

tems a similar situation arises. For example associated with the modified

Korteweg-de Vries (mKdV) equation,

ut − 6u2ux + uxxx = 0, (1)

is the self-similar reduction,

u(x, t) = w(x/(3t)1/3)/(3t)1/3 (2)

which upon substitution into equation (1) yields, after an integration, the

second (PII) of the six classical Painlevé equations,

w′′ − zw − 2w3 = α, (3)

where α is an arbitrary constant.

Ablowitz and Segur (see e.g. [4]) showed that equation (3) with α = 0

governed the dominant long time asymptotic state of the Cauchy problem

associated with mKdV equation (1), in the region |x/(3t)1/3| = O(1). Not

only can one associate the second Painlevé equation with mKdV, but the

association yields an integral equation governing a one-parameter family of

solutions to PII which is relevant to the Cauchy problem of mKdV.
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Namely the inverse scattering transform (IST) shows that the mKdV

equation can be solved (i.e. linearized) to the following integral equation

K(x, y; t) − F (x + y; t) −
∫ x

−∞

∫ x

−∞
K(x, z; t)F (z + s; t)F (s + y; t)dzds = 0,

where

F (x, t) =
1

2π

∫ ∞

−∞
r(k)exp(ikx + 8ik3)tdk

and the solution to mKdV is given by

u(x, t) = 2K(x, x; t).

The long time asymptotic analysis of mKdV shows that to leading order

in the region: |x/(3t)1/3| = O(1), the solution of mKdV (1) satisfies equation

(3) with α = 0 and the relevant solution of the PII equation is linearized via:

K#(x, y)− r0Ai(x + y)− (r0)
2

∫ x

−∞

∫ x

−∞
K#(x, z)Ai(z + s)Ai(s + y)dzds = 0

where Ai(x) is the well known Airy function whose integral representation is

given by

Ai(x) =
1

2π

∫ ∞

−∞
exp(ikx + ik3/3)dk

and the solution of PII is given by,

w(x) = 2K#(x, x)

This solution satisfies the following “connection” formulae (c.f. [2, 4]):

As x → +∞,

w(x) ∼ r0Ai(x) ∼ r0

2
√

πx1/4
e−

2
3
x3/2
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and as x → −∞,

w(x) ∼ d0

(−x)1/4
sin θ

where

d0 = −(1/π) log(1 − (r0)
2),

θ = (2/3)(−x)3/2 − (3/4)d2
0 log(−x) + θ0,

θ0 = π/4 − (3/2)d2
0 log 2 − arg[Γ(1 − id2

0/2)],

where Γ(x) is the usual Gamma function.

Similarity reduction not only yields special solutions, but it is also the

mechanism for one to be able to obtain the isomonodromy problems, which

govern the general solution of the Painlevé equation. Indeed Flaschka and

Newell [12] showed that the similarity reduction of the compatible linear

system for mKdV also yields a compatible linear system monodromy problem

governing PII . Namely, equation (3) is the compatibility condition (Ψtζ =

Ψζt) for the following system:

Ψζ =

 −i(4ζ2 + z + 2w2) 4ζw + 2iwz + αζ−1

4ζw − 2iwz + αζ−1 i(4ζ2 + z + 2w2)

 Ψ,

Ψz =

−iζ w

w iζ

 Ψ.

In principle the compatible isomonodromy system yields the complete solu-

tion of the mKdV equation.

We shall not dwell on this aspect of the problem since we prefer to discuss

a novel reduction of the self-dual Yang-Mills (SDYM) integrable system:

the generalized Darboux-Halphen (gDH) system. SDYM reductions alone

occupy a major aspect of the integrable systems literature. We only point
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out here that lower dimensional reductions of the four-dimensional SDYM

system yield virtually all the well known soliton equations (see e.g. [2]) and

all the classical Painlevé equations with their monodromy problems (see e.g.

[15]). Just as the reduction (2) of the mKdV linear system gives rise to the

isomonodromy problem for PII , the SDYM linear system under this novel

reduction yields a new class of monodromy evolving problems underlying the

gDH systems. The evolution of this monodromy system is such that the

temporal evolution of the scattering data can be tracked exactly and this

allows us to find the exact solution of the gDH system.

The results associated with DH type systems also have an important

connection in terms of Painlevé equations. Namely we will see that there is a

parameter in their associated linear systems. When this parameter vanishes,

the compatible linear system of DH reduces to an isomonodromy system

associated with one of the classical Painlevé equations. This isomonodromic

system is essential when solving the DH problem.

In this paper we present the solution of the following system of ODEs,

which we refer to as the generalized DH system:

ω̇1 = ω2ω3 − ω1(ω2 + ω3) + φ2,

ω̇2 = ω3ω1 − ω2(ω3 + ω1) + θ2,

ω̇3 = ω1ω2 − ω3(ω1 + ω2) − θφ, (4)

φ̇ = ω1(θ − φ) − ω3(θ + φ),

θ̇ = ω2(φ − θ) − ω3(θ + φ),

where the dots denote differentiation with respect to t. They correspond to

an off-diagonal Bianchi IX metric with self-dual Weyl curvature (see [5]). In
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Chakravarty, Ablowitz, and Takhtajan [8], it was shown that this system

arises as a reduction of the SDYM equations. From the reduction process

we obtain a linear problem for the DH system from the linear problem for

SDYM. As outlined earlier in Chakravarty and Ablowitz [5], this linear prob-

lem, which has non-constant monodromy, allows us to solve the initial value

problem for the system (4) in terms of solutions of Schwarzian equations,

which arise in the theory of conformal mappings.

We remark that this system with θ = φ = 0, i.e.

ω̇1 = ω2ω3 − ω1(ω2 + ω3),

ω̇2 = ω3ω1 − ω2(ω3 + ω1), (5)

ω̇3 = ω1ω2 − ω3(ω1 + ω2),

which we call the classical DH system, was originally analyzed by Darboux

[11] in the context of certain triply orthogonal surfaces. Shortly thereafter

the solution was found by Halphen [13]. The system is equivalent to the

Einstein field equations for a (complex) self-dual Bianchi IX spacetime with

diagonal metric. We also note that the symmetric combination of variables

y := −2(ω1 + ω2 + ω3) satisfies the Chazy equation (Chazy [9, 10]),

d3y

dt3
= 2y

d2y

dt2
− 3

(
dy

dt

)2

, (6)

whose general solution possesses a natural boundary.
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3 Darboux-Halphen Systems and Their Lin-

ear Problems as Reductions of SDYM

As mentioned in the introduction, the self-dual Yang-Mills equations (SDYM)

play a central role in the theory of integrable systems. In Chakravarty,

Ablowitz, and Clarkson [6, 7] it was shown that the classical Darboux-

Halphen system (5) is a reduction of SDYM with the gauge algebra sdiff(

SU(2)). In this section we discuss the SDYM equations and their reduction

to the generalized Darboux-Halphen system (4). We then go on to show that

a linear problem for the Darboux-Halphen system can be obtained from that

for SDYM. To our knowledge, all previously studied linear problems asso-

ciated with integrable systems of ODEs have been isomonodromy problems.

The linear problem obtained in this section, however, has nonconstant, i.e.

evolving monodromy data. It is important to stress that we do not impose

the evolving monodromy condition; rather it is a logical consequence of the

SDYM reduction.

For a given Lie algebra g corresponding to the Lie group G, let the gauge

potential 1-form A be given by

A =
∑
µ

Aµ dxµ,

where the xµ are coordinates on R4, Aµ : R4 → g, µ = 0, . . . , 3. The

curvature 2-form F is given by

F =
1

2

∑
µ,ν

Fµνdxµ ∧ dxν ,

where

Fµν = ∂µAν − ∂νAµ − [Aµ, Aν ]
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and we define ∂µ ≡ ∂
∂xµ

.

With respect to the standard coordinates on R4, the SDYM equations

associated with the gauge algebra g are

F01 = F23, F02 = F31, F03 = F12.

Alternatively, in terms of the so-called null coordinates

α = x0 + ix1, ᾱ = x0 − ix1, β = x3 + ix2, β̄ = x3 − ix2,

SDYM becomes

Fαβ = Fᾱβ̄ = Fαᾱ + Fββ̄ = 0, (7)

where

Aα =
1

2
(A0 − iA1) Aβ =

1

2
(A3 − iA2),

Aᾱ =
1

2
(A0 + iA1) Aβ̄ =

1

2
(A3 + iA2).

It is especially easy to see that equations (7) are the compatibility of the

system

(∂α − λ∂β̄)Ψ = (Aα − λAβ̄)Ψ, (8)

(∂β + λ∂ᾱ)Ψ = (Aβ + λAᾱ)Ψ, (9)

since

0 = [∂α − λ∂β̄, ∂β + λ∂ᾱ]Ψ = {Fαβ + λ(Fαᾱ + Fββ̄) + λ2Fᾱβ̄}Ψ.

The SDYM equations are invariant under the gauge transformation

Aµ �→ h−1Aµh − h−1∂µh,
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for any G-valued function h on R4 since this induces the map F �→ h−1Fh.

This gauge invariance extends to the linear problem (8–9) by the transfor-

mation Ψ �→ h−1Ψ.

Consider the one-dimensional reduction in which the Aµ’s are functions

of x0 =: t only. Choosing a gauge in which A0 = 0, the SDYM equations

reduce to

∂tA1 + [A2, A3] = 0,

∂tA2 + [A3, A1] = 0, (10)

∂tA3 + [A1, A2] = 0.

This is known as the Nahm system (see Nahm [16]).

If we choose the Lie algebra g to be su(2) and take

Ai(t) = −ωi(t)Xi,

where the {Xi}i=1,2,3 is a basis for su(2) which satisfies [Xi, Xj] =
∑

k εijkXk,

then we obtain the system

ω̇1 = ω2ω3, ω̇2 = ω3ω1, ω̇3 = ω1ω2, (11)

where the dots denote differentiation with respect to t. This system, which

dates back to Lagrange, admits a general solution in terms of elliptic func-

tions. Equation (11) can be viewed (very loosely speaking) as an “unper-

turbed” version of the system (5).

Actually, since we are interested in the “off diagonal” system (4), we first

consider the “unperturbed” off diagonal system associated with it which is

obtained by assuming

−A1(t) ≡ T1(t) = ω1(t)X1 +θ(t)X2, −A2(t) ≡ T2(t) = φ(t)X1 +ω2(t)X2,
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−A3(t) ≡ T3(t) = ω3(t)X3, (12)

whereupon (10) implies

ω̇1 = ω2ω3,

ω̇2 = ω3ω1,

ω̇3 = ω1ω2 − θφ, (13)

θ̇ = −φω3,

φ̇ = −θω3.

As with equations (11), equations (13) are solvable in terms of elliptic func-

tions. Indeed, we note that

θ2 − φ2 = C2, ω2
1 − ω2

2 = E2,

where C and E are constants. The parameterizations

θ = C cosh ψ(t), φ = C sinh ψ(t), ω1 = E cosh µ(t), ω2 = E sinh µ(t),

imply

ψ + µ = k, and ψ̈ = α sinh(2ψ − β),

where k is a constant, α2 = (C4 + E4 + 2C2E2 cosh 2k)/4, and tanh β =

E2 sinh 2k/(C2 + E2 cosh 2k). This equation can be solved via elliptic func-

tions. In our study of equation (4) we will deform (12) in equation (10)

appropriately.

In fact the Darboux-Halphen system arises from the Nahm system (equa-

tion 10) with a different choice of gauge algebra [6, 8]. We also again mention

that unlike equations (11) or (13), the solution of equation (4) or (5) is ex-

pressible in terms of Schwarzian functions; hence the structure of the solution

is more complicated.
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We begin by briefly reviewing the double covering of SO(3) by SU(2).

Let

x =

 x3 x1 − ix2

x1 + ix2 −x3

 =
3∑

i=1

xiσi,

be any trace-free Hermitian matrix, where xi ∈ R and

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 (14)

are the Pauli matrices. For any g ∈ SU(2) (i.e. g is a unit determinant 2× 2

matrix over C satisfying gg† = I),

y =

 y3 y1 − iy2

y1 + iy2 −y3

 := gxg−1, (15)

is also a trace-free Hermitian matrix. Furthermore, y2
1 + y2

2 + y2
3 = − dety =

− detx = x2
1 + x2

2 + x2
3. In other words, the mapping O : (x1, x2, x3) �→

(y1, y2, y3) is in SO(3). Using the standard representation of O as a 3 × 3

matrix, the components, Oij, are given by

g−1σig =
∑
j

Oij(g)σj (16)

for all g ∈ SU(2). The matrices g and Oij can be parameterized by the Euler

angles θ, φ, ψ (see, for example, Vilenkin [19]):

g =

 e−i(φ+ψ)/2 cos(θ/2) −iei(ψ−φ)/2 sin(θ/2)

−iei(φ−ψ)/2 sin(θ/2) ei(φ+ψ)/2 cos(θ/2)


and

O =


cos φ cos ψ − sin φ sin ψ cos θ − cos φ sin ψ − sin φ cos ψ cos θ sin φ sin θ

sin φ cos ψ + cos φ sin ψ cos θ − sin φ sin ψ + cos φ cos ψ cos θ − cos φ sin θ

sin ψ sin θ cos ψ sin θ cos θ

 ,

13



where 0 < θ < π, 0 ≤ φ < 2π, and −2π ≤ ψ < 2π. Note that for this range

of the Euler angles SU(2) (parameterized by g) is covered once and SO(3)

(parameterized by O) is covered twice.

Choose the gauge algebra to be sdiff(SU(2)) with now

Ai(t) = −T̃i, where T̃i :=
∑
j

OijTj (17)

and the Ti are given by (12), where {Xi} are the standard left-invariant

vector fields generating su(2) which satisfy

Xj(g) =
1

2i
gσj. (18)

In this notation the Xj are given explicitly as vector fields in the Euler angles

(θ, φ, ψ) as

X1 = cos ψ
∂

∂θ
+ sin ψ cosec θ

∂

∂φ
− cot θ sin ψ

∂

∂ψ
,

X2 = − sin ψ
∂

∂θ
+ cos ψ cosec θ

∂

∂φ
− cot θ cos ψ

∂

∂ψ
,

X3 =
∂

∂ψ
.

Using the properties (18) (or equivalently Xi(Ojk) =
∑

l εiklOjl) it can be

shown that under the present reduction, the SDYM equations become the

gDH system (4) (see also [6, 8]). We note that if Oij is replaced by δij in

equation (17) we recover the system (13). It is in this sense that equations

(4) are a perturbed form of equations (13).

Next we will find a linear problem associated with equation (4) from the

linear problem for SDYM. In (8–9) we take

−2Aα = iT̃3 = 2Aᾱ, 2iAβ = T̃1 − iT̃2 ≡ T̃−, −2iAβ̄ = T̃1 + iT̃2 ≡ T̃+.
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Noting ∂αΨ = ∂ᾱΨ = ∂tΨ/2, ∂βΨ = ∂β̄Ψ = 0 and defining T̃0 ≡ ∂ /∂t, we

then obtain

(
T̃0 + iT̃3 + iλT̃+

)
Ψ = 0, (19)(

λT̃0 + iT̃− − iλT̃3

)
Ψ = 0. (20)

We will find it convenient to parameterize λ by writing it as a “projective

coordinate” λ = π1/π0. Assuming Ψ to be a function of t and λ only, we

obtain the following linear pair from (19–20):

l1Ψ = l2Ψ = 0,

where

( l1 l2 ) = ( π0(T̃0 + iT̃3) + iπ1T̃+ iπ0T̃− + π1(T̃0 − iT̃3) )

= ( π0 π1 )

 T̃0 + iT̃3 iT̃−

iT̃+ T̃0 − iT̃3

 = ( π0 π1 ) T̃

T̃0 = ∂t and T̃± = T̃1 ± iT̃2.

This linear problem is unfortunately too complicated to work with con-

cretely because T ∈ sdiff(SU(2)). In order to simplify it, we first note from

equation (15) that equation (17) can be written as an SU(2) action:

T̃ = gTg−1, (21)

where

T =

 T0 + iT3 iT−

iT+ T0 − iT3

 ,

T0 = ∂t, T± := T1 ± iT2. Equation (21) says T̃(φ) = gT(φ)g−1 for all

SU(2)-valued functions φ.
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Next we take two independent linear combinations of l1 and l2, only one

of which, M, contains a derivative with respect to t.

L := ( l1 l2 )

−π1

π0

 = ( π0 π1 )gTg−1

−π1

π0

 , (22)

M := ( l1 l2 )

−v1

v0

 = ( π0 π1 )gTg−1

−v1

v0

 , (23)

where π0v1 − π1v0 = 1 and we have used equation (21).

Define π̃A, ṽA, which we interpret as spinors (see e.g. [18]), as π̃0 π̃1

ṽ0 ṽ1

 =

 π0 π1

v0 v1

 g,

and clearly π̃0ṽ1 − π̃1ṽ0 = 1. In this way the g-action is absorbed into the

spinors π̃A, ṽA. From (22–23) we see that these operators have an elegant

representation in terms of the spinors πA, vA, π̃A, and ṽA:

L =
∑
A,B

πAT̃ B
A πB =

∑
A,B

π̃AT B
A π̃B,

M =
∑
A,B

πAT̃ B
A vB =

∑
A,B

π̃AT B
A ṽB,

and where the dual spinors πA, vA, etc., are given by

πB =
∑
A

πAεAB, εAB =

 0 1

−1 0

 .

We also note that by multiplication equations (22–23) become

−L = i
{
(π̃1)2T+ + 2π̃0π̃1T3 − (π̃0)2T−

}
, (24)

−M = ∂t + i
{
π̃1ṽ1T+ + (π̃0ṽ1 + π̃1ṽ0)T3 − π̃0ṽ0T−

}
. (25)

Notice that in the operators L and M we have moved the explicit g-depend-

ence from the operators T̃A
B to the spinors π̃A, ṽA. This will help us simplify

the linear problem.
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We need to take into account the action of T on the spinors π̃A and ṽA,

which depend on g. Without this action of T on π̃A, ṽA — i.e. replacing

π̃A �→ πA, ṽA �→ vA, we actually reduce to the unperturbed system (13).

Specifically, using equation (18), we obtain a convenient linear representation

of the Xj =: 1
2i

X̂j on the space of π̃A and ṽA:

X̂j =
∑
A,B

(
π̃Aσ B

jA

∂

∂π̃B
+ ṽAσ B

jA

∂

∂ṽB

)
, (26)

where σ B
jA is the (A, B)–entry of the Pauli matrix σj (c.f. 14). Explicitly,

X̂1 = π̃1 ∂

∂π̃0
+ π̃0 ∂

∂π̃1
+ ṽ1 ∂

∂ṽ0
+ ṽ0 ∂

∂ṽ1
,

X̂2 = i

(
π̃1 ∂

∂π̃0
− π̃0 ∂

∂π̃1
+ ṽ1 ∂

∂ṽ0
− ṽ0 ∂

∂ṽ1

)
,

X̂3 = π̃0 ∂

∂π̃0
− π̃1 ∂

∂π̃1
+ ṽ0 ∂

∂ṽ0
− ṽ1 ∂

∂ṽ1
.

Using equations (24–25), the operators L and M can be written as

L = −
(
π̃1

)2 L, M = − (∂t + M) − π̃1ṽ1L,

where

L = i
{
T+ − 2iλ̃T3 + λ̃2T−

}
, M = λ̃T− − iT3, and λ̃ = iπ̃0/π̃1.

The operators L, M still have the group action contained, but the represen-

tations are greatly simplified. Observe that the compatibility of the system

LΨ = MΨ = 0 is, after recombination and some calculation,

[L, M ] = (π̃1)2 (−Lt + [L,M] + AL) = 0, (27)

where A = π̃1Lṽ1 − ṽ1Lπ̃1 − (2/π̃1)Mπ̃1 which depends only on λ̃ and t. It

is important to note that since the Ti (through the X̂j) act on the π̃A and
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ṽA, we cannot replace the equation LΨ = 0 with LΨ = 0 without changing

the compatibility conditions. Thus equation (27) reduces the compatibility

of L, M to a compatibility equation involving L, M which depend on the

“unperturbed” operators Ti and λ̃.

Using the representation (26), we see that

A = −1

2

{
[(ω1 + ω2 + 2ω3) − i(θ − φ)] − λ̃2[(ω1 − ω2) − i(θ + φ)]

}
,

and

X̂1(λ̃) = i(λ̃2 + 1), X̂2(λ̃) = λ̃2 − 1, X̂3(λ̃) = 2λ̃.

We replace the operators X̂i by the operators Ŷi := σi + X̂i in order to

calculate the compatibility condition (27). In this extended algebra the Ŷi

form a suitable basis that can be multiplied by λ̃-dependent functions (the

original X̂i acting on Ψ(λ̃, t) are not linearly independent when multiplied

by such functions). Explicitly, the Ŷi have the form

Ŷ1 = σ1 + i(λ̃2 + 1)I∂λ̃,

Ŷ2 = σ2 + (λ̃2 − 1)I∂λ̃,

Ŷ3 = σ3 + 2λ̃I∂λ̃,

where the σi are the Pauli matrices (14). Thus equation (27) can now be

written as the compatibility condition for a system in t and λ̃ only:

LΨ =
i

2
µΨ, (28)

∂tΨ = −(M + νI)Ψ, (29)

subject to the condition

Ld(ν) = Aµ, (30)
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where

L =
i

2

{
P (λ̃)

∂

∂λ̃
+ l

}
=

i

2
(Ld + l),

M =
1

2

{
(α−λ3 + β+λ)

∂

∂λ̃
+ l1

}
,

α± = (ω1 − ω2) ± i(θ + φ), β± = ω ± i(θ − φ),

ω = ω1 + ω2 − 2ω3, P (λ̃) = α+ + λ̃2(β+ + β−) + λ̃4α−,

and the matrices l1 and l are given by

l1 = λ̃X + Z, l = λ̃2X + 2λ̃Z + Y,

X = −(φ + iω1)σ1 − (ω2 + iθ)σ2,

Y = (φ − iω1)σ1 + (ω2 − iθ)σ2,

Z = −ω3σ3.

4 The Monodromy Evolving System and the

Solution of the Generalized DH System

In this section we recapitulate the main result and we shall summarize the

results of the monodromy analysis. Full details of the monodromy analysis

will be published separately. From (28–30) the linear monodromy evolving

system is given by

Ψλ = (1/P )(µI − l)Ψ, (31)

Ψt = −(νI +
1

2
l1 +

1

2
f1∂λ)Ψ, (32)
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where

f1 = α−λ3 + β+λ,

and we have dropped the tildes on the λ’s. From (30) the parameter ν

satisfies
∂ν

∂λ
=

A

P
µ. (33)

Detailed analysis of the linear system (31–32) shows that (33) governs the

evolution of the monodromy associated with Ψ(λ) [5].

We remark upon the important point that when µ = 0 the system (31–32)

is isomonodromic. Indeed equation (31) has four singular points correspond-

ing to the zeros of P:

λ1 =
√

(−r + v)/δ, λ2 = −
√

(−r − v)/δ,

λ3 = −
√

(−r + v)/δ, λ4 =
√

(−r − v)/δ, (34)

where we have defined r = ω/
√

α+α−, δ2 = α−/α+ and v2 = r2−1. The fact

that equation (31) has four distinct singular points indicates that it is related

to the isomonodromy problem for the sixth Painlevé equation, PVI [14]. The

canonical form of this isomonodromy problem has singularities at 0, 1, ∞,

and s — the independent variable of PVI . To find s we map λ to a new

spectral parameter, λ̂, given by

λ̂(λ) =
(λ2 − λ3)(λ − λ1)

(λ2 − λ1)(λ − λ3)
.

So λ̂(λ1) = 0, λ̂(λ2) = 1, λ̂(λ3) = ∞, and we define the isomonodromy

variable s by

s := λ̂(λ4) =
r + 1

r − 1
. (35)
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This variable plays a central role in the solution of the gDH system. Although

will not go through the analysis in this paper we note that the Lax pair (31–

32) can be used to express ωi, θ, and φ in terms of s and its derivatives. The

field equations (i.e. the system 4) are then used to show that s must satisfy a

third-order Schwarzian equation. Namely, the analysis of (31–32) establishes

the following:
(φ − θ)2

ω2 − α+α−
= C2

0 , (36)

where C0 is a constant. Also, it can be shown that

ω =
1

2

(
s + 1

s − 1

)
ṡ

s
, (37)

ω3 = −1

2

(
s̈

ṡ
− ṡ

s

)
, (38)

θ − φ =
C0ṡ√

s(s − 1)
, (39)

α± = κ±
ṡ

s
e±iu(t), (40)

where κ± are constants satisfying κ+κ− = 1/4 and

u(t) = C0 ln

(√
s − 1√
s + 1

)
.

Equations (37–40) show that (ω1+ω2), ω3, (φ−θ)2, and (ω1−ω2)
2+(φ+θ)2

are rational functions of s, ṡ, and s̈. We see that we can solve for Ω =

(ω1, ω2, ω3, θ, φ) in terms of s and its first and second derivatives. A direct

calculation shows that Ω is a solution of the gDH system if and only if the

following Schwarzian equation is satisfied:

{s, t} +
ṡ2

2
V (s) = 0, (41)

where

{s, t} ≡ d

dt

(
s̈

ṡ

)
− 1

2

(
s̈

ṡ

)2
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is the Schwarzian derivative and

V (s) =
1

s2
− 1 + C2

0

s(s − 1)
+

1 + C2
0

(s − 1)2
.

This solution can be verified by direct substitution. It can be shown (see,

e.g., Ablowitz and Fokas [3]) that, although this equation is linearizable, in

general the solutions are densely branched! The general solution is single

valued only when C0 = 0 or C0 = i/n for some integer n.

5 Discussion

In this paper we have demonstrated how reductions of the SDYM equations

with an infinite dimensional gauge algebra lead to DH type systems. These

equations are linearized by monodromy evolving systems. Thus the gDH

system (4) is a reduction of the SDYM equations and is solvable via an asso-

ciated linear problem. The gDH system has been concretely linearized and

therefore must be considered to be integrable in terms of real variables. It

does not, however, share one of the other properties normally associated with

integrable systems obtained by reduction from soliton equations. In partic-

ular, solutions of the gDH system do not, in general, have “nice” singularity

structure in the complex plane. In the well-known special case of the clas-

sical DH system (θ = φ = 0) (5) admits solutions with a movable natural

boundary — a circle on the complex sphere across which the solution cannot

be analytically continued and whose center and radius depend on initial con-

ditions. Although these solutions possess movable singularities other than

poles, nevertheless they are single-valued in their domain of existence, hence

the classical system can still be considered to possess the Painlevé property.
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The general solution of the system (4), however, is densely branched in the

complex plane and is definitely not of Painlevé type. This example shows

that integrability as solvability via an associated linear problem does not

imply integrability in the complex plane (see also [1]). Nevertheless the gDH

system is deeply connected to the equations of Painlevé type as is demon-

strated here.
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Paris, 92:1101–1103, 1881.

[14] M. Jimbo and T. Miwa. Monodromy preserving deformation of linear

ordinary differential equations with rational coefficients II. Phys. D,

2:407–448, 1981.

[15] L.J. Mason and N.M.J. Woodhouse. Integrability, Self-Duality, and

Twistor Theory. Oxford University Press, Oxford, 1996. LMS Mono-

graph, New Series 15.

[16] W. Nahm. The algebraic geometry of multimonopoles. In M Serdaroglu

and E Inonu, editors, Group Theoretical Methods in Physics, volume 180

of Lect. Notes Phys., pages 456–466, Berlin-Heidelberg-New York, 1982.

Springer-Verlag.
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