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Abstract

It is shown that a ninth-order generalization of the classical Darboux-Halphen
system arises as a reduction of the self-dual Yang-Mills equations (SDYM). Using a
convenient factorization we solve this system exactly and obtain its general solution in
terms of a (linearizable) three-parameter Schwarzian equation. The general solution
of the system is found to have a complicated singularity structure including movable
natural barriers and dense branching which implies that the system does not possess
the Painlevé property, although it is exactly solvable.

1 Introduction

The Painlevé property for ODEs (that all solutions are single-valued about all movable
singularities) has been used as an effective detector of integrability for over a century now
(see [5, 22, 23]). The Painlevé property was first used in this context by Kowalevskaya to
find a new integrable case of the equations of motion for a spinning top [20, 21]. Since the
late 1970’s there has been a resurgence of interest in equations of Painlevé type after it
appeared that all ODE reductions of equations solvable via the inverse scattering method
possess the Painlevé property, possibly after a transformation of variables [9, 7, 8]. This
has led to the discovery of a great many integrable equations.

In this paper we discuss the ninth-order system

Ṁ = (detM)
(
M−1

)T
+ MT M − (TrM)M,(1)

where M is a 3 × 3 matrix-valued function of t, and we show that it can be obtained
as a reduction of the self-dual Yang-Mills (SDYM) equations associated with the infinite-
dimensional Lie algebra sdiff(S3). This equation is integrable in the sense that its general
solution can be written explicitly in terms of solutions of the (linearizable) Schwarzian
equation. Equation (1), which we refer to as DH–IX, is a generalization of the classical
Darboux-Halphen system

ω̇1 = ω2ω3 − ω1(ω2 + ω3), ω̇2 = ω3ω1 − ω2(ω3 + ω1), ω̇3 = ω1ω2 − ω3(ω1 + ω2),(2)

which is obtained by setting M = diag(ω1, ω2, ω3) in equation (1). The system (2) originally
arose in Darboux’s study of triply orthogonal surfaces [16, 17] and was later solved by
Halphen [19]. Later it was shown that this system is also equivalent to the Einstein field
equations for a diagonal self-dual Bianchi–IX metric with Euclidean signature [18]. On
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setting y = −2(ω1 + ω2 + ω3) it can be shown that the Darboux-Halphen system (2) is
equivalent to the Chazy equation

d3y

dt3
= 2y

d2y

dt2
− 3

(
dy

dt

)2

(3)

(Chazy [12, 13, 14], see also Ablowitz and Clarkson [5]). The general solution of equations
(2) and (3) contain a movable natural boundary (in this case, a circle or infinite line across
which the solution cannot be analytically extended). However, every solution of (2) is
single-valued and therefore possesses the Painlevé property.

Solutions of (1), however, are generically densely branched about movable singularities
and so the system is not of Painlevé type. A fifth-order case of equation (1) was analyzed
in [11, 4, 1, 2].

2 The ninth-order Darboux-Halphen system

With respect to standard coordinates {xµ} on R4 the self-dual Yang-Mills equations are

F01 = F23, F02 = F31, F03 = F12,(4)

where

Fµν = ∂µAν − ∂νAµ − [Aµ, Aν ],

with ∂µ = ∂
∂xµ and where the Aµ are functions from R4 to a Lie algebra (the gauge algebra)

g. These equations are integrable for a certain class of gauge algebras [10, 15]. Many well
known integrable equations are reductions of the SDYM equations [26, 5].

Consider the reduction of SDYM in which the Aµ are functions of x0 =: t only and take
values in the infinite-dimensional Lie algebra sdiff(S3). Then the SDYM equations become

Ȧi +
1
2

3∑
j,k=1

εijk[Aj , Ak] = 0,(5)

where, without loss of generality, we have taken A0 ≡ 0. Equation (5) is known as the
Nahm system [24]. We define the Ai’s as

Ai(t) = −
3∑

j,k=1

Mij(t)OjkXk,

where the operators Xi are the standard generators of sdiff(S3). These are divergence-free
vector fields on S3 satisfying the SU(2) Lie bracket [Xi, Xj ] =

∑
k εijkXk. The points on

S3 are represented by the SO(3) matrix [Oij ] and the generators Xi act on the Oij as

Xi(Ojk) =
3∑

l=1

εiklOjl.

The Nahm system (5) now reduces to the DH–IX system (1) for the matrix Mij .



3 A convenient factorization

DH–IX admits a natural factorization upon decomposing M into symmetric and antisym-
metric parts. The symmetric part, Ms, can be diagonalized by an orthogonal matrix P
giving

M = Ms + Ma = P (D + a)P−1,(6)

where a := P−1MaP is antisymmetric. If the components of D are distinct then under this
factorization equation (1) splits into two linear equations for P and a while D satisfies an
equation similar to system (2). These equations are

Ṗ = −Pa,(7)

ȧ = −aD − Da,(8)

Ḋ = 2
{
D2 − (TrD)D

}
+

1
2

{
(TrD)2 − Tr(D2) − Tr a2

}
I.(9)

In deriving these equations we have used the characteristic polynomial equation for M.
Note that once a solution for the sixth-order system (8–9) is known, the orthogonal

matrix P is given by equation (7) which is linear. The solution of equation (1) is then given
by (6).

Equations (7–9) can be written as the compatibility condition for a linear problem which
arises as a nontrivial reduction of the isospectral problem for the SDYM equations. It is
interesting to note that unlike most known auxiliary linear problems related to integrable
systems, the resulting linear problem is monodromy evolving. Details of these facts can be
found in [3].

Using the parameterization D = diag(ω1, ω2, ω3) and aij =
∑

k εijkτk, equations (8–9)
become

ω̇1 = ω2ω3 − ω1(ω2 + ω3) + τ2, τ̇1 = −τ1(ω2 + ω3),
ω̇2 = ω3ω1 − ω2(ω3 + ω1) + τ2, τ̇2 = −τ2(ω3 + ω1),
ω̇3 = ω1ω2 − ω3(ω1 + ω2) + τ2, τ̇3 = −τ3(ω1 + ω2),

where τ2 := τ2
1 + τ2

2 + τ2
3 .

For distinct ωi’s, the general solution of the system (8–9) is

ω1 = −1
2

d

dt
ln

ṡ

s(s − 1)
, τ1 =

κ1ṡ√
s(s − 1)

,

ω2 = −1
2

d

dt
ln

ṡ

s − 1
, τ2 =

κ2 ṡ

s
√

s − 1
,

ω3 = −1
2

d

dt
ln

ṡ

s
, τ3 =

κ3ṡ√
s(s − 1)

,

where the κi are constants and s solves the Schwarzian equation

{s, t} +
ṡ2

2
V (s) = 0(10)

where

{s, t} :=
d

dt

(
s̈

ṡ

)
− 1

2

(
s̈

ṡ

)2

is the Schwarzian derivative and V is given by

V (s) =
1 − β2

s2
+

1 − γ2

(s − 1)2
+

β2 + γ2 − α2 − 1
s(s − 1)

,



with α2 = −4κ2
1, β2 = 4κ2

2, and γ2 = −4κ2
3. Equation (10) is of great importance in the

theory of conformal mappings (see, for example, Nehari [25] or Ablowitz and Fokas [6]).
It’s general solution can be written in terms of two independent solutions of a linear ODE
(the hypergeometric equation). When α, β, and γ are non-negative real numbers satisfying
α + β + γ < 1, the function s(t) maps a given circular triangle with internal angles απ, βπ,
γπ to the upper half plane.

Equation (10) is singular when s = 0, 1, or ∞. The expansions for s at these points
are summarized below

Table 1

Expansions of the solution of the Schwarzian equation

Singular Expansion
point for s

s = 0 s = (t − t0)1/βU0

s = 1 s = 1 + (t − t0)1/γU1

s = ∞ s = (t − t0)−1/αU∞

where t0 is an arbitrary constant and the Ui’s are analytic in a neighborhood of t = t0.
It follows that if α = 1/p, β = 1/q, and γ = 1/r, for integers p, q, and r, then s is
single-valued. For general α, β, γ, however, the solutions are densely branched.

The general solution described above assumes the ωi’s are distinct. When exactly two of
the ωi’s are equal the general solution is again in terms of solutions of an equation involving
the Schwarzian derivative. The corresponding s-variable in this case maps crescent regions
rather than circular triangles [3]. When ω1 = ω2 = ω3 =: ω, the general solution is

ω =
t − t0

(t − t0)2 + κ2
, τi =

κi

(t − t0)2 + κ2
,

where t0 and the κi are constants and κ2 = κ2
1 + κ2

2 + κ2
3.
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