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INTRODUCTION

In this paper, a surface measure on the path space in a compact Riemannian manifold embedded
in R™ is studied. This measure is defined as the weak limit as € — 0 of the family of measures W,
corresponding to the Brownian motion in R™ starting at a point on the manifold with reflection
on the boundary of the tubular e-neighborhood of the manifold. We prove that this limit exists
and the surface measure it defines coincides with the Wiener measure on the manifold.

1. NOTIONS AND NOTATION

There are several different approaches to the definition of surface measures on the path space
i a compact Riemannian manifold embedded in R™. They were first introduced in [1], and then
developed in [2] and [3].

In the first case (see [2]), Brownian bridges (y) in R™ corresponding to partitions

0=t < - <t =1

of P (i.e., processes generated by the Brownian motion in R™ that take values in the manifold at
the instants ¢, ...,t,) are considered. In [2], it is proved that the measures on the path space
i R™ corresponding to these processes weakly converge as the partition is refined, and the limit
measure is called the surface measure of the first type. Furthermore, it is proved that the surface
measure thus constructed is absolutely continuous with respect to the Wiener measure on the
manifold, and its density is computed.

According to the second method (see [3]) the Wiener measure corresponding to the Brownian
motion in B™ is restricted to the set of paths that do not leave the tubular e-neighborhood of the
manifold up to the time moment 1 and then is normed. In (3], it is proved that the limit measure
(85 £ — 0) exists (it is called the surface measure of the second type), is absolutely continuous with
'&spect to the Wiener measure on the manifold, and its density is computed.

It also follows from the results of [2] and [3] that the two definitions yield the same surface
Measures.

: In this paper, we consider a third natural definition of surface measure (which yields a measure
dfﬂ‘-ring from the one specified by the first two definitions). Let M C R" be a compact m-
dimensional Riemannian manifold without boundary, and let M, be the tubular e-neighborhood
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of the manifold A7, fie., M= = {@ € R” : supye py d(@, Y) < e}, where d is the ordinary Buclidean
metric in R™. Let us fix a point ap € M and denote b)‘r (y;) the Brownian motion in R»
starting at the point ag with reflection on the boul?.dary of OM. (we assume th.at £ < €, £
being small enough for the projection of the &p-neighborhoodM.; on the manifold M to be
well defined, and hence the boundary dM, fto be smooth). Deno’?e by W. the measure op
Cap ([0, 1], R™) corresponding to the process (y5) a.l.ld by Wy the_Wleuer measure on the space
Cay ([0, 1], M) (corresponding to the Brownian motion on the mam.fcld). The main resu.lt of this
paper is Theorem 1 in which it is proved that as € — 0, the family of measures W, is weakly
convergent, and its limit, denoted by Wy and called thc_—: surfa.cc measure on the path space in the
manifold generated by the Brownian motion with reflection, coincides with the Wiener measure on
the manifold.

In what follows, we shall use the following notations. By m: M. —+ M we denote the natural
projection on the manifold. By ;M and N, M we denote the spaces tangent and orthogonal
to the manifold M at point x € M (dimT,M = m, dim N.M = k =n — m). Finally, by (e;)
we denote an orthonormal basis in R™ such that its first m vectors form an orthonormal basis in

T, M.

2. FERMI DECOMPOSITION OF A RANDOM PROCESS
WITH VALUES IN A TUBULAR NEIGHBORHOOD

Let (y:) be a random process in M, starting at ag. In this section we show that such a process
is uniquely decomposed into a pair of processes (z;) and (z;) such that the first of them is the
projection of the initial process on the manifold

Iy = ﬂ'(y'f)r

and the second one is the process in R* starting at the origin, which describes the orthogonal
component (y; —x;) of the process (y;).

To begin with, let us define, following [4], the stochastic translation of vectors from R™ along
an M-valued semimartingale (z;). For each x € M, let P,: R® — T, M and Q,: R® — N, M
be orthogonal projections. Thus P and @Q are smooth functions on M taking values in the space
gl(n) of real n x n matrices. For x € M and w € T, M , we define

Fo(w) = dQ.(w) P, + dP, (w)Q4 € gl(n).

Definition 1. Suppose that v € R™ and v; = u,v, where (u,) is the solution of the Stratonovich
stochastic differential equation

dus + Ty, (0z¢)uy = 0 (1)

with initial condition ug = I € gl(n). Then (v;) is called the stochastic translation of the vector v
along the M-valued semimartingale (x,) and the process (u) is called the translation matriz.

Lemma 1. (1) For each t, the system of vectors (use;) is an orthonormal basis in R™, the first m
vectors forming a basg,s wm Ty, M and the last k vectors forming a basis in Ny, M ;

(2) The process (ul) satisfies the equation Sul = ul Ty, (8z,) with initial condition ul = 1.
Proof. (1) According to [4], for each # the operator u; is orthogonal and satisfies the equation

Pzélmll: Utkzy. Therefore, Py use; = Ut Proe; = wpe; for all @ < m, and we; € T, M forall i <m
and all £.

(2) It follows from Eq. (1) that

5'114? — "[Fm (5$r)ﬂt_]T T “':tr(_FIt (th))'
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Using the equation I = —T' (see [4]), we obtain duf’ = uf Ty, (82,). O

Further, let pr;: R" = R™ (pry: R"” — R* | respectively) be a linear operator that maps each
vector u € R™ to the vector consisting of its first m (last k, respectively) coordinates. Denote
by pry i R™ = R™ (pry ': R* — R™, respectively) the right-hand inverse map to pr; (to pr,,
respectively) such that pri‘l B =1 ((pI5 S — Qa, ; Tespectively).
pefinition 2. Let z = pr, uf (yy — ). A pair of processes (z;) and (z;) (with values in the
manifold M and R* | respectively) is called the Fermi decomposition of the process (1;).

3. DERIVATIVE OF THE PROJECTION =«

In this section, we compute the derivative of the projection 7 at points of the tubular neigh-
borhood M, . _

Let a € M,,. Consider any orthogonal coordinate frame (y') in R™ with origin at the point
7(a) and with the basis (»;) such that its first m vectors form a basis of the space Tr(,)M . By
the Implicit Function Theorem, the manifold M is represented in the neighborhood of the point
w(a) by the system of equations y**™ = f.(y', ..., y™) or, to put it differently, by the system of
equations

995(U)=0, Where WS(yla"'ryn) =ym+5 —fa(yla---,'!/m),s Sk
Notice that grad ¢s(0) = e, for all s.
Definition 3. Such a coordinate frame (y*) will be called an orthogonal coordinate frame corre-
sponding to the point a.

Further, denote by F; = Hess f;(0) the matrix of second derivatives of the function f; at zero

and denote by (z!,...,2z*) the last k coordinates of the point a in the frame (y') (notice that

the first m coordinates of the point a in this frame are equal to zero).
Lemma 2. The derivative operator Dm(a) of the projection 7 is given by the matriz
DTT(G) o [Im,-:m i ZHFsJﬁl Omxk
Ok xm Ok x k
in the coordinate frame corresponding to the point a.
Proof. First, let us notice that &, sm(a) = 0 for all s < k, since the projection 7 is constant
along these directions. Therefore, both right-hand blocks of the matrix are zero.

Further, taking the derivative of the equation (s o m = 0 with respect to y; and using the
relation 0;¢5(0) = &; m4ys, we obtain ;7™ %(a) = 0 for all i <n and s < k. This means that
the bottom left block of the matrix is zero as well.

Denote by X the top left block of the matrix. Notice that

y—m7(y) € NyM and Ny M = ((gxadips om)(y): si€ 15k
and therefore,
y = 7(y) + o’ (y)(grad ¢, o m)(y),
where o are certain smooth functions such that o® (0) = =z°. Taking the derivative with respect
to 3, we obtain
Inxn = Dm + (grad ¢ o m) Do’ + o’ Hess p, D,

which yields the following relation at the point a:

o 1] =[5 o]+ [f] o= [T 3 [3 0]

The top left block of this equation gives us the desired relation X — [ 2 L i ]
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4. MAIN RESULTS

In this section we prove the existence of the surface measure generated by the Brownian mng.
tion with reflection, and prove that it coincides with the Wiener measure (corresponding to the
Brownian motion on the manifold). This result can be stated as follows:

Theorem 1. The family of measures W, weakly converges to Wys as € — 0.

Proof. To prove the weak convergence W, — Wy, it suﬂices. to show‘ that the fal?ily ot: processes
(yi) locally uniformly converges in probability to the Brownian motion on M. I‘oE this end, we
consider the Fermi decomposition ((xzy), (27)) of the process (y;) and denote by (ut? the matrix
of stochastic translation along the semimartingale (z§). Since d(z§, yf) < & for all ¢, 1t.wi11 suffice
to show that (x5) — (x?) locally uniformly in probability, where (x?) is the Brownian motion
on M starting at the point ag.

Notice (see, for instance, [5]), that the Brownian motion with reflection (y) satisfies the Sko-
rokhod equation

dyf = dby + Jn(f) dif, @
where (b;) is the n-dimensional Brownian motion starting at the point aq, (I7) is the local time
of the process (y;) on the boundary dM., and n(y) is the inner normal to the boundary at the
point y € OM. . Further, let us notice that the coordinate frame (ufe;) is an orthogonal coordinate
frame corresponding to the point y; in the sense of Definition 3. Consequently, by Lemma 2, the
derivative operator Dm(y;) in the initial frame (e;) is specified by the formula

Dr(y;) = ug pry*[I = (25)° Fo ()]~ pry (uf) 7.

Using the Skorokhod equation (2) and the Ito formula, and taking into account the fact that
n(y) € Nz(,)M for all y € M., , we obtain

: 1
dzy = dn(y;) = Dr(y;) dy; + = DDr(y5) dy; dy;

= — o ]‘ = 1 e
= 5 i e (28) Fy(@3)]= pr; (us)F (dbz + 571(3}5) dl;) + 5 An(y;) di
sl ol 5 1
= u§ pry ' [I — (25)" F(@3)]=" po(us) 8 dby SAn (g, 2 ) dt.

Thus the random process (zf, uf) is a solution to the system of stochastic differential equations

6uf + Tye (025 )us = 0,
(3)

v G 1
dzf = uf pry (I — (2£)° Fs(z£)] 2 pry (us)T db, + gAw(xf, zf)dt
with initial conditions (1§, 25) = (L. ag

). Using the equations pry* PE. = E.y and md P — PNl s

it can .readlly be seen that as ¢ — 0, the coefficients of this system of equations converge to the
coefficients of the system

5u? -+ Pm?(ézg)q_.z? =[0];
Al = 1 0 )
T, = PJ'? db; + EATT(.’L‘t 3 0) dt

with initial c itions o) SloRye : . . :
(2= ut) of {OH((J.;!;H;M |§u°’ Zp) = (I, n.u), and since the convergence 1s uniform, the solutions
Ty ug) ol Kgs. (3) loca 7 uni . : 5 1 ili i

¢ Eq y _mlformly converge in probab:llty to the solution (nr?, u?) of system (4)
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Finally, we write the equation for (xf) in Stratonovich form. Using the formula for the drift
coefficient d from [6], we see that in this case it is equal to zero:

mn

2d" = Ar(z,0) = Y (Dr);q0;((Dr)ig)(z) = > 85 (,0) =0,

q=1 1=m=+1
and obtain the equation in Stratonovich form

hity— Pyo o dby.

It follows by the definition that the process (z¥) is the Brownian motion on the manifold (see [6]).
The proof of the Theorem is complete. [J
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