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An ordinary differential equation is said to be of Painlevé type (or to possess the
Painlevé property) if the only movable singularities of its solutions are poles. The
property is strongly related to integrable systems (systems which can be solved via
related linear problems) [1, 2, 9, 13]. Knowledge of equations with the Painlevé
property, including various methods of classification, is therefore valuable in the

search for integrable systems. Asymptotic limits of differential equations that
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Abstract

In this paper, we study a well known asymptotic limit in which the sec-
ond Painlevé equation (Prr) becomes the first Painlevé equation (Pr). The
limit preserves the Painlevé property (i.e. that all movable singularities of
all solutions are poles). Indeed it has been commonly accepted that the
movable simple poles of opposite residue of the generic solution of Pr; must
coalesce in the limit to become movable double poles of the solutions of P;,
even though the limit naively carried out on the Laurent expansion of any
solution of P;; makes no sense. Here we show rigorously that a coalescence
of poles occurs. Moreover we show that locally all analytic solutions of Py

arise as limits of solutions of Pyj.

Introduction

preserve the Painlevé property provide another mechanism for such searches.

Gambier [5], and Fuchs [4] conducted an exhaustive search for all equations of

In a series of papers published around the turn of the century, Painlevé [11],
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Painlevé type of the form

' = ®(x;u,u’),

where @ is analytic in x and rational in u and u’. They discovered six equations
of Painlevé type which, up to a transformation, are the only equations of this
type whose general solutions are new transcendental functions. These equations

are known as the Painlevé equations P;—Py;. The first two are
Pr: u'(z) = 6u®+
P u(x) = 2u+ 2u+ «;

where « is a complex constant.

Painlevé [12] noted that under the transformation

r = z—6e"Y
u o= ey+e (1)
a = 41,
Pr; becomes
y'(2) = 6y% + 2+ {2° + 2y} (2)

If € vanishes, equation (2), which we will refer to as Py;(¢), becomes P; with
x replaced by z and u replaced by y. We will say that under (1), P;; degenerates
to Pr and write P;; — P;. Painlevé gave a series of such degeneracies which is

summarized in Figure 1.

FIGURE 1 NEAR HERE.

Using a method based on maximal dominant balances, Joshi and Kruskal
[7] have found a new degeneracy of P, to another equation of Painlevé type
(equation XXXIV on p.340 of Ince [6]). Their paper raises the possibility of
using asymptotic limits between differential equations which preserve the Painlevé

property as new tools in the search for, and classification of, integrable systems.
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The central concern of the present paper is an exploration of the convergence of
solutions of Pyr(¢) to solutions of P as € vanishes. In particular we are concerned
with the way in which simple poles of oppositely signed residues in solutions of
Prr(e) coalesce to form the double poles of P;. Unfortunately, a purely local
analysis of this coalescence is problematic as the radius of convergence of any
Laurent expansion centred on any pole necessarily decreases to zero if the poles
coalesce. Rather than attempt to find an accurate upper bound on the radius of
convergence we use techniques based on steepest ascent curves similar to those
first expounded by Joshi and Kruskal in their direct proof that Py to Py possess
the Painlevé property [8]. Before embarking on this problem we analyse a model
problem given by a similar degeneracy between the autonomous versions of P
and P;; whose general solutions are expressible in terms of elliptic functions. We
show that the poles here coalesce by estimating the distance between them. Such
estimates are obtained in section 2.

In section 3 we consider general equations of the form

dy; .
_y:fl(zvy17ayn7€)7 I1<i<n (3)
dz

where the f; are entire functions of (z,y1,...,ys;€). We will say that equations

(3) degenerate to the equations

dy;
dz

= fi(zsy1,- - yn;0),  1<i<n (4)

in the limit as € approaches zero. We show that, locally, any analytic solution of
the target equations (4) can be obtained in the limit as ¢ — 0 of a solution to
equations (3). A corollary of the theorem states that if y; is a solution of P then
given any compact subset K on which y; is analytic then there is a solution, y of
Py1(e) such that y — y; on K with respect to the sup norm as e — 0. Hence, by
considering the maximal analytic extension of y we see that y — y; everywhere.
In section 4 we examine the rate of coalescence of poles. We obtain estimates of

the distances between coalescing poles and show that these are of order €.



2 Two Autonomous Painlevé Equations
Consider the following autonomous versions of P; and Py,

E; u” = 6u® + A\

Err u” =2+ pu+ a

where A\, u € C are constants and the primes denote differentiation with respect
to x. The solutions of E; and Ej; are either constants or may be expressed in
terms of elliptic integrals.

Following the analogy of the P;; — P; coalescence we transform the variables

in E;; as follows:

2

r=¢2, p=A>—6"" u=ey+e?, a=4e 1.

Under this transformation E;; becomes
i =6y + A+ € (2° + Xy, (5)

where a dot denotes differentiation with respect to z, giving us the degeneracy
E;;r — Er. In order to examine the nonconstant solutions of (5) we multiply the

equation through by ¢ and integrate. In this way we obtain
§? = €P.(y) :== h+ 2y + Ay + 4y° + €°y* (6)

where h € C is a constant of integration. Take A given and fixed in the following

analysis. The nonconstant solutions of equation (6) satisfy

Now, for € # 0,
Pe(y) =: (y — ao)(y — a1)(y — a2)(y — a3),
where
do=ao(e) = g+ 2P+ O(), @

a; = ai(e) = n+ O(e°), i=1,2,3



are the zeros of P,.(y) and the n; are zeros of Py(n).

We briefly recall some of the standard results from the theory of elliptic in-
tegrals, beginning with a description of a Riemann surface for Q.(y) (see, for
example Siegel [14]). We will assume that A is such that for small €, P,(y) has
distinct zeros (note that this is the generic case). Cut two nonintersecting slits
in the Riemann sphere, say one from ag to a; and the other from as to as. Make
two copies of the resulting manifold and label them 9t; and 9Ms; these two slit
spheres correspond to the two branches of the square root operation in the defini-
tion of Q.(y). Now take each side of both slits on 9t and identify them with the
opposite sides of the corresponding slits of 915. The resulting Riemann surface,
R, is homeomorphic to the 2-torus T2. Q.(y) is meromorphic throughout R and
the elliptic integral

Iwwzﬁ@@my

is well defined for any piecewise smooth curve v in R where g varies over the
natural projection of v to the Riemann sphere CP*.

Suppose that y has poles with residues of opposite sign at z, and z_, then

zywsw*L@@@, (8)

where 7 is a path connecting oo, and oo, — the subscripts distinguish the points
at infinity on the two slit spheres 91, and 9, respectively. Such a path must
pass through one of the open slits connecting the two spheres. Its projection onto
the Riemann sphere must loop around the points ax, £ = 0,...,3 an odd number
of times (note that if it encloses an even number of the points ay, the resultant
integral is just a period of the elliptic function y). For small e the point ay is closest
to infinity so we consider a path which begins at co; and remains in 99%; until it
reaches the point ag, loops around it, and then retraces the corresponding path
in 91, terminating at ooy. Since an arbitrarily small loop around ag contributes

nothing to (8), the distance between the two poles is simply

[ Q| (9)

o0

|2y — 2| =2

Next we refine our choice of the path of integration for the right hand side of

equation (9). At any point where y is analytic and neither y nor 3’ vanishes, there
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is a unique direction of fastest increase in |y|. Hence we can define a steepest
ascent curve through any such point. A simple calculation using the Cauchy-
Riemann equations shows that on such a curve, d|y| = |dy| (on a path of steepest
descent, dly| = —|dy|).

Let Ry be the connected component of the region

Q:={z: [y(2)| > laol}

containing z, in its closure. Note that the only pole in the closure of Ry is z,
(since there is a unique level curve of |y| passing through every point in R,).
Expanding y about a point z; in the boundary of R, such that y(z1) = ag gives

§(2) = a0+ gy (2)( — )+ 0z~ 2)),

where ag ~ —4¢¢ and, from equation (5), y”(21) & —32¢75. We see that z; is a
(complex) saddle point. This implies that z; is the initial point for two steepest
ascent curves (and two steepest descent curves). One of the steepest ascent curves
must enter R, and terminate at z,.. This is the path, I', over which we integrate
in equation (9).

Choose r > 0 so small that for all € such that |e| <7,
a0l > 2 max {a;[} .
Note that this can be achieved because the expansion (7) shows that ag is large
for small e. Then, since |y(z)| > |ap| on I, for |¢| < r and 1 < i < 3, we get
I <ly—ail +lai| <[y —al+yl/2 = [yl/2<|y—al

So

2v/2
Q)] < | (10)
PN (] = laol)

In particular, notice that the integral in (9) is convergent at infinity.

Using (10), we find from equation (9) that

|24 — 2| <

_2|€|—3/“° 2v/2 dly|
Iyl Iyl = laol)
8v2 L _ laol

|aol[f¢l® vl

T 87\/5 = 0(é).

~ ao(e)l[el?

Yy=o0



Therefore the two oppositely signed poles coalesce as e vanishes.

In the above analysis we have only considered the generic case in which P,(y)
has four distinct zeros. In the nongeneric case the Riemann surface, R, of y is no
longer a torus. Our analysis, however, does not depend critically on the global

topology of R and the same estimates apply.

3 Local Analytic Solutions

The aim of this section is to prove the following theorem:-

Theorem 1 Let (n1...,m,) be a given solution of the system of ODEs in (4)
which is analytic in some pathwise connected region 2 C C and choose zy € ().
Given any simply connected compact subspace K C ) containing zy, there exists

a solution (y1,...,Yn) of equations (3) and a number rx > 0 such that,
1. the y; are analytic in (z,¢€) for z € K, |e| < rg;
2. yi(2,0) =n;(2) Vz € K;
3. yi(z0,€) = ni(z0) Ve such that |e| < r.

Note that, regardless of the choice of K, the y; satisfy the same initial value
problem at zy. This theorem shows us that, locally, solutions of equations (3)
converge onto solutions of equations (4). It shows that the singularities of this
family of solutions of equations (3) lie arbitrarily close to those of equations (4)
(or go to infinity), for small e. In the proof of this theorem given below we will
make use of the following lemma which can be proved using elementary arguments

involving majorant series (see, for example, Cartan [3]).

Lemma 2 Consider the system of ODEs

dy;
d—y:fi(z,yl,...7yn;e>, 1<i<n (11)
zZ

together with the initial conditions

yi(20,€) = ¢i(e), 1<i<n



where the ¢; are analytic for |e|] < r and the f; are analytic on
S = {(Z7y17'-'ayn;€) : |Z_ZO| §p7 |yz_¢7,| S R7 |€| Sry 1 S i S n}

Then there is a unique solution'y := (yi,...,yn) of (11) which is analytic in (z,€)

whenever |e| < r and

M. (1—el/r)R
|2 = 20|l < Z,R(€) ==p <1 — exp [_WD ;

where

Proof of Theorem 1: Since the f; are entire, we may expand them as power

series,
C) — i Jykr kel
fi(zayla'-'aynue) - Za’jkln-knlz hn ynnev
which converge everywhere.

Fix p, R,rg > 0. Let I' be any finite length curve connecting 2z, to 0K. We

will first prove existence in a thin neighbourhood of I". Define

B = sup{|z|:|z—Z|=p, 2 €T},
= sup |mi(2)],
zel

1<i<n

and M := max;<;<, M; where
M; = 2 |a%, g BT (R + L)y, (12)

This last series converges because the f; are entire.
Let SO = {(Zayb s Jyn;e) : |Z_20| S P, |€| S To, ’yz—Th(Zo” S R; 1 S i S n}

Then for (z,y1,...,yn;€) € Sy we have

|fi(zu1, - yns )]

> |a§k1""knl||zlj(|yl —n1(20)| + [m(z0))* - (|yn — 1n(20)] + 7 (20)])*" €]
= Z |a§'k1,...knl|Bj (R + L)klknré

1
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Therefore sup,cg, |fil < M and so we deduce from Lemma 2 that there is a

0
O 4o

solution y(© := (y S ys?) of equations (3) satisfying the initial condition

y(o)(Z(), €) = n(20), €| < ro.

Furthermore, y( is analytic in (2, €) provided |z —zy| < ZM () (see Lemma 2).

pro, R
: M
Notice that Z,5.

d:= Z%l,R(O) =p (1 — exp {—ﬁ}) .

Let z; be the first point on I' such that |23 — 29| = d/2 (if no such point exists

(¢) has the maximal value

then we have finished).

Next we show that by restricting the range of € we can ensure that the initial
value problem at z; gives us a solution whose radius of convergence in z is again
bounded below by d/2. At z = 21, y(© is analytic in € for |¢| < 7 for some 7 < rq.
Lot S1(7) i= {(2 1, - i €) 220l < p, el <7, li—mi(zo)l < R, 1< < b
Then

k1
SUP) Ifil < > |a§‘k1...knl‘Bj <R + sup ‘ZAO)(Z&, E)D T

S1(7 le| <7

kn
e (R + ‘sup ‘yflo)(zl, 6)’) rh. (13)

e|l<?

Now as 7 — 0, sup.; |yz-(0)(zl,e)| — [ni(z1)| < L, and so (13) approaches ;M.

Therefore there exists r; such that 0 < r; <7 < rg and

sup | fi| < M.
S1(r1)

Invoking Lemma 2 again we see that there is a solution, y(!), of equations (3)
satisfying
y(l) (Zlv 6) = y(O) (Zlv 6)

for all |e[ < 71, which is analytic in (z,€) provided |z — z| < Z)], z(e). We then
look for the next point, 25, on I' such that |25 — 21| = d/2 (if such a point exists)
and repeat the above argument for a finite number of points 25, z3, ..., 2y in order
to cover the curve. y*1 analytically continues y¥. y(2) := (y1(2), ..., ya(2)) is

then defined to be y*) whenever z lies in the domain of analyticity of y*). Since
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we proceed in steps of d/2 in z, the radius of convergence of y(z) about any point
of I' is bounded below. The compactness and pathwise connectedness of K then
ensure that we can analytically extend y(z) to all of K by using a finite number
of curves I'; from z;. The existence of the number rx then follows because we

require only a finite number of reductions of r in the above analytic continuation

of y(2).

The condition that K be simply connected is essential for the single-valuedness

of y(z). For example, consider the equation
y" = 6y° + ez’

The solutions of this equation for e = 0 are elliptic functions and therefore mero-
morphic. However, Painlevé analysis (see [9]) reveals that generic solutions to this
equation for € # 0 possess logarithmic singularities. So locally analytic solutions
of the equation with ¢ = 0 whose domain of analyticity (€2 in Theorem 1) is not
simply connected do not necessarily arise from analytic solutions of the general
equation, but rather from multivalued ones.

In the case of P; and Py, however, the solutions are meromorphic [11, 8]. So,
on recalling the form of transformation (1), we see that all solutions of Pj;(e) are
meromorphic and therefore single valued. Analytically extending any solution of
Prr(€) along any path connecting zo to any other point will give a result which is
independent of the particular path chosen. Hence, when we apply Theorem 1 to
Prr(e) we can weaken the requirement that K be simply connected, instead de-
manding only that it be pathwise connected. The theorem then has the following

corollary.

Corollary 3 Choose zy, o, 3 € C. Let y; and y be mazimally extended solutions

of Pr and Py[(€) respectively, both satisfying the initial value problem given by

y(z) =a,  Y(x) =6
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Let 2 C C be the domain of analyticity of y;. Given any compact K C (Q,
drx > 0 such that y is analytic in (z,€) for z € K, |e| < rx and y — yr with

respect to the sup norm as € — 0.

Proof: Apply Theorem 1 using some compact pathwise connected subspace

K C Q such that {z} UK C K.

4 Coalescence of Poles and the Second Painlevé
Equation

We now return to the problem of estimating the rate of coalescence of poles in a

family of solutions to Py (e)
Y = 2% + 6% + 2y + 2,

as € — 0. Choose zy € C. We will consider a family of solutions to Prr(e) given
by y(20) = o, ¥'(20) = . Multiplying Pj;(€) through by y" and integrating along

some path v from z, to z gives

[ (2)]? = Sy + 4y + 22y + €02y% — / {2y + 66y2} dz + k. = e F{z,y} (14)
Y

where
k.= 3% — {66a4 +4a® + 22000 + 6620042} :

From the corollary to Theorem 1 in section 3 we see that as € — 0 the
solution to Prs(€) given by y(20) = «a, y'(20) = [ converges to the solution y; of
Py satisfying the same initial conditions, on any compact subset K of the domain
of analyticity of y;.

Suppose y; has a double pole at Z. Let D be the closed disc of radius p centred
at 0 containing both 2, and 2 in its interior. Let K be D after we have deleted
open discs of small radius ¢ centred at each of the poles of y; which lie in D.

From Corollary 3 of Section 3 we see that for sufficiently small ¢, any simple pole
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of y which lies in D must be within § of a double pole of y; (since it cannot lie
in K).
Let zy,z_ € Bs(Z) be the positions of two poles of y of oppositely signed

residues. The distance between these poles is given by

[ ‘ [
z- r FE{Z7y}

for some path T' between points whose natural projection to CP! is y = co. The

(15)

final integral in (15) makes sense if we use the fact that locally on I', z may be given
as a function of y. Also, since all solutions of Py;(€) are nonconstant meromorphic
functions, the points on I' at which F.{z,y} vanishes do not accumulate.

As was the case in the coalescence of poles induced by the E;; — E; degen-
eracy, the opposite signs of the residues of the poles of y at z_ and z, indicates
that I" must loop around a zero, zq, of y'. The close proximity of the poles for e
small indicates that y must be large at this stationary point.

We take I' to loop around a zero, z1, of F.{z,y}, to be specified below. Let
A :=y(z1)|. Define the region

Q:={zeD: |yiz)| > A}.

Then € is a union of regions surrounding poles of y. We take z; so that the
connected component, R,, of 2 whose closure contains z, contains no other
stationary points of y; i.e. 3/(z) # 0 for all z € R,. An analogous argument to
that outlined in Section 2 shows that R, contains no pole other than z; and that
z1 is the initial point for two curves of steepest ascent and two curves of steepest
descent (each separated by one of the four level curves of |y| which pass through
z1). This follows from the fact that y(z1) # 0, ¥'(21) = 0, and y”(z1) # 0. One
of these steepest ascent curves, I'; say, lies in R, and so connects z; to z;y. The
other steepest ascent curve, I'_, lies in Q \ R, and is of finite length (necessarily
terminating at a pole, z_ say) since, for large A, € is a union of small disjoint
regions containing the poles of y;. We take the path of integration, I', in equation
(15) to be the union of these two paths.

Since z; is in the boundary of {2 and is the initial point for a curve of steepest

descent, there is a curve connecting zy to z; contained in D \ Q. The (initial)
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path of integration, «y, in equation (14) connecting zy to z € I is taken to be this
descent curve followed by one of the steepest ascent curves, I'y or I'y, from 27 to
the point z.

We now estimate F.{z,y} for large y on such a curve. For z € ', we have

sup [y (€)= (<)

Since D \ 2 only contains a finite number of small holes, the length of the path ~y
from zy to any point on I' can be bounded by some d > 0 which is independent of
e for € small. Also, for small €, k. can be bounded above by ¢?, say, where ¢ > 0
is independent of e.

From equation (14) we see that A := |y(z;)| is asymptotically close to 4|e| .

Let » > 0 be an upper bound on €® which is so small that
r < max {d_l, p_l} , and A >max{cd,p}.
We now see that on T, for |¢|® < r,
F{z,y} =y + 4° + 6(2,y),
where

$(z9) < [22y] + o2 + +

/ Sy?dz

/ 2ydz
gl ¥

< 2ply| + rply|* + 2d|y| + rd|y|* + ¢

+ [kl

< Klyl?,

where k =5 +r(d + p).
So on I, ¢(2,y) = ¥(2,y)y* where [¢)(2,y)| < &, giving

ECF{z,y} = Syt + 4y + (2, y)yP (16)

Now arg(y) is a constant along any path of steepest ascent for y (since
dly| = |dy| there). Hence I'; can be parameterized by t € (1,00), where y = ty,
Y1 :=y(z1). Since F.{z1,y1} = 0, we see from (16) that

6
N

1 §£—>0

A
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as € — 0, giving

lim —% = —1. (17)

Consider the following ratio
6,,\ 2 6 6
YN (Y)Y
Flz,y}  \ 4 4 16
Sy1
4

SGECG

Using the limits in (17) and (18), we see that

lim R, = 1.

e—0

The definition of limit then shows for some given 0 < v < 1, 3r > 0 sufficiently

small such that for all € with ® < r,

Flz, 3 2 2 |y (v — )|

Since the same argument holds on I'_, we have from equation (15),

2
J— _ < -
|Z+ 2 | = V’dg

9

[ ==
< YAy —u)

where the integration is along a path of steepest descent (from a pole of y). So,

recalling that along such a path, |dy| = —d|y|, we have

2 4 dly| 4
.l < =
2 — 2| s Ve /oo

JoPyl -4 vAlF

Since A ~ 4|e|75, this shows us that the distance between the poles of solutions

of Prr(e) is of order €.
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Figure Captions

Figure 1: Degeneracies among the Painlevé equations.
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