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1 Introduction

As a general setup for the notion of surface measure, we consider a measured
metric space (Ω, d, µ) consisting of a metric space (Ω, d) and a Borel probability
measure µ on Ω. A subset A ⊂ Ω is called Minkowski-regular if, as ε tends to
zero, the sequence

µε :=
1

µ(A(ε))
µ|A(ε)

of probability measures supported by the ε-neighbourhoods

A(ε) := {ω ∈ Ω : d(ω, A) < ε}

converges weakly to a probability measure µ0 supported by A. The measure µ0

is called the induced Minkowski- or surface measure. In this paper, we investi-
gate Minkowski-regularity and surface measures in the case where the measured
metric space is the space of continuous paths in a Riemannian manifold equipped
with Wiener measure, the law of Brownian motion on this manifold. The subsets
we are interested in are path spaces of regularly embedded closed submanifolds.

If we consider path spaces with finite time horizon T , the measures µε are im-
mediately identified with the laws of Brownian motion on M conditioned to
the event that it stays within the ε-neighbourhood up to time T . This sug-
gests looking at the problem from a probabilistic (or measure-theoretic) point
of view, trying to construct the limit measure by considering the processes as
limits of solutions of stochastic differential equations or by successively pinning
the ambient Brownian motion to the submanifold. We will consider these ideas
in the second part of the paper.

In the first part of the paper, we consider a different, more analytical approach.
It is based on the observation that the law of conditioned Brownian motion is
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intimately connected to the law of Brownian motion absorbed at the boundary of
the tube. This is explained in Section 3. But the main point with this approach
is that it reveals a connection between two a priori different concepts, the con-
struction of surface measures for Brownian motion and the effective dynamics
of a quantum particle confined to a small tubular neighbourhood.

Consider a free particle in the Euclidean space Rn whose motion is driven by the
Hamiltonian −∆/2 on L2(Rn, dVRn), where dVRn is the Lebesgue measure on
Rn. We are interested in the limit behaviour of this particle when it is forced to
stay increasingly close to some Riemannian manifold L isometrically embedded
into Rn.

The motion of a free particle on L is believed to be driven by the Hamiltonian
−∆L/2, where ∆L is the Laplace–Beltrami operator on L2(L, dVL) and dVL

denotes the induced Lebesgue measure on L. Since the Laplace–Beltrami op-
erator is determined by the metric on the manifold L, the free motion on L is
completely intrinsic and does not depend on the embedding of L into Rn. The
free motion on L corresponds to an idealised concept of constraining when the
particle is forced to lie in the manifold exactly.

However, in reality the constraining is actually performed by introducing stronger
and stronger forces pushing the particle to the manifold. For each ε > 0, one
would consider the motion driven by a Hamiltonian Hε = −∆/2 + Uε, where
Uε is a family of non-negative potentials such that Uε|L = 0 and Uε(x) → ∞
for x /∈ L, and study the limiting dynamics as ε → 0. Surprisingly, in the most-
natural cases this limit behavior will be different from the motion of the free
(that is, ideally constrained) particle on L. More precisely, the new dynamics
will be determined by the Hamiltonian −∆L/2 + W , where W ∈ C∞(L) is a
smooth effective potential, which depends both on the intrinsic geometry of the
manifold and of the embedding.

In this paper, we consider the hard-wall potential defined as

Uε(x) =
{

0, x ∈ L(ε),
∞, otherwise,

where L(ε) denotes the tubular ε-neighbourhood of L in Rn. The soft (quadratic)
potentials have been studied in [5]. Considering the hard-wall potential is equiv-
alent to imposing Dirichlet boundary conditions on the boundary ∂L(ε) of the
tube.

The paper is organised as follows:

In Section 2 we study the dynamics corresponding to the absorbed motions. To
make the essential steps more transparent, we consider the example of a curve
in R2. In this way, lengthy differential geometric calculations are kept short.
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Since Dirichlet boundary conditions cause a loss of mass as time goes on, one
needs to renormalise the generators to avoid degeneration. Then one can study
their strong convergence with the help of epiconvergence of the corresponding
quadratic forms.

In Section 3 we discuss the relation between the two approaches. In particular,
we show that the conditioned Brownian motion is a Brownian motion with a
time-dependent drift, and we compute its transition probabilities in terms of
the Dirichlet laplacian in the tube L(ε).

In Section 4 we state the results for a more general situation, where we isomet-
rically embed L into another Riemannian manifold M instead of Rn. One can
observe the same effect here: the limit dynamics of the conditioned Brownian
motions is no longer intrinsic and it is described by an effective potential W ,
which is given in terms of both intrinsic (such as the scalar curvature) and ex-
trinsic (such as mean and sectional curvatures) characteristics of L.

In Section 5 we explain the main idea of the probabilistic approach to the surface
measures. We also discuss the original approach to Wiener surface measures,
which was suggested in [14]. We show that it leads to the same surface measure
as the conditioned Brownian motions and can be treated using the same tech-
nique.

So far, all subsets considered were Minkowski-regular and the surface measures
were equivalent to the intrinsic measures on the subsets. Therefore, in Section 6,
we finally discuss two related open problems, one about conditioning to tubes of
variable diameter which is related to considering soft constraints, and one about
conditioning to singular submanifolds, where we expect a completely different
behavior. The path spaces of these subsets are not even Minkowski-regular in
general, if one restricts oneself to continuous paths.

2 Example: the ground state of an electron con-
fined to a curved planar wire

One possible application of surface measures is the description of quantum parti-
cles such as electrons which are confined to move within small spatial structures
such as thin layers. As an example, we consider an electron that is confined
to a planar wire. The wire is described as the tubular neighbourhood of a real
line which is isometrically embedded into R2. The electron is forced to stay
within the wire by introducing Dirichlet boundary conditions for the free parti-
cle Hamiltonian on the tube. If the diameter ε > 0 of the tube is small enough,
the asymptotic dynamic letting ε tend to zero provides an effective descrip-
tion of the actual behavior of the electron. Somewhat surprisingly, it turns out
that the motion of the electron is influenced by the geometry of the embedding
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and thus differs considerably from the behavior of a free electron on the real line.

The asymptotic result presented at the end of this section is valid in much greater
generality. However, considering tubular neighbourhoods around submanifolds
of Riemannian manifolds results in a huge bookkeeping problem, keeping track
of Fermi coordinates, second fundamental form, metric and so forth. We decided
to discuss the problem at hand basically for two reasons. On the one hand, the
geometric situation is sufficiently involved to show most of the complications
that are present in the general situation. On the other hand, the analysis of
the problem leading to the necessity of rescaling and renormalisation, and the
general line of the proof using epiconvergence and weak compactness in the
boundary Sobolev space becomes more visible since it is no longer hidden be-
hind lengthy differential geometric calculations. Besides, the underlying physical
intuition is also helpful to grasp the structure of the problem.

One last remark: We mainly want to investigate the notion of surface measure.
Thus we consider the case of semigroups taking the interpretation of the Dirich-
let problem as the confinement of a quantum particle merely as a motivation.
But although electrons may certainly not be interpreted as Brownian particles,
the surface measure contains valuable information about the ground state of
the quantum particle (see e.g. [13], p. 57) and the stationary Gibbs measure
induced by it.

2.1 Geometry: an embedded curved wire

Let φ : R → R2 be a smooth curve parametrised by arc-length. That means
we consider an isometric embedding of the line into the plane. We denote the
embedded line by L := {φ(s) : s ∈ R}. Let

e1(s) := φ̇(s), e2(t) := φ̈(s)/‖φ̈(s)‖

be the 2-frame for the curve. We assume that the embedding is regular in the
sense that the curvature

κ(s) := 〈φ̈, e2〉(s)

is uniformly bounded, i.e. there is some K > 0 with ‖φ̈‖ < K for all s ∈ R.

To confine the electron to the vicinity of the curve, we introduce an infinite
hard-wall potential where the walls are given by the boundary components of
the tubular ε-neighbourhood

L(ε) := {x ∈ R2 : d(x, L) < ε},

ε > 0, of the embedded line L. That means the confining potential is given by

UC(x) :=
{

0, x ∈ L(ε),
∞, else.
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We now assume that ε < K−1 is smaller than the radius of curvature. That
implies that the ε-neighbourhood is diffeomorphic to the product of the real line
and a small interval, i.e. L(ε) = R×(−ε, ε). A diffeomorphism Φ : R×(−ε, ε) →
L(ε) is explicitly given by so called Fermi coordinates

Φ(s, w) := φ(s) + we2(s)

for the tube. In these local coordinates, the metric is given by

g(s, w) :=
(

〈Φs,Φs〉 〈Φs,Φw〉
〈Φw,Φs〉 〈Φw,Φw〉

)
=
(

(1− wκ(s))2 0
0 1

)
where Φs, Φw denote the partial derivatives with respect to s, w. The associated
Riemannian volume is, in the same local coordinates, given by

dV (s, w) =
√

det g(s, w)ds dw = (1− wκ(s)) ds dw

and using this measure, we can define the space L2(L(ε), g) and the boundary
Sobolev space H0

1(L(ε), g) (cf. [16]).

The laplacian with Dirichlet boundary conditions on the tube is the unique
self-adjoint operator on L2(L(ε), g) which is associated to the quadratic form

qε(f) :=
∫

L(ε)

dV g(df, df)

with domain D(qε) = H0
1(L(ε), g). As ε tends to zero, this expression will

simply tend to zero. This is already obvious from the fact that L ⊂ R2 is a
zero set. Therefore, to understand the details of the dynamic behaviour of an
electron or a Brownian particle in a small tube around L, we have to apply
some normalising transformation of the actual situation which is reminiscent of
looking at the particles on the tube using some special kind of microscope.

2.2 Rescaling

From now on, we will always assume for simplicity that the curvature radius
K−1 is greater than 1 so that L(1) = R× (−1, 1) via Φ. Now we want to make
precise what we mean by a normalising transformation. To do so, we first use the
fact that Φ : R× (−1, 1) → L(1) yields a global map of the 1-tube and that we
can therefore use these local coordinates to define other Riemannian structures
on and maps between the tubes. First of all, we define another metric on L(1)
which, in general, is different from the metric induced by the embedding.

Definition 1 The reference metric on L(1) is the metric which is given in local
Fermi coordinates by

g(s, w) :=
(

1 0
0 1

)
.

The associated Riemannian volume is dV0 = ds dw.
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The second component that is necessary to construct the desired microscope is
the rescaling map.

Definition 2 Let 0 < ε < 1. The rescaling map σε : L(ε) → L(1) is the
diffeomorphism given in local Fermi coordinates by

σε(s, w) := (s, w/ε).

The induced map σ∗ε : C(L(1)) → C(L(ε)) on the respective spaces of continuous
functions is given by σ∗ε (f) := f ◦ σε.

With the help of the rescaling map, we will now transform the family Qε,ε>0

of quadratic forms on different domains into a family of quadratic forms on a
fixed domain. Let

ρ(s, w) :=
dV

dV0
= 1− wκ(s)

be the Radon–Nikodym density of the two Riemannian volume measures. On
the one hand, the map σε, ε > 0, can be extended to L2(L(ε), g) and

Σε : L2(L(1), g) → L2(L(ε), g0) (1)

given by Σε(f) := {ε ρ}−1/2σ∗ε (f) is actually a unitary map. This is the mi-
croscope under which we want to consider the dynamics on the small tubes.
A crucial observation is that since ρ > 1 − K > 0 is smooth, Σε also yields a
homeomorphism

Σε : H0
1(L(1), g) → H0

1(L(ε), g0).

That means we can use the maps Σε,ε>0 to transform the family qε,ε>0 to a
family of quadratic forms on a fixed Hilbert space.

Definition 3 The rescaled family associated to the family qε,ε>0 of quadratic
forms is the family Qε,ε>0 given by

Qε := qε ◦ Σε,

with common domain D(Qε) = H0
1(L(1), g0).

To summarise: The rescaling map works like a microscope that just enlarges
the direction perpendicular to the embedded wire. We use it to transform the
perturbation problem for the forms qε into a corresponding perturbation prob-
lem for a family of forms on a fixed Hilbert space.

It will turn out that we still obtain a singular perturbation problem. The reason
is that the eigenvalues of the associated operators tend to infinity as ε tends to
zero. That means that there is no reasonable limit dynamic. To avoid this kind
of degeneration, one has to suitably renormalize.
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2.3 Renormalisation

First of all, let us see what the rescaled family looks like. A short calculation
yields for the exterior derivative of the transformed function

dΣε(f) = (ερ)−1/2

(
dσ∗ε (f)− 1

2
σ∗ε (f) d log ρ

)
.

That implies

Qε ◦ Σε(f) =
∫

L(ε)

dV g(dΣε(f), dΣε(f))

=
1
ε

∫
L(ε)

dV0 (g(dσ∗ε (f), dσ∗ε (f)) + σ∗ε (f)2 g(d log ρ, d log ρ)/4)

−1
ε

∫
L(ε)

dV ρ−1g(σ∗ε (f) d log ρ, dσ∗ε (f)).

The first two terms already yield a quadratic form that one would expect for an
elliptic operator with a zero order term that can be interpreted as a potential.
After partial integration, the third term will fit into that picture. To do so, we
use

σ∗ε (f)2 = σ∗ε (f2), σ∗ε (f) dσ∗ε (f) = 1
2dσ∗ε (f2), ρ−1 d log ρ = dρ−1,

and the fact that σ∗ε (f) ∈ H0
1(L(ε), g) has generalised boundary value zero.

That implies for the third term that the boundary contribution to Green’s for-
mula vanishes and we obtain∫

L(ε)

dV ρ−1g(σ∗ε (f) d log ρ, dσ∗ε (f)) = −1
2

∫
L(ε)

dV g(dρ−1, dσ∗ε (f2))

=
1
2

∫
L(ε)

dV ∆ρ−1 σ∗ε (f2)

=
1
2

∫
L(ε)

dV0 ρ ∆ρ−1 σ∗ε (f2)

=
1
2

∫
L(ε)

dV0 (‖d log ρ‖2 −∆ log ρ) σ∗ε (f2).

In the last step we used

ρ ∆ρ−1 = ‖d log ρ‖2 −∆ log ρ

where ∆ denotes the (non-negative) Laplace–Beltrami operator and ‖ − ‖ the
norm on the cotangent bundle, both associated to the metric g. Applying the
transformation formula for integrals to the expression for Qε established so far
yields as a first major step the following description of the rescaled family.
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Proposition 1 Let W : L(1) → R be the smooth potential

W (x) :=
1
2
∆ log ρ− 1

4
‖d log ρ‖2 (2)

and Wε := W ◦σε the rescaled potential. Furthermore, let gε denote the rescaled
metric on L(1), i.e.

gε(df, dh) := g(dσ∗ε (f), dσ∗ε (h)).

Then, the rescaled family is given by

Qε(f) =
∫

L(1)

dV0

(
gε(df, df) + Wεf

2
)
.

Thus the transformed perturbation problem on L(1) yields a family of quadratic
forms that consists of the form associated to the Dirichlet laplacian on L(1)
which is associated to the rescaled metric gε together with a potential that also
depends on the geometry of the configuration. To see this, it might be helpful to
consider the rescaled family in our special situation in local coordinates. First
of all, the rescaled metric is given by (in the sequel κ ≡ κ(s))

gε(s, w) =
(

(1− εwκ)2 0
0 ε−2

)
=

(
1 0
0 ε−2

)
− ε

(
2wκ 0
0 0

)
+ ε2

(
w2κ2 0

0 0

)
.

Denoting by g0,ε(df, dh) := g0(dσ∗ε (f), dσ∗ε (h)) the rescaled reference metric, we
can write

gε(s, w)− g0,ε(s, w) = ε w

(
2κ 0
0 0

)
+ ε2w2

(
κ2 0
0 0

)
. (3)

Hence, the rescaled metric degenerates as ε tends to zero. The degeneration is
the same as for the rescaled reference metric and the difference between the two
families tends to zero.

This observation and the fact that the laplacian is naturally associated to the
metric make us believe that such a perturbation ansatz is also successful for the
operators. Thus we will later consider the laplacian to the rescaled metric as a
perturbation of the laplacian to the reference metric and deduce its asymptotic
behaviour from that.

The rescaled potential is given by

Wε(s, w) = −1
2
ε(1− ε wκ)wκ̈ +

3
4
ε2w2κ̇2 − 1

4
κ2

(1− εwκ)2

= −1
4
κ2 + Rε(s, w),
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where

Rε(s, w) =
ε w

2

(
κ3

(1− ε wκ)2
− κ̈

)
+

ε2w2

4

(
2κκ̈ + 3κ̇2 − κ4

(1− ε wκ)2

)
.

For compact submanifolds, i.e. an embedding of the one-sphere S1 ⊂ R2 it would
be clear that the remainder is actually O(ε) with respect to the supremum norm.
But for the embedding of the real line, we have to assume that it is geometrically
finite meaning that the absolute values of first and second derivatives of the
curvature are bounded, i.e.

|κ̇|, |κ̈| < C. (4)

In that case, Rε(s, w) = O(ε) with respect to the supremum norm on the tube
such that the potential Wε tends to the potential

W0(s, w) = −1
4
κ2(s) (5)

which is constant on the fibres Fs := {(s, w) : w ∈ (−1, 1)} of the tubular
neighbourhood.

By equation (3), the difference of the rescaled metric and the rescaled reference
metric tends to zero as ε tends to zero. On the other hand, the potential also
converges uniformly to W0 as ε tends to zero. It is therefore quite a natural idea
to first solve the asymptotic problem for the reference family and then to treat
the induced family by perturbation-theoretical methods. Let us thus consider
the family of quadratic forms

Q0,ε(f) :=
∫

L(1)

dV0 g0,ε(df, df),

ε > 0, with domain D(Q0,ε) = H0
1(L(1), g0). In local Fermi coordinates, we

may use the fact that the tubular neighbourhood is trivial in the sense that it
is globally diffeomorphic to the product R× (−1, 1) which implies that

H0
1(L(1), g0) = H1(R)⊗H0

1(−1, 1)

and with respect to that decomposition we may write

Q0,ε(f) =
∫

R
ds

∫ 1

−1

ds |∂s ⊗ 1(f)|2 +
1
ε2

∫
R

ds

∫ 1

−1

dw |1⊗ ∂w(f)|2.

From this expression, it is obvious that Q0,ε(f) will tend to infinity as ε tends
to zero as long as ∫

R
ds

∫ 1

−1

dw |1⊗ ∂w(f)|2 > 0.

To investigate when this type of degeneration happens and how it can be
avoided, we consider the family of quadratic forms

Q+
0,ε(f) :=

1
ε2

∫
R

ds

∫ 1

−1

dw |∂w(f)|2,
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ε > 0, with natural domain D(Q+
0,ε) = L2(R)⊗ H0

1(−1, 1). The main observa-
tion is now that this quadratic form is decomposable with respect to the direct
integral decomposition ([8])

D(Q+
0,ε) =

∫ ⊕

s∈R
ds H0

1(Fs) :=
{

(fs)s∈R : fs ∈ H0
1(Fs),

∫
R

ds ‖fs‖2
H0

1(Fs) < ∞
}

where, in addition, s 7→ fs is supposed to be measurable. If we use

‖f‖2
H0

1(Fs) :=
∫ 1

−1

dw |∂wf |2(w, s)

as Sobolev-norm on the space H0
1(Fs), the decomposed quadratic form is hence

given by

Q+
0,ε(f) :=

1
ε2

∫
R

ds ‖fs‖2
H0

1(Fs). (6)

Since the Sobolev-norm is strictly positive definite, the first conclusion that we
can draw from this representation of the quadratic form is that for all f 6= 0 we
have

lim
ε→0

Q+
0,ε(f) = ∞,

i.e. the family Q0,ε of quadratic forms degenerates in the most dramatic way.
Thus, the perturbation problem obtained by considering the rescaled families
will still not yield a sensible answer.

To overcome this difficulty, we have to renormalise the rescaled families. To see
how this can be done, we need the following two basic observations:

1. The operator associated to the quadratic form qs(f) := ‖fs‖2
H0

1(Fs)
with

domain D(qs) = H0
1(Fs) is the Dirichlet laplacian on Fs, i.e. the Laplace–

Beltrami operator −∆s on Fs with respect to the metric induced by g0

with domain D(∆s) = H0
1 ∩H2(Fs),

2. In Fermi coordinates, we see that the induced metric on Fs is simply the
flat metric such that all fibres Fs are isometric to the interval (−1, 1) ⊂
R equipped with the flat metric. In particular, the associated Dirichlet
laplacians are all isospectral.

These two statements together imply by standard results [8] about decomposable
operators

Proposition 2 The operator associated to the quadratic form Q+
0,ε is the de-

composable operator

D := −
∫ ⊕

L

ds ∆s
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with domain D(D) :=
∫ ⊕

L
ds H0

1 ∩ H2(Fs). The operator is unbounded on
L2(L(1), g0) and if we denote the spectral decomposition of the Dirichlet lapla-
cian −∆(−1,1) on (−1, 1) ⊂ R by

−∆(−1,1)f =
∑
k≥0

λkuk〈uk, f〉L2(−1,1),

then the spectral decomposition of D is given by

Df(s, w) =
∑
k≥0

λk〈uk, fs〉L2(Fs)uk(w) (7)

where we identify a function f ∈ D(D) with its decomposition (fs)s∈R.

By this result, we can now introduce a renormalisation to the effect that the
family of forms Q+

0,ε degenerates everywhere except on a non-trivial subspace.
From the spectral decomposition of the associated Laplace operators, we obtain

Q+
0,ε(f)− λ0

ε2
〈f, f〉L2(L(1),g0) =

1
ε2

∫
R

ds ‖fs‖2
H0

1(Fs) −
λ0

ε2

∫
R

ds

∫ 1

−1

dw |fs|2

=
1
ε2

∫
R

ds
[
‖fs‖2

H0
1(Fs) − λ0‖fs‖2

L2(Fs)

]
=

∑
k≥1

λk − λ0

ε2

∫
R

ds |〈uk, fs〉L2(Fs)|2.

That implies that the quadratic forms Q+
0,ε, ε > 0 have a non-trivial common

null space
N := {f ∈ D(Q+

0,ε) : E0f = f} (8)

where the L2(L(1), g0)-orthogonal projection E0 onto the null space is given by

E0f(s, w) := 〈u0, fs〉L2(Fs)u0(w).

As ε tends to zero, we have thus

lim
ε→0

Q+
0,ε(f)− λ0

ε2
〈f, f〉L2(L(1),g0) =

{
0, f ∈ N ,
∞, else.

pointwise. This is the reason to expect that — after renormalisation — we will
obtain some non-trivial limit dynamic on the subspace N . To obtain a proper
asymptotic problem we therefore introduce the following two modified families
of quadratic forms.

Definition 4 The renormalised rescaled families of quadratic forms with pa-
rameter ε > 0 are given by

QR
0,ε(f) :=

∫
L(1)

dV0 g0,ε(df, df)− λ0

ε2
〈f, f〉L2(L(1),g0)
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for the reference metric and by

QR
ε (f) :=

∫
L(1)

dV0 (gε(df, df) + Wεf
2)− λ0

ε2
〈f, f〉L2(L(1),g0)

for the induced metric. The common domain of both families is H0
1(L(1), g0).

Starting from the idea of looking at electrons on small tubes by a special kind
of microscope, we thus arrived at a problem that we finally can solve: We have
to calculate a renormalised limit dynamic that concentrates on the subspace
N ⊂ L2(L(1), g0).

2.4 Epiconvergence

In the preceding subsection, we computed that the modified families Q+
0,ε con-

verge pointwise to a non-trivial limit as ε tends to zero. However, pointwise
convergence of the quadratic forms is useless if one strives to say something
about convergence of the associated operators. The proper notion for this is
epiconvergence ([1], [3]).

To explain this notion, let H be a Hilbert space and qn, q∞ : H → R, n ≥ 1 be
non-negative but not necessarily densely defined quadratic forms with domains
D(qn), D(q∞) respectively. Denote by Hn, H∞ ⊂ H the closures of the domains
with respect to the norm in H.

Definition 5 The sequence qn of non-negative closed quadratic forms on H
epi-converges to the closed quadratic form q with respect to the weak topology
on H iff

1. For all u ∈ D(q∞) there is a weakly convergent sequence un → u such that

lim
n

qn(un) = q∞(u).

2. For all u ∈ D(q∞) and for all weakly convergent sequences un → u we
have

lim inf
n

qn(un) ≥ q∞(u).

In our case, the Hilbert space will be H := H0
1(L(1), g0). We consider the

problem for the reference family first. Note that f ∈ E0 ∩D(QR
0,ε) implies that

f(s, w) = u0(w) h(s) with h ∈ H1(R). We want to prove that QR
0,ε converges to

QR
0 (f) :=

{ ∫
R ds|∂sh|2, f ∈ N ,
∞, else.

in the sense of epiconvergence with respect to the weak topology of H1(L(1), g0).
The first requirement on epiconvergence follows from pointwise convergence of
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the forms, i.e. we may use the sequence fn ≡ f and obtain

lim
ε→0

QR
0,ε(f) = lim

ε→0
Q+

0,ε(f)− λ0

ε2
〈f, f〉L2(L(1),g0) +

∫
R

ds

∫ 1

−1

dw |∂s ⊗ 1(f)|2

=
{ ∫

R ds
∫ 1

−1
dw |∂s ⊗ 1(f)|2 , f ∈ N

∞ , else

=
{ ∫ 1

−1
dw |u0|2

∫
R ds|∂sh|2 , f ∈ N

∞ , else

=
{ ∫

R ds|∂sh|2, f ∈ N ,
∞, else

= QR
0 (f)

since the eigenfunction
∫ 1

−1
dw |u0|2 = 1 is normalised. For the second require-

ment, we have to prove another result first.

Lemma 1 Let α > λ0. Then we have for all f ∈ H0
1(L(1), g0) and all ε > 0

QR
0,ε(f) + α〈f, f〉L2(L(1),g0) ≥ ‖f‖2

H0
1(L(1),g0)

.

Proof: We have for ε2 < 1− λ0/λ1 < 1− λ0/λk for all k

QR
0,ε(f) + α〈f, f〉L2(L(1),g0)

= Q+
0,ε(f) +

(
α− λ0

ε2

)
〈f, f〉L2(L(1),g0) +

∫
R

ds

∫ 1

−1

dw |∂s ⊗ 1(f)|2

=
∑
k≥1

λk − λ0

ε2

∫
R

ds |〈uk, fs〉L2(Fs)|2 +
∫

R
ds

∫ 1

−1

dw |∂s ⊗ 1(f)|2

+α〈f, f〉L2(L(1),g0)

≥
∑
k≥1

λk

∫
R

ds |〈uk, fs〉L2(Fs)|2 +
∫

R
ds

∫ 1

−1

dw |∂s ⊗ 1(f)|2 + λ0〈f, f〉L2(L(1),g0)

≥
∑
k≥0

λk

∫
R

ds |〈uk, fs〉L2(Fs)|2 +
∫

R
ds

∫ 1

−1

dw |∂s ⊗ 1(f)|2

=
∫

R
ds

∫ 1

−1

dw |1⊗ ∂w(f)|2 +
∫

R
ds

∫ 1

−1

dw |∂s ⊗ 1(f)|2

= ‖f‖2
H0

1(L(1),g0)
.

This inequality means that the sequence QR
0,ε, ε > 0, is equicoercive ([1], [3]).

To establish the second property of epiconvergence, the lim inf-inequality, we

13



consider a slightly different estimate, namely for ε < 1− λ0/λ1 < 1− λ0/λk,

QR
0,ε(f)

= Q+
0,ε(f)− λ0

ε2
〈f, f〉L2(L(1),g0) +

∫
R

ds

∫ 1

−1

dw |∂s ⊗ 1(f)|2

=
∑
k≥1

λk − λ0

ε2

∫
R

ds |〈uk, fs〉L2(Fs)|2 +
∫

R
ds

∫ 1

−1

dw |∂s ⊗ 1(f)|2

≥
∑
k≥1

λk

ε

∫
R

ds |〈uk, fs〉L2(Fs)|2 +
∫

R
ds

∫ 1

−1

dw |∂s ⊗ 1(f)|2

=
1
ε

∫
R

ds

∫ 1

−1

dw |1⊗ ∂w(E⊥
0 f)|2 +

∫
R

ds

∫ 1

−1

dw |∂s ⊗ 1(f)|2

where we denote by E⊥
0 the L2(L(1), g0)-orthogonal projection onto the orthog-

onal complement of N . Now note that this sum consists of a linear combination
of two quadratic forms

QR
0,ε(f) ≥ 1

ε
Q1(f) + Q2(f)

which are all continuous and non-negative on H0
1(L(1), g0). That implies by

polarisation
Qi(fn)− 2Bi(fn, f) + Qi(f) = Qi(fn − f) ≥ 0

and hence Qi(fn) ≥ 2Bi(fn, f)−Qi(f) which by continuity of the bilinear forms
Bi associated to Qi and by weak convergence of fn to f finally implies

lim inf
ε→0

Qi(fn) ≥ Qi(f)

for i = 1, 2. Now, to finally prove the second assertion, note that we have
established so far that

lim inf
ε→0

QR
0,ε(fn) ≥ Q2(f) + lim inf

ε→0

1
ε
Q1(fε).

For f ∈ N there is nothing else to prove since by Q1(fε)/ε ≥ 0 we then have

lim inf
ε→0

QR
0,ε(fn) ≥ Q2(f) = QR

0 (f).

For f /∈ N we have lim inf Q1(fn) = a > 0 and hence for some suitable a > δ > 0

lim inf
ε→0

QR
0,ε(fn) ≥ Q2(f) + lim inf

ε→0

1
ε
(a− δ) = ∞.

That establishes epiconvergence of the family QR
0,ε, ε > 0.

The reason to consider epiconvergence of quadratic forms is that it implies
strong resolvent convergence of the self-adjoint operators associated to these
forms. This will now be explained.

14



2.5 Strong convergence of the generators

So far we proved that the quadratic forms epiconverge in the weak topology of
H0

1(L(1), g0). But what is this good for — we actually want to prove that the
associated operators converge in the strong resolvent sense in L2(L(1), g0) ? It
turns out that this follows by a rather general chain of arguments that we will
present in the sequel. We again use the setup from the beginning of the last
subsection, referring to the implications to our special situation inbetween. The
reasoning consists essentially of four steps:

1. Epiconvergence in the weak topology implies convergence of the minimis-
ers of the quadratic forms qn in the following sense: Denote by u∗n a
minimiser of qn. Then we have the following statement ([3]):

Lemma 2 Let the sequence of quadratic forms qn,n≥1 epiconverge to q∞
in the weak topology on H. If a sequence u∗n,n≥1 of minimisers of the qn

converges in the weak sense to some u∗ ∈ H, then u∗ is a minimiser of
q∞.

2. The question of whether the sequence u∗n,n≥1 of minimisers really con-
verges is in general very hard to answer. However, if as in our situation
(see Lemma 1) the sequence of quadratic forms is equicoercive, meaning
that

qn(u) ≥ A‖u‖2
H + B,

with some A > 0, B ∈ R, we have that for all t ∈ R, that the set

Kt :=
⋂
n≥1

{u ∈ H : qn(u) ≤ t} ⊂ H

is relatively bounded in H. If we now assume that the family does not
degenerate in the sense that we exclude the case limn→∞ qn(u) = ∞ for
all u ∈ H then there is some t0 ∈ R such that Kt is non-empty for all
t > t0. But Hilbert spaces are always reflexive so that we can apply the
Banach–Alaoglu theorem also to the weak topology on H. Hence the sets
Kt ⊂⊂ H are relatively compact in H with respect to the weak topology.
That means that every sequence of points in Kt — and u∗n,n≥1 ⊂ Kt is such
a sequence if t > t0 — contains a weakly convergent subsequence. Thus,
if the minimiser u∗∞ of the limiting quadratic form q∞ is unique, Lemma
2 implies that all these weakly convergent subsequences must converge to
u∗∞. That means nothing but:

Lemma 3 Assume that the family of quadratic forms qn,n≥1 epicoverges
to the quadratic form q∞ and that there is one t ∈ R with Kt 6= ∅. If the
minimiser u∗∞ of q∞ is unique then every sequence u∗n,n≥1 of minimisers
of the qn,n≥1 converges weakly to u∗∞.

In our case, the minimiser of the limiting quadratic form is unique since
QR

0 is strictly convex on the subset N where it is not infinite.

15



3. Weak convergence of the sequence of minimisers also implies weak conver-
gence of the resolvents of the operators that are associated to the quadratic
forms. To see this, let v ∈ H and consider the functions

Qn,v(u) :=
1
2
qn(u)− 〈v, u〉X .

By the Cauchy–Schwarz inequality, equicoercivity of qn,n≥1 also implies
equicoercivity of Qn,v, n ≥ 1 for all v ∈ H. On the other hand, the
limiting function Q∞,v is still strictly convex on N and therefore has a
unique minimiser. Since u 7→ 〈v, u〉X is just a bounded linear map, weak
epiconvergence of the forms qn,n≥1 to q∞ implies epiconvergence of the
functions Qn,v to Q∞,v. Thus we can draw the same conclusions as before
for all sequences of minimisers u∗n,v, n ≥ 1 of the functions Qn,v. But
by Friedrich’s construction ([6]) we can associate to every quadratic form
qn a closed unbounded operator An on Hn which is densely defined on
some domain D(An) ⊂ Hn. The equation that determines the minimiser
(meaning the equation for the zeroes of the subdifferential operator ([1],
[2]) as in the finite dimensional case) is thus given by u∗n,v ∈ D(An) with
Anu∗n,v = v or

u∗n,v = A−1
n v.

which implies that for all v ∈ H the inverse operators associated to the
quadratic forms converge pointwise in the weak topology of H. By Lemma
1, even the sequence QR

0,ε(f)+α〈f, f〉L2(L(1),g0) is equicoercive for α > λ0.
Thus if we denote the operator associated to QR

0,ε by ∆0(ε), the minimiser
of

1
2
(QR

0,ε(f) + α〈f, f〉L2(L(1),g0))− 〈v, f〉L2(L(1),g0)

is given by the resolvent f∗ε,v,α = (∆0(ε) + α)−1v at α > λ0. Now we
compute the operator associated to the epi-limit QR

0 (f)+α〈f, f〉L2(L(1),g0).
Since the limiting quadratic form is infinite outside N , we may restrict
ourselves to the calculation of the minimiser on this subspace. Denoting
again the L2(L(1), g0)-orthogonal projection on N by E0 we have

1
2
{
QR

0,ε(f) + α〈f, f〉L2(L(1),g0)

}
− 〈v, f〉L2(L(1),g0)

=
1
2
{
QR

0,ε(E0f) + α〈E0f,E0f〉L2(L(1),g0)

}
− 〈v,E0f〉L2(L(1),g0)

=
1
2

∫
R

ds
{
|∂sh|2 + α|h|2

}
− 〈〈v, u0〉L2(Fs), h〉L2(R)

since every function f ∈ N can be written f(s, w) = u0(w) h(s) and thus

〈v,E0f〉L2(L(1),g0) = 〈E0v, f〉L2(L(1),g0) = 〈u0 〈u0, v〉Fs , u0 h〉L2(L(1),g0)

=
∫

R
ds 〈u0, u0〉L2(Fs) |〈u0, v〉L2(Fs) h|2

= 〈〈v, u0〉L2(Fs), h〉L2(R).
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The operator associated to the quadratic form QR
0 is the laplacian ∆R

on R. Thus we obtain, differentiating with respect to h and letting the
differential be equal to zero:

〈(∆R + α)h,−〉L2(R) = 〈〈v, u0〉L2(Fs),−〉L2(R).

Multiplying both sides by u0 and solving for u0 h yields finally the more
convenient form

f∗0,v,α = E0 (∆R + α)−1 E0v = (∆R + α)−1 E0v.

Thus, the above general considerations about convergence imply

w − lim
ε→0

(∆0(ε) + α)−1v = E0 (∆R + α)−1 E0v

weakly in H0
1(L(1), g0).

4. The last observation is now that H1(L(1), g0) ⊂⊂ L2(L(1), g0), i.e. the
inclusion is compact by the Sobolev embedding theorem ([16]). Thus, weak
convergence in the boundary Sobolev space implies strong convergence in
L2(L(1), g0). That means finally

Proposition 3 In L2(L(1), g0), we have strong resolvent convergence of
the renormalised laplacian associated to the rescaled reference metric on
L(1) to an operator

E0 ∆R E0 = ∆R E0

given by the projection E0 onto N followed by the laplacian on R. Here,
the laplacian ∆R acts on N by ∆Rf = ∆Ru0h = u0∆Rh.

Since the operators ∆0(ε) and E0 ∆R E0 are self-adjoint, strong resolvent
convergence of the operators implies strong convergence of the associated
semigroups on compact subintervals of (0,∞) ([6], [2]). Therefore, we
finally obtain

Proposition 4 For all v ∈ L2(L(1), g0) and all compact subintervals
I ⊂⊂ (0,∞), we have

lim
ε→0

sup
t∈I

‖e− t
2∆0(ε)v − E0 e−

t
2∆R E0v‖L2(L(1),g0) = 0.

Thus, the semigroups generated by the rescaled and renormalised Dirichlet
laplacians on the reference tube converge to a limit semigroup obtained
by homogenisation along the fibres. To see this, recall that E0v(s, w) =
h(s)u0(w) and note that{

E0 e−
t
2∆R E0v

}
(s, w) = u0(w)

{
e−

t
2∆Rh

}
(s).

The time-dependent part of the dynamic is thus provided by a dynamic
on the submanifold alone which modulates the function u0 on each fibre.
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2.6 The result for the induced metric

As said above, the idea is to consider the rescaled and renormalised quadratic
forms associated to the induced metric g as perturbations of the forms associated
to the reference metric. Recall that the assumption (4) of geometric finiteness,
i.e. that |κ|, |κ̇| and |κ̈| are uniformly bounded implies that

sup
s∈R,|w|<1

|Wε(s, w)−W0(s, w)| ≤ M1ε.

On the other hand, by the explicit calculation (3) above, we have that

gε(df, df)− g0,ε(df, df) = (ε2w2κ2 − 2wεκ) |∂sf |2 ≤ M2 ε |∂sf |2.

Hence

QR
ε (f) + α〈f, f〉L2(L(1),g0) −QR

0,ε(f)−
∫

L(1)

dV0 W0 f2 − α〈f, f〉L2(L(1),g0)

= QR
ε (f)−QR

0,ε(f)−
∫

L(1)

dV0 W0f
2

=
∫

L(1)

dV0 {gε − g0,ε}(df, df) +
∫

L(1)

dV0 (Wε −W0) f2

≤ M2 ε

∫
L(1)

dV0 |∂sf |2 + M1 ε

∫
L(1)

dV0 f2

≤ ε M
(
QR

0,ε(f) + α〈f, f〉L2(L(1),g0)

)
where M := max{M1,M2}. This inequality provides us with a Kato-type esti-
mate ([6]) from perturbation theory for the difference of QR

ε (f) and QR
0,ε(f) +∫

L(1)
dV0 W0 f2. This estimate enables us to show that both families converge

to the same epi-limit. Using essentially the same steps as in Section 2.4, we
obtain:

Proposition 5 The rescaled and renormalised family of quadratic forms

QR
ε (f) + α〈f, f〉L2(L(1),g0), ε > 0

epiconverges to

QR
0 (f) +

∫
L(1)

dV0 W0 f2 + α〈f, f〉L2(L(1),g0)

=
{ ∫

R ds
{
|∂sh|2 + (W0 + α) h2

}
, f = u0 h ∈ N

∞, else

as ε tends to zero.

The operator associated to the limit form is the self-adjoint unbounded operator

(∆L + W0 + α) E0 = E0 (∆L + W0 + α) E0
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on L2(R) where ∆L +W0 +α again acts on N by (∆L +W0 +α)u0h = u0(∆L +
W0 + α)h. Recall that W0(s, w) = W0(s) only depends on the s-variable. Now
denote the operator associated to the quadratic form QR

ε by ∆(ε). Deducing
strong resolvent convergence from epiconvergence by the same mechanism as in
Section 2.5 and inserting the expression (5) for W0, we end up with the final
homogenisation result for the dynamics associated to the induced metric

Theorem 1 For all v ∈ L2(L(1), g0) and all compact subintervals I ⊂⊂ (0,∞),
we have

lim
ε→0

sup
t∈I

‖e− t
2∆(ε)v − E0 e−

t
2 (∆R− 1

4 κ2) E0v‖L2(L(1),g0) = 0.

As in the case of the reference measure, we may write{
E0 e−

t
2 (∆R− 1

4 κ2) E0v
}

(s, w) = u0(w)
{

e−
t
2 (∆R− 1

4 κ2)h
}

(s).

The limit dynamic along the submanifold is thus generated by a Schrödinger
operator with a potential that reflects geometric properties of the embedding.

3 Conditioned Brownian motion

So far, we considered the heat equation on the tube with Dirichlet boundary
conditions. This corresponds to Brownian motion on the tube with absorbing
boundary conditions, i.e., the Brownian particle only exists until it reaches the
boundary for the first time. In this section we will recall some facts that show
how intimately the absorbed and the conditioned Brownian motions are con-
nected. Let L ⊂ M be a Riemannian submanifold of the Riemannian manifold
M and ε > 0. By the ε-conditioned Brownian motion with finite time horizon
T > 0, we denote the process associated to the measure µε which is the Wiener
measure on M conditioned to the event that the paths do not leave the ε-tube
L(ε) up to time T , i.e.

µε(dω) := WM (dω |ω(s) ∈ L(ε),∀s≤T ).

Using now the Markov property of WM , we will derive a time dependent version
of a well known formula for µε (see [4]). Let 0 < t < T and q ∈ L(ε) be a
starting point. In the sequel, we will write ω ∈ Ωu,v(ε) for the event {ω(s) ∈
L(ε),∀u<s≤v}. Then

µq
ε(dω) =

Wq
M (dω, ω ∈ Ω0,T (ε))
Wq

M (ω ∈ Ω0,T (ε))

=
Wq

M (dω, ω ∈ Ω0,t(ε), ω ∈ Ωt,T (ε))
Wq

M (ω ∈ Ω0,T (ε))

=
Wq

M (dω, ω ∈ Ωt,T (ε) |ω ∈ Ω0,t(ε))Wq
M (ω ∈ Ω0,t(ε))

Wq
M (ω ∈ Ω0,T (ε))

=
Wω(t)

M (dω, ω ∈ Ωs,T (ε))Wq
M (ω ∈ Ω0,t(ε))

Wq
M (ω ∈ Ω0,T (ε))

.
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Now let τε be the first exit time of a Brownian particle from the tubular neigh-
bourhood L(ε). Then {ω ∈ Ω0,t(ε)}, {ω(t) ∈ L(ε)} and {τε > t} simply denote
the same event. Hence if νε denotes the measure associated to the absorbed
Brownian motion, it can be described via its restrictions to the sigma algebras
Ft by

νε(dω ∩ Ft) = WM (dω ∩ Ft, τε < t).

The key observation is that in fact

µq
ε(dω) =

νq
ε (dω ∩ Ft, ω(t) ∈ L(ε))

νq
ε (ω(T ) ∈ L(ε))

νω(t)
ε (dω ∩ FT−t, τε > T − t) (9)

and hence all terms on the right hand side can be expressed in terms of the
absorbed Brownian motion. That implies that if, for instance, we are interested
in the distribution of the position of the conditioned particle at time t < T given
that the particle starts at time s < t in q or, equivalently, in the associated flow
P ε

s,tf for some bounded measurable f , we obtain

P ε
s,tf(q) =

∫
Ω(ε)

µε(dω |ω(s) = q)f(ω(t))

=
∫

L(ε)

νq
ε (ω(t− s) ∈ dx)

νq
ε (ω(T − s) ∈ L(ε))

νω(t)
ε (τε > T − t)f(ω(t))

=

∫
L(ε)

∫
L(ε)

pε
t−s(q, dx)f(x)pε

T−t(x, dy)∫
L(ε)

pε
T−s(q, dz)

where pε
t (x, dy) denotes the transition kernel of Brownian motion absorbed at

the boundary of the tube. Since the generator of this process is the Dirichlet
laplacian − 1

2∆ε on the tube, we may also write

P ε
s,tf =

e−
t−s
2 ∆ε

(
f e−

T−t
2 ∆ε1

)
e−

T−s
2 ∆ε1

. (10)

This relation shows that in order to understand the limit of the conditioned
Brownian motions as ε tends to zero, one has to understand the properties of
the absorbed Brownian motion for small tube diameters. This establishes the
connection to what was considered before, namely the renormalised limit of
Dirichlet operators.

But there is another property of the path measure that is rather immediate
from (10). The associated process is a time-inhomogeneous Markov process. To
see this, we formally compute a time-dependent generator, namely

Gε(s)f =
d

dh

[
P ε

s,s+hf
]
h=0

=
1

e−
T−s

2 ∆ε1

d

dh

[
e−

h
2 ∆ε

(
f e−

T−s−h
2 ∆ε1

)]
h=0

.

In the sequel, we will write

πε
u(q) = e−

u
2 ∆ε1(q)
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which denotes the probability that a particle starting from point q is not absorbed
after time u. Now by

2
d

dh
e−

h
2 ∆ε(f πε

T−s−h) = −e−
h
2 ∆ε∆ε(f πε

T−s−h) + e−
h
2 ∆ε(f ∆επ

ε
T−s−h),

the question of which functions f will belong to the domain can be answered
by considering the expression ∆ε(f πε

T−s−h) in detail. For that, we first assume
that f ∈ C2(M) and note that by elliptic regularity, for t > 0 the absorption
probability πε

T−s−h, which solves the heat equation with Dirichlet boundary
conditions for initial value πε

0 = 1, is smooth in x and zero on the boundary
∂L(ε). Hence

f πε
T−s−h ∈ {g ∈ C2(L(ε)) : h|∂L(ε) = 0} ⊂ D(∆ε)

even though f /∈ D(∆ε) and we actually have

∆ε(f πε
T−s−h) = πε

T−s−h ∆f + 2g(df, dπε
T−s−h) + f ∆επ

ε
T−s−h

where the expression ∆f is understood as simply applying the laplacian to the
function and no conditions are imposed on the behaviour of f at the boundary.
Thus, after dividing by πε

u which is positive on L(ε), the generator is formally
given by

Gε(s)f = −1
2
∆f + g(df, d log πε

T−s)

and describes a Brownian motion with time-dependent drift given by the log-
arithmic derivative of the probability to stay within the tube for a given time.
Of course, this relation also holds for Brownian motion conditioned to an arbi-
trary set with sufficiently smooth boundary. The vector field is singular at the
boundary pushing the particle back into the tube.

4 The case of Riemannian submanifolds

In this section, we consider the sequence of measures µε,ε>0 on the path space
of M . As shown above, they are supported by the path spaces of the respective
tubes L(ε) and correspond to time-inhomogeneous Markovian processes given
by the Brownian motion conditioned to the tubes. As ε tends to zero, it seems
natural to ask whether these measures converge in a suitable sense to a measure
supported by the path space of L. In the case that L ⊂ M is a closed (i.e.,
compact without boundary) Riemannian submanifold, we can answer this ques-
tion to the affirmative and provide an explicit description of the limit measure.
Namely, we have the following statements

1. The sequence µε converges weakly on the path space of M to a measure
µ0 which is supported by the path space of the submanifold L.

2. µ0 is equivalent to the Wiener measure WL on the submanifold.
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3. The Radon–Nikodym density depends on geometric properties of the sub-
manifold and of the embedding and is of Feynman–Kac Gibbs type given
by

dµ0

dWL
(ω) =

1
Z

exp

(
−
∫ T

0

ds W (ω(s))

)
(11)

where the effective potential W ∈ C∞(L) is given by

W =
1
4
ScalL −

1
8
‖τ‖2 − 1

12
(
ScalM + RicM |L + RM |L

)
,

Scal denotes the scalar curvature, τ the tension vector field and RicM |L, RM |L
denote the traces of the Riemannian curvature and Ricci tensor of M only with
respect to the subbundle TL ⊂ TM . To be precise, let j : TL ⊂ TM be the
embedding and jx : TxL ⊂ TxM the induced map on the fibres. Then

RicM |L(x) := tr(Ricx ◦ jx ⊗ jx) =
l∑

r=1

Ricx(er, er),

RM |L := tr(Rx ◦ jx ⊗ jx ⊗ jx ⊗ jx) =
l∑

r,s=1

Rx(er, es, er, es)

where e1, . . . , el denotes an orthonormal base of TxL. Z is a normalisation con-
stant.

Thus, the limit of the conditioned Brownian motions which we can in fact con-
sider as a version of the regular conditional probability given the sigma algebra
generated by the distance on the path space, is an intrinsic Brownian motion
on the submanifold subject to a certain potential that depends on the geometry
of the submanifold and of the embedding.

The proof of these facts consists of a combination of the representation (10)
with the homogenisation result Theorem 1 for convergence in finite dimensional
distributions together with a tightness result based on a moment estimate. For
details, we refer to the forthcoming paper [12].

To understand the significance of the different terms in this density, we consider
several examples.

Example 1. Submanifolds L ⊂ Rn in euclidean space. In this case, the
density simplifies to

dµ0

dWL
(ω) =

1
Z

exp

(∫ T

0

ds

[
1
8
‖τ‖2 − 1

4
ScalL

]
(ω(s))

)
which is an expression depending on the norm of the tension vector field which
depends on the embedding and the scalar curvature which is an intrinsic geo-
metrical property of the submanifold. The other terms vanish due to the fact
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that euclidean space is flat.

Example 2. The unit sphere Sn−1 ⊂ Rn. For the unit sphere, the norm of
the tension vector field which is proportional to the mean curvature of the sphere
hypersurface is constant. The scalar curvature of a round sphere is constant,
too. Thus, the integral along the path that shows up in the Radon–Nikodym
density is given by a constant time T and does not depend on the given path any
more. Therefore, by normalisation, the density is in fact equal to one. Hence,
Brownian motion on the sphere can be constructed as the weak limit of the
conditioned processes on the tubular neighbourhoods.

Example 3. Totally geodesic submanifolds. First of all, due to our com-
pactness assumption on the submanifolds, we have to make sure that there
are relevant cases where our result can be applied. For example, large spheres
Sl ⊂ Sm, l < m, in spheres are closed and totally geodesic. Due to the validity
of the Gauss embedding equations, there are several equivalent ways to simplify
the effective potential. We choose the expression

W =
1
4

(
σ +

1
3
Scal⊥

)
where Scal⊥P is the scalar curvature of the fibre π−1(p) at p and

σp :=
∑

k=1,...,l;α=1,...,m−l

K(ek ∧ nα)

is the sum of the sectional curvatures K(−) of all two-planes ek ∧ nα ⊂ TpM
which are spanned by one element of the orthonormal base e1, . . . , el of TpL and
one element of the orthonormal base n1, . . . , nm−l of NpL. Note that if L ⊂ M
is a totally geodesic submanifold and M is locally symmetric, a property that
implies that the curvature tensor R of M is parallel, then the potential W is
constant implying, as in the case of the sphere in euclidean space, that µ ≡ WL.
This holds, for instance, for the large spheres mentioned above.

Example 4. Plane curves. Let ϕ : S1 → R2 be an isometric embedding,
i.e., the curve is parametrised by arc length. The intrinsic curvature of a one-
dimensional object is zero, hence the effective potential is given by

W = −1
8
‖τ‖2

and since ϕ is parametrised by arc length, the tension vector field is actually
given by τ = ϕ̈. In total, that yields a density for the conditioned motion given
by

ρ(ω) =
1
Z

exp

(
1
8

∫ T

0

ds ‖ϕ̈‖2(ω(s))

)
.
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For an ellipse Ψ(s) = (a cos s, b sin s), s ∈ [0, 2π) (note that this is not a
parametrisation by arc-length), we will have, for instance,

‖τ‖2 =
a2b2

(a2 sin2 s + b2 cos2 s)
.

where 2a, 2b > 0 are the lengths of the major axes. The sojourn probability
of the Brownian particle is thus largest at the intersection of the ellipse and
the longer major axis, where we have the largest curvature and lowest at the
intersection of the ellipse and the smaller major axis.

5 Two limits

So far we presented the quadratic form approach to the surface measure be-
cause it provides us with the fastest approach to the calculation of the effective
potential, directly emphasizing the role played by the reference metric and the
logarithmic density log ρ. However, the first approach to surface measures was
different.

In [14], the following scheme was introduced. Let P = {0 = t0 < · · · < tk = T}
be a partition of the time interval and let x0 be a fixed point in a smooth
compact l-dimensional Riemannian manifold L isometrically embedded into the
euclidean space Rm. Then the measure WP on Cx0([0, T ], Rm) is defined as the
law W of a Brownian motion in Rm which is conditioned to be in the manifold
L at all times ti. More precisely, given a cylinder set

B := Bs1,...,sm

A1,...,Am
= {ω ∈ Cx0([0, T ], Rm) : ωsi

∈ Ai 1 ≤ i ≤ m} ,

with all sj being different from all ti, its measure WP is defined by

WP(B) = cP

∫
B

p(∆u0,∆x0) · · · p(∆um+k−1,∆xm+k−1)ξ1 ⊗ · · · ⊗ ξm+k(dx),

where U = {0 = u0 < · · · < um+n = T} is the union of the partitions P and
S = {0 < s1 ≤ · · · < sm}, x = (x1, . . . , xm+k), ∆ui = ui+1−ui, ∆xi = xi+1−xi,
B = B1 × · · · ×Bm+k and

Bi =
{

Aj , if ui = sj

L, if ui = tj for some j,
λi =

{
VRm , if ui = sj for some j,
VL, if ui = tj for some j

VRn and VL are the Riemannian volumes on Rm and L, respectively, p(t, x, y)
is the density of the n-dimensional normal distribution N(‖y − x‖, t), and the
normalisation constant cP is chosen so that WP becomes a probability measure.

The following theorem has been proved in a more general setting in [14].
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Theorem 2 As |P| → 0, the measures WP converge weakly to a probability
measure Sbb on Ca([0, T ], L), which is absolutely continuous with respect to the
Wiener measure WL on that space, and its Radon–Nykodim density is given by

ρ(ω) =
1
Z

exp
∫ T

0

ds

[
||τ ||2

8
− ScalL

4

]
(ω(s), (12)

where ScalL is a scalar curvature of L, τ is the tension vector field of the em-
bedding L ↪→ Rm, and Z is the normalising constant.

Note that this is exactly the same expression as in Example 1 above. Thus, we
obtain the same limiting surface measure by a completely different ansatz. In
the sequel, we will discuss the difference between the two approaches and why
they yield the same result. The full result from Section 4 can also be obtained
from this method. This is explained in [15].

The subscript “bb” in Sbb refers to Brownian bridges, which are a corner-
stone of the construction. The idea of the proof is to first show that as the mesh
|P| of the partition tends to zero, the corresponding marginal measures on cylin-
der functions tend to the marginals of the limit measure which is supported by
the path space of the submanifold. The main tool is a careful analysis of the
short-time asymptotic of the semigroup associated to the conditioned kernel us-
ing heat kernel estimates based on the Minakshisundaram-Pleijel expansion ([7]).

For some fixed partition, the full conditioned measure is given by the marginals
constructed as explained above together with interpolating Brownian bridges in
euclidean space which fix the path measure between those time-points, where
the particle is pinned to the submanifold. Along these Brownian bridges, the
particle may still leave the submanifold. Finally, a Large-deviation result for
Brownian bridges implies tightness for every sequence WPn

of conditioned mea-
sures for which the meshes |Pn| tend to zero. Thus, the sequence of measures
converges in the weak sense and the limit measure is determined by the limit of
the marginals.

Let us now go back to the surface measure Shc corresponding to a particle
moving under hard constraints. Recall that it is defined as the weak limit

Shc = lim
ε→0

Wε, (13)

where

Wε = W ( · |ωt ∈ L(ε) for all t ∈ [0, T ])

is the law of a flat Brownian motion conditioned to stay in the ε-neighbourhood
of the manifold for the whole time. The following theorem has been proven
in [11].
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Theorem 3 The limit in (13) exists and so the surface measure Shc is well-
defined. It is absolutely continuous with respect to the Wiener measure WL on
that space, and its Radon–Nykodim density is given by (12).

Theorems 2 and 3 hence imply immediately that Shc = Sbb.

Before explaining the main idea of the proof of Theorem 3, let us discuss the
reason why the two measures Shc and Sbb turn out to be equal: Note that the
probability for a Brownian motion to be in L at a certain fixed time is zero, and
the measures WP have been defined using iterated integral of the heat kernel
in order to avoid conditioning of the flat Wiener measure to a set of measure
zero. Alternatively, one can first force a particle to be in the ε-neighbourhood
L(ε) of L at all times ti ∈ P and then let ε go to zero. More precisely, define

WP,ε = W ( · |ωti
∈ L(ε) for all ti ∈ P) .

Then, in the weak sense, WP = limε→0 WP,ε, and Theorem 2 can be reformu-
lated as

lim
|P|→0

lim
ε→0

WP,ε = Sbb. (14)

On the other hand, by the continuity of paths, Wε = lim|P|→0 WP,ε, and hence
Theorem 3 is equivalent to

lim
ε→0

lim
|P|→0

WP,ε = Shc. (15)

Thus, (14) and (15) illustrate the fact that Sbb and Shc are obtained by inter-
changing the two limits. This suggests a more general definition of a surface
measure

S = lim
|P|→0
ε→0

WP,ε.

It has been proven in [10] that this general limit exists and then, of course, is
also absolutely continuous with respect to the Wiener measure WL with the
Radon–Nykodim density given by (12), since it must coincide with both par-
ticular limits Sbb and Shc. The proof of this statement follows along the same
lines of the proof of Theorem 3 in [11] using additionally the continuity of paths
of a Brownian motion.

The intuition behind the proof is the decomposition of the generator ∆/2 of
a flat Brownian motion into three components: an operator close to the half
of the Laplace–Beltrami operator ∆L/2, the half of the Laplace operator along
the fibres of the tubular neighbourhood, and a differential operator of the first
order. More precisely, let us assume without loss of generality that the radius
of curvature of L is greater than one and so the orthogonal projection π is well-
defined on L(1). For each x ∈ L(1), denote by Lx ⊂ L(1) an l-dimensional
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Riemannian manifold containing x and parallel to L, that is, for any y ∈ Lx the
tangent space TyLx is parallel to Tπ(y)L. Further, denote by τ(x) the tension
vector of the embedding Lx ↪→ Rm at the point x. Then, for any f ∈ C2(Rm)
and x ∈ L(1),

(∆f)(x) = (∆Lxf + ∆NxLf) (x) + 〈τ,∇f〉(a), (16)

where NxL denotes the orthogonal space to L at π(x). Note that for this decom-
position the parallel manifolds Lx need only be defined locally in a neighbour-
hood of x. Now the projections of the process with generator (∆Lx + ∆NxL) /2
yield almost a Brownian motion on the manifold, and precisely a Brownian
motion in the orthogonal direction, and those two components are almost inde-
pendent. This makes it plausible that conditioning this process to L(ε) would
lead, in the limit as ε → 0, to a Brownian motion on the manifold. Finally, the
first order term 〈τ,∇f〉 can be dealt with by a Girsanov transformation, and it
would lead to a non-trivial density.

However, there are certain difficulties in realizing this program, in particular
the fact that the parallel manifolds Lx do not always exist. Namely, they ex-
ist if and only if the normal bundle NL is flat, which is always the case for
embeddings into R2 and R3 but rather exceptional for the higher-dimensional
spaces. Hence, the operators ∆Lx and the vector field τ are not well-defined.
In fact, this is also the basic observation that yielded to the construction of the
unitary rescaling map in Section 2.2. By this transformation, the vector field is
automatically removed. We will now present an alternative ansatz to overcome
this difficulty together with an alternative and purely probabilistic proof.

It turns out that there is a vector field v on L(1) such that (∆− l〈v,∇〉)/2 is the
generator of a stochastic process which converges to a Brownian motion on the
manifold, even though it can no longer be written in the form (∆Lx

+ ∆NxL) /2
as in the decomposition (16) above. It is defined by

v(x) = ∇φ(x) with φ(x) = log
dVRn

dV0
= log ρ,

where V0 is the Riemannian volume associated to the reference metric which
can also be thought of as the product measure on L(1) defined by

V0(A) =
∫

π(A)

VRm−l(Ax)dVL(x), A ⊂ L(1)Borel,

where Ax = π−1(x) ∩ A. In the particular case when the normal bundle NL is
flat and the parallel manifolds exist, v coincides with the vector field τ . More-
over, even without that assumption, v(x) coincides with τ on the manifold L
where the tension field is defined.

In contrast to the analytical approach above, where one uses mainly perturba-
tion theory for the variational representation of the generators, the approach
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here is purely probabilistic and one mainly works with stochastic differential
equations and convergence of their solutions. However, in both approaches, the
Radon–Nikodym density of the Riemannian volumes associated to the induced
and reference metrics plays a crucial role. That is, of course, no surprise since
the effective potential is computed from this density.

Let us start by writing down the process (Yt)t≤T with generator (∆− 〈v,∇〉) /2
as a solution of the equation{

dYt = dBt −
1
2
v(Yt)dt,

Y0 = a.
(17)

In order to be able to condition (Yt) to L(ε) it would be convenient to first
decompose it into its component along the manifold and the orthogonal com-
ponent. The first one can be naturally defined by Xt = π(Yt), where from
now on we assume without loss of generality that (Yt) denotes the solution
of (17) stopped at the time when it leaves L(1). The second component has
to describe the difference Yt −Xt, which, at every time t, is an element of the
(m − l)-dimensional orthogonal space NXt

L. If there were a smooth globally
defined family of orthonormal bases (ei(x)1≤i≤m)x∈L then the orthogonal com-
ponent Zt of Yt could be defined by the coordinates of Yt −Xt with respect to
(ei(Xt)l+1≤i≤m). However, such a global family of bases in general does not
exist and a way out is to fix an orthonormal basis (ei(a)1≤i≤m) at the starting
point a and move it along the semimartingale (Xt) using the notion of stochastic
parallel translation. Then the initial basis will be transformed to a basis at Xt

by an orthogonal matrix Ut, which, as a matrix-valued process, is a solution of
the Stratonovich equation of stochastic parallel transport{

dUt = ΓXt
(δXt),

U0 = I,

where Γ is the Levi-Civita connection on L. Now (Zt) can be defined as a
Rm−l-valued process defined by the last m− l coordinates of the vector Yt−Xt

with respect to the moving basis (ei(Xt)l+1≤i≤m), or, equivalently, by the last
n − l coordinates of the vector U−1

t (Yt − Xt) with respect to the fixed basis
(ei(a)l+1≤i≤n). The M × Rm−l-valued process (Xt, Zt) fully characterises (Yt)
and is called its Fermi decomposition.

The next step is to replace the Brownian motion (Bt) by another Brownian
motion (B̂t), which is better adjusted to the moving frames. We define it by

B̂t =
∫ t

0

U−1
s dBs.

It turns out that with respect to this new Brownian motion, the triple (Xt, Zt, Ut)
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satisfies the system of stochastic differential equations dXt = σ(Xt, Zt, Ut)dB̂′
t + c(Xt, Zt, Ut)dt

dZt = dB̂′′
t

dUt = ΓXt
(δXt),

where B̂′
t are the first l and B̂′′

t the last m− l coordinates of B̂t, and the coef-
ficients σ and c can be computed explicitly. The main feature of this system is
that the processes (Xt) and (Zt) are driven by independent Brownian motions
and hence conditioning (Zt) does not affect the Brownian motion driving the
process (Xt). Hence, in order to prove that the law of the process (Yt) condi-
tioned to be in L(ε) at all times ti ∈ P converges to the Wiener measure on
paths in L, it suffices to show that the solution (XP,ε

t ) of{
dXP,ε

t = σ(XP,ε
t , ZP,ε

t , UP,ε
t )dB̂′

t + c(XP,ε
t , ZP,ε

t , UP,ε
t )dt

dUP,ε
t = ΓXP,ε

t
(δXP,ε

t ),

converges to a Brownian motion on L, where (ZP,ε
t ) is a (m − l)-dimensional

Brownian motion conditioned to be in the ε-disc around zero at all times ti ∈ P.
This can be done using moment estimates, the continuity of paths of (ZP,ε

t ),
and the explicit form of the coefficients of the equation.

Once it is proven that the surface measure corresponding to the process (Yt) is
the Wiener measure WL, the rest can be done using the Girsanov transforma-
tion. Since the law L(Y ) and the Wiener measure are equivalent with

dW
dL(Y )

(ω) = exp

{
1
2

∫ T

0

〈∇φ(ωt), dωt〉+
1
8

∫ T

0

||∇φ(ωt)||2dt

}

= exp

{
φ(ω1)− φ(ω0)

2
+
∫ T

0

(
−∆φ(ωt)

4
+
||∇φ(ωt)||2

8

)
dt

}
,

it suffices to show that φ|L = 0, ∆φ|L = ScalL, and ∇φL = τ , which is a routine
computation. This leads to the non-trivial density (12) in the surface measure.

6 Two open problems

So far, we considered surface measures for Brownian motion which turned out
to be regular in the sense that they are equivalent to the Wiener measure of
the respective submanifold. Further investigations indicate that this situation is
in fact exceptional and that new interesting phenomena appear. Therefore, we
want to conclude the paper with two open problems where the limit measures
most likely show exceptional, or, better, non-regular behaviour.

29



6.1 Tubes with fibers of variable shape

In the previous sections, we considered surface measures constructed by condi-
tioning a Brownian motion to neighbourhoods of constant diameter, meaning
that all fibres Lp(ε) := π−1(p) ∩ L(ε), p ∈ L of the tube were balls in π−1(p)
centered around p with radius ε. It seems that the situation changes drastically
if the radius of each Lp(ε) depends on p, or, if the fibers Lp(ε) are even of vari-
able shape. For example, one can take a smooth potential V : Rn → [0,∞) such
that V |L = 0 and define the ε-neighbourhoods by LV (ε) = {x ∈ Rn : V (x) ≤ ε},
which would correspond to a natural conditioning of a Brownian motion B to
the event {supt≤T V (Bt) ≤ ε}. If, for instance, the potential grows quadrati-
cally with respect to the distance from the submanifold, the fibers LV

p (ε) are
ellipses whose principal axes, in general, depend on the base point. This is
connected to considering soft constraints (not the hard-wall potential) forcing
the particle to remain on the submanifold. Another natural example is to take
a smooth function α : L → (0,∞) and consider tubular neighbourhoods such
that their radius over a point x ∈ L is given by εα(x).

First of all, it is not even clear if the corresponding surface measures exist.
However, the leading term of the energy of the conditioned Brownian particle
in the second example is believed to be

Eε(ω) = − λ

ε2

∫ T

0

dt

α(ωt)2
,

where λ < 0 is the largest eigenvalue of ∆Bp(1)/2 in the ball of radius 1 in
the orthogonal space. Hence, as ε becomes smaller, the particle should try to
minimise the energy Eε and is expected to spend more and more time in the
regions where the neighbourhood is wide. Thus, the limit measure is expected
to be singular with respect to the Wiener measure and to be concentrated on
the paths staying in (probably local) maxima of α. In particular, one needs to
pass to the Skorokhod space in order to study Brownian motion not starting in
the maxima of α, since we expect a Brownian particle to jump instantaneously
to one of the minima as ε tends to zero.

6.2 Non-smooth manifolds

Another challenging question is to study conditioning to non-smooth manifolds.
Since the projection to the manifold is no longer well-defined, the techniques
discussed in the previous sections break down. Moreover, similarly to the previ-
ously considered case of non-uniform neighbourhoods, in most natural cases the
surface measures are believed not to be supported by the space of continuous
functions alone. The situation is not even clear for one-dimensional manifolds
such as, for example, polygons in R2. For L-shaped domains, it has been proved
(see [9]) that the conditioned Brownian motions converge in finite-dimensional
distributions to the Dirac measure on the path staying in the corner. In partic-
ular, if the surface measure exists it is in this case the Dirac measure. The main
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reason for degeneration of the surface measure is the fact that the integrated
curvature of the manifold, which is the main ingredient of the Radon–Nykodim
density, is infinite for such manifolds. There are also other reasons for non-
smoothness than singular curvature. For example, for a cross of two orthogonal
lines, the particle will try to escape to infinity, and there will be no limit at
all. The intuitive reason for this difference in behaviour is that the amount of
space in the ε-neighbourhood around the singularity compared to the amount
of manifold is large for an L-shaped domain and small for the cross.
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