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Abstract

In this paper, we study a well known asymptotic limit in which the sec-

ond Painlevé equation (PII) becomes the first Painlevé equation (PI). The

limit preserves the Painlevé property (i.e. that all movable singularities of

all solutions are poles). Indeed it has been commonly accepted that the

movable simple poles of opposite residue of the generic solution of PII must

coalesce in the limit to become movable double poles of the solutions of PI ,

even though the limit naively carried out on the Laurent expansion of any

solution of PII makes no sense. Here we show rigorously that a coalescence

of poles occurs. Moreover we show that locally all analytic solutions of PI

arise as limits of solutions of PII .

1 Introduction

An ordinary differential equation is said to be of Painlevé type (or to possess the

Painlevé property) if the only movable singularities of its solutions are poles. The

property is strongly related to integrable systems (systems which can be solved via

related linear problems) [1, 2, 9, 13]. Knowledge of equations with the Painlevé

property, including various methods of classification, is therefore valuable in the

search for integrable systems. Asymptotic limits of differential equations that

preserve the Painlevé property provide another mechanism for such searches.

In a series of papers published around the turn of the century, Painlevé [11],

Gambier [5], and Fuchs [4] conducted an exhaustive search for all equations of
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Painlevé type of the form

u′′ = Φ(x; u, u′),

where Φ is analytic in x and rational in u and u′. They discovered six equations

of Painlevé type which, up to a transformation, are the only equations of this

type whose general solutions are new transcendental functions. These equations

are known as the Painlevé equations PI–PVI . The first two are

PI : u′′(x) = 6u2 + x;

PII : u′′(x) = 2u3 + xu + α;

where α is a complex constant.

Painlevé [12] noted that under the transformation

x = ε2z − 6ε−10;

u = εy + ε−5; (1)

α = 4ε−15,

PII becomes

y′′(z) = 6y2 + z + ε6
{
2y3 + zy

}
. (2)

If ε vanishes, equation (2), which we will refer to as PII(ε), becomes PI with

x replaced by z and u replaced by y. We will say that under (1), PII degenerates

to PI and write PII → PI . Painlevé gave a series of such degeneracies which is

summarized in Figure 1.

FIGURE 1 NEAR HERE.

Using a method based on maximal dominant balances, Joshi and Kruskal

[7] have found a new degeneracy of PIV to another equation of Painlevé type

(equation XXXIV on p.340 of Ince [6]). Their paper raises the possibility of

using asymptotic limits between differential equations which preserve the Painlevé

property as new tools in the search for, and classification of, integrable systems.
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The central concern of the present paper is an exploration of the convergence of

solutions of PII(ε) to solutions of PI as ε vanishes. In particular we are concerned

with the way in which simple poles of oppositely signed residues in solutions of

PII(ε) coalesce to form the double poles of PI . Unfortunately, a purely local

analysis of this coalescence is problematic as the radius of convergence of any

Laurent expansion centred on any pole necessarily decreases to zero if the poles

coalesce. Rather than attempt to find an accurate upper bound on the radius of

convergence we use techniques based on steepest ascent curves similar to those

first expounded by Joshi and Kruskal in their direct proof that PI to PV I possess

the Painlevé property [8]. Before embarking on this problem we analyse a model

problem given by a similar degeneracy between the autonomous versions of PI

and PII whose general solutions are expressible in terms of elliptic functions. We

show that the poles here coalesce by estimating the distance between them. Such

estimates are obtained in section 2.

In section 3 we consider general equations of the form

dyi

dz
= fi(z, y1, . . . , yn; ε), 1 ≤ i ≤ n (3)

where the fi are entire functions of (z, y1, . . . , yn; ε). We will say that equations

(3) degenerate to the equations

dyi

dz
= fi(z, y1, . . . , yn; 0), 1 ≤ i ≤ n (4)

in the limit as ε approaches zero. We show that, locally, any analytic solution of

the target equations (4) can be obtained in the limit as ε → 0 of a solution to

equations (3). A corollary of the theorem states that if yI is a solution of PI then

given any compact subset K on which yI is analytic then there is a solution, y of

PII(ε) such that y → yI on K with respect to the sup norm as ε → 0. Hence, by

considering the maximal analytic extension of y we see that y → yI everywhere.

In section 4 we examine the rate of coalescence of poles. We obtain estimates of

the distances between coalescing poles and show that these are of order ε3.
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2 Two Autonomous Painlevé Equations

Consider the following autonomous versions of PI and PII ,

EI u′′ = 6u2 + λ

EII u′′ = 2u3 + µu + α

where λ, µ ∈ C are constants and the primes denote differentiation with respect

to x. The solutions of EI and EII are either constants or may be expressed in

terms of elliptic integrals.

Following the analogy of the PII → PI coalescence we transform the variables

in EII as follows:

x = ε2z, µ = λε2 − 6ε−10, u = εy + ε−5, α = 4ε−15.

Under this transformation EII becomes

ÿ = 6y2 + λ + ε6
(
2y3 + λy

)
, (5)

where a dot denotes differentiation with respect to z, giving us the degeneracy

EII → EI . In order to examine the nonconstant solutions of (5) we multiply the

equation through by ẏ and integrate. In this way we obtain

ẏ2 = ε6Pε(y) := h + 2λy + ε6λy2 + 4y3 + ε6y4 (6)

where h ∈ C is a constant of integration. Take h given and fixed in the following

analysis. The nonconstant solutions of equation (6) satisfy

ε3 dz

dy
= Qε(y) :=

1√
Pε(y)

.

Now, for ε �= 0,

Pε(y) =: (y − a0)(y − a1)(y − a2)(y − a3),

where

a0 = a0(ε) = − 4

ε6
+

λ

8
ε6 + O(ε12), (7)

ai = ai(ε) = ηi + O(ε6), i = 1, 2, 3
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are the zeros of Pε(y) and the ηi are zeros of P0(η).

We briefly recall some of the standard results from the theory of elliptic in-

tegrals, beginning with a description of a Riemann surface for Qε(y) (see, for

example Siegel [14]). We will assume that h is such that for small ε, Pε(y) has

distinct zeros (note that this is the generic case). Cut two nonintersecting slits

in the Riemann sphere, say one from a0 to a1 and the other from a2 to a3. Make

two copies of the resulting manifold and label them M1 and M2; these two slit

spheres correspond to the two branches of the square root operation in the defini-

tion of Qε(y). Now take each side of both slits on M1 and identify them with the

opposite sides of the corresponding slits of M2. The resulting Riemann surface,

R, is homeomorphic to the 2-torus T 2. Qε(y) is meromorphic throughout R and

the elliptic integral

I(γ) :=
∫

γ
Qε(y)dy

is well defined for any piecewise smooth curve γ in R where ỹ varies over the

natural projection of γ to the Riemann sphere CP1.

Suppose that y has poles with residues of opposite sign at z+ and z−, then

z+ − z− = ε−3
∫

γ
Qε(y)dy, (8)

where γ is a path connecting ∞1 and ∞2 — the subscripts distinguish the points

at infinity on the two slit spheres M1 and M2 respectively. Such a path must

pass through one of the open slits connecting the two spheres. Its projection onto

the Riemann sphere must loop around the points ak, k = 0, . . . , 3 an odd number

of times (note that if it encloses an even number of the points ak, the resultant

integral is just a period of the elliptic function y). For small ε the point a0 is closest

to infinity so we consider a path which begins at ∞1 and remains in M1 until it

reaches the point a0, loops around it, and then retraces the corresponding path

in M2, terminating at ∞2. Since an arbitrarily small loop around a0 contributes

nothing to (8), the distance between the two poles is simply

|z+ − z−| = 2
∣∣∣∣ε−3

∫ a0

∞
Qε(y)dy

∣∣∣∣ . (9)

Next we refine our choice of the path of integration for the right hand side of

equation (9). At any point where y is analytic and neither y nor y′ vanishes, there
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is a unique direction of fastest increase in |y|. Hence we can define a steepest

ascent curve through any such point. A simple calculation using the Cauchy-

Riemann equations shows that on such a curve, d|y| = |dy| (on a path of steepest

descent, d|y| = −|dy|).
Let R+ be the connected component of the region

Ω := {z : |y(z)| > |a0|}

containing z+ in its closure. Note that the only pole in the closure of R+ is z+

(since there is a unique level curve of |y| passing through every point in R+).

Expanding y about a point z1 in the boundary of R+ such that y(z1) = a0 gives

y(z) = a0 +
1

2
y′′(z1)(z − z1)

2 + O
(
(z − z1)

3
)
,

where a0 ≈ −4ε−6 and, from equation (5), y′′(z1) ≈ −32ε−6. We see that z1 is a

(complex) saddle point. This implies that z1 is the initial point for two steepest

ascent curves (and two steepest descent curves). One of the steepest ascent curves

must enter R+ and terminate at z+. This is the path, Γ, over which we integrate

in equation (9).

Choose r > 0 so small that for all ε such that |ε| < r,

|a0| ≥ 2 max
1≤i≤3

{|ai|} .

Note that this can be achieved because the expansion (7) shows that a0 is large

for small ε. Then, since |y(z)| > |a0| on Γ, for |ε| < r and 1 ≤ i ≤ 3, we get

|y| ≤ |y − ai| + |ai| ≤ |y − ai| + |y|/2 ⇒ |y|/2 ≤ |y − ai|.

So

|Qε(y)| ≤ 2
√

2√
|y|3 (|y| − |a0|)

. (10)

In particular, notice that the integral in (9) is convergent at infinity.

Using (10), we find from equation (9) that

|z+ − z−| ≤ −2|ε|−3
∫ |a0|

∞

2
√

2 d|y|√
|y|3 (|y| − |a0|)

= − 8
√

2

|a0|||ε|3

√√√√1 − |a0|
|y|

∣∣∣∣∣
y=a0

y=∞
=

8
√

2

|a0(ε)||ε|3
= O(ε3).
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Therefore the two oppositely signed poles coalesce as ε vanishes.

In the above analysis we have only considered the generic case in which Pε(y)

has four distinct zeros. In the nongeneric case the Riemann surface, R, of y is no

longer a torus. Our analysis, however, does not depend critically on the global

topology of R and the same estimates apply.

3 Local Analytic Solutions

The aim of this section is to prove the following theorem:-

Theorem 1 Let (η1 . . . , ηn) be a given solution of the system of ODEs in (4)

which is analytic in some pathwise connected region Ω ⊆ C and choose z0 ∈ Ω.

Given any simply connected compact subspace K ⊂ Ω containing z0, there exists

a solution (y1, . . . , yn) of equations (3) and a number rK > 0 such that,

1. the yi are analytic in (z, ε) for z ∈ K, |ε| < rK;

2. yi(z, 0) = ηi(z) ∀z ∈ K;

3. yi(z0, ε) = ηi(z0) ∀ε such that |ε| < rK.

Note that, regardless of the choice of K, the yi satisfy the same initial value

problem at z0. This theorem shows us that, locally, solutions of equations (3)

converge onto solutions of equations (4). It shows that the singularities of this

family of solutions of equations (3) lie arbitrarily close to those of equations (4)

(or go to infinity), for small ε. In the proof of this theorem given below we will

make use of the following lemma which can be proved using elementary arguments

involving majorant series (see, for example, Cartan [3]).

Lemma 2 Consider the system of ODEs

dyi

dz
= fi(z, y1, . . . , yn; ε), 1 ≤ i ≤ n (11)

together with the initial conditions

yi(z0, ε) = φi(ε), 1 ≤ i ≤ n
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where the φi are analytic for |ε| ≤ r and the fi are analytic on

S := {(z, y1, . . . , yn; ε) : |z − z0| ≤ ρ, |yi − φi| ≤ R, |ε| ≤ r, 1 ≤ i ≤ n}.

Then there is a unique solution y := (y1, . . . , yn) of (11) which is analytic in (z, ε)

whenever |ε| < r and

|z − z0| < ZM
ρ,r,R(ε) := ρ

(
1 − exp

[
−(1 − |ε|/r)R

(n + 1)ρM

])
,

where

M ≥ sup
S

|fi|, 1 ≤ i ≤ n.

Proof of Theorem 1: Since the fi are entire, we may expand them as power

series,

fi(z, y1, . . . , yn; ε) =
∑

ai
jk1···knlz

jyk1
1 · · · ykn

n εl,

which converge everywhere.

Fix ρ, R, r0 > 0. Let Γ be any finite length curve connecting z0 to ∂K. We

will first prove existence in a thin neighbourhood of Γ. Define

B := sup{|z| : |z − z̃| = ρ, z̃ ∈ Γ},

L := sup
z∈Γ

1≤i≤n

|ηi(z)|,

and M := max1≤i≤n Mi where

Mi := 2
∑

|ai
jk1···knl|Bj(R + L)k1···knrl

0. (12)

This last series converges because the fi are entire.

Let S0 = {(z, y1, . . . , yn; ε) : |z−z0| ≤ ρ, |ε| ≤ r0, |yi−ηi(z0)| ≤ R, 1 ≤ i ≤ n}.
Then for (z, y1, . . . , yn; ε) ∈ S0 we have

|fi(z, y1, . . . yn; ε)|

≤
∑

|ai
jk1,···knl||z|j(|y1 − η1(z0)| + |η1(z0)|)k1 · · · (|yn − ηn(z0)| + |ηn(z0)|)kn|ε|l

≤
∑

|ai
jk1,...knl|Bj(R + L)k1···knrl

0

=
1

2
Mi.
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Therefore supz∈S0
|fi| ≤ M and so we deduce from Lemma 2 that there is a

solution y(0) := (y
(0)
1 , . . . , y(0)

n ) of equations (3) satisfying the initial condition

y(0)(z0, ε) = η(z0), |ε| < r0.

Furthermore, y(0) is analytic in (z, ε) provided |z−z0| < ZM
ρ,r0,R(ε) (see Lemma 2).

Notice that ZM
ρ,r1,R(ε) has the maximal value

d := ZM
ρ,r1,R(0) = ρ

(
1 − exp

{
− R

(n + 1)ρM

})
.

Let z1 be the first point on Γ such that |z1 − z0| = d/2 (if no such point exists

then we have finished).

Next we show that by restricting the range of ε we can ensure that the initial

value problem at z1 gives us a solution whose radius of convergence in z is again

bounded below by d/2. At z = z1, y(0) is analytic in ε for |ε| < r̃ for some r̃ < r0.

Let S1(r̃) := {(z, y1, . . . , yn; ε) : |z−z0| ≤ ρ, |ε| ≤ r̃, |yi−ηi(z0)| ≤ R, 1 ≤ i ≤ n}.
Then

sup
S1(r̃)

|fi| ≤
∑

|ai
jk1...knl|Bj

(
R + sup

|ε|<r̃

∣∣∣y(0)
1 (z1, ε)

∣∣∣)k1

· · ·

· · ·
(
R + sup

|ε|<r̃

∣∣∣y(0)
n (z1, ε)

∣∣∣)kn

rl
0. (13)

Now as r̃ → 0, sup|ε|<r̃ |y(0)
i (z1, ε)| → |ηi(z1)| ≤ L, and so (13) approaches 1

2
M .

Therefore there exists r1 such that 0 < r1 ≤ r̃ < r0 and

sup
S1(r1)

|fi| ≤ M.

Invoking Lemma 2 again we see that there is a solution, y(1), of equations (3)

satisfying

y(1)(z1, ε) = y(0)(z1, ε)

for all |ε| < r1, which is analytic in (z, ε) provided |z − z1| < ZM
ρ,r1,R(ε). We then

look for the next point, z2, on Γ such that |z2 − z1| = d/2 (if such a point exists)

and repeat the above argument for a finite number of points z2, z3, . . . , zN in order

to cover the curve. y(i+1) analytically continues y(i). y(z) := (y1(z), . . . , yn(z)) is

then defined to be y(k) whenever z lies in the domain of analyticity of y(k). Since
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we proceed in steps of d/2 in z, the radius of convergence of y(z) about any point

of Γ is bounded below. The compactness and pathwise connectedness of K then

ensure that we can analytically extend y(z) to all of K by using a finite number

of curves Γj from z0. The existence of the number rK then follows because we

require only a finite number of reductions of r in the above analytic continuation

of y(z).

The condition that K be simply connected is essential for the single-valuedness

of y(z). For example, consider the equation

y′′ = 6y2 + εz2.

The solutions of this equation for ε = 0 are elliptic functions and therefore mero-

morphic. However, Painlevé analysis (see [9]) reveals that generic solutions to this

equation for ε �= 0 possess logarithmic singularities. So locally analytic solutions

of the equation with ε = 0 whose domain of analyticity (Ω in Theorem 1) is not

simply connected do not necessarily arise from analytic solutions of the general

equation, but rather from multivalued ones.

In the case of PI and PII , however, the solutions are meromorphic [11, 8]. So,

on recalling the form of transformation (1), we see that all solutions of PII(ε) are

meromorphic and therefore single valued. Analytically extending any solution of

PII(ε) along any path connecting z0 to any other point will give a result which is

independent of the particular path chosen. Hence, when we apply Theorem 1 to

PII(ε) we can weaken the requirement that K be simply connected, instead de-

manding only that it be pathwise connected. The theorem then has the following

corollary.

Corollary 3 Choose z0, α, β ∈ C. Let yI and y be maximally extended solutions

of PI and PII(ε) respectively, both satisfying the initial value problem given by

y(z0) = α, y′(z0) = β.
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Let Ω ⊂ C be the domain of analyticity of yI . Given any compact K ⊂ Ω,

∃rK > 0 such that y is analytic in (z, ε) for z ∈ K, |ε| < rK and y → yI with

respect to the sup norm as ε → 0.

Proof: Apply Theorem 1 using some compact pathwise connected subspace

K̃ ⊂ Ω such that {z0} ∪ K ⊆ K̃.

4 Coalescence of Poles and the Second Painlevé

Equation

We now return to the problem of estimating the rate of coalescence of poles in a

family of solutions to PII(ε)

y′′ = 2ε6y3 + 6y2 + ε6zy + z,

as ε → 0. Choose z0 ∈ C. We will consider a family of solutions to PII(ε) given

by y(z0) = α, y′(z0) = β. Multiplying PII(ε) through by y′ and integrating along

some path γ from z0 to z gives

[y′(z)]
2

= ε6y4 + 4y3 + 2zy + ε6zy2 −
∫
γ

z {
2y + ε6y2

}
dz + kε =: ε6Fε{z, y} (14)

where

kε = β2 −
{
ε6α4 + 4α3 + 2z0α + ε6z0α

2
}

.

From the corollary to Theorem 1 in section 3 we see that as ε → 0 the

solution to PII(ε) given by y(z0) = α, y′(z0) = β converges to the solution yI of

PI satisfying the same initial conditions, on any compact subset K of the domain

of analyticity of yI .

Suppose yI has a double pole at ẑ. Let D be the closed disc of radius ρ centred

at 0 containing both z0 and ẑ in its interior. Let K be D after we have deleted

open discs of small radius δ centred at each of the poles of yI which lie in D.

From Corollary 3 of Section 3 we see that for sufficiently small ε, any simple pole
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of y which lies in D must be within δ of a double pole of yI (since it cannot lie

in K).

Let z+, z− ∈ Bδ(ẑ) be the positions of two poles of y of oppositely signed

residues. The distance between these poles is given by

|z+ − z−| =

∣∣∣∣∣
∫ z+

z−
dz

∣∣∣∣∣ =

∣∣∣∣∣∣ε−3
∫
Γ

dy√
Fε{z, y}

∣∣∣∣∣∣ (15)

for some path Γ between points whose natural projection to CP1 is y = ∞. The

final integral in (15) makes sense if we use the fact that locally on Γ, z may be given

as a function of y. Also, since all solutions of PII(ε) are nonconstant meromorphic

functions, the points on Γ at which Fε{z, y} vanishes do not accumulate.

As was the case in the coalescence of poles induced by the EII → EI degen-

eracy, the opposite signs of the residues of the poles of y at z− and z+ indicates

that Γ must loop around a zero, z1, of y′. The close proximity of the poles for ε

small indicates that y must be large at this stationary point.

We take Γ to loop around a zero, z1, of Fε{z, y}, to be specified below. Let

A := |y(z1)|. Define the region

Ω := {z ∈ D : |y(z)| > A} .

Then Ω is a union of regions surrounding poles of y. We take z1 so that the

connected component, R+, of Ω whose closure contains z+ contains no other

stationary points of y; i.e. y′(z) �= 0 for all z ∈ R+. An analogous argument to

that outlined in Section 2 shows that R+ contains no pole other than z+ and that

z1 is the initial point for two curves of steepest ascent and two curves of steepest

descent (each separated by one of the four level curves of |y| which pass through

z1). This follows from the fact that y(z1) �= 0, y′(z1) = 0, and y′′(z1) �= 0. One

of these steepest ascent curves, Γ+ say, lies in R+ and so connects z1 to z+. The

other steepest ascent curve, Γ−, lies in Ω \R+ and is of finite length (necessarily

terminating at a pole, z− say) since, for large A, Ω is a union of small disjoint

regions containing the poles of yI . We take the path of integration, Γ, in equation

(15) to be the union of these two paths.

Since z1 is in the boundary of Ω and is the initial point for a curve of steepest

descent, there is a curve connecting z0 to z1 contained in D \ Ω. The (initial)
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path of integration, γ, in equation (14) connecting z0 to z ∈ Γ is taken to be this

descent curve followed by one of the steepest ascent curves, Γ1 or Γ2, from z1 to

the point z.

We now estimate Fε{z, y} for large y on such a curve. For z ∈ Γ, we have

sup
ζ∈γ

|y(ζ)| = |y(z)|.

Since D \Ω only contains a finite number of small holes, the length of the path γ

from z0 to any point on Γ can be bounded by some d > 0 which is independent of

ε for ε small. Also, for small ε, kε can be bounded above by c2, say, where c > 0

is independent of ε.

From equation (14) we see that A := |y(z1)| is asymptotically close to 4|ε|−6.

Let r > 0 be an upper bound on ε6 which is so small that

r < max
{
d−1, ρ−1

}
, and A > max {c, d, ρ} .

We now see that on Γ, for |ε|6 < r,

ε6Fε{z, y} = ε6y4 + 4y3 + φ(z, y),

where

|φ(z, y)| ≤ |2zy| +
∣∣∣ε6zy2

∣∣∣ +

∣∣∣∣∣∣
∫
γ

z

2ydz

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫
γ

z

ε6y2dz

∣∣∣∣∣∣ + |kε|

≤ 2ρ|y| + rρ|y|2 + 2d|y| + rd|y|2 + c2

≤ κ|y|2,

where κ = 5 + r(d + ρ).

So on Γ, φ(z, y) = ψ(z, y)y2 where |ψ(z, y)| < κ, giving

ε6Fε{z, y} = ε6y4 + 4y3 + ψ(z, y)y2. (16)

Now arg(y) is a constant along any path of steepest ascent for y (since

d|y| = |dy| there). Hence Γ+ can be parameterized by t ∈ (1,∞), where y = ty1,

y1 := y(z1). Since Fε{z1, y1} = 0, we see from (16) that∣∣∣∣∣ε6y1

4
+ 1

∣∣∣∣∣ ≤ κ

A
→ 0
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as ε → 0, giving

lim
ε→0

ε6y1

4
= −1. (17)

So if we hold t fixed as ε → 0 we have

lim
ε→0

ε6y

4
= −t. (18)

Consider the following ratio

Rε :=
Fε{z, y}

y3(y − y1)
=

(
ε6y

4

)2

+

(
ε6y

4

)
+

ε6ψ

16(
ε6y

4

)2

−
(

ε6y1

4

) (
ε6y

4

) .

Using the limits in (17) and (18), we see that

lim
ε→0

Rε = 1.

The definition of limit then shows for some given 0 < ν < 1, ∃r > 0 sufficiently

small such that for all ε with ε6 < r,

|Fε{z, y}| ≥ ν2
∣∣∣y3(y − y1)

∣∣∣ .
Since the same argument holds on Γ−, we have from equation (15),

|z+ − z−| ≤
2

ν|ε|3

∣∣∣∣∣∣
∫ y1

∞

dy√
y3(y − y1)

∣∣∣∣∣∣ ,
where the integration is along a path of steepest descent (from a pole of y). So,

recalling that along such a path, |dy| = −d|y|, we have

|z+ − z−| ≤ − 2

ν|ε|3
∫ A

∞

d|y|√
|y|3(|y| − A)

=
4

νA|ε|3 .

Since A ≈ 4|ε|−6, this shows us that the distance between the poles of solutions

of PII(ε) is of order ε3.
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Figure Captions

Figure 1: Degeneracies among the Painlevé equations.
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