The Darboux-Halphen System and the Singularity Structure
of its Solutions

M.J. Ablowitz* S. Chakravarty! R. Halburd*

Abstract

It is shown that a ninth-order generalization of the classical Darboux-Halphen
system arises as a reduction of the self-dual Yang-Mills equations (SDYM). Using a
convenient factorization we solve this system exactly and obtain its general solution in
terms of a (linearizable) three-parameter Schwarzian equation. The general solution
of the system is found to have a complicated singularity structure including movable
natural barriers and dense branching which implies that the system does not possess
the Painlevé property, although it is exactly solvable.

1 Introduction

The Painlevé property for ODEs (that all solutions are single-valued about all movable
singularities) has been used as an effective detector of integrability for over a century now
(see [5, 22, 23]). The Painlevé property was first used in this context by Kowalevskaya to
find a new integrable case of the equations of motion for a spinning top [20, 21]. Since the
late 1970’s there has been a resurgence of interest in equations of Painlevé type after it
appeared that all ODE reductions of equations solvable via the inverse scattering method
possess the Painlevé property, possibly after a transformation of variables [9, 7, 8]. This
has led to the discovery of a great many integrable equations.

In this paper we discuss the ninth-order system

(1) M = (det M) (M—l)T + MTM — (Tr M)M,

where M is a 3 x 3 matrix-valued function of ¢, and we show that it can be obtained
as a reduction of the self-dual Yang-Mills (SDYM) equations associated with the infinite-
dimensional Lie algebra s0iff(S®). This equation is integrable in the sense that its general
solution can be written explicitly in terms of solutions of the (linearizable) Schwarzian
equation. Equation (1), which we refer to as DH-IX, is a generalization of the classical
Darboux-Halphen system

(2) W] = Wowsz — wl(LUQ + W3), Wy = W3wi — wQ(W3 + wl), W3 = Wiwg — wg(wl + UJQ),

which is obtained by setting M = diag(w1,ws,ws) in equation (1). The system (2) originally
arose in Darboux’s study of triply orthogonal surfaces [16, 17] and was later solved by
Halphen [19]. Later it was shown that this system is also equivalent to the Einstein field
equations for a diagonal self-dual Bianchi-IX metric with Euclidean signature [18]. On
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setting y = —2(w; + w2 + w3) it can be shown that the Darboux-Halphen system (2) is
equivalent to the Chazy equation

d3y d2y dy 2
il A, Y A &y
(3) a3 < dt )

(Chazy [12, 13, 14], see also Ablowitz and Clarkson [5]). The general solution of equations
(2) and (3) contain a movable natural boundary (in this case, a circle or infinite line across
which the solution cannot be analytically extended). However, every solution of (2) is
single-valued and therefore possesses the Painlevé property.

Solutions of (1), however, are generically densely branched about movable singularities
and so the system is not of Painlevé type. A fifth-order case of equation (1) was analyzed
in [11, 4, 1, 2].

2 The ninth-order Darboux-Halphen system
With respect to standard coordinates {z,} on R* the self-dual Yang-Mills equations are

(4) Fo1 = Fas, Foo = Fjy, Foz = Fio,

where

Fu = 0,A, — 0,A, — [Au, A,

with 9, = 36;3—“ and where the A,, are functions from R? to a Lie algebra (the gauge algebra)
g. These equations are integrable for a certain class of gauge algebras [10, 15]. Many well
known integrable equations are reductions of the SDYM equations [26, 5].

Consider the reduction of SDYM in which the A, are functions of xy =: ¢ only and take
values in the infinite-dimensional Lie algebra s0iff(.5%). Then the SDYM equations become

.13
(5) A; + 5 Z E,’jk[Aj,Ak] =0,
k=1

where, without loss of generality, we have taken Ay = 0. Equation (5) is known as the
Nahm system [24]. We define the A;’s as

3
Ai(t) = = Y Mii(t)Ojw X,
k=1
where the operators X; are the standard generators of §0iff(S%). These are divergence-free

vector fields on S satisfying the SU(2) Lie bracket [X;, X;] = Y €ijkXk. The points on
S3 are represented by the SO(3) matrix [O;;] and the generators X; act on the O;; as

3
Xi(Ojr) = emOji.
=1

The Nahm system (5) now reduces to the DH-IX system (1) for the matrix M;;.



3 A convenient factorization

DH-IX admits a natural factorization upon decomposing M into symmetric and antisym-
metric parts. The symmetric part, M, can be diagonalized by an orthogonal matrix P
giving

(6) M = M;+ M, = P(D+a)P",

where a := P~'M,P is antisymmetric. If the components of D are distinct then under this
factorization equation (1) splits into two linear equations for P and a while D satisfies an
equation similar to system (2). These equations are

(7) P = —Pa,
(8) a = —aD — Da,
(9) D = 2{p*-(rD)D} + % {(TrD)? = Tx(D?) — Tra?} I.

In deriving these equations we have used the characteristic polynomial equation for M.

Note that once a solution for the sixth-order system (8-9) is known, the orthogonal
matrix P is given by equation (7) which is linear. The solution of equation (1) is then given
by (6).

Equations (7-9) can be written as the compatibility condition for a linear problem which
arises as a nontrivial reduction of the isospectral problem for the SDYM equations. It is
interesting to note that unlike most known auxiliary linear problems related to integrable
systems, the resulting linear problem is monodromy evolving. Details of these facts can be
found in [3].

Using the parameterization D = diag(wi,ws,ws) and a;; = > . €17k, equations (8-9)
become

W1 = wowz — wi (wa + ws) + 72, 71 = —71(w2 +w3),
wo ZW3W1—W2(W3+W1)+72, Ty = —Tz(w:s-i-m),
w3 = wWiwg — wg(w1 —l—WQ) + 7'2, T3 = _7'3(wl +W2),

where 72 := 7% + 72 + 73,
For distinct w;’s, the general solution of the system (8-9) is

L T . | L N
YT oar s(s—1)’ b s(s—1)
wy = g 5 28
2T 2dt s 1 T s 1

1d S K3$
w3 =—=——1In-, T3

2dt s - Vs(s—1)’
where the k; are constants and s solves the Schwarzian equation

32

(10) {s,t} + EV(S) =0

-4

is the Schwarzian derivative and V' is given by

_1_ﬁ2 1_,)/2—’_&2_'_72_0[2_1
82 (s —1)2 s(s—1) ’

where

V(s)




with o? = —4k?, 32 = 4k3, and 4?2 = —4x3%. Equation (10) is of great importance in the
theory of conformal mappings (see, for example, Nehari [25] or Ablowitz and Fokas [6]).
It’s general solution can be written in terms of two independent solutions of a linear ODE
(the hypergeometric equation). When «, 3, and v are non-negative real numbers satisfying
a+ 47 < 1, the function s(¢) maps a given circular triangle with internal angles am, 57,
~v7 to the upper half plane.

Equation (10) is singular when s = 0, 1, or co. The expansions for s at these points
are summarized below

TABLE 1

Ezxpansions of the solution of the Schwarzian equation

Singular Expansion
point for s

s=0 S:(t—to)l/ﬁUQ

s=1 8:1+(t—t0)1/7U1

§ =00 s=(t—1tg) Uy

where tg is an arbitrary constant and the U;’s are analytic in a neighborhood of ¢ = .
It follows that if « = 1/p, B8 = 1/q, and v = 1/r, for integers p, ¢, and r, then s is
single-valued. For general «, 3, v, however, the solutions are densely branched.

The general solution described above assumes the w;’s are distinct. When exactly two of
the w;’s are equal the general solution is again in terms of solutions of an equation involving
the Schwarzian derivative. The corresponding s-variable in this case maps crescent regions
rather than circular triangles [3]. When w; = we = ws =: w, the general solution is

t— t() Kj

YTt R Tt k2

where to and the k; are constants and k2 = K7 + k3 + K3.

References

[1] M. J. Ablowitz, S. Chakravarty, and R. Halburd, On Painlevé and Darbouz-Halphen type
equations, in the Painlevé property, one century later, CRM series in mathematical physics,
Springer, Berlin, ed. R. Conte, 1998.

[2] ——, Darbouz-Halphen type equations and evolving monodromy problems, (to appear).

[3] ——, The general Darbouz-Halphen system, Schwarzian functions, and the sixth Painlevé
equation, (to appear).

[4] M. J. Ablowitz, S. Chakravarty, and B. M. Herbst, Integrability, computation and applications,
Acta Appl. Math., 39 (1995), pp. 5-37.

[5] M. J. Ablowitz and P. A. Clarkson, Solitons, nonlinear evolution equations and inverse
scattering, Lond. Math. Soc. Lecture Note Series, 149, CUP, Cambridge, 1991.

[6] M. J. Ablowitz and A. S. Fokas, Complex variables: introduction and applications, CUP,
Cambridge, 1997.

[7] M. J. Ablowitz, A. Ramani, and H. Segur, Nonlinear evolution equations and ordinary
differential equations of Painlevé type, Lett. Nouvo Cim., 23 (1978), pp. 333-338.



8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]

23]

[24]

—, A connection between nonlinear evolution equations and ordinary differential equations
of P-type. I and II, J. Math. Phys., 21 (1980), pp. 715-721 and 1006-1015.

M. J. Ablowitz and H. Segur, Ezact linearization of a Painlevé transcendent, Phys. Rev. Lett.,
38 (1977), pp. 1103-1106.

M. F. Atiyah and R. S. Ward, Instantons and algebraic geometry, Commun. Math. Phys., 55
(1977), pp. 117-124.

Integrability, monodromy evolving deformations, and self-dual Bianchi IX systems, Phys. Rev.
Lett., 76 (1996), pp. 857-860.

J. Chazy, Sur les équations différentielles dont l’intégrale générale est uniforme et admet des
singularities essentielles mobiles, C.R. Acad. Sc. Paris, 149 (1909), pp. 563-565.

——, Sur les équations différentielles dont l'intégrale générale posséde une coupure essentielle
mobile, C.R. Acad. Sc. Paris, 150 (1910), pp. 456-458.

——, Sur les équations différentielles du troisiéme et d’ordre supérieur dont l’intégrale générale
a ses points critiques fizés, Acta Math., 34 (1911), pp. 317-385.

E. F. Corrigan, D. B. Fairlie, R. G. Yates, and P. Goddard, Construaction of self-dual solutions
to SU(2) gauge theory, Commun. Math. Phys., 58 (1978), pp. 223-240.

G. Darboux, Sur la théorie des coordonnées curvilignes et les systémes orthogonauz, Ann. Ec.
Normale Supér., 7 (1878), pp. 101-150.

—, Legons sur la théorie générale des surfaces et les applications géométrique du calcul
infinitésimal, Vol 1-4, Gauthier-Villars, Paris, 1887-1896.

G. W. Gibbons and C. N. Pope, The positive action conjecture and asymptotically Euclidean
metrics in quantum gravity, Commun. Math. Phys., 66 (1979), pp. 267-290.

G. Halphen, Sur un systéme d’équations différenticlles, C. R. Acad. Sci. Paris, 92 (1881),
pp- 1101-1103.

S. Kowalevski, Sur le Probléme de la Rotation d’un Corps Solid Autour d’un Point Fixé, Acta
Math., 12 (1889), pp. 177-232.

——, Sur une Propriété d’un Systéme d’Equations Différentielles qui Definit la Rotation d’un
Corps Solide Autour d’un Point Fizé, Acta Math., 14 (1889), pp. 81-93.

M. D. Kruskal and P. A. Clarkson, The Painlevé-Kowalevski and poly-Painlevé tests for
integrability, Stud. Appl. Math., 86 (1992), pp. 87-165.

M. D. Kruskal, N. Joshi, and R. Halburd, Analytic and asymptotic methods for nonlinear
singularity analysis: a review and extensions of tests for the Painlevé property in Proceedings
of the CIMPA Summer School on Nonlinear Systems, Pondicherry, India, eds B. Grammaticos
and K. Tamizhmani, 1997.

W. Nahm, The algebraic geometry of multimonopoles in Group Theoretical Methods in Physics,
Lect. Notes Phys., 180, eds M. Serdaroglu and E. Inonu (1982).

Z. Nehari, Conformal mapping, McGraw-Hill, New York, 1952.

R. S. Ward, Integrable and solvable systems, and relations among them, Phil. Trans. R. Soc.
Lond. A, 315 (1985), pp. 451-457.



