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Abstract
It is explicitly shown that part of the C-metric spacetime inside the black hole
horizon may be interpreted as the interaction region of two colliding plane
waves with aligned linear polarization, provided the rotational coordinate
is replaced by a linear one. This is a one-parameter generalization of
the degenerate Ferrari–Ibáñez solution in which the focussing singularity is
a Cauchy horizon rather than a curvature singularity.

PACS number: 04.20.Jb

1. Introduction

In 1986, Chandrasekhar and Xanthopoulos [1] showed that part of the Kerr spacetime in the
time-dependent region between the two horizons can also be interpreted as representing the
interaction region of two colliding plane waves when the periodic rotational coordinate is
replaced by an infinite linear one. In this case, the singularity that is caused by the mutual
focussing of the two waves, and is generically a (scalar polynomial) curvature singularity,
is replaced by a Cauchy horizon that corresponds to the inner (Cauchy) horizon of the Kerr
spacetime. An alternative region of this spacetime which can have the same interpretation, but
in which the focussing singularity corresponds to the outer (event) horizon, was pointed out
by Hoenselaers and Ernst [2]. These authors considered extensions of the spacetime through
the horizon either towards the ring singularity or towards the asymptotically flat region,
respectively, but such extensions are not uniquely determined. (For a review of colliding plane
wave spacetimes and their properties, see [3].)

The Schwarzschild limits of these colliding plane wave spacetimes have been analysed by
Ferrari and Ibáñez [4, 5], who also extended them in the equivalent interpretation of parts of
the Taub–NUT spacetime in the time-dependent (Taub) region. With the addition of a charge
parameter, Chandrasekhar and Xanthopoulos [6] and Papacostas and Xanthopoulos [7] have
further shown that parts of the Kerr–Newman and Kerr–Newman–NUT solutions, respectively,
also have similar interpretations. It is therefore natural to ask whether or not the C-metric can
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also be interpreted in this way. This is a different one-parameter type D generalization of the
Schwarzschild solution, which admits the same symmetries and the same internal black hole
structure. The purpose of the present paper is to demonstrate explicitly that the equivalent
interpretation of the C-metric is possible for an appropriate region, and to display its properties
as a colliding plane wave spacetime.

2. The C-metric

The solution that is known as the C-metric was originally found in its static form by Weyl in
1917 [8] and subsequently rediscovered many times. Its basic properties have been interpreted
by Kinnersley and Walker [9] and Bonnor [10], who showed that its analytic extension
represents a pair of black holes which accelerate away from each other due to the presence
of strings or struts that are represented by conical singularities along the axis of symmetry.
This solution is characterized by a certain cubic function. Recently, Hong and Teo [11]
presented a new parametrization of this function which simplifies its root structure. This has
been shown [12] to help both with calculations and with the physical interpretation of this
spacetime.

Using the more transparent form given in [12], the C-metric can be expressed as

ds2 = 1

(1 + αr cos θ)2

(
−Q dt2 +

dr2

Q
+

r2dθ2

P
+ Pr2 sin2 θ dϕ2

)
, (1)

where

P = 1 + 2αm cos θ, Q = (1 − α2r2)
(

1 − 2m

r

)
, (2)

0 < 2αm < 1, and ϕ ∈ (−πC, πC), where C is a constant that determines the distribution
of the topological singularities along the axis of symmetry. This family of solutions reduces
precisely to the familiar form of the Schwarzschild solution when C = 1 and α = 0.

In order to interpret part of this spacetime as representing the interaction region of two
colliding plane waves, it is appropriate to make the initial coordinate transformation

r = m(1 + η), cos θ = µ, t = x, ϕ = y

m
, (3)

where we now take x, y ∈ (−∞,∞). The time-dependent region inside the black hole is thus
given by |η| < 1, in which the limit η = 1 corresponds to the event horizon. With (3), the
metric (1) takes the form

ds2 = m2(1 + η)2

[1 + αmµ(1 + η)]2

[
− dη2

(1 − η2)[1 − α2m2(1 + η)2]
+

dµ2

(1 − µ2)(1 + 2αmµ)

]

+ e−U(eV dx2 + e−V dy2), (4)

where

e−U =
√

1 − η2
√

1 − µ2
√

1 − α2m2(1 + η)2
√

1 + 2αmµ

[1 + αmµ(1 + η)]2
,

eV =
√

1 − η
√

1 − α2m2(1 + η)2

(1 + η)3/2
√

1 − µ2
√

1 + 2αmµ
.

To facilitate the introduction of appropriate double null coordinates, it is first convenient to
introduce the parameter k such that αm = k/(1 + k2), where 0 < k < 1. Convenient timelike
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and spacelike coordinates T and Z can then be introduced by putting

η = s1 + k2

1 + k2s1
, µ = s2 − k

1 − ks2
,

where s1 and s2 are the Jacobi elliptic functions

s1 = sn(T − T0, k), s2 = sn(Z + Z0, k),

and T0 and Z0 are constants whose values must be chosen appropriately1. With this

dη

dT
=

√
1 + k2

√
1 − η2

√
1 − α2m2(1 + η)2,

dµ

dZ
=

√
1 + k2

√
1 − µ2

√
1 + 2αmµ,

and the metric (4) becomes

ds2 = 1 + k2

(1 + ks1s2)2

{[
m

(
1 + k2

1 − k2

)
(1 + s1)(1 − ks2)

]2

(−dT 2 + dZ2)

+
c1

2d1
2(1 − ks2)

2

(1 + k2)2(1 + s1)2
dx2 +

(1 + s1)
2c2

2d2
2

(1 − ks2)2
dy2

}
, (5)

where c1 = cn(T − T0, k), d1 = dn(T − T0, k), c2 = cn(Z + Z0, k) and d2 = dn(Z + Z0, k).
Double null coordinates u and v can then be introduced by putting

T = au + bv, Z = au − bv,

where a and b are positive constants. The metric then takes the standard form for colliding
plane waves with aligned linear polarization, namely

ds2 = −2e−Mdu dv + e−U(eV dx2 + e−V dy2),

where

e−U = c1c2d1d2

(1 + ks1s2)2
,

eV = 1

(1 + k2)

(
1 − ks2

1 + s1

)2
c1d1

c2d2
, (6)

e−M = 2abm2 (1 + k2)3

(1 − k2)2

(1 + s1)
2(1 − ks2)

2

(1 + ks1s2)2
,

in which the arguments of the elliptic functions are either au + bv − T0 or au − bv + Z0

appropriately. It may be noted that, in the limit in which α = 0 (k = 0), T0 = Z0 = 0 and
2ab = m−2, these expressions reduce to those of the degenerate Ferrari–Ibáñez solution [4],
which is isomorphic to part of the Schwarzschild spacetime inside the horizon.

3. The colliding plane wave spacetime

The question now is to consider whether or not the above solution in the region in which u > 0
and v > 0 can represent the interaction region of two colliding plane waves. The wavefronts of
the two waves in this case can be taken to be the null characteristics u = 0 and v = 0. It is then
possible to consider the extension of the solution to prior plane wave and Minkowski regions
by simply making the substitutions u → u� (u) and v → v � (v) in the metric functions.

It may first be recalled that the focussing singularity occurs in the interaction region when
e−U = 0, i.e. in this case when η = 1, or s1 = 1, or c1 = cn(au + bv − T0, k) = 0. This

1 It is possible, for example, to chose T0 and Z0 such that sn(T0, k) = k2 and sn(Z0, k) = k. With this choice
T = 0, Z = 0 would corresponds to η = 0, µ = 0, but this turns out not to be convenient.
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corresponds to the horizon of the black hole in the more familiar interpretation of this metric.
It is not a curvature singularity. In this context, it is a Cauchy horizon through which the
spacetime can be extended, but not uniquely.

It is also well known that the metric function e−U satisfies the wave equation, and can
therefore be expressed in terms of separate (decreasing) functions of u and v. To demonstrate
this explicitly, we introduce the new constants u0 and v0 such that au0 = 1

2 (T0 − Z0) and
av0 = 1

2 (T0 + Z0). We can then introduce new functions p = a(u − u0) and q = b(v − v0)

so that T − T0 = p + q and Z + Z0 = p − q. In terms of these functions

e−U = cn(p + q)cn(p − q) dn(p + q) dn(p − q)

(1 + k sn(p + q)sn(p − q))2
,

in which the parameter of all elliptic functions is k. Using standard identities, this can be
expressed in the form

e−U = 1 −
(

(1 + k)snp

1 + k sn2p

)2

−
(

(1 − k)snq

1 − k sn2q

)2

. (7)

For a vacuum colliding plane wave spacetime, it is necessary that the metric function
U(u, v) is C1 across the wavefronts. (The remaining metric functions only need to be C0.) In
this case, it can immediately be seen from (7) that U,u = 0 when p = 0, and U,v = 0 when
q = 0. It is therefore appropriate to take p = 0 and q = 0 as defining the wavefronts. This is
consistent with labelling the wavefronts as u = 0 and v = 0 provided the arbitrary constants
are chosen such that u0 = 0 and v0 = 0; i.e. T0 = 0 and Z0 = 0. With these choices, the plane
of collision between the waves is now identified as the space-like surface on which η = k2,
and µ = −k.

With the plane of collision u = 0, v = 0 now identified, it can be seen that already U = 0
here and hence throughout the background Minkowski region. In order to also have V = 0 on
this plane, it is appropriate to re-scale the x–y coordinates by putting

x =
√

1 + k2 x̃, y = ỹ√
1 + k2

,

after which

eV =
(

1 − ks2

1 + s1

)2 cn(au + bv)dn(au + bv)

cn(au − bv)dn(au − bv)
.

It is also appropriate to set M = 0 on this plane and in the background region by relating the
parameters a and b to the mass parameter of the original C-metric by putting

2ab = (1 − k2)2

(1 + k2)3m2
.

Thus, in the interaction region

e−M = (1 + sn(au + bv))2(1 − k sn(au − bv))2

(1 + k sn(au + bv)sn(au − bv))2
.

Throughout the interaction region u > 0, v > 0, the non-zero components of the Weyl
tensor are given by

�0 = −3b2 eM�(u, v), �2 = ab eM�(u, v), �4 = −3a2 eM�(u, v),
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where

�(u, v) = (1 − k2)
(1 + k sn(au + bv)sn(au − bv))

(1 + sn(au + bv))(1 − k sn(au − bv))
.

(This is consistent with this region being of type D.) However, the above construction implies
that impulsive gravitational wave components occur on the boundaries of this region. These
are given by the additional components

�0 = 2b eM dn2(au) − k cn2(au)

cn(au) dn(au)
δ(v), �4 = 2a eM dn2(bv) + k cn2(bv)

cn(bv) dn(bv)
δ(u).

These expressions, together with the fact that �(u, v) depends on both sn(au + bv) and
sn(au − bv), indicate an essential asymmetry between the two wave components when k �= 0.

Using the above procedure to extend the solutions to the prior regions with u < 0 or
v < 0, it can be seen that the initial waves before their collision are each a combination of an
impulsive and a shock wave. These are given explicitly by

u < 0: �0 = 2b(1 − k) δ(v) − 3b2�(0, v)�(v),

v < 0: �4 = 2a(1 + k) δ(u) − 3a2�(u, 0)�(u).

The amplitudes of the two waves are determined by the parameters a and b, while the profile of
the waves is modified from that of the degenerate Ferrari–Ibáñez solution by the introduction
of the parameter α, which is represented here in k.

4. Concluding remarks

It has been demonstrated explicitly above that part of the C-metric spacetime inside the black
hole horizon may be interpreted as the interaction region of colliding plane gravitational waves
with aligned linear polarization, provided the rotational coordinate is replaced by a linear one.
This is a generalization of the degenerate Ferrari–Ibáñez solution. It is also an explicit case
of the generally asymmetric solutions with a Cauchy horizon given by Feinstein and Ibáñez
[13], which are expressed in terms of Fourier–Bessel integrals.

An alternative region of this spacetime which could have a similar interpretation of this
type is obtained by modifying the transformation (3) by putting r = m(1 − η). This would
lead to a different colliding plane wave spacetime in which the focussing singularity is a
curvature singularity corresponding to that at r = 0 in the C-metric.

In view of other generalizations described in [1–7], it may be conjectured that further
colliding plane wave solutions could be obtained by also including rotation, NUT and (electric
and magnetic) charge parameters. These may be derived from the complete six-parameter
family of type D solutions given for example by (17)–(19) of [14] with 	 = 0. It is only
required that the interaction region of the colliding plane wave spacetime corresponds to a
time-dependent region inside the black hole event horizon in the more familiar interpretation.
In these solutions, the focussing singularity will generally be a Cauchy horizon rather than a
curvature singularity as this would correspond to a black hole horizon. However, it should be
emphasized that solutions with a Cauchy horizon are not generally of type D. As shown in
[13], they are generically algebraically general.
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