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Modern physics paints a picture of reality radically different from
our everyday experience. In that picture, all physical interactions
propagate through certain fields, which permeate space and time,
and it is those fields, and not particles or forces, that are the most
fundamental building blocks of nature. At the core of this theory
lie two facts, which connect the physics of fields to the problems
of pure mathematics. First, the dynamics of fields is governed by
systems of partial differential equations. Second, these equations
exhibit special symmetries which do not come from the symmetries
of space-time. Rather, they reflect the freedom in the choice of a
mathematical description of fields, which physicists refer to as a
gauge. Thus, gauge theory is the study of fields with such symme-
tries. While physics is interested chiefly in the quantum theory of
fields, it turns out that already the classical, non-quantum theory
has an immensely rich mathematical structure, whose study over
the last forty years has led to many discoveries at the intersection of
analysis, geometry, and topology.

Maxwell’s Equations and Topology
The prototypical example of a theory with gauge symmetry is
Maxwell’s theory of electromagnetism. If we think of space-time
as a four-dimensional manifold M, then the electric and magnetic
fields are represented by vector fields on M. There is a convenient
way of combining them into a single mathematical entity: the elec-
tromagnetic field F, which is a differential two-form on M, that is,
an expression of the form F =

P
ij Fijdxidxj, where xi are coor-

dinates and Fij functions on M. There are two linear differential
operators acting on the spaces of forms, the exterior derivative d and
its adjoint d⇤, corresponding to the curl and div operators known
from vector calculus. According to Maxwell’s theory, F obeys a
system of partial differential equations, which in the simplest case is

dF= 0 and d⇤F= 0 .

These equations make sense on any manifold M equipped with a
metric (which in physics would have indefinite signature, meaning
that distances can be negative, but here we take it to be positive,
like in Euclidean geometry). Given such M, we can ask whether
there are any solutions to Maxwell’s equations and if they tell us
something about the geometry of M.

The first observation is that these two first order equations can be a
reduced to a single second order equation. The exterior derivative
satisfies dd = 0, so if we find a differential one-form A satisfying
F = dA (which we can always do, at least in a neighborhood of
every point of M, by the fundamental theorem of calculus), then
the first equation is automatically satisfied and we are left with

d⇤dA= 0 . (†)

This simplification, however, comes at the price of ambiguity, as
there are infinitely many choices of A satisfying F= dA, and it is F,
not A, that has a physical meaning. For example, for any function
f : M! R we can replace

A 7!A+df , (‡)

which does not change dA since ddf= 0. Thus, we are interested
in the space of all A’s solving (†) up to transformation (‡), which
we call a gauge symmetry. In practice, it is hard to directly study
system (†), as it is underdetermined: it has more unknown functions
than equations. One way to fix this issue is to get rid of gauge
symmetries by finding A which obeys the additional gauge fixing
condition d⇤A= 0, so that (†) becomes equivalent to the Laplace
equation

�A= (d⇤d+dd⇤)A= 0 ,

which has much better analytical properties. In particular, if M
is compact, an old theorem of Hodge tells us that the space of
solutions can be identified with the cohomology group H

1(M), a
classical topological invariant of M. We have reached a surpris-
ing conclusion that Maxwell’s theory encodes some topological
information about the underlying manifold. For example, if M is
a torus, H1(M) is two-dimensional, corresponding to the fact that
the electromagnetic field on M can wind around the torus in two
different directions.
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Horizontal and vertical lines represent two different ways in

which the electromagnetic field can wrap around a torus.

It is exactly the winding behavior of fields that allows us to interpret
(‡) as a symmetry. From a rather abstract point of view, the one-
form A can be interpreted as a geometric structure called connection
on the manifold M⇥R2. Here we think of M⇥R2 as having a
copy of the plane R2 for every point of M, and A tells us how these
planes rotate as we travel in M. In this framework, F is the cur-
vature of the connection, while transformation (‡) corresponds to
changing coordinates on M⇥R2 by rotating the plane over x 2M

by the angle f(x) modulo 2⇡, for each x. While A changes under
this transformation, the geometry of the entire setup remains the
same, and the invariance of (†) under (‡) is a manifestation of this
fact. In other words, gauge symmetries of Maxwell’s theory are
related to SO(2), the group of rotations of the plane. An important
generalization of this idea is to replace M⇥R2 by an arbitrary
bundle of planes over M, for which the copies of R2 can twist in
a topologically nontrivial way, similarly to how the Möbius band
twists when we travel around it.
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Yang–Mills Theory
In the 1950s, the physicists Yang and Mills proposed a theory of
nuclear forces based on partial differential equations generalizing
Maxwell’s equations. In this theory, the group SO(2) is replaced
by a general matrix group, such as the group of n-dimensional
isometries SO(n) or the unitary groups U(n), SU(n). What seems
like a merely technical generalization leads to many completely
new features. Unlike SO(2) = U(1), higher rank matrix groups are
non-commutative. This results in nonlinear field equations, as A is
now a connection represented by a matrix of one-forms, and, after
gauge fixing, the Yang–Mills equations have the form

�A+ f(A,dA) = 0 ,

where f(A,dA) consists of quadratic and cubic combinations of
commutators of A and dA. In physics, these terms correspond to
the interactions of the field with itself. Much is known about the
analysis of these equations, largely due to the pioneering work of
Uhlenbeck, who described a mechanism by which the energy of
a sequence of solutions on a manifold M can become infinitely
concentrated along a manifold of lower dimension contained in M.

Another new feature is that, unlike in the case of electromagnetism,
the spaces of Yang–Mills connections up to gauge symmetry, so-
called moduli spaces, can have very complicated geometry. The
study of these spaces is particularly fruitful for manifolds of dimen-
sion four, which admit a special class of solutions to the Yang–Mills
equations called instantons, characterized by having minimal en-
ergy. For instance, all instantons on M = R4 can be constructed
by algebraic methods, and their moduli spaces provide examples
of hyperkähler manifolds: rare objects studied in algebraic and
differential geometry, whose structure is related to the algebra of
quaternions.

Invariants of Manifolds
In the 1980s, Donaldson proved a number of astonishing theorems
about four-dimensional manifolds by relating the geometry of the
moduli spaces of instantons on a four-manifold M to the topology
of M. One of these theorems states that there exist topological
four-manifolds which carry infinitely many inequivalent smooth
structures, in contrast with higher dimensions where this is known
to be impossible. By a smooth structure we mean here a way of
covering the manifold with coordinate charts such that all coordi-
nate changes are differentiable to any order. Similar techniques
show that infinitely many (in some sense, most) topological four-
manifolds do not carry a smooth structure at all. It is striking that
all known proofs of these topological results rely heavily on the
analysis of the partial differential equations of gauge theory.

What is now known as Donaldson theory opened a new era in the
study of four-manifolds. Shortly afterwards, these methods were
extended to solve long-standing problems about three-manifolds,
knots, and embeddings of surfaces. By now, gauge theory is one of
the standard tools at the disposal of every low-dimensional topolo-
gist. However, a number of important questions remain open. For
instance, it is not clear how much of low-dimensional topology is
seen by gauge-theoretic methods. Instantons, as well as solutions to
closely related equations introduced by the physicists Seiberg and
Witten, lead to invariants of smooth four-manifolds, called Donald-

son and Seiberg–Witten invariants, which can be used to tell apart
inequivalent smooth structures. But it is still unknown whether we
can find smooth structures whose invariants agree but which are
nevertheless distinct. Complex geometry provides potential exam-
ples, but new tools will have to be introduced in order to actually
distinguish them. There are similar questions for the corresponding
invariants of three-manifolds and knots.
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Electric current generating magnetic field, in agreement with

Maxwell’s equations.

A related question is whether Donaldson and Seiberg–Witten invari-
ants can be refined, exploiting the rich structure of gauge-theoretic
equations. Methods of homotopy theory provide one such refine-
ment. This is familiar from algebraic topology: a map between topo-
logical spaces f : X ! Y induces a map on the homology groups
f⇤ : H⇤(X) ! H⇤(Y), which is useful for studying the topology
of X and Y. However, more detailed information is encoded in
the homotopy class of f. Gauge-theoretic invariants are analogous
to homological information; in this context, X and Y are infinite-
dimensional spaces and f is given by the field equations. Bauer
and Furuta introduced homotopical refinements of these invari-
ants, which has proved incredibly useful. A recent application is
Manolescu’s resolution of a long-standing conjecture about triangu-
lations of manifolds. For more on this topic, we refer to the article
on the Floer Homotopy Theory program in this issue of the MSRI
Emissary.

Other foundational open questions concern the structure of gauge-
theoretic invariants. The most important of them is the simple type
conjecture, which asserts that all information encoded in these in-
variants is, in some sense, finite. There is a related conjecture of
Witten, now close to being proved, according to which Donald-
son and Seiberg–Witten invariants are related by an intricate, but
explicit formula predicted by string theory. An analogous prob-
lem for the invariants of three-manifolds is completely open, as
their algebraic structure is much more complicated than that of
the four-dimensional invariants. The situation is even less under-
stood for the homotopical refinements of these invariants, as so far
only Seiberg–Witten theory, and not Donaldson theory, has been
generalized in this way. Constructing a homotopical refinement of
Donaldson invariants remains a fascinating but technically challeng-
ing possibility.

Geometry of Moduli Spaces
Topological applications of Donaldson theory rely on detailed study
of instanton moduli spaces. It turns out that the geometry and topol-
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ogy of these spaces is rather interesting in its own right. We have
already mentioned that some of them carry a hyperkähler struc-
ture. In fact, all known compact hyperkähler manifolds can be built
from some basic examples (tori, K3 surfaces) and instanton mod-
uli spaces. Interesting non-compact examples can be constructed
by studying the instanton equation on four-manifolds of the form
M = N⇥Rd, where d = 1,2,3 and N is a manifold of dimen-
sion 4-d. By looking at solutions which are invariant in the Rd

direction, we obtain a system of differential equations on N.

For d = 1 and N three-dimensional, these are the Bogomolny
monopole equations. Their moduli spaces of solutions on N= R3

are non-compact hyperkähler manifolds, which appear naturally in
the study of certain quantum field theories in physics. This has led
to a number of interesting questions about their geometry. For ex-
ample, the S-duality conjecture makes a precise prediction about the
L
2 cohomology, a geometric invariant of non-compact manifolds,

of these spaces. This conjecture is closely tied to the problem of
understanding the asymptotic geometry of these spaces at infinity, a
difficult task since the hyperkähler structure is given by an abstract
construction and cannot be written explicitly.

A better understood case is d = 2, with N being a surface. The
instanton equation in this case leads to the Hitchin equations, which
turn out to be connected in a fascinating way to many areas of mathe-
matics: representation theory, algebraic geometry, mirror symmetry,
and the geometric Langlands program. These connections are dis-
cussed in the Fall 2019 issue of the Emissary. We only remark
here that the moduli spaces of solutions are again hyperkähler and
non-compact, and there is a tantalizing conjecture, originating from
string theory, which provides a rather explicit description of the hy-
perkähler structure at infinity. If proved, it might lead to a geometric
way of compactifying the Hitchin moduli spaces, and therefore to
new examples of compact hyperkähler manifolds. The key step in
proving this conjecture is to describe the limiting behavior of solu-
tions to Hitchin’s equations as we travel far in the moduli space, a
problem which has already stimulated many exciting developments
in geometric analysis.

Uncharted Territories in Low Dimensions
We have so far discussed various applications of the instanton and
Seiberg–Witten equations to the study of manifolds of dimensions
four, three, and two. Recent years have witnessed a growing interest
in a multitude of other, less understood gauge theories.

On the one hand, there are numerous generalizations of the Seiberg–
Witten equations. In fact, there is one for every compact Lie group
G and a representation of G on a quaternionic vector space V . As
before, the group corresponds to gauge symmetries, while V is the
space of values of an additional field, called the Higgs field by virtue
of its relation to the famous Higgs particle. This is familiar from
physics, where fields carrying different interactions transform dif-
ferently under gauge symmetries. Donaldson theory corresponds to
G= SU(2) and V = {0}, while Seiberg–Witten theory to G= U(1)
and V = C2. Other examples include the Kapustin–Witten equa-
tions, which conjecturally lead to new topological invariants of
three–manifolds and knots, and the Vafa–Witten equations, which
have links to algebraic geometry and modular forms. There has
been recently a surge in the study of these and related equations,
initiated by deep work of Taubes, who showed that their solutions

can degenerate in a way unknown from other problems in analysis
and geometry. Understanding such degenerations will require de-
veloping completely new analytic tools, but it is likely to lead to
further applications of gauge theory to topology.
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Instanton with energy highly concentrated at a point.

Towards Higher Dimensions
On the other hand, many attractive features of Yang–Mills theory
on four-manifolds generalize to certain manifolds of higher dimen-
sions. Here we are not interested in the classification of manifolds
up to smooth equivalence, a problem which can be solved using
classical tools of algebraic topology, but rather in understanding a
particular class of geometric structures, called special holonomy
metrics. These structures arise naturally from string theory, where
they are related to supersymmetry, but they are also of independent
interest to geometers, as they are examples of solutions to Einstein’s
equations.

From the viewpoint of gauge theory, manifolds with such metrics are
interesting because they admit special solutions of the Yang–Mills
equations, similar to instantons in dimension four. It is natural to ask
whether we can extract invariants of special holonomy manifolds
from instanton moduli spaces, mimicking the four-dimensional
story. Such invariants would be helpful in classifying the existing
millions of examples of special holonomy manifolds, whose geom-
etry is not well understood. This is a fascinating proposal, which
in recent years has been the subject of intense research. Like in the
low-dimensional situation, here as well the main difficulty lies in
understanding degenerations of solutions of the equations. Rather
surprisingly, the low- and high-dimensional theories seem to be
intimately connected. Based on Uhlenbeck’s work, mentioned ear-
lier, it has been conjectured that a sequence of higher-dimensional
instantons on a special holonomy manifold X can concentrate along
a lower-dimensional manifold M inside X, where it continues its
existence as a solution to the generalized Seiberg–Witten equations.
Proving that this indeed happens would tie together two strands of
modern gauge theory in an unexpected way.
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