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Abstract

In this thesis we study monotone Lagrangian submanifolds of CPn. Our results are roughly of

two types: identifying restrictions on the topology of such submanifolds and proving that certain

Lagrangians cannot be displaced by a Hamiltonian isotopy.

The main tool we use is Floer cohomology with high rank local systems. We describe this

theory in detail, paying particular attention to how Maslov 2 discs can obstruct the differential. We

also introduce some natural unobstructed subcomplexes.

We apply this theory to study the topology of Lagrangians in projective space. We prove that a

monotone Lagrangian in CPn with minimal Maslov number n+ 1 must be homotopy equivalent to

RPn (this is joint work with Jack Smith). We also show that, if a monotone Lagrangian in CP3 has

minimal Maslov number 2, then it is diffeomorphic to a spherical space form, one of two possible

Euclidean manifolds or a principal circle bundle over an orientable surface. To prove this, we use

algebraic properties of lifted Floer cohomology and an observation about the degree of maps between

Seifert fibred 3-manifolds which may be of independent interest.

Finally, we study Lagrangians in CP2n+1 which project to maximal totally complex subman-

ifolds of HPn under the twistor fibration. By applying the above topological restrictions to such

Lagrangians, we show that the only embedded maximal Kähler submanifold of HPn is the totally

geodesicCPn and that an embedded, non-orientable, superminimal surface in S4 =HP1 is congruent

to the Veronese RP2. Lastly, we prove some non-displaceability results for such Lagrangians. In

particular, we show that, when equipped with a specific rank 2 local system, the Chiang Lagrangian

L∆ ⊆CP3 becomes wide in characteristic 2, which is known to be impossible to achieve with rank 1

local systems. We deduce that L∆ and RP3 cannot be disjoined by a Hamiltonian isotopy.



Impact Statement

The research carried out in this thesis impacts several related areas of geometry.

On the one hand, it contributes to its primary domain – symplectic topology – with new results,

namely: a calculation which showcases a rarely used method (high rank local systems in monotone

Floer theory) and two classification results in Lagrangian topology. One of these, done in collab-

oration with Jack Smith, builds upon recent work of several other authors to give a satisfactory

partial answer to a question asked in the field more than ten years ago. The other relies on results

in low-dimensional topology and relates to the study of minimal surfaces in the four dimensional

sphere.

On the other hand, we give applications of these results to examples coming from algebraic and

Riemannian geometry. In particular, our symplectic methods allow us to deduce some uniqueness

results about Legendrian varieties. These varieties arise naturally in the study of quaternion-Kähler

manifolds and are related to a famous open problem in Riemannian geometry – the LeBrun-Salamon

conjecture. The relation of symplectic geometry to this problem has not been explored in the litera-

ture and one may hope that it could lead to new insights.
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Chapter 1

Introduction

1.1 History and context

1.1.1 Origins

Symplectic geometry was born in the early 19th century through the works of Lagrange and Poisson

on celestial mechanics (see [Mar09]). Since then, it has evolved into a large and deep field whose

reach and importance in mathematics are well beyond the author’s competence, so we leave it to one

of the people to whom the field owes much of its current prominence – Vladimir Igorevich Arnold –

to elucidate:

Just as every skylark must display its crest, so every area of mathematics will ultimately

become symplecticised. ([Arn92])

From a purely topological point of view, this pervasiveness of symplectic geometry can be

attributed to the rather flexible nature of the symplectic structure which allows it to exist on – and be

exploited for the study of – an enormous class of manifolds. Beginning with even dimensional vector

spaces and tori, moving on to orientable surfaces, then arbitrary cotangent bundles, then Kähler

manifolds and in particular all smooth complex projective varieties, the list grows large. Moreover,

through ingenious constructions like symplectic reduction ([MW74]), blow up, fibre connected sum

([Gom95]) etc., one can quickly build new examples with more and more interesting topology. While

this gives symplectic topologists an immense body of examples to study, the same flexibility leaves

us not knowing the answers to basic questions about some of the simplest symplectic manifolds. This

thesis focuses on one such manifold – arguably the simplest non-aspherical symplectic manifold –

complex projective space.

In the study of symplectic manifolds, Lagrangian submanifolds play a role which is difficult

to overstate. It was summarised by Weinstein in his symplectic creed ([Wei81]): “Everything is a

Lagrangian submanifold.” While this statement may appear too general, Weinstein’s paper contains

his concrete vision of a symplectic category, in which objects are symplectic manifolds and mor-

phisms from (M,ω) to (M′,ω ′) are Lagrangian submanifolds of the product (M×M′,(−ω)⊕ω ′),
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generalising (graphs of) symplectomorphisms.1 In such a category, the Lagrangian submanifolds of a

symplectic manifold M become its “elements” – morphisms from a point into M. Thus the following

has become a central question in symplectic topology:

Question 0. Given a well-known symplectic manifold (M,ω) what can we say about its Lagrangian

submanifolds?

The three main directions in which this question is explored are: finding restrictions on the

topology that a Lagrangian in M can have; classifying (smooth / Lagrangian / Hamiltonian) isotopy

classes of Lagrangians of a fixed topological type; and understanding the intersection patterns of the

Lagrangians of M. The developments along these three lines are inextricably intertwined and a large

part of the progress is due to the theory of pseudoholomorphic curves, as we explain next.

1.1.2 Pseudoholomorphic curves and Lagrangian topology

1.1.2.1 Gromov’s pseudoholomorphic curves

We already alluded to the great amount of flexibility that is present in symplectic topology, but what

makes the subject truly interesting is that it also displays a lot of rigidity which manifests itself

in surprising ways. While some examples of rigidity were known before that (e.g. [Eli87]2), the

foundational breakthrough in this direction was made by Gromov in [Gro85] with his introduction

of pseudoholomorphic curves as a way of probing the geometry of a symplectic manifold. Gromov’s

paper not only introduces the techniques which at present underlie the main tools in symplectic

topology, but also proves several key results which gave rise to some of the field’s subdomains3:

his non-squeezing theorem and packing inequalities laid the foundations for quantitative symplectic

topology (see the recent survey [Sch18] and the references therein), his results on the homotopy type

of certain symplectomorphism groups opened a door to these notoriously unapproachable objects

(see the survey [McD04] and the references therein for some older results, or [Sei08b],[Eva11]

and [SS17] for some newer ones) and his theorem that a compact Lagrangian L in Cn must have

H1(L;R) 6= 0 initiated the study of Lagrangian topology.

The last-mentioned result is particularly pertinent to this thesis. From a modern standpoint one

can view this theorem as an example of the “principle of Lagrangian non-intersection”, formulated

by Biran in [Bir06]: the fact that a Lagrangian can be displaced from itself by a Hamiltonian isotopy

puts strong restrictions on its topology. While Gromov’s proof was entirely geometric, nowadays

the principle of Lagrangian non-intersection usually appears as a consequence of a remarkably rich

structure of algebraic invariants into which pseudoholomorphic curves are organised.

1 Making rigorous sense of Weinstein’s category in the modern framework of symplectic topology is a major research

avenue, see for example [WW10], [LL13], [Bot15],[Fuk17].
2The results in this paper seem to have been published much later than they were announced.
3 None of the reference lists that we give here are anywhere close to complete.
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1.1.2.2 Floer theory

The first algebraic symplectic invariant – Hamiltonian Floer cohomology – was introduced by An-

dreas Floer in [Flo87] as an approach to the Arnold conjecture [Arn04, Problem 1972-33] on the

lower bound for the number of fixed points of a Hamiltonian symplectomorphism. In line with

“the creed”, this conjecture is but a special case of a statement about intersections of a pair of

Lagrangian submanifolds (the special case being where one of the Lagrangians is the diagonal in

(M×M,(−ω)⊕ω) and the other is the graph of a Hamiltonian symplectomorphism) and so Floer

generalised his methods to produce an invariant which would detect such intersections ([Flo88a]),

realising another of Arnold’s dreams ([Arn04, Problem 1981-27]). When the two Lagrangians L0

and L1 intersect transversely, their Lagrangian intersection Floer cohomology HF(L0,L1) is the ho-

mology of a chain complex CF(L0,L1), which is generated by the intersection points and whose dif-

ferential counts rigid pseudoholomorphic strips with boundary on L0 and L1 connecting such points.

It is invariant under arbitrary Hamiltonian perturbations of either Lagrangian and so a lower bound

on the rank of HF(L0,L1) gives a lower bound on the number of intersection points between the two

Lagrangians up to such perturbations. Moreover, this invariance allows one to define HF(L,L) – the

self-Floer cohomology of L – by taking the homology of the complex of intersections between L and

a generic Hamiltonian push-off of L.

Floer originally constructed HF(L0,L1) only for Lagrangians which are weakly exact, that is,

such that ω integrates to zero over any class in π2(M,Li), and in this case he proved that HF(L,L)

is isomorphic to the Morse cohomology of L. Note that this already suffices to reprove Gromov’s

theorem on compact Lagrangians in Cn: supposing that such a Lagrangian satisfies H1(L;R) = 0

implies that it is (weakly) exact and hence HF(L,L)∼= H∗(L) 6= 0, contradicting the fact that L can

be displaced from itself by a Hamiltonian isotopy. While in principle this argument is equivalent to

Gromov’s original proof, it highlights nicely the way in which introducing extra algebraic structure

can be used to generalise the original theorem: the topological restriction is imposed by the vanishing

of HF(L,L) and if we could infer this vanishing through different methods (that is, without appealing

to the geometric displaceability of the Lagrangian), the same topological conclusions would follow.4

This is illustrative of the kind of algebraic principle of Lagrangian non-intersection which is the

main argument we use in chapter 3 to derive topological restrictions on Lagrangians.

Shortly after Floer’s original construction, Oh ([Oh93]) relaxed the assumption that L should be

weakly exact and extended Lagrangian Floer cohomology to monotone Lagrangians (roughly, La-

grangians for which the class of ω and the Maslov class are positively proportional in H2(M,L;R);

see section 2.1.1 for a thorough discussion). The analogous generalisation on the Hamiltonian side

had already been done by Floer in [Flo89]. One important feature which arises only in the La-

4 For example, we now know that Gromov’s theorem is true if we replace Cn by any Liouville manifold whose symplectic

cohomology (a variant of Hamiltonian Floer cohomology for open manifolds) vanishes: symplectic cohomology is a unital

ring and HF(L,L) is a module over it, so it needs to vanish as well.
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grangian theory is the issue of obstruction: the differential on the complex CF(L0,L1) squares to

zero only when the so-called obstruction numbers m0(L0), m0(L1) agree (note in particular that the

self-Floer cohomology of a monotone Lagrangian is always well-defined). These numbers are an

algebraic count of the pseudoholomorphic discs of Maslov index 2 with boundary on the respective

Lagrangian and passing through a generic point. Thus, the obstruction here is not a technical feature

of the theoretical setup, but rather carries essential geometric information about the Lagrangians.

Since these first definitions of Floer cohomology groups, a plethora of algebraic structures

surrounding them has been constructed. For example, while the Hamiltonian Floer cohomology of

a monotone symplectic manifold M is additively isomorphic to its singular cohomology, the former

carries a “pair of pants” product ([Sch95]) which usually differs from the classical cup product. The

resulting associative, unital, (graded-)commutative ring is now known as the quantum cohomology

of M.5 On the other hand, Donaldson observed that by counting pseudoholomorphic triangles one

can equip Lagrangian Floer cohomology with a composition operation

HF(L1,L2)⊗HF(L0,L1)→ HF(L0,L2),

which exhibits the set of compact (monotone) Lagrangians of M as the objects of a category where

morphism spaces are Floer cohomology groups. In particular, the self-Floer cohomology HF(L,L)

is a unital (in general non-commutative) ring and for any other Lagrangian L′, the cohomology

HF(L,L′) is a module over this ring. Fukaya then generalised this idea, introducing composition

operations on the chain level which count pseudoholomorphic polygons with boundaries on any

number of Lagrangians ([Fuk93]). The resulting structure, known as the Fukaya category of M, is

an A∞ category whose quasi-equivalence type is an invariant of the symplectic manifold, encoding

intricate information about the Lagrangians in M and the way they intersect.

Remark 1.1.1. At this point we should mention that while in the present text we work exclusively

in the monotone setting, many of the structures we described above have been defined in much

greater generality. For such developments on the Hamiltonian side see for example [HS95], [Ono95],

[LT98], [FO99]. The definitive reference for Lagrangian Floer theory for general closed symplectic

manifolds is the monumental work [FOOO09] by Fukaya-Oh-Ohta-Ono. //

Apart from the appearance of obstructions which we described above, another major difference

between Floer theory for weakly exact Lagrangians and its generalisation to monotone ones is that

in the latter case the self-Floer cohomology of a Lagrangian need not be isomorphic to its singu-

lar cohomology (indeed, the unit circle in C is a monotone Lagrangian whose Floer cohomology

5 A deformation of the cup product on the singular cohomology of a symplectic manifold was constructed in [RT95] (see

also [MS94]) using counts of certain pseudoholomorphic spheres and this deformed algebra is called quantum cohomology.

The fact that it is isomorphic to Hamiltonian Floer cohomology with the pair of pants product is a celebrated result of

Piunikhin, Salamon and Schwartz ([PSS96]).
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vanishes). Instead, the two are related by a spectral sequence

H∗(L) =⇒ HF(L,L),

which was first constructed by Oh ([Oh96]) and later by Biran ([Bir06, Section 5]) using a more

algebraic approach. This spectral sequence is one of the few general tools for computing Floer

cohomology.

Another important development in monotone Floer theory was the construction of the pearl

complex carried out by Biran and Cornea in [BC07b]. This machinery greatly simplifies the calcu-

lation of self-Floer cohomology because it avoids the need to perturb the Lagrangian or to introduce

time-dependent almost complex structures, both of which are needed for Oh’s original construction.

Instead, the complex is generated by the critical points of a Morse function f on the Lagrangian and

the differential counts the so-called pearly trajectories which are, roughly, gradient flowlines for f

which may be interrupted by the boundaries of finitely many pseudoholomorphic discs. Crucially,

the homology of this complex is isomorphic to the self-Floer cohomology of the Lagrangian and

by decomposing the differential according to the total Maslov index of the discs involved in dif-

ferent pearly trajectories, one recovers the Oh-Biran spectral sequence in a natural way. Moreover,

by counting more elaborate types of pearly trajectories, Biran and Cornea define various kinds of

algebraic operations on the homology of their complex, including a product (which corresponds to

the Floer product through the above isomorphism) and an action of the quantum cohomology of

the ambient manifold. One curious feature of all known calculations of self-Floer cohomology for a

monotone Lagrangian is that it either vanishes, or the Oh-Biran spectral sequence degenerates on the

first page and Floer cohomology is isomorphic to singular cohomology (this is true for computations

with coefficients in a field, or, more generaly in an irreducible local system of vector spaces over the

Lagrangian; otherwise counterexamples exist). The Lagrangian is called narrow in the former case

and wide in the latter.

We mention one more general result which has proven extremely useful in monotone Floer the-

ory and features prominently in this thesis, namely the Auroux-Kontsevich-Seidel (AKS) criterion

([Aur07, Proposition 6.8], [She16, Corollary 2.10]). Roughly, it says that, if a monotone Lagrangian

L⊆M has non-vanishing self-Floer cohomology, then its obstruction number m0(L) is an eigenvalue

of quantum multiplication by the first Chern class of M. In particular, this means that over an alge-

braically closed field, the Fukaya category of a monotone symplectic manifold splits into orthogonal

summands, indexed by the eigenvalues of this quantum multiplication.

Remark 1.1.2. We have deliberately not discussed the coefficient rings over which the above theories

are defined. As stated what we have described is approximately correct when one works over rings

of characteristic two. The theory also works over different characteristic, as long as the Lagrangians

satisfy certain additional hypotheses which will be discussed later on.

Another important technical detail which we haven’t mentioned is that in our entire discussion
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of monotone Floer theory above one must assume that all Lagrangians have minimal Maslov number

at least 2. Monotone Lagrangians which bound discs of Maslov index 1 are in general inaccessible

to current Floer-theoretic techniques due to compactness issues for the spaces of trajectories used in

the definition of the theory. //

1.1.2.3 Lagrangian topology

Given a symplectic manifold (M,ω), even a very simple one, the task of determining the topology of

all of its compact Lagrangian submanifolds is extremely difficult. Note that by Darboux’s theorem,

every compact n-manifold which admits a Lagrangian embedding in Cn also admits one in every

symplectic manifold of dimension 2n, so it makes sense for one to study this local question first.

However, even for (Cn,ωstd), classifying the topological type of Lagrangians quickly becomes

intractable. Already for n = 2, where one can still rely on the complete classification of closed

surfaces, the question turns out to be very hard and its answer is somewhat surprising: the only

closed surfaces which admit a Lagrangian embedding in (C2,ωstd) are T 2 and connected sums of

the form (RP2)#(4k+2) for k > 0 ([Giv86], [Aud88], [She09], [Nem09]). Moving one dimension up

to C3, one already sees why it is not reasonable to expect strong topological classification results in

higher dimensions without imposing simplifying assumptions. A well-known result of Gromov and

Lees ([Gro71], [Lee76]) says that any compact n-manifold L whose complexified tangent bundle is

trivial admits a Lagrangian immersion in Cn. Polterovich ([Pol91]) developed a surgery technique to

eliminate the double points of such an immersion, thus showing that for some integer k the connected

sum L#(S1×̃Sn−1)#k of L with k copies of the twisted Sn−1-bundle over S1 admits a Lagrangian

embedding in Cn. Moreover, if n is odd, one can use the product S1× Sn−1 instead of the twisted

bundle. Finding lower bounds for the number k is an interesting problem which was posed by

Polterovich and was addressed in recent work of Ekholm-Eliashberg-Murphy-Smith [EEMS13].

One of their results is that in dimension 3 one can always take k = 1 and so, if L is a closed,

orientable 3-manifold then L#(S1×S2) admits a Lagrangian embedding in (C3,ωstd).6

In light of these facts, if one wants to find meaningful restrictions on the topology of a closed

Lagrangian L ⊆ C3, it makes sense to ask for L to be a prime 3-manifold, that is, one which cannot

be expressed as a non-trivial connected sum. This restricted problem was answered completely in a

landmark theorem of Fukaya ([Fuk06, Theorem 11.1]) which states that a closed, orientable, prime

Lagrangian submanifold of C3 is diffeomorphic to S1×Σ for some orientable surface Σ (the theorem

is sharp since all such products do admit Lagrangian embeddings).

In Fukaya’s work this is a corollary of a more general result about Lagrangian embeddings of

Eilenberg-MacLane spaces ([Fuk06, Theorem 12.1]). The theorem states, roughly, that if an ori-

entable, spin, aspherical Lagrangian L ⊆ (M,ω) is displaceable, then π1(L) contains a non-trivial

6 Recall that closed, orientable 3-manifolds are parallelisable ([Sti35]), so by the Gromov-Lees theorem they always admit

Lagrangian immersions.
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element with finite index centraliser. The proof of this theorem is highly technical but the general

idea behind it is to use the boundaries of pseudoholomorphic discs in order to construct classes in

the homology of the free loop space of L and then exploit the deep combinatorial relations that such

classes must satisfy. This combination of holomorphic curve theory and string topology is a powerful

idea which has found many applications in sympletic topology (see e.g. [Vit97], [BC07a], [Abo11]

and the survey [LO15]). One problem with this approach and what makes Fukaya’s theorem so tech-

nically difficult, however, is that it relies on high dimensional moduli spaces of pseudoholomorphic

curves and transversality and good compactness properties for these are hard to achieve.

Here again the monotonicity assumption can be used to significantly simplify the situation,

while still allowing one to record some homotopy data about the paths traced on a Lagrangian by

the boundaries of holomorphic curves. An important development in this direction is Damian’s

lifted Floer cohomology ([Dam12]; a similar idea appears also earlier in [Sul02]). Using this theory,

Damian showed (among many other things) that, if an orientable, monotone Lagrangian L⊆ (M,ω)

satisfies HF(L,L) = 0 and the odd homology groups of the universal cover of L vanish, then π1(L)

contains a non-trivial element with finite index centraliser which is the boundary of a Maslov 2

disc. This allows for a simpler proof of Fukaya’s theorem in the monotone case (see [Dam15],

[EK14]), and in addition implies that an orientable monotone Lagrangian in C3 is necessarily prime

(and hence, a product). Lifted Floer cohomology has found many other applications in the study of

monotone Lagrangians (some of which we discuss later on) and is one of the central tools we use in

this thesis.

As the above discussion indicates, studying Lagrangians in Cn is already a rich and difficult

subject. Moving to other symplectic manifolds, one must impose some conditions which ensure that

the Lagrangians one considers are, in some sense, global.

For example, if one works in an exact symplectic manifold, then it makes sense to try and

classify exact Lagrangians there (this condition forces such Lagrangians to not be contained in any

Darboux ball, by Gromov’s theorem). The most famous problem in this area is Arnold’s nearby

Lagrangian conjecture which posits that a compact exact Lagrangian L in the cotangent bundle

(T ∗Q,ωcan) of a compact manifold Q is Hamiltonian-isotopic to the base. The full statement is

only known to be true for Q = S1,S2,RP2 and T 2 ([Hin12], [DRGI16]). The current state of the

art in the general case asserts that the projection π : T ∗Q→ Q always induces a simple homotopy

equivalence π|L : L→Q ([AK18], building on [FSS08], [Abo12], [Kra13]) and is another testament

of the successful interplay between holomorphic curves and loop space methods.

Apart from the exact case, another possibility is to study the topology of monotone Lagrangians

in monotone symplectic manifolds. This is a vast topic and very rich in results but these are inevitably

very specific to the particular symplectic manifold one studies. Thus, rather than trying to give a

general overview, we now discuss some of what is known about the Lagrangians in arguably the

simplest monotone symplectic manifold – and the focus of this thesis – complex projective space.
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1.1.3 Monotone Lagrangians in CPn

The two most well known examples of monotone Lagrangian submanifolds in n-dimensional com-

plex projective space are the Clifford torus T n
Cl and the real projective space RPn. The existence of

the latter already shows that, unlike linear symplectic spaces, CPn can contain Lagrangians whose

first homology is finite. Such Lagrangians are global in a very strong sense (they cannot be isotoped

to lie in a Darboux ball) and so one can expect that they “see” a lot of the symplectic topology of

CPn. This makes them also rather rare: all examples that the author is aware of are homogeneous

spaces and while some of them occur in infinite families, there are many which appear only in cer-

tain dimensions. We now discuss some of the known facts about Lagrangians in CPn with finite

first homology. Note that these are necessarily monotone which makes them perfect ground for

Floer-theoretic explorations.

Given that H1(RPn;Z)∼=Z/2, that is, the smallest non-trivial group, it is natural to ask whether

there exist Lagrangians in CPn whose integral homology vanishes. The answer is “no” and was

first proved by Seidel in [Sei00]. In fact Seidel showed that any Lagrangian L in CPn must have

H1(L;Z/(2n+2)Z) 6= 0 and, if L is monotone, then its minimal Maslov number must satisfy

1≤ NL ≤ n+1.

Note that these bounds are sharp – for each n≥ 2 there do exist monotone Lagrangians in CPn with

minimal Maslov number 1 (we’ll briefly mention some of these below) and NRPn = n+ 1. Seidel

further showed that, if H1(L;Z/(2n+2)Z) is 2-torsion (which implies NL = n+1), then there is an

isomorphism of graded Z/2-vector spaces H∗(L;Z/2)∼= H∗(RPn;Z/2). In particular, if L⊂CPn is

a Lagrangian satisfying 2H1(L;Z) = 0 then L is additively a Z/2-homology RPn.

Later, Biran–Cieliebak ([BC01, Theorem B]) reproved the first part of Seidel’s result by intro-

ducing the important Biran circle bundle construction, which associates to a monotone Lagrangian

in CPn a displaceable one in Cn+1 and then uses the vanishing of the Floer cohomology of the latter

to constrain the topology of the former via the Gysin sequence. Combining this construction with

the Oh-Biran spectral sequence, Biran ([Bir06, Theorem A]) then reproved the second part of Sei-

del’s result – the Z/2-homology isomorphism – but under the hypothesis that L⊂ CPn is monotone

and of minimal Maslov number n+ 1 (he states the assumption that H1(L;Z) is 2-torsion but only

uses the monotonicity and minimal Maslov consequences).7 With the introduction of the pearl com-

plex in [BC07b], Biran and Cornea gave another proof of these results which was more algebraic in

flavour – rather than using the circle bundle construction, they relied on the action of the quantum

cohomology QH(CPn) on HF(L,L) to reach the same conclusions.

All these results lead to a natural question, first asked by Biran and Cornea in [BC07b, Section

6.2.5], which is still open: for n≥ 2, is the standard RPn the only (up to Hamiltonian isotopy or, at

7 Note that, in conjunction with the classification of surfaces, this result already shows that for n = 2 the Lagrangian must

be diffeomorphic to RP2.
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least, homeomorphism) Lagrangian in CPn whose first integral homology is 2-torsion?

In dimensions one and two, the answer is as strong as possible: any such Lagrangian is Hamil-

tonian isotopic to RPn. This is trivial for n = 1, whilst the n = 2 case follows from recent work

of Borman–Li–Wu ([BLW14, Theorem 1.3]). In higher dimensions, Damian ([Dam12, Theorem

1.8 c)]) applied his lifted Floer theory to the circle bundle construction to show that when n is odd

and 2H1(L;Z) = 0, L must be homotopy equivalent to RPn. In recent work ([KS18]) Jack Smith

and the author proved that the same is true also for even n and in fact one only needs to assume

that L is monotone with NL = n+1. This completes the classification up to homotopy of monotone

Lagrangians in CPn whose minimal Maslov number is as large as possible.

When one allows the minimal Maslov number to decrease, many more examples appear (still,

the author only knows of homogeneous ones for NL > 2). If n is odd, the next-largest value that NL

can take is (n+ 1)/2.8 In this thesis we study one family of monotone Lagrangians which satisfy

this condition – we call them the subadjoint Lagrangians. There is one infinite sequence of them,

appearing in CPn for each odd n ≥ 5 and five exceptional examples in dimensions n = 3,13,19,31

and 55.

The 3-dimensional example is known as the Chiang Lagrangian, after River Chiang who dis-

covered it as a Lagrangian orbit of a Hamiltonian SU(2)-action on CP3. It is a rational homology

3-sphere with minimal Maslov number 2 and its first homology group is Z/4. The Floer cohomology

of the Chiang Lagrangian was computed by Evans and Lekili in [EL15], where they introduced sev-

eral general techniques for getting control on the holomorphic discs with boundary on homogeneous

Lagrangians.9 The Chiang Lagrangian and the results of Evans-Lekili will feature prominantly in

this thesis.

Remark 1.1.3. We should mention also that the Chiang Lagrangian belongs to another interesting

family of four Lagrangians, the other three of which however live in different Fano 3-folds. These

are called the Platonic Lagrangians for their connection with the Platonic solids. By generalising

and extending the techiniques of Evans-Lekili, Jack Smith computed the Floer cohomomology of all

Platonic Lagrangians in [Smi15]. //

Letting the minimal Maslov number decrease further still (ignoring the dimensional coinci-

dence that the Chiang Lagrangian had NL = 2), there is another well-studied family of Lagrangians

in CPn – the Amarzaya-Ohnita-Chiang family ([AO03], [Chi04]). These are actually several re-

lated families, who all have intermediate Maslov number, roughly at the order of
√

n. Their Floer

cohomology has been investigated in [Iri17], [EL19] and [Smi17].

Remark 1.1.4. The definitive reference for examples of homogeneous Lagrangians in projective

space is the paper [BG08] by Bedulli and Gori. There they classify all Lagrangians in CPn which

8 The minimal Maslov number must divide 2(n+1), that is, twice the minimal Chern number of CPn.
9 Here, the word “homogeneous” is used to mean that the Lagrangian is an orbit of a compact group acting on a Kähler

manifold by holomorphic isometries.
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are orbits of Hamiltonian actions of simple Lie groups, including all the examples we mentioned

above. The Floer theory of many of these Lagrangians remains unexplored. //

When the minimal Maslov number is equal to 2, the examples are too numerous to describe.

Topologically, the only Lagrangian in CP2 with NL = 2 is the 2-torus but there are infinitely many

Hamiltonian non-isotopic monotone Lagrangian tori (see [Via16] and the references therein). More-

over, given any orientable, monotone Lagrangian L ⊆ CPn, one can obtain a monotone Lagrangian

lift L̂⊆CPn+1 with NL̂ = 2 by a careful application of the Biran circle bundle construction ([BC09b,

Section 6.4]). The same is also true if one starts with a Lagrangian contained in a quadric hypersur-

face in CPn+1 – see [OU16] for many explicit examples.

Finally, as we mentioned earlier, Lagrangians of minimal Maslov number 1 are not amenable

to Floer theory and consequently very little is known about them in general. However, already in

CP2 there is a surprising example of a monotone Lagrangian with NL = 1. It is diffeomorphic to(
RP2

)#6 and was constructed by Abreu and Gadbled in [AG17]. To produce examples in higher

dimension, one can again rely on the circle bundle construction. Indeed for any non-orientable,

monotone Lagrangian L ⊆ CPn, the associated lift L̂ ⊆ CPn+1 is also monotone and has minimal

Maslov number equal to one.

We have undoubtedly forgotten to include many examples but hopefully the above discussion

illustrates the great variety which is present among monotone Lagrangians in CPn. We end this

section by mentioning one general result on the topology of such Lagrangians. The theorem in

question is due to Simon Schatz ([Sch15]) and states that if L ⊆ CPn is an orientable monotone

Lagrangian whose universal cover has vanishing homology in odd degrees, then NL = 2 and π1(L)

contains a non-trivial element with finite index cetraliser (the actual result in [Sch15] is much more

general and applies to monotone Lagrangians in many other Kähler manifolds besides CPn). The

proof is based on a combination of the Biran circle bundle construction with lifted Floer theory and

the “neck-stretching” arguments from [BK13].

Remark 1.1.5. The above-cited theorem of Schatz implies, for example, that any monotone La-

grangian torus in CPn has minimal Maslov number equal to 2. This result was already proved

by Damian in [Dam12, Theorem 1.6], but in fact nowadays something much stronger is known: the

statement is true for any Lagrangian torus inCPn without the monotonicity assumption. Whether this

is the case was a well known question by Audin, resolved in the affirmative by Cieliebak-Mohnke in

[CM18] (see also [Fuk06, Theorem 11.4]). //

1.2 Overview of this thesis

1.2.1 A motivating example

Chronologically, the starting point of this thesis lies with two monotone Lagrangians in CP3: real

projective space RP3 and the Chiang Lagrangian L∆. There is one glaring feature which they have in
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common, namely they are both rational homology spheres. Moreover, their first integral homologies

are the smallest ones allowed – isomorphic toZ/2 andZ/4, respectively (recall that H1 is not allowed

to vanish and an easy Maslov class calculation shows that, if the first homology of a Lagrangian in

CP3 is finite, then it cannot have odd cardinality). While this should already suggest that there must

be some connection between these two Lagrangians, an even more compelling piece of evidence is

the following equation

2+2 = 4. (1.1)

Let us explain. In [Joy02], Joyce proposed a conjectural invariant of (almost) Calabi-Yau 3-

folds which counts the number of special Lagrangian rational homology spheres, weighting each

Lagrangian by the size of its first integral homology group. The weighting is needed because,

while special Lagrangians deform smoothly with small variations of the Kähler metric and holo-

morphic volume form ([McL98], [Joy05]), large variations give rise to wall-crossing phenomena

in which some special Lagrangians disappear (become singular) and others appear in their place.

Joyce conjectures that whenever this happens for special Lagrangian rational homology 3-spheres,

the sum of the sizes of the H1’s of the manifolds counted before and after the wall-crossing oc-

curs should remain unchanged. Something similar happens with L∆ and RP3. The Chiang La-

grangian is special Lagrangian in the complement of a discriminantal divisor (the divisor cut out

by the discriminant of a cubic polynomial in one variable). One can then deform this divisor un-

til it breaks up into the union of two quadric hypersurfaces in whose complement live two spe-

cial Lagrangian real projective spaces. Therefore, during the deformation L∆ undergoes some

kind of surgery and transforms into two copies of RP3. And indeed, by equation (1.1), we have

|H1(RP3;Z)|+ |H1(RP3;Z)|= |H1(L∆;Z)|, as one would expect from Joyce’s conjecture.

As this discussion indicates, L∆ and RP3 are quite closely related. Their relationship is what

ties the seemingly different parts of the thesis together. More precisely, we investigate the following

three questions:

Question 1. Are L∆ and RP3 the only Lagrangian rational homology spheres in CP3?

Question 2. What exactly is the relationship between L∆ and RP3 and are there analogues in higher

dimension?

Question 3. Can L∆ and RP3 be disjoined by a Hamiltonian isotopy of CP3?

We now discuss the research that has spun out of these questions, describe the techniques that

we use and state the main results.

1.2.2 Methods and results

1.2.2.1 High rank local systems

The main tool used in this thesis to infer information about Lagrangian submanifolds is monotone

Floer theory with coefficients in local systems of rank higher than one. The objects we study are
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pairs (L,E) where L is some closed monotone Lagrangian and E is a local system of R-modules

on L (an “R-local system”) for some commutative ring R (which has characteristic 2 unless L is

also equipped with additional structure like an orientation or a (relative) (s)pin structure). The Floer

complex CF((L0,E0),(L1,E1)) of two such objects is then generated by the R-linear maps between

the fibres of the local systems living over points in L0∩L1 (assuming this intersection is tranverse)

and the Floer differential counts the usual pseudoholomorphic strips but uses their boundaries on L0

and L1 for parallel transport. This is exactly analogous to the rank 1 case but there is one crucial

difference – if a local system E on L has rank higher than one, then even the self-Floer complex

CF((L,E),(L,E)) may be obstructed. This obstruction is governed by an endomorphism m0(E) of

the local system E , which we call the obstruction section. Equivalently, m0(E) can be viewed as a

central element of the group algebra R[π1(L,x)/(kerρE)] where ρE is the monodromy representation

of E at some point x ∈ L. In fact, using the local system Ereg which corresponds to the regular

representation of π1(L), one obtains a universal obstruction m0(L,x) ∈ R[π1(L,x)] which is defined

as the sum of boundaries of Maslov 2 pseudoholomorphic discs passing through x (counted with

appropriate signs, if char(R) 6= 2). The obstruction m0(E) is then obtained by reducing m0(L,x)

modulo kerρE .

This is precisely the obstruction observed by Damian in his lifted Floer theory ([Dam12]). The

fact that m0(L,x) is a central element of the group algebra (see [Dam15, Section 1.2] or Proposition

2.2.3 below) provides one with a useful alternative – either m0(L,x) is a multiple of the identity, in

which case lifted Floer cohomology is defined, or there exists an element in π1(L,x) whose cen-

traliser has finite index and which is the boundary of a Maslov 2 disc. As we saw in section 1.1.3

and will further demonstrate in this thesis, this dichotomy can be used to obtain strong topological

restrictions on monotone Lagrangians, especially in dimension three, where the fundamental group

controls much of the topology of a manifold.

The fact that m0(L,x) is central also allows us to define a new variant of self-Floer cohomology

which we call monodromy Floer cohomology of L and denote HFmon(L;R). While we do not pro-

vide concrete applications of this invariant, we observe that its non-vanishing implies that L cannot

be displaced from itself by a Hamiltonian isotopy, while if HFmon(L;R) is zero, then the Floer coho-

mology of (L,E) vanishes for all R-local systems E on L. In this sense, HFmon is more refined than

the other invariants considered in this text.

The usefulness of the local systems formalism is that it fits well with the established algebraic

operations in Floer theory such as products or the quantum module action. For example, note that

Damian’s lifted Floer cohomology (when it exists) is the same as the group HF(L,(L,Ereg)) and

so it is a (right) module over the ring HF(L,L). In fact, similarly to the rank one case, one can

enlarge the (monotone) Fukaya category by adding pairs (L,E) with E of arbitrary rank as objects.

Even when the complex CF((L,E),(L,E)) is obstructed, one can define the endomorphism space

of (L,E) in this bigger category to be the maximal unobstructed subcomplex (that is, the kernel of
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the square of the Floer “differential”), which we denote CF((L,E),(L,E)). One can do the same for

the hom-spaces between local systems living over different Lagrangians or different local systems

over the same Lagrangian. These subcomplexes are preserved by all the A∞ operations (again by

the fact that m0 commutes with parallel transport maps) and so one obtains a well-defined enlarged

Fukaya category. While passing to the maximal unobstructed subcomplex is certainly very artificial,

there are many cases in which one does not have to resort to doing so, for example, if the minimal

Maslov number of L is greater than 2 or if one chooses an appropriate local system which makes the

obstruction vanish.

In the case of exact manifolds (where there are no obstructions), a similar extended Fukaya

category was used by Abouzaid in [Abo12] to prove that a compact exact Lagrangian with vanishing

Maslov class in a cotangent bundle must be homotopy equivalent to the base. In this thesis we give

some evidence that enlarging the Fukaya category by allowing high rank local systems can also be

useful in the monotone case, even when a Lagrangian has minimal Maslov number 2. In particular,

this technique allows us to give a negative answer to Question 3 (see Theorem E below).

Remark 1.2.1. High rank local systems have also been incorporated in a de Rham model for the

Fukaya category in [Bae17]. //

Remark 1.2.2. There are many other ways in which one can “twist” the coefficients of Lagrangian

Floer cohomology. For example, the pearl complex of a Lagrangian L ⊆ M can be defined with

coefficients in the group ring R[H2(M,L)] or the local system whose fibre over each point x ∈ L is

given by R[π1(M,L,x)] (see [BC07b]). In this way one can record the entire relative homology or

homotopy classes of the holomorphic discs which contribute to the differential, rather than just the

classes of their boundaries. Moreover, keeping track of such homotopy classes of discs is essential

for Zapolsky’s definition of the canonical Floer and pearl complexes, which in turn can be twisted

further using an even more general notion of local coefficients (roughly, a local system on the space

of paths in M with endpoints on L). For these constructions see [Zap15] and [Smi17, Appendix A].

Note however that all of these generalisations apply to the self -Floer complex of a single Lagrangian

and it is not quite clear how to use them for pairs of Lagrangians or, more generally, how to incor-

porate them into the Fukaya category (although the concept of B-fields gives one possibility, see

[Smi17, Section 4.3]). For this reason we confine ourselves to the more standard local coefficient

systems described above. //

1.2.2.2 Lagrangians which look like RPn

An obvious subquestion of Question 1 is whether RP3 is the only Lagrangian rational homology

sphere in CP3 which has minimal Maslov number equal to 4. The general problem of classifying

monotone Lagrangians in CPn of minimal Maslov number n+1 was considered by Jack Smith and

the author in our joint work [KS18], where we prove the following.
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Theorem A (Theorem 3.1.1). Let L⊆ CPn be a closed, connected, monotone Lagrangian subman-

ifold with minimal Maslov number n+1. Then L is homotopy equivalent to RPn.

Using a result of Livesay ([Liv62, Theorem 3]) about Z/2-actions on S3, this theorem implies

that a monotone Lagrangian in CP3 (in particular, a rational homology sphere) of minimal Maslov

number 4 is diffeomorphic to RP3. In higher dimensions we cannot easily upgrade homotopy equiv-

alence to diffeomorphism since there exist smooth manifolds which are homotopy equivalent but

not homeomorphic to RPn (see [CS76] for the case of dimension four and [HM64] for dimension at

least five). Moreover, even in dimension 3 the question whether a monotone Lagrangian of minimal

Maslov number 4 must be Hamiltonian isotopic to the standard RP3 remains wide open.

The proof of Theorem A resembles that of [Dam12, Theorem 1.8c)] in that we also use lifted

Floer theory with coefficients in Z to get a handle on the fundamental group of L. Unlike Damian

however, we do not invoke the circle bundle construction and instead rely on the algebraic structure

of Floer cohomology, in particular the action of quantum cohomology QH(CP3). In this thesis we

only give the proof of Theorem A in the case when n is odd. When n is even, the Lagrangian is

non-orientable which makes Floer theory over Z difficult to define. Such a theory was developed

by Zapolsky in [Zap15], where he introduced the so-called canonical Floer and pearl complexes

which are well-defined over an arbitrary ground ring, provided the second Stiefel-Whitney class of

L satisfies a mild vanishing property known as Assumption (O) (see page 93 below). Using Floer

theory over F2, it is not difficult to show that a monotone Lagrangian in CP2m of minimal Maslov

number 2m+1 satisfies Assumption (O) and then, using Zapolsky’s theory with Z coefficients, the

proof of Theorem A proceeds much like in the odd-dimensional case (see [KS18]). However, since

the only applications of Theorem A that we need in this thesis are in odd dimensions, we do not give

the full details of the even-dimensional case.

1.2.2.3 Monotone Lagrangians in CP3

Focusing on dimension three, Question 1 brings us to another more general problem: the topological

classification of monotone Lagrangians in CP3. Note that the minimal Maslov number NL of such

a Lagrangian can only take the values {1,2,4}. We have already dealt with the case NL = 4 and, as

we explained earlier, Lagrangians of minimal Maslov number 1 are not amenable to Floer theory,

so we focus on the case NL = 2. We prove the following theorem which substantially narrows down

the possible topology that a monotone Lagrangian in CP3 can have (we include the case NL = 4 for

a more complete statement).

Theorem B (Proposition 3.2.1, Theorem 3.2.11 and Corollary 3.2.12). Let L ⊆ CP3 be a closed,

connected, monotone Lagrangian submanifold. Assume that L is orientable or, equivalently, that its

minimal Maslov number NL is at least 2. Then NL ∈ {2,4} and:

a) if NL = 4, then L is diffeomorphic to RP3;
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b) if NL = 2, then one has the following exclusive cases:

b1) L is diffeomorphic to a quotient of S3 by a discrete subgroup Γ ≤ SO(4), where Γ is

either a cyclic group of order divisible by 4 or a product of a dihedral group of order

2k(2n+1) for some k ≥ 2, n≥ 1 and a cyclic group of order coprime to 2k(2n+1);

b2) L is diffeomorphic to S1×S2;

b3) L is diffeomorphic to T 3 or the mapping torus of an order 3 diffeomorphism of T 2;

b4) L is a non-Euclidean principal circle bundle over an orientable, aspherical surface and

the Euler class of this bundle is divisible by 4.

In particular, if H1(L;Q) = 0, then either L is diffeomorphic to RP3, or it is one of the spherical

space forms from case b1).

Let us explain the different subcases of Theorem B b) and where our contribution lies. Our

approach to dealing with this case is similar to the one of [Dam15] or [EK14], namely to use lifted

Floer theory in order to deduce that the fundamental group of the Lagrangian contains a non-trivial

element which has finite index centraliser and which bounds a Maslov 2 disc.

Now note that such information is redundant, if the fundamental group of L is already finite.

These are precisely the manifolds considered in case b1). By the famous Elliptisation Theorem

(proved by Grigori Perelman, see [MT07]) orientable 3-manifolds with finite fundamental group are

necessarily quotients of S3 by a discrete group Γ≤ SO(4). Soft observations from the properties of

the Maslov class tell us that H1(L;Z) must contain an element of order 4 and then the restrictions on

the group Γ follow from Milnor’s classification of finite subgroups of SO(4) which act freely on the

3-sphere ([Mil57, Theorem 2]). The only known Lagrangian of CP3 which falls in this category is

precisely the Chiang Lagrangian L∆ whose fundamental group is the binary dihedral group of order

twelve.

Now, if the fundamental group of L is not finite, then knowing that π1(L) contains a non-trivial

element with finite index centraliser is essential for constraining the topology of L. In fact, we can

already infer the existence of such an element by Schatz’s result ([Sch15]) since the odd homology

groups of the universal cover of L vanish. However, we choose to give a different argument (Propo-

sition 3.2.17) which avoids the use of the circle bundle and relies instead on the algebraic structure

of Floer cohomology and the AKS criterion. This approach is essential for dealing with case b4), as

we explain below.

Once one has the existence of a non-trivial element γ ∈ π1(L) with finite index centraliser, it is

not hard to show (relying again on some heavy 3-manifold theorems, in particular the Elliptisation

Theorem, the Seifert fibred space theorem and Scott’s rigidity theorem from [Sco83b]) that L must

be a prime and Seifert fibred 3-manifold.10 Knowing that L is prime, orientable and has infinite

10After the first draft of these results was written, the author learned that the same facts (that L is prime and Seifert fibred,
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fundamental group implies that either it is diffeomorphic to S1× S2 or it is an Eilenberg-MacLane

space. The first possibility is covered by case b2). Up to Hamiltonian isotopy, there is one known

example of a monotone Lagrangian S1 × S2 in CP3, constructed as a Biran circle bundle over a

Lagrangian sphere in a quadric hypersurface (see [BC09b, Section 6.4] and also [OU16]). The case

of an aspherical L is then split into two subcases as follows.

Case b3) deals with Euclidean manifolds. There are only 6 diffeomorphism types of orientable

Euclidean 3-manifolds and the fact that the loop γ is the boundary of a Maslov 2 disc allows us to

rule out 4 of them, leaving us with the possibility that L is either a 3-torus or the so-called tricosm –

a T 2 bundle over S1 with monodromy of order 3. The 3-torus, of course, does embed as a monotone

Lagrangian in CP3, while the tricosm is not known to admit such an embedding but our methods

cannot rule it out.

Finally, the most interesting case is b4). We know that L is Seifert fibred and if we assume

that it is aspherical and non-Euclidean, the fact that γ bounds a Maslov 2 disc tells us that the

base of the Seifert fibration must be orientable. To show that this Seifert fibration has no singular

fibres (i.e. that L is a principal circle bundle), we consider the evaluation map ev: M0,1(2,L)→ L,

where M0,1(2,L) is the moduli space of pseudoholomorphic Maslov 2 discs with boundary on L

and one boundary marked point. This is a map from a principal circle bundle over a surface to an

aspherical, Seifert fibred 3-manifold. We use a result of Yongwu Rong ([Ron93]) in order to prove

a crucial lemma (Lemma 3.2.9) which tells us that the degree of such a map must be divisible by

the multiplicities of all singular fibres of the target. A combination of this result, together with

the AKS criterion and lifted Floer cohomology with coefficients in a field of odd characteristic are

then used to finish the proof of Theorem B. There are no known examples of non-Euclidean circle

bundles over aspherical surfaces which admit a monotone Lagrangian embedding in CP3, however,

in analogy with monotone Lagrangians in C3, it is not unlikely that at least products S1×Σ could

admit such an embedding.

As is evident, Theorem B does not give a complete answer to Question 1. However, it does rule

out the possibility of embedding an aspherical rational homology 3-sphere as a monotone Lagrangian

in CP3 and leaves only the (still infinite) list of spherical space forms to be considered.

1.2.2.4 The twistor fibration

Our next line of inquiry is motivated by Question 2 and investigates the interplay between the sym-

plectic geometry of CP2n+1 and the natural projection Π : CP2n+1→HPn from complex to quater-

nionic projective space. The map Π is a fibration with fibre CP1 and exhibits CP2n+1 as the twistor

space ofHPn, where the latter is viewed as a quaternion-Kähler manifold. When one equips CP2n+1

and HPn with their respective Fubini-Study metrics, Π becomes a Riemannian submersion with to-

tally geodesic fibres which are called twistor lines. We give some more background on the general

Corollaries 3.2.18 and 3.2.19 in this thesis) are proved in Simon Schatz’s PhD thesis [Sch16, Chapitre 5.5].
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theory of twistor spaces for quaternion-Kähler manifolds in section 4.1.1 but for now we focus on

the main question that interests us, namely:

Question 4. How does a Lagrangian L⊆ CP2n+1 project to HPn?

Twistor Lagrangians

We mainly concentrate on the most degenerate situation in which the image Π(L) is an embedded

2n-dimensional submanifold of HPn and the restricted projection map Π|L : L→ Π(L) is a circle

bundle. It turns out that there is only one way that this can happen which we now explain (cf.

Theorems 4.1.22 and 4.1.23).

Note that the fibres of Π : CP2n+1→HPn are symplectic and so the Fubini-Study form induces

a splitting TCP2n+1 = V ⊕H into a vertical and a horizontal bundle. It is known that the horizontal

bundle defines a holomorphic contact structure on CP2n+1, that is, H is locally given as the kernel

of a holomorphic 1-form α such that α ∧ (dα)n is nowhere vanishing. This implies that a maximal

integral manifold of H is a complex manifold of complex dimension n. The projective varieties

of complex dimension n which are everywhere tangent to H are called Legendrian subvarieties

of CP2n+1 and have been extensively studied (see e.g. [Buc09] and the many references therein).

Their projections to HPn are known as (immersed) superminimal surfaces, if n = 1, and (immersed)

maximal totally complex (MTC) submanifolds, if n≥ 2. These objects have also been the subject of

a lot of research, starting with the celebrated paper [Bry82] where Bryant showed that every compact

Riemann surface Σ admits a conformal and (super)minimal immersion inHP1 = S4 by exhibiting an

embedding of Σ into CP3 as a Legendrian curve. For results on MTC submanifolds inHPn for n≥ 2

(and more general quaternion-Kähler manifolds) see for example [Tsu85], [Tak86], [AM05] and the

references therein.

Here is how this story relates to symplectic geometry. Since the fibres of Π are isometric

to round spheres, one can associate to each point x ∈ CP2n+1 its opposite equator, defined as the

geodesic circle in the twistor line through x which is at maximal distance from x. It turns out that,

if one applies this procedure to each point on a smooth Legendrian subvariety, one obtains an im-

mersed, minimal Lagrangian submanifold of CP2n+1. We call this phenomenon the Legendrian –

Lagrangian correspondence. It has been observed under different guises by many authors: for exam-

ple, in dimension n = 1 it appears in [BDVV96] but also implicitly in [Eji86, Section 15]; for n≥ 2

it is proved in [ET05] and used in [BGP09]. The present author also discovered it independently.

Now, since there are many Legendrian varieties, one can use the Legendrian – Lagrangian

correspondence to obtain a plethora of immersed minimal Lagrangians in CP2n+1. However, if one

wants to construct an embedded Lagrangian this way, the Legendrian variety X ⊆ CP2n+1 that one

starts with must satisfy exactly one of the following conditions (cf. [AM05, Definition 5.3]):

1) The restricted projection Π|X : X→HPn is an embedding. If X satisfies this property, we call

it a Type 1 Legendrian variety.
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2) For each twistor line `, the intersection X ∩ ` is either empty or consists of two points which

are antipodal on `. In this case we call X a Type 2 Legendrian variety.

Note that these are also the only cases in which the image Π(X) is an embedded submanifold ofHPn.

If X satisfies one of these properties, we obtain a corresponding embedded, minimal Lagrangian sub-

manifold ZX ⊆CP2n+1 which we call a Type 1 or Type 2 twistor Lagrangian, respectively. Note that

a minimal Lagrangian in CPm is necessarily monotone by a result of Cieliebak-Goldstein [CG04],

so we can use monotone Floer theory to study twistor Lagrangians and, consequently, Legendrian

subvarieties of CP2n+1.

The easiest example of a twistor Lagrangian is the standard RP2n+1 ⊆ CP2n+1. It is of Type 1

and its corresponding Legendrian variety is a linear CPn. With this in mind, we can finally state our

first result on this topic.

Theorem C (Theorem 4.1.29). If X ⊆ CP2n+1 is a smooth Type 1 Legendrian subvariety, then X is

a linear CPn.

This theorem is a rather straightforward consequence of Theorem A, after noticing that a Type

1 twistor Lagrangian in CP2n+1 must have minimal Maslov number 2n+ 2. In the case n = 1, the

result is well-known (for example from the main formula in [Fri84]) and follows from an easy Chern

class computation (see the proof of Theorem 4.1.36). Note that, if one further assumes that X is a

rational curve, one obtains Ernst Ruh’s ([Ruh71]) classical theorem that the only embedded minimal

2-sphere in S4 is the equator.11

Type 2 Legendrian varieties are much more interesting although only a handful of smooth

examples are known and they are all homogeneous (see page 140 or [Tsu85]). There is one infinite

family X(1,m)
∼=CP1×Qm ⊆CP2m+3 for m≥ 1, where Qm is the (complex) m-dimensional quadric,

and 5 exceptional examples which appear in the projective spaces CP2n+1 for n = 1,6,9,13 and

27. These Legendrian varieties are well-known from representation theory and are called subadjoint

varieties (see e.g. [Muk98], [LM02], [Buc08b]). We denote them by X1, X6, X9, X13 and X27,

respectively. We denote the corresponding twistor Lagrangians by Z(1,m) and Z1, Z6, Z9, Z13, Z27 and

call them the subadjoint Lagrangians. Note that X(1,m), X1, X6, X9, X13 and X27 are homogeneous

for the groups SU(2)×SO(m+2), SU(2), Sp(3), SU(6), SO(12) and E7, respectively.

The variety X1 ⊆ CP3 is a twisted cubic and Z1 is precisely the Chiang Lagrangian (from this

point of view, this space was observed already in [CDVV96] but it was only viewed as a totally real

immersion of S3 into CP3 without mention that the image of this immersion is actually an embedded

Lagrangian). In fact all subadjoint Lagrangians are themselves homogeneous (for the same groups

as the corresponding Legendrian varieties, see [BGP09]) and Z1, Z6, Z9, Z13, Z27 appear in [BG08,

Table 1] on rows 6, 11, 7, 16 and 20, respectively.

11It is known that a minimal 2-sphere in S4 is necessarily superminimal. See [Bry82, Theorem C].
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We conjecture that the subadjoint varieties are the only smooth Legendrian varieties of Type 2

in complex projective space. Our next result proves this conjecture in dimension one.

Theorem D (Theorem 4.1.36). If X ⊆CP3 is a smooth Type 2 Legendrian curve, then X is a twisted

cubic and there exists a linear transformation A∈ Sp(2) whose associated projective transformation

FA : CP3 → CP3 satisfies FA(X1) = X. Equivalently, if Σ ⊆ S4(1/2) is a smooth, embedded, non-

orientable, superminimal surface, then Σ is congruent to the Veronese surface.

To prove this result we use Theorem B to show that a Type 2 Legendrian curve must be rational and

then we argue that such a curve must have degree 3 by appealing to a result of Massey about normal

bundles of embedded, non-orientable surfaces in S4 ([Mas69]).

From the above discussion, we see that both L∆ and RP3 belong to the family of twistor La-

grangians. In fact, by exhibiting a Legendrian degeneration of the twisted cubic X1 to the union of

two Legendrian lines (one of which is double covered in the limit), we give an explicit 1-parameter

family of immersed twistor Lagrangians which interpolates between L∆ and two copies of RP3 (see

section 4.1.6). Note that this is not the wall-crossing phenomenon which we explained in section

1.2.1 because none of the intermediate Lagrangians in our interpolating family are embedded. It

remains an interesting open problem to understand the surgery that occurs when one deforms the

discriminantal divisor in whose complement L∆ is a special Lagrangian.

General Lagrangians

One can also consider the generic setting for Question 4, that is when the restricted projection

Π|L : L → HPn is an immersion on some non-empty open set of L. Something that one might

want to know, for example, is whether it is possible for Π|L to be an immersion at all points of a

compact Lagrangian L. At the time of writing the author has no idea. Relatedly, since the sym-

plectic geometry of CP2n+1 is completely determined by the quaternion-Kähler structure of HPn, in

principle one should be able to reconstruct the Lagrangian L from just local (tangential and normal)

information on Π(L)⊆HPn, at least over the images of points where Π|L is an immersion. Is there

some natural geometric interpretation of this local information?

We briefly explore this last question in dimension n = 1, in which case we show that a La-

grangian lift of a 3-ball B3 ⊆ HP1 to CP3 corresponds to a unit vector field on B3 which satisfies

a particular differential equation involving the second fundamental form (Proposition 4.2.3). As an

example, we observe that the Clifford torus T 3
Cl ⊆CP3 projects onto an equatorial S3⊆ S4 =HP1 and

is encoded by a 1-dimensional geodesic foliation of S3 \ {Hopf link} . While the theoretical value

of this observation is probably questionable, it allows us to truly “see” the standard Lagrangian

embedding of the Clifford 3-torus in CP3 – see figure 4.1.

Given a Lagrangian L⊆CP2n+1 one may also want to know what other Lagrangians L′ there are

which satisfy Π(L′) = Π(L). Note that there is an anti-symplectic involution X : CP2n+1→CP2n+1

given by the antipodal map on each twistor line, so we can always choose L′ = X (L) (note that
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in the case of Type 2 twistor Lagrangians or the standard Clifford torus T 2n+1
Cl one has X (L) = L),

but are there any others? We can rule out one obvious potential source of non-uniqueness, namely

Hamiltonian flows which preserve the fibres: we show that any function f : CP2n+1 → R whose

Hamiltonian vector field is tangent to the twistor lines must be constant (Proposition 4.3.1). On

the other hand, uniqueness certainly fails if the image Π(L) is invariant under the action of some

positive-dimensional subgroup of Sp(n+1). For example, by translating T 3
Cl using the natural lift of

the rotation action of SO(5) on S4 which preserves Π(T 3
Cl) = S3, we can find a copy of T 3

Cl which is

contained in Π−1(S3) and passes through any given point there.

1.2.2.5 Non-displaceability

Finally, we address some non-diplaceability problems for the known twistor Lagrangians. We start

with Question 3 – whether L∆ and RP3 can be Hamiltonianly displaced from eachother – which was

first asked by Evans and Lekili ([EL15, Remark 1.6]). In op. cit. the authors computed the Floer

cohomology of L∆ and observed a strange phenomenon: L∆ is wide in characteristic 5 but narrow

over fields of any other characteristic. In fact, they show something much stronger: by equipping

L∆ with each of the four possible rank one F5-local systems {βζ : ζ ∈ {1,2,3,4}}, one obtains an

object (L∆,βζ ) of each of the four summands of the Fukaya category of CP3 over F5 and this object

generates the summand (see [EL15, Section 8]). In particular, L∆ cannot be displaced from itself or

from the Clifford torus by a Hamiltonian isotopy. However, as Evans and Lekili observed, standard

Floer cohomology (even with rank 1 local systems) cannot be used to address Question 3: it is

well-known that RP3 has non-vanishing self-Floer cohomology only in characteristic 2, while the

calculation in [EL15] shows that the obstruction number of L∆ is non-zero in this characteristic (even

if L∆ carries a rank 1 local system, see Remark 5.1.7) and so the Floer complex of RP3 and L∆ is

obstructed (recall that NRP3 = 4, so m0(RP3) = 0).

As it turns out, high rank local systems provide a solution to this problem. More precisely,

following a suggestion of Evans, we show:

Theorem E (Proposition 5.1.9, Corollary 5.1.11). There exists an F2-local system WD on L∆ of

rank 2 such that m0(WD) = 0 and HF∗((L∆,WD),(L∆,WD))∼= (F2)
4. In particular (L∆,WD) is a

non-zero object in the enlarged monotone Fukaya category of CP3 over F2. Since this category is

split-generated by the standard RP3, we have HF∗(RP3,(L∆,WD)) 6= 0 and so RP3 and L∆ cannot

be disjoined by a Hamiltonian diffeomorphism of CP3.

The first part of this theorem is proved by an explicit calculation using the Biran-Cornea pearl

complex and the enumeration of holomorphic discs with boundary on L∆ from [EL15]. It is a the-

orem of Tonkonog [Ton18, Proposition 1.1] that for every positive integer m the Fukaya category

of CPm over F2 is split-generated by RPm and his proof still applies when one allows Lagrangians

with high rank local systems as objects. Applying this to dimension m = 3, we obtain the desired

non-displaceability.
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As far as the author knows, Theorem E is the only result to date, where high rank local sys-

tems are used in order to turn a Lagrangian with vanishing Floer cohomology over a field of given

characteristic into a non-zero object of the respective Fukaya category. However, Jack Smith has

constructed some examples of monotone Lagrangians in products of projective spaces which are

narrow over any field and with any local system of any rank, yet their Floer cohomology becomes

non-zero when one deforms the differential by a so-called B-field – see [Smi17, Theorems 2 and 3].

Our last result concerns the other subadjoint Lagrangians. One can show (Lemma 4.1.30)

that a Type 2 twistor Lagrangian Z in CP2n+1 has minimal Maslov number n+ 1. In particular, if

n ≥ 2, there are no obstructions for Floer cohomology with high rank local systems. Moreover, if

X ⊆CP2n+1 is the Type 2 Legendrian variety associated to Z, then Z is double-covered by the circle

bundle S(OX (2)). Applying lifted Floer theory for this cover to each of the orientable subadjoint

Lagrangians, we show:

Theorem F (Proposition 5.2.2, Corollary 5.2.3). Let Z denote any of the subadjoint Lagrangians

Z(1,2k), Z9, Z15 or Z27 and let dZ denote the dimension of Z. Then HF∗(Z,Z;F2) 6= 0 and so Z

cannot be displaced from RPdZ or T dZ
Cl by a Hamiltonian diffeomorphism of CPdZ . Moreover, Z15

split-generates the Fukaya category F(CP31;F2), where F2 denotes the algebraic closure of F2.

This theorem is proved by considering the Oh-Biran spectral sequence which converges to the

lifted Floer cohomology of Z corresponding to the double cover S(OX (2)). The F2-cohomology of

each such cover can be computed easily from that of the subadjoint variety X , which in turn is known

([MT91]). A dimension count (which does not work for the non-orientable subadjoint Lagrangians

Z(1,2k+1) and Z6) shows that the spectral sequence cannot converge to zero. The non-displaceability

claims then follow from Tonkonog’s theorem [Ton18, Proposition 1.1] and the fact that the Fukaya

category of projective space (over any characteristic) is split-generated by a full subcategory whose

objects are different rank one local systems on the Clifford torus (see e.g. [EL19, Corollary 1.3.1]).

Finally, the fact that Z15 split-generates the Fukaya category of CP31 over F2 follows from [EL19,

Corollary 7.2.1] and is related to the fact that the minimal Chern number of CP31 is 32 which is a

power of 2 = char(F2).

1.2.3 Structure of the thesis

Chapter 2 is devoted to establishing the machinery that we use throughout the thesis, namely mono-

tone Floer theory with high rank local systems. Virtually all concepts and results there (apart maybe

from the monodromy Floer complex and its properties) are well-known to experts but we present

them in some detail since they haven’t appeared in the literature quite in the form that we need.

Section 2.1 recalls the basic definitions of monotonicity and local systems and establishes notation.

In section 2.2 we spell out the definition of Lagrangian Floer cohomology with local systems and the

properties of the obstruction, while section 2.3 is devoted to some of the algebraic properties of the

theory and, in particular, explains how to add Lagrangians with high rank local systems to the mono-
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tone Fukaya category, mimicking [Abo12]. Section 2.4 discusses some the same concepts from the

point of view of Biran and Cornea’s pearl complex. The reader familiar with monotone Floer theory

is invited to skip chapter 2 altogether and refer to it only for some of the notation which is used

throughout the thesis. The monodromy Floer complex and some of its properties are discussed in

sections 2.2.3 and 2.4.3 in the Hamiltonian and pearly models, respectively.

In chapter 3 we prove our results on the topology of monotone Lagrangians inCPn. The chapter

begins with a short discussion of Floer theory in characteristic other than two, followed by section 3.1

which is based on joint work with Jack Smith and contains the proof of Theorem A in the orientable

case. Section 3.2 is devoted to Lagrangians in CP3. The necessary background on 3-manifolds is

discussed in section 3.2.1, while the proof of Theorem B is confined to section 3.2.2.

In chapter 4 we study the fibrationCP2n+1→HPn with the main results on twistor Lagrangians

contained in section 4.1. After a short discussion of the general theory of quaternion-Kähler mani-

folds and their twistor spaces, we prove the Legendrian–Lagrangian correspondence for CP2n+1 in

section 4.1.2. This section is written mostly for the author’s benefit, since all results there are either

explicit checks of well-known facts, or are contained in the paper [ET05]. It is followed by section

4.1.4 which contains the proof of Theorem C and section 4.1.5 in which we describe some topo-

logical properties of general Type 2 twistor Lagrangians. In section 4.1.6 we focus on dimension 3,

describe the splitting of L∆ into two RP3’s and give the proof of Theorem D.

The last two sections of chapter 4 are completely independent from the rest of the thesis. Section

4.2 has a somewhat exploratory nature and describes the local correspondence between Lagrangians

in CP3 and vector fields on their projections to S4 = HP1, giving the Clifford torus as an example.

In section 4.3 we prove the non-existence of non-trivial vertical Hamiltonian flows on CP2n+1.

Chapter 5 contains our Floer cohomology calculations for the orientable subadjoint La-

grangians. In section 5.1 we prove Theorem E with the help of many pictures. The final section

5.2 contains the proof of Theorem F.

The thesis ends with two appendices. Appendix A contains calculations in stereographic coor-

dinates for S4, needed in section 4.3. In appendix B we give a classification of the representations of

π1(L∆) over F2 which are used for calculations with local systems in section 5.1.5.



Chapter 2

High rank local systems in monotone Floer

theory

One mathematician to another:

– Hey, what kind of dog is that?

– Oh, that’s just a kernel from the opposite category of

Spanish dogs.1

2.1 Preliminaries

2.1.1 The Maslov class and monotonicity

The main subject of this thesis are monotone Lagrangian submanifolds of monotone symplectic

manifolds. Thus we begin with a quick overview of the Maslov class and the monotonicity condition

and make some general topological observations. In this section all homology and cohomology

groups are considered with Z coefficients, unless explicitly specified otherwise.

Let (M,J) be an almost complex manifold of real dimension 2n and let L ⊂ M be a properly

embedded totally real submanifold of dimension n. Then we have an isomorphism T L⊗C∼= T M|L
and so the bundle Λn

RT L is naturally a rank 1 real subbundle of Λn
CT M

∣∣
L. The bundle pair

(Λn
CT M,Λn

RT L) over (M,L) is then classified by a map

φ : (M,L)→ (BU(1),B(Z/2)),

where we view the pair (BU(1),B(Z/2)) as

B(Z/2)∼= RP∞ = GrR(1,R∞)
⊗C

↪−−→ GrC(1,C∞) = CP∞ ∼= BU(1).

Recall that the cohomology H∗(CP∞) is a polynomial ring, generated by the unique element c1 ∈

H2(CP∞) which pairs to 1 with the image of the fundamental class of CP1 under the inclusion

1It’s a co(c)ker spaniel.
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CP1 ↪→CP∞. Its pull-back under φ is the first Chern class c1(T M). We are now interested in a related

relative class in H2(CP∞,RP∞) which will be characteristic for the bundle pair (Λn
CT M,Λn

RT L).

Note that the inclusion map (CP2,RP2) ↪→ (CP∞,RP∞) induces an isomorphism on second

relative homology and it is not hard to check that H2(CP2,RP2)∼= Z, for example by observing that

the disc {z ∈C : Im(z)≥ 0}∪{∞}→CP2, z 7→ [1 : 0 : z] defines a non-torsion (positive symplectic

area) class in H2(CP2,RP2) whose boundary generates H1(RP2). Thus H2(CP∞,RP∞)∼= Z and so

H3(CP∞,RP∞) is torsion-free. Using this and the long exact sequence in cohomology for the pair

(CP∞,RP∞) we see that H2(CP∞,RP∞) is isomorphic to Z and that its generator maps to 2c1 in

H2(CP∞). This generator is called the Maslov class, and we denote it by µ . Its pullback µL :=

φ ∗µ ∈ H2(M,L) via the classifying map is the Maslov class of L. It is clear from this description

that, if j∗ : H2(M,L)→ H2(M) is the natural restriction map, then

j∗(µL) = 2c1(T M). (2.1)

We will write IµL : H2(M,L)→ Z and Ic1 : H2(M)→ Z for the group homomorphisms given by

pairing with µL and c1(T M) respectively. We call IµL the Maslov homomorphism and Ic1 the Chern

homomorphism.

Recall also that the cohomology H∗(RP∞;Z/2) is isomorphic to Z/2[w1], where w1 ∈

H1(RP∞;Z/2) is the unique non-trivial element. By definition w1(T L) := φ ∗w1 is the first Stiefel-

Whitney class of L. Now observe that since µ restricts to 2c1 in H2(CP∞;Z), its mod 2 reduc-

tion µ̄ restricts to zero in H2(CP∞;Z/2). Hence the coboundary map induces an isomorphism

∂ ∗ : H1(RP∞;Z/2)→ H2(CP∞,RP∞;Z/2), i.e. ∂ ∗w1 = µ̄ . Pulling back by φ , we see that the mod

2 reduction of µL equals ∂ ∗w1(T L). Hence, for any class A ∈ H2(M,L), we have the congruence

〈w1(T L),∂A〉= IµL(A) mod 2, (2.2)

which tells us that if L is orientable then IµL has image in 2Z. Conversely, if IµL(H2(M,L)) ≤ 2Z

and the boundary map ∂ : H2(M,L)→ H1(L) is surjective (e.g. if H1(M) = 0), then L is orientable.

Now let HD
2 (M,L) and HS

2 (M) denote the images of the Hurewicz homomorphisms

π2(M,L)→ H2(M,L) and π2(M)→ H2(M)

and let j∗ : H2(M) → H2(M,L) be the natural map. Define the integers Nπ
L , NH

L , Nπ
M and NH

M

to be the non-negative generators of the Z-subgroups IµL(H
D
2 (M,L)), IµL(H2(M,L)), Ic1(H

S
2 (M)),

Ic1(H2(M)), respectively. Using (2.1) and the fact that j∗(HS
2 (M))≤ HD

2 (M,L), it is easy to see that

there exist non-negative integers kL,kM,mπ ,mH such that:

Nπ
L = kLNH

L , Nπ
M = kMNH

M , 2Nπ
M = mπ Nπ

L , 2NH
M = mHNH

L .

In the literature on holomorphic curves, the numbers Nπ
M and Nπ

L are usually the ones referred

to as the minimal Chern number of M and the minimal Maslov number of L, respectively. This
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can potentially cause confusion since these numbers are not the same as NH
M and NH

L in general.

However, if M is simply-connected (for example, if it is a projective Fano variety—see [Bes08,

Theorem 11.26]), then these numbers coincide. Indeed, we have the commutative diagram

π2(M)

��

// π2(M,L)

��

// π1(L)

��

// 1

��
H2(M) // H2(M,L) // H1(L) // 0

in which the third vertical arrow is a surjection by Hurewicz. If M is simply connected, then the first

vertical arrow is also a surjection, again by Hurewicz, so HS
2 (M) = H2(M). A diagram chase in the

spirit of the 5-lemma (or alternatively, noticing that π1(M,L) = 0 and applying the relative Hurewicz

theorem) then shows that the second vertical arrow must also be a surjection, i.e. HD
2 (M,L) =

H2(M,L). Thus Nπ
M = NH

M and Nπ
L = NH

L . In this case there is therefore no ambiguity, and we denote

the common values simply by NM and NL respectively.

Consider now the case when (M,ω) is symplectic and L is a Lagrangian submanifold. Then L

is totally real with respect to any almost complex structure compatible with the symplectic form and

we denote by µL ∈ H2(M,L) the corresponding Maslov class. In this setting we also have the area

homomorphisms Iω : H2(M)→R, Iω,L : H2(M,L)→R given by integration of the symplectic form.

The manifold (M,ω) is called monotone if there exists a positive constant λ such that

Iω |HS
2 (M) = 2λ Ic1 |HS

2 (M) .

For example, (CPn,ωFS) is monotone with λ = π/2(n+ 1) when the Fubini-Study form is nor-

malised so that a line has area π . In turn, the Lagrangian submanifold L is called monotone if

Iω,L|HD
2 (M,L) = λ

′ IµL

∣∣
HD

2 (M,L)

for some positive constant λ ′. Note that if Ic1 |HS
2 (M) 6= 0 then (2.1) implies that a monotone La-

grangian can only exist if M itself is monotone and λ ′ coincides with λ .

Suppose now that Iω and 2λ Ic1 agree on the whole of H2(M) (e.g. if M is monotone and

simply-connected) and that the image ∂HD
2 (M,L)≤ H1(L) is torsion (e.g. if H1(L) = 0). Then L is

automatically monotone. Indeed, in that case for any element A ∈ HD
2 (M,L), there exists a positive

integer k such that ∂ (kA) = 0 and so kA = j∗v for some v ∈ H2(M). Then from (2.1) we have

kIµL(A) = 2Ic1( j∗A) =
2

2λ
Iω(A) =

k
λ

Iω,L(A). (2.3)

The concept of monotonicity extends to pairs of Lagrangian submanifolds (see [Poz99, Section

3.3.2]). Given two Lagrangians L0, L1 in M, the area and Maslov homomorphisms can be evaluated

on (homotopy classes of) continuous maps u : S1× [0,1]→ M with u(S1×{0}) ⊆ L0 and u(S1×

{1})⊆ L1. For the area homomorphism this evaluation is just integration of ω , while for the Maslov

homomorphism it corresponds to pairing φ ∗u µ with the relative fundamental class [S1 × [0,1]] ∈
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H2(S1× [0,1],S1×∂ [0,1]), where φu : (S1× [0,1],S1×∂ [0,1])→ (CP∞,RP∞) is the classifying map

for the bundle pair (u∗Λn
CT M, u|∗S1×{0}Λn

RT L0 t u|∗S1×{1}Λn
RT L1). We denote these extensions by

Iω,L0,L1 and Iµ,L0,L1 respectively. Then we call (L0,L1) a monotone pair of Lagrangians if Iω,L0,L1 =

λ Iµ,L0,L1 for some positive constant λ . It is not hard to see that if (L0,L1) is a monotone pair, then

each of the two Lagrangians is monotone (with constant λ ) and the pair (ψ(L0),L1) is monotone for

any Hamiltonian diffeomorphism ψ : M→M. Another useful fact is that if L0 and L1 are monotone

Lagrangians and for at least one j ∈ {0,1} the image of π1(L j) in π1(M) under the map induced by

inclusion is trivial, then (L0,L1) is a monotone pair (see [Poz99, Remark 3.3.2], [Oh93, Proposition

2.7]).

2.1.2 Local systems

We now set up some notation and recall the basics of local systems. Let R be a commutative ring (in

this thesis R will be either Z or a field) and L be a smooth manifold. A local system of R-modules,

or an R-local system on L is a functor E : Π1L→ R -mod, where Π1L is the fundamental groupoid

of the manifold L and R -mod is the category of (left) R-modules. If we want to emphasize which

ground ring we are working on, we will write ER.

More concretely, an R-local system on L is an assignment of an R-module Ex for each point

x ∈ L and an isomorphism Pγ : Es(γ)→Et(γ) for each homotopy class γ of paths in L with source s(γ)

and target t(γ), in a manner which is compatible with concatenation of paths. As is customary, we

call these isomorphisms parallel transport maps. In case the R-module Ex is free for some (hence

every) x ∈ L, its rank is called the rank of the local system E .

In analogy with vector bundles, we will sometimes write E → L to denote such a local system,

the notation being a shorthand for the map

⊔
x
Ex → L

v ∈ Ex 7→ x.

Similarly, by a section σ : L→E we mean a section of this map. We will call such a section parallel

if for every path γ on L one has Pγ(σ(s(γ))) = σ(t(γ)).

As with vector bundles, one can add, dualise and take tensor products of local systems on

the same space in the obvious way. One notational point we want to make is that given two local

systems E0, E1 on L, we will write Hom(E0,E1) for the local system given by Hom(E0,E1)x :=

HomR(E0
x ,E1

x ) and Hom(E0,E1) for the space of morphisms of local systems between E0 and E1, that

is, the space of natural transformations between the two functors. Similarly for End (E) and End(E).

Observe that an element of Hom(E0,E1) is the same thing as a parallel section of Hom(E0,E1), so

we will use these notions interchangeably.

A local system of R-modules on L is essentially the same data as a representation of the funda-

mental group of L. More precisely, let x ∈ L be a point and write Π1(L,x) for the full subcategory
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of Π1L with x as its only object. Then, since L is path-connected, the inclusion Π1(L,x) ↪→ Π1L

induces an equivalence of categories and so we get an equivalence

Fun(Π1L,R -mod)' Fun(Π1(L,x),R -mod)∼= R[π1(L,x)Opp] -mod. (2.4)

Note that our conventions are such that concatenation of paths will be written from left to right,

while compositions of maps, as usual, from right to left. Since this can cause headaches in explicit

computations, let us spell-out concretely how the above equivalence plays out in practice. Given

two points x,y ∈ L we write Π1L(x,y) := HomΠ1L(x,y) for the set of homotopy classes of paths

connecting x to y. To go from left to right in (2.4), one can associate to each local system E → L,

a right representation of the fundamental group π1(L,x), by considering the action of Π1L(x,x) ∼=

π1(L,x)Opp on the fibre Ex.

To go the other way, suppose we are given a representation ρ : π1(L,x)Opp→AutR(V ) for some

R-module V . For each point y ∈ L choose an element εxy ∈ Π1L(x,y) with εxx equal to the constant

path. We will call these identification paths. Now define a functor E : Π1L→ R -mod by putting

E(y) = V ∀y ∈ L

E(γ) = ρ(εxy · γ · ε−1
xz ) ∀γ ∈Π1L(y,z) ∀y,z ∈ L. (2.5)

It is easy to check that this is indeed a functor and that any similar functor defined by a different

choice of identification paths is canonically isomorphic to the above.

Local systems were introduced as coefficients for (cellular) (co)homology by Steenrod in

[Ste43] and then Eilenberg extended the definition to singular (co)homology (see [Eil47, Chapter

5]). Given a local system E → L we will write H∗(L;E) to denote the singular cohomology of L with

coefficients in E . We will not give the general definitions here, since we don’t actually need any of

the details. However, in the cases we consider L will be a smooth manifold and we will often use a

Morse model for computing H∗(L;E), so let us now briefly sketch that construction.

Let D = ( f ,g) be a Morse-Smale pair of a smooth function and a Riemannian metric on L. We

denote by Crit( f ) the set of critical points of f and for each x ∈Crit( f ) we write ind(x) for the index

and W a(x), W d(x) for the ascending and descending manifolds of x, respectively. If the ground ring

R does not have characteristic 2, we also choose an orientation for W d(x) for each x ∈ Crit( f ). The

Morse cochain complex with coefficients in E is then defined to be

Ck
f (L;E) :=

⊕
x∈Crit( f )
ind(x)=k

Ex. (2.6)

Given x,y ∈ Crit( f ) with ind(x) = ind(y) + 1, we write L̃(x,y) := W d(x)∩W a(y) for the set of

downward gradient flowlines of f , connecting x to y and L(x,y) for the quotient of L̃(x,y) by the

natural R-action. To every element γ ∈ L(x,y) we can associate two pieces of data:

1. an element in Π1L(x,y), which we also denote by γ ,
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2. a sign εγ ∈ {−1,1}, which is irrelevant if char(R) = 2.

The sign εγ is determined as follows. Let γ̃ ∈ L̃(x,y) be a representative of γ . Then the Morse-Smale

condition gives the following exact sequence of vector spaces

0 // SpanR( ˙̃γ(0)) // Tγ̃(0)W d(x) // Tγ̃(0)L/Tγ̃(0)W a(y) // 0 (2.7)

Using the differential of the downward gradient flow of f (and taking limits) we can identify Tγ̃(0)L

with TyL and Tγ̃(0)W a(y) with TyW a(y). Thus the third term of (2.7) is identified with TyL/TyW a(y)∼=

TyW d(y) and taking top exterior powers, we see that we have an isomorphism

Λ
ind(x)Tγ̃(0)W

d(x)∼= SpanR( ˙̃γ(0))⊗Λ
ind(y)TyW d(y),

Then the sign εγ is +1 if this isomorphism preserves orientations and −1 if it does not (here

SpanR( ˙̃γ(0)) is naturally oriented by ˙̃γ(0)).

Once we have this information, the differential ∂ D : C∗f (L;E)→ C∗+1
f (L;E) is defined as fol-

lows: for all y ∈ Crit( f ) and all v ∈ Ey

∂
D v := ∑

x∈Crit( f )
ind(x)=ind(y)+1

εγ P−1
γ (v) ∈ Ex. (2.8)

Standard results in Morse theory imply that (∂ D)2 = 0 and that the resulting cohomology HM∗(L;E)

is independent of the choice of Morse-Smale pair D . It is shown in [Abo12, Appendix B] that

HM∗(L;E) is isomorphic to H∗(L;E), the singular cohomology of L with local coefficients in E .

While cohomology with local coefficients is in general hard to compute, there are some general

results in cases when the local system arises in some natural geometric way. One such source of

local systems on a space L comes from covers of L. If p : L′ → L is a covering space, then to

every point x ∈ L one associates a free R-module ER
L′,x with basis labelled by the elements of p−1(x).

Given a path γ ∈ Π1L(x,y), the parallel transport map Pγ sends a basis element corresponding to a

lift x̃ ∈ p−1(x) to the basis element corresponding to t(γ̃x̃) ∈ p−1(y), where γ̃x̃ is any lift of γ with

s(γ̃x̃) = x̃. We denote the resulting local system by ER
L′ . In case L′ is the universal cover of L we

denote the corresponding local system by ER
reg, since it corresponds to the regular representation of

π1(L) on R[π1(L)]. We will make frequent use of the following fact:

Proposition 2.1.1. ([Hat02, Proposition 3H.5]) Suppose L is a finite CW-complex. Then for all

integers k, Hk(L;ER
L′) is isomorphic to Hk

c (L
′;R), the singular cohomology of L′ with compact sup-

port.

Notation 2.1.2. Sometimes we will use two different local systems E j → L, j ∈ {0,1} on the same

space. We shall write Pj,γ : E j
s(γ)→E

j
t(γ) to distinguish between the parallel transport maps. //
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2.1.3 Pre-complexes

Throughout this chapter we will often encounter obstructed candidate chain complexes. We call

these pre-complexes. That is, for us a pre-complex is just an R-module V together with a linear

endomorphism d : V → V (we will ignore any notion of grading for the better part of this chapter).

Given a pre-complex, one automatically has the maximal unobstructed subcomplex V := kerd2 ≤V

which is now an honest complex. Similarly, by a chain map between pre-complexes (V,dV ), (W,dW )

we mean an R-linear map F : V →W such that F ◦ dV = dW ◦F ; such a map induces an honest

chain map F : V →W . Finally, a homotopy between two chain maps F,G : V →W is a linear map

H : V →W such that H ◦dV +dW ◦H = F−G. Observe that if v ∈V then

(dW )2(H(v)) = dW (F(v)−G(v)−H(dV (v)))

= F(dV (v))−G(dV (v))− [F(dV (v))−G(dV (v))−H(dV (dV (v)))] = 0.

Thus H induces a map H : V →W which is a chain homotopy between F and G.

2.2 Floer cohomology and local systems
From now on, we let (M,ω) be a symplectic manifold which is closed or convex at infinity. All

Lagrangian submanifolds will be assumed compact, connected and without boundary. In this chapter

we set the ground ring to be R = F, where F is a field of characteristic 2. In particular, we will not

deal with any issues involving orientations (or grading for that matter) for now.

In this section we discuss the construction of a Floer-theoretic invariant HF∗((L0,E0),(L1,E1)),

associated to a monotone pair of Lagrangians (L0,L1) in M, equipped with local systems E0→ L0

and E1 → L1 (of F-vector spaces, according to our standing convention) of arbitrary rank. This

follows the well-known construction of Floer cohomology with coefficients in a rank 1 local sys-

tem, but for higher rank ones, we need to bypass some obstructions caused by Maslov 2 disc bub-

bles. That is, we construct a pre-complex CF∗((L0,E0),(L1,E1)) for which HF∗((L0,E0),(L1,E1))

would be the homology of the maximal unobstructed subcomplex. The failure of the differen-

tial on CF∗((L0,E0),(L1,E1)) to square to zero is captured by the so-called obstruction sections

m0(E j) : L j → End (E j) for j ∈ {0,1}. In order to describe the obstruction section in detail, we

concentrate on a single monotone Lagrangian L⊆M of minimal Maslov number Nπ
L ≥ 2, equipped

with a local system E → L.

2.2.1 The obstruction section

We begin by making our setup precise and establishing some notation. LetJ (M,ω) denote the space

of ω-compatible almost complex structures on M, that is, the space of sections J of End(T M) which

satisfy J2 = −Id and such that gJ(·, ·) := ω(·,J·) is a Riemannian metric on M. Let D2 denote the

standard closed unit disc in C. Given J ∈ J (M,ω), we will be concerned with J-holomorphic discs

with boundary on L, i.e. smooth maps u : (D2,∂D2)→ (M,L), which satisfy the Cauchy-Riemann
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equation

du+ J(u)◦du◦ i = 0. (2.9)

Such a disc is called simple if there exists an open and dense subset S ⊆ D2 such that for all z ∈ S

one has u−1(u(z)) = {z} and dz u 6= 0. Now let us introduce the following pieces of notation.

• Let π f
2(M,L) denote the set of free homotopy classes of discs with boundary on L. For any

class C ∈ π f
2(M,L) and any k ∈ Z we set

M̃C(L;J) :=
{

u ∈C∞((D2,∂D2),(M,L)) : du+ J(u)◦du◦ i = 0, [u] =C
}
,

M̃(k,L;J) :=
⋃

C∈πf
2(M,L)

IµL (C)=k

M̃C(L;J),

MC(L;J) := M̃C(L;J)/G,

M(k,L;J) := M̃(k,L;J)/G,

where G∼= PSL(2,R) is the reparametrisation group of the disc acting by precomposition. We

will write qG : M̃C(L;J)→MC(L;J) for the quotient map.

• We further set

MC
0,1(L;J) := M̃C(L;J)×G ∂D2,

M0,1(k,L;J) := M̃(k,L;J)×G ∂D2,

where an element φ ∈G acts by φ ·(u,z) = (u◦φ−1,φ(z)). We shall denote the corresponding

quotient map again by qG.

• The above moduli spaces come with natural evaluation maps,

ẽv : M̃C(L;J)×∂D2→ L, ẽv(u,z) := u(z),

which clearly descend to maps ev: MC
0,1(L;J)→ L.

• For any point p ∈ L we then write MC
0,1(p,L;J) and M0,1(p,k,L;J) for the set ev−1({p}),

where the evaluation map is restricted toMC
0,1(L;J) andM0,1(k,L;J), respectively. We also

set

M̃C
0,1(p,L;J) := q−1

G (MC
0,1(p,L;J))⊆ M̃C(L;J)×∂D2

M̃0,1(p,k,L;J) := q−1
G (M0,1(p,k,L;J))⊆ M̃(k,L;J)×∂D2.

• We shall decorate any of the above sets with a superscript ∗ to denote the subset, consisting of

simple discs. For example M̃C,∗(L;J) :=
{

u ∈ M̃C(L;J) : u is simple
}

and MC,∗
0,1 (L;J) :=

M̃C,∗(L;J)×G ∂D2.
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All these spaces are equipped with the C∞–topology which they inherit from C∞((D2,∂D2),(M,L)).

When there is no danger of confusion we shall sometimes simply write u ∈ M0,1(p,k,L;J) for

the equivalence class [u,z] = qG(u,z) and ∂u ∈ π1(L, p) for the based homotopy class of the loop

R/Z→ L, s 7→ u
(
ze2πis

)
.

By standard transversality arguments (see [MS12, Chapter 3]) it follows that there exists a

Baire subset Jreg(L)⊆ J (M,ω) such that for all J ∈ Jreg(L) and any class C ∈ π f
2(M,L), the space

M̃C,∗(L;J) has the structure of a smooth manifold of dimension n+ IµL(C) and the evaluation map

ẽv : M̃C,∗(L;J)×∂D2→ L is smooth. Since the reparametrisation action on M̃C,∗(L;J) is free and

proper, one has thatMC(L;J) is a smooth manifold of dimension n+IµL(C)−3 and the quotient map

qG is everywhere a submersion (in particular the map ev: MC,∗
0,1 (L;J)→ L is also smooth). Further

transversality arguments (i.e. the Lagrangian boundary analogue of [MS12, Proposition 3.4.2]) show

that for any smooth map of manifolds F : X → L, there exists a Baire subset Jreg(L|F) ⊆ Jreg(L)

such that for every J ∈ Jreg(L|F) the maps F : X → L and ev: M∗
0,1(k,L;J)→ L are everywhere

transverse. When X is a submanifold of L and F is the inclusion map we shall write simply

Jreg(L|X). Results by Kwon-Oh and Lazzarini ([KO00, Laz00]) yield that, when L is monotone,

one hasM(Nπ
L ,L;J) =M∗(Nπ

L ,L;J) and soM(Nπ
L ,L;J) is a smooth manifold. An application of

Gromov compactness for holomorphic discs ([Fra08]) then ensures that the manifoldM(Nπ
L ,L;J) is

actually compact. In particular if Nπ
L ≥ 2 thenM0,1(2,L;J) is a compact manifold (possibly empty)

of dimension dim(M̃(2,L;J)× ∂D2)− dim(G) = n+ 2+ 1− 3 = n. Therefore for any p ∈ L and

Jp ∈ Jreg(L|p) the manifold M0,1(p,2,L;Jp) consists of a finite number of points. We are now

ready to define the obstruction section.

Definition 2.2.1. Let E be an F-local system on a monotone Lagrangian submanifold L ⊆ (M,ω)

with Nπ
L ≥ 2. The obstruction section for E is a section of the local system End (E), defined as

follows. For every point p ∈ L we choose an almost complex structure Jp ∈ Jreg(L|p) and set

m0(p,E ;Jp) := ∑
u∈M0,1(p,2,L;Jp)

P∂u ∈ End(Ep). (2.10)

The obstruction section is then

m0(E) : L → End (E)
p 7→ m0(p,E ;Jp). ♦

Remark 2.2.2. Note that when E is trivial and of rank one, m0(p,E ;Jp) is just the F–degree of the

map ev: M0,1(2,L;Jp)→ L. //

As stated, the obstruction section appears to depend on the choices of almost complex structures

Jp. This is not the case, as the following proposition shows.

Proposition 2.2.3. The following invariance properties hold:

i) For any p ∈ L and J,J′ ∈ Jreg(L|p) one has m0(p,E ;J) = m0(p,E ;J′);
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ii) m0(E) is a parallel section of End (E), that is, an element of End(E);

iii) if ψ : M→M is any symplectomorphism, then for every point p ∈ L, one has

m0(E)(p) = m0(ψ∗E)(ψ(p)).

These invariance properties are well-known to experts and an explanation which does not even

mention local systems can be found for example in [Dam15]. However, since the obstruction section

is one of the main ingredients to all results in this thesis, we choose to give a more detailed proof

here.

Proof. In the remaining part of this section we prove Proposition 2.2.3. We will make repeated use

of the following lemma.

Lemma 2.2.4. Let C = C0((D2,∂D2),(M,L)) equipped with the compact-open topology. Let

γ : [0,1]→ L be a continuous path and define Cγ := {(t,u,z) ∈ [0,1]×C × ∂D2 : γ(t) = u(z)}.

Further let ν : [0,1] → Cγ be a continuous path and write ν(s) = (t(s),us,zs). Then the loops

δν(0) : [0,1]→ L, δν(0)(s) := u0(z0e2πis) and δν(1) : [0,1]→ L,

δν(1)(s) :=


γ(t(3s)), s ∈ [0,1/3]

u1

(
z1e2πi(3s−1)

)
, s ∈ [1/3,2/3]

γ(t(3−3s)), s ∈ [2/3,1]

are homotopic based at u0(z0).

Proof. An explicit homotopy is given by H : [0,1]× [0,1]→ L,

H(s,r) =


γ(t(3s)), s ∈ [0,r/3], r ∈ [0,1]

ur

(
zre2πi 3s−r

3−2r

)
, s ∈ [r/3,1− r/3], r ∈ [0,1]

γ(t(3−3s)), s ∈ [1− r/3,1], r ∈ [0,1]

Continuity of H follows from that of ν and of the evaluation map C ×∂D2→ L.

To establish part i) of Proposition 2.2.3, we need to consider a homotopy of almost com-

plex structures, interpolating between J and J′. Let us write C∞([0,1],J (M,ω)) for the space of

smooth sections J ∈C∞(M× [0,1],End(pr∗MT M)) such that for each t ∈ [0,1] one has Jt := J( · , t )∈

J (M,ω). Then standard transversality and compactness arguments imply the following.

Theorem 2.2.5. Suppose L is monotone with Nπ
L ≥ 2 and let p∈ L and J, J′ ∈Jreg(L|p). Then there

exists a Baire subset Jreg(J,J′) ⊆ C∞([0,1],J (M,ω)) such that for every Ĵ ∈ Jreg(J,J′) one has
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Ĵ (0) = J, Ĵ (1) = J′ and if we set

M̃0,1(p,2,L; Ĵ ) := {(λ ,u,z) ∈ [0,1]×C∞((D2,∂D2),(M,L))×∂D2 : du+ Ĵ (λ )◦du◦ i = 0,

IµL([u]) = 2,u(z) = p} and

M0,1(p,2,L; Ĵ ) := M̃0,1(p,2,L; Ĵ )/G,

then M̃0,1(p,2,L; Ĵ ) is a smooth 4-dimensional manifold with boundary. Further,M0,1(p,2,L; Ĵ )

is a compact 1-dimensional manifold with boundary

∂M0,1(p,2,L; Ĵ ) = ({0}×M0,1(p,2,L;J)) t
(
{1}×M0,1(p,2,L;J′)

)
and the quotient map qG : M̃0,1(p,2,L; Ĵ )→M0,1(p,2,L; Ĵ ) is everywhere a submersion.

From this theorem it follows that the elements of ∂M0,1(p,2,L; Ĵ ) are naturally paired up as

opposite endpoints of closed intervals. Let (λ , [u,z]) and (λ ′, [u′,z′]) be such a pair with λ ≤ λ ′

(note that λ , λ ′ ∈ {0,1}) and let ν̄ : [0,1]→M0,1(p,2,L; Ĵ ) be any parametrisation of the interval

which connects them. Choose a lift ν : [0,1]→M̃0,1(p,2,L; Ĵ ) of ν̄ . Since M̃0,1(p,2,L; Ĵ ) embeds

continuously into Cp (this is notation from Lemma 2.2.4, where we let γ be the constant path at p),

we can apply Lemma 2.2.4 to obtain P∂u = P∂u′ . We then have

m0(p,E ;J)−m0(p,E ;J′) = ∑
(λ ,[u,z])∈∂M0,1(p,2,L;Ĵ )

P∂u = 0,

because every term in the sum appears an even number of times. This proves part i) of Proposition

2.2.3 and so we are justified to use the notation m0(E)(p) without reference to a specific almost-

complex structure. We adopt this notation and move on to proving part ii).

Let p, q ∈ L and let γ : [0,1]→ L be any smooth path with γ(0) = p, γ(1) = q. Then, by what

we explained above about achieving transversality of the evaluation map with any other map, there

exists a Baire subset Jreg(L|γ)⊆ Jreg(L|p)∩Jreg(L|q) such that for every J ∈ Jreg(L|γ), the space

M̃0,1(γ,2,L;J) :=
{
(s,u,z) ∈ [0,1]×M̃(2,L;J)×∂D2 : u(z) = γ(s)

}
is a smooth 4-dimensional manifold with boundary. Further, the manifold M0,1(γ,2,L;J) :=

M̃0,1(γ,2,L;J)/G is a 1-dimensional compact manifold with boundary

∂M0,1(γ,2,L;J) = ({0}×M0,1(p,2,L;J)) t ({1}×M0,1(q,2,L;J)) .

Thus again the elements of M0,1(p,2,L;J) t M0,1(q,2,L;J) are naturally paired up as end-

points of intervals. Let N be the number of such intervals and choose parametrisations

ν̄1, . . . , ν̄N : [0,1] → M0,1(γ,2,L;J) and corresponding lifts ν1, . . . ,νN : [0,1] → M̃0,1(γ,2,L;J)

with νi(s) = (t i(s),ui
s,z

i
s) such that for all 1≤ i≤N one has t i(0)≤ t i(1) (recall t i(0), t i(1)∈ {0,1}).

Since M̃0,1(γ,2,L;J) embeds continuously in Cγ then by applying Lemma 2.2.4 to νi, we obtain

that

P
∂ui

0
= Pδνi(1)

for all 1≤ i≤ N. (2.11)
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Let N1, N2 ∈ {1, . . . ,N +1} be such that:

1. for all 1≤ i≤ N1−1 we have t i(0) = 0, t i(1) = 0; in this case the loop δνi(1) is based at p and

lies in the homotopy class ∂ui
1 ∈ π1(L, p); applying (2.11) we have P

∂ui
0
= P

∂ui
1
∈ End(Ep) for

all 1≤ i≤ N1−1;

2. for all N1 ≤ i≤ N2−1 we have t i(0) = 0, t i(1) = 1; in this case δνi(1) is again based at p but

now lies in the class γ ·∂ui
1 · γ−1 ∈ π1(L, p); applying (2.11) we have P

∂ui
0
= P−1

γ ◦P
∂ui

1
◦Pγ ∈

End(Ep) for all N1 ≤ i≤ N2−1;

3. for all N2 ≤ i ≤ N we have t i(0) = 1, t i(1) = 1; then δνi(1) is based at q and lies in the class

∂ui
1 ∈ π1(L,q); by (2.11) this gives P

∂ui
0
= P

∂ui
1
∈ End(Eq) for all N2 ≤ i≤ N.

We thus have:

m0(E)(p)−P−1
γ ◦m0(E)(q)◦Pγ =

N1−1

∑
i=1

(
P

∂ui
0
+P

∂ui
1

)
+

N2−1

∑
i=N1

P
∂ui

0

+ P−1
γ ◦

(
N2−1

∑
i=N1

P
∂ui

1
+

N

∑
i=N2

(
P

∂ui
0
+P

∂ui
1

))
◦Pγ

=
N1−1

∑
i=1

(
P

∂ui
0
+P

∂ui
1

)
+

N2−1

∑
i=N1

(
P

∂ui
0
+P−1

γ ◦P
∂ui

1
◦Pγ

)
+ P−1

γ ◦

(
N

∑
i=N2

(
P

∂ui
0
+P

∂ui
1

))
◦Pγ

= 0.

This concludes the proof of part ii) of Proposition 2.2.3.

Finally, part iii) is an easy consequence of part i). Indeed, we know that we are free to choose

J ∈ Jreg(L|p) to compute m0(E)(p) and J′ ∈ Jreg(ψ(L)|ψ(p)) to compute m0(ψ∗E)(ψ(p)). So

let J be any element of Jreg(L|p) and set J′ = ψ∗J. Then, almost tautologically, we have that

J′ ∈ Jreg(ψ(L)|ψ(p)) (compatibility with ω is ensured by the fact that ψ is a symplectomorphism).

It is then clear that m0(ψ(p),ψ∗E ;ψ∗J) = m0(p,E ;J) and this completes the proof of Proposition

2.2.3.

2.2.2 Definition, obstruction and invariance

In this section we define the pre-complex CF∗((L0,E0),(L1,E1)) and we see how the obstruction

sections control the failure of the differential to square to zero. To make the exposition more acces-

sible, we first recall without proof some basics of Floer theory.

Let L0, L1 be two compact Lagrangian submanifolds of (M,ω). To keep the explicit connection

to some of the older literature that we rely on, we assume for now that L0 and L1 intersect transversely

(we will later drop this assumption in favour of the more modern approach using “Floer data”).

Letting E0→ L0 and E1→ L1 be F-local systems, we then make the following definition.
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Definition 2.2.6. The Floer cochain groups of L0 and L1 with coefficients in the local systems E0

and E1 are defined to be

CF∗((L0,E0),(L1,E1)) :=
⊕

p∈L0∩L1

HomF(E0
p ,E1

p).

Where no confusion can arise we will drop L0 and L1 from the notation and just write CF∗(E0,E1).

Given an element a∈CF∗(E0,E1), we write a = (〈a, p〉)p∈L0∩L1 where 〈a, p〉 ∈HomF(E0
p ,E1

p) is the

corresponding component of a. ♦

To define the Floer differential on these groups, we need an additional piece of data, namely a

family of almost-complex structures. Given J ∈C∞([0,1],J (M,ω)), one defines a J-holomorphic

strip with boundary on L0 and L1 to be a smooth map u : R× [0,1]→M which satisfies the Cauchy-

Riemann equation (rewritten here with respect to the global conformal coordinates (s, t) on R×

[0,1]):

∂ J(u) := ∂su+ Jt(u)∂tu = 0 (2.12)

and is subject to the boundary constraints u(s, j)∈ L j for j ∈ {0,1} for all s∈R. The energy of such

a map is defined to be

E(u) :=
∫ 1

0

∫
R
||∂su||2gJ

dsdt.,

where gJ( · , ·) = ω(J · , ·). Note in particular that E(u) = 0 if and only if u is a constant map. Floer

showed in [Flo88c] that the condition E(u)< ∞ is equivalent to the existence of intersection points

p,q ∈ L0∩L1 such that lims→−∞ u(s, t) = p and lims→+∞ u(s, t) = q for all t ∈ [0,1]. Thus we have

a partition of the set

M̃(L0,L1;J) := {u ∈C∞(R× [0,1],M) : ∂ J(u) = 0,u(s, j) ∈ L j ∀ s ∈ R, j ∈ {0,1}, E(u)< ∞}

into the sets

M̃(p,q;J) := {u ∈C∞(R× [0,1],M) : ∂ J(u) = 0, u(s, j) ∈ L j ∀ s ∈ R, j ∈ {0,1},

lim
s→−∞

u(s, t) = p, lim
s→+∞

u(s, t) = q}.

Let us write π2(M,L0,L1, p,q) for the set of homotopy classes of maps û : [0,1]× [0,1]→ M

which satisfy û(s, j) ∈ L j for j ∈ {0,1}, s ∈ [0,1], û(0, t) = p, û(1, t) = q for all t ∈ [0,1] and where

the homotopies are required to preserve these conditions. We will write IMV
µ : π2(M,L0,L1, p,q)→Z

for the so-called Maslov-Viterbo index (see [Vit87] or [Flo88b, equation (2.6)] for the definition).

Now, any map u ∈ M̃(p,q;J) has a unique continuous extension to the domain [−∞,+∞]× [0,1]

which defines a class [u] in π2(M,L0,L1, p,q). Thus we have a further partition of each set M̃(p,q;J)

into sets M̃A(p,q;J) = {u ∈ M̃(p,q;J) : [u] = A ∈ π2(M,L0,L1, p,q)}. A coarser partition is

provided by the sets M̃(p,q,k;J) := ∪IMV
µ (A)=kM̃A(p,q;J) as k ranges through Z.

The Cauchy-Riemann equation (2.12) implies that for each u ∈ M̃(p,q;J) one has E(u) =∫
u∗ω . It follows that energy depends only the class [u] ∈ π2(M,L0,L1, p,q) and is therefore
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constant on the sets M̃A(p,q;J) (although a priori not on M̃(p,q,k;J)). Note also that since

(2.12) is translation invariant in the variable s, there is a natural R-action on M̃(L0,L1;J) pre-

serving the sets M̃A(p,q;J). Dividing by this action, we set M(L0,L1;J) := M̃(L0,L1;J)/R,

M(p,q;J) := M̃(p,q;J)/R, MA(p,q;J) := M̃A(p,q;J)/R and M(p,q,k;J) := M̃(p,q,k;J)/R.

One then has the following theorem of Floer:

Theorem 2.2.7. ([Flo88b] and [Oh93, Appendix],[Oh97, Theorem III])

Let L0, L1 be two compact Lagrangian submanifolds, intersecting transversely at the points p,q ∈

L0 ∩L1. Then there exists a Baire subset J 1
reg(p,q) ⊆ C∞([0,1],J (M,ω)) such that for every J ∈

J 1
reg(p,q) the set M̃(p,q;J) has locally the structure of a smooth manifold whose dimension near

u ∈ M̃(p,q;J) equals IMV
µ (u).

In particular, note that each connected component of M(p,q,1;J) is just a point. We would

like to “count” these points and so we need to know that M(p,q,1;J) is a finite set or, in other

words, that it is compact. For this to work, one first needs a version of Gromov compactness for

J-holomorphic strips which in turn requires a priori bounds on the energy. Then one has to analyse

the possible “bubbling” scenarios and rule them out, which in this case means good control on

pseudoholomorphic spheres in M and pseudoholomorphic discs with boundary on L0 or L1. It is

in these aspects that the monotonicity assumption becomes important. In particular, one has the

following theorem:

Theorem 2.2.8. ([Oh93]) If L0 and L1 are two monotone Lagrangians intersecting transversely at

the points p,q∈ L0∩L1, then there exists a Baire subsetJ 2
reg(p,q)⊆J 1

reg(p,q) such that for each J ∈

J 2
reg(p,q) the setMA(p,q;J) is a finite set for every class A ∈ π2(M,L0,L1, p,q) with IMV

µ (A) = 1.

Further, if the pair (L0,L1) is monotone, thenM(p,q,1;J) is also a finite union of points, i.e. there

are only finitely many classes A ∈ π2(M,L0,L1, p,q) with IMV
µ (A) = 1 andMA(p,q;J) 6= /0.

We are now ready to define a candidate differential on our cochain groups CF∗((L0,E0),(L1,E1)).

For every u ∈ M(p,q;J) and j ∈ {0,1} we write γ
j

u : [−∞,+∞] → L j for the paths γ
j

u(s) =

u((−1) js, j) with γ0
u (−∞) = p = γ1

u (+∞) and γ0
u (+∞) = q = γ1

u (−∞).

Definition 2.2.9. We define a map dJ : CF∗(E0,E1)→CF∗(E0,E1) as follows: for all intersection

points q ∈ L0∩L1 and all linear maps α ∈ HomF(E0
q ,E1

q )

dJ
α := ∑

p∈L0∩L1
∑

u∈M(p,q,1;J)
Pγ1

u
◦α ◦Pγ0

u
. ♦

Remark 2.2.10. In this definition we are assuming that the time-dependent ω-compatible almost

complex structure J is chosen generically enough so that the above sum is in fact finite. In light of

Theorem 2.2.8 this amounts to asking that J ∈
⋂

p,q∈L0∩L1 J 2
reg(p,q), which is again a Baire subset of

C∞([0,1],J (M,ω)) since L0 and L1 are assumed to intersect transversely and thus in a finite number

of points. //
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We shall see below (equation (2.13)) that we don’t necessarily have (dJ)2 = 0 and that the

failure of this to hold is measured by the obstruction sections m0(E j) : L j → End (E j). Thus

(CF∗(E0,E1),dJ) is a priori just a pre-complex. To bypass the obstructions, we consider the maxi-

mal unobstructed subcomplex.

Definition 2.2.11. We define the central Floer complex of (L0,E0) and (L1,E1) to be

CF ∗((L0,E0),(L1,E1),dJ) := {a ∈CF∗(E0,E1) : (dJ)2a = 0}.

We call its cohomology the central Floer cohomology of the monotone pair ((L0,E0),(L1,E1)) and

denote it by HF ∗((L0,E0),(L1,E1)). ♦

We shall write HF ∗(E0,E1) as a shorthand when the Lagrangians are understood. Further,

if CF ∗(E0,E1) = CF∗(E0,E1), we will drop the bar from the notation and call HF∗(E0,E1) the

Floer cohomology of (L0,E0) and (L1,E1). This is consistent with the standard definition of Floer

cohomology with trivial or rank 1 local systems. Still, this notation only makes sense as long as these

cohomology groups are invariant under changes of J. When the local systems are assumed trivial or

rank 1, this is a well-known consequence of Floer’s continuation map argument. The same proofs

apply to our case just as well. Essentially the only interesting phenomenon which enters the picture

when one considers higher rank local systems is condition (2.13) for (dJ)2 = 0, which involves the

obstruction sections m0(E0) and m0(E1). To make these statements precise we package them in the

following theorem, consisting mainly of well-known facts:

Theorem 2.2.12. Let (M,ω) be a monotone symplectic manifold and let (L0,L1) be a monotone pair

of closed Lagrangian submanifolds with Nπ

L j ≥ 2 for j ∈ {0,1}, equipped with F-local systems E j→

L j. There exists a Baire subset Jreg(L0,L1)⊆C∞([0,1],J (M,ω)) of time-dependent ω-compatible

almost complex structures such that:

A) For all J ∈ Jreg(L0,L1)

i) (well-defined) the map dJ is well-defined;

ii) (obstruction) for every point p ∈ L0 ∩L1 and every linear map α ∈ HomF(E0
p ,E1

p) one

has

(dJ)2
α = α ◦m0(E0)(p)−m0(E1)(p)◦α (2.13)

B) (invariance) Let H : [0,1]×M→R be a (time-dependent) Hamiltonian and ψt : M→M be its

corresponding flow2. Suppose that ψ1(L0)t L1 and let J ∈Jreg(L0,L1), J′ ∈Jreg(ψ1(L0),L1).

Then there exists a chain map of pre-complexes

Ψ : CF∗((ψ1(L0),(ψ1)∗E0),(L1,E1);dJ′)→CF∗((L0,E0),(L1,E1);dJ),

2 Defined by the ODE d
dt ψt = Xt ◦ψt , where iXt ω =−dHt and the initial condition ψ0 = idM .



2.2. Floer cohomology and local systems 48

inducing a homotopy equivalence

Ψ : CF ∗((ψ1(L0),(ψ1)∗E0),(L1,E1);dJ′)→CF ∗((L0,E0),(L1,E1);dJ).

In particular, the isomorphism type of HF ∗((L0,E0),(L1,E1)) does not depend on the choice

of J ∈ Jreg(L0,L1).

Remark 2.2.13. The minus sign in equation (2.13) appears for consistency with later chapters where

we work in characteristic different from 2. //

Remark 2.2.14. By part B), it is clear that if HF ∗((L0,E0),(L1,E1)) 6= 0 for some local systems E0,

E1 then, for every Hamiltonian diffeomorphism ψ , one has ψ(L0)∩L1 6= /0, i.e. L0 and L1 cannot be

displaced by a Hamiltonian isotopy. //

Before giving a sketch proof of Theorem 2.2.12, we explain a different point of view on the pre-

complex CF∗((L0,E0),(L1,E1);dJ) which is particularly useful for understanding the invariance

properties of the cohomology HF ∗ and for the construction of the monotone Fukaya category in

section 2.3 below. Let (L0,L1) be a monotone pair of Lagrangians, not necessarily intersecting

transversely, in particular we allow L0 = L1. A regular Floer datum for (L0,L1), as defined in

[Sei08a, 8)], is a pair (H,J), where

1. H : [0,1]×M→R is a regular Hamiltonian for (L0,L1), i.e. a smooth function whose Hamil-

tonian flow ψt satisfies ψ1(L0) t L1,

2. J ∈ C∞([0,1],J (M,ω)) is a time-dependent almost complex structure such that the push-

forward (ψ∗J)t := (ψt)∗Jt defines an element of Jreg(ψ1(L0),L1).

We write

XH(L0,L1) := {x : [0,1]→M : x(0) ∈ L0, x(1) ∈ L1, x(t) = ψt(x(0))}

for the set of time-one Hamiltonian chords connecting L0 to L1. Given x,y ∈ XH(L0,L1), a

parametrised Floer trajectory from x to y is a smooth map v : R× [0,1]→ M, satisfying the fol-

lowing conditions:

• v(s, j) ∈ L j for s ∈ R and j ∈ {0,1},

• lims→−∞ v(s, t) = x(t) and lims→+∞ v(s, t) = y(t) uniformly in t,

• v is a solution of the Floer equation

∂sv+ Jt(∂tv−Xt(v)) = 0, (2.14)

where Xt is the Hamiltonian vector field of H.
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We denote the space of such maps by R̃1:1(x : y;H,J). Quotienting out by R-translations, we have

the spaceR1:1(x : y;H,J) of unparametrised Floer trajectories. Note that we have one-to-one corre-

spondences

ψ1(L0)∩L1 −→ XH(L0,L1) (2.15)

q 7−→ xq, xq(t) := ψt(ψ
−1
1 (q))

M̃(p,q;H,ψ∗J) −→ R̃1:1(xp : xq;H,J) (2.16)

u 7−→ vu, vu(s, t) := ψt(ψ
−1
1 (u(s, t))).

In particular, the connected components of R1:1(x : y;H,J) are also naturally manifolds and we can

write Rd
1:1(x : y;H,J) for the union of the d–dimensional components. Each Floer trajectory v ∈

R1:1(x : y;H,J) gives rise to paths γ0
v ∈Π1L0(x(0),y(0)), γ0

v (s) := v(s,0) and γ1
v ∈Π1L1(y(1),x(1)),

γ1
v (s) := v(−s,1). Using these one can form a pre-complex

CF∗((L0,E0),(L1,E1);H,J) :=
⊕

x∈XH (L0,L1)

HomF(E0
x(0),E

1
x(1)),

whose differential d(H,J) acts on an element α ∈ HomF(E0
y(0),E

1
y(1)) by

d(H,J)
α := ∑

x∈XH (L0,L1)

∑
v∈R0

1:1(x:y;H,J)

Pγ1
v
◦α ◦Pγ0

v
.

The correspondences (2.15) and (2.16) give an isomorphism of pre-complexes

CF∗((ψ1(L0),(ψ1)∗E0),(L1,E1);dψ∗J)→CF∗((L0,E0),(L1,E1);H,J). (2.17)

Setting CF ∗((L0,E0),(L1,E1);H,J) to be the maximal unobstructed subcomplex, we get an

isomorphism of cochain complexes

CF ∗((ψ1(L0),(ψ1)∗E0),(L1,E1);dψ∗J)→CF ∗((L0,E0),(L1,E1);H,J).

From this point of view, part B) of Theorem 2.2.12 can be strengthened to say that for every pair of

regular Floer data (H,J) and (H ′,J′) there is a canonical (up to homotopy) map of pre-complexes

Ψ
H,J
H ′,J′ : CF∗((L0,E0),(L1,E1);H ′,J′)→CF∗((L0,E0),(L1,E1);H,J),

which induces homotopy equivalence on maximal unobstructed subcomplexes. In particular, the

isomorphism type of the cohomology HF ∗((L0,E0),(L1,E1);H,J) does not depend on the choice

of regular Floer data. Thus the following definition makes sense.

Definition 2.2.15. Let L ⊆ M be a compact monotone Lagrangian such that (L,L) is a monotone

pair. Let E0→ L, E1→ L be F-local systems on L. Then we define the central Floer cohomology of

(L,E0) and (L,E1) to be HF ∗((L,E0),(L,E1);H,J) for some choice of regular Floer datum (H,J)

for (L,L). ♦
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Remark 2.2.16. There is a small technical subtlety here. For the above definition to work as stated,

we need not only for L to be monotone but also for (L,L) to be a monotone pair. This second

condition can be relaxed as long as in the definition of the pre-complex CF∗((L,E0),(L,E1);H,J) we

restrict ourselves to only consider Hamiltonian chords x : ([0,1],∂ [0,1])→ (M,L) which define the

trivial element in π1(M,L) (see [Oh93, Proposition 2.10]). However, if the pair (L,L) is monotone,

then the cohomologies of the larger and smaller complexes would agree, since we are free to choose

H sufficiently C1-small, so that all its time-one chords connecting L to itself are indeed contractible

relative L. //

Notation 2.2.17. Given an element of a∈CF∗((L0,E0),(L1,E1);H,J), we write a=(〈a,x〉)x∈XH (L0,L1)

with 〈a,x〉 ∈ HomF(E0
x(0),E

1
x(1)). If we are given local systems V → L0,W → L1 and morphisms of

local systems F ∈ Hom(V,E0), G ∈ Hom(E1,W), we will write

a◦F := (〈a,x〉 ◦F(x(0)))x∈XH (L0,L1) ∈ CF∗((L0,V),(L1,E1);H,J)

and similarly

G◦a := (G(x(1))◦ 〈a,x〉)x∈XH (L0,L1) ∈ CF∗((L0,E0),(L1,W);H,J). //

We now observe that part ii) of Theorem 2.2.12 allows us to give a more natural descrip-

tion of the central Floer complex which will hopefully explain our choice of name for it. Given

a ∈ CF∗((L0,E0),(L1,E1);H,J), we have that a lies in CF ∗((L0,E0),(L1,E1);H,J) if and only if〈(
d(H,J)

)2
a, x
〉
= 0 for all x ∈ XH(L0,L1). That is, if and only if

∑
y∈XH (L0,L1)

〈(
d(H,J)

)2
〈a,y〉, x

〉
= 0

for all x ∈ XH(L0,L1). On the other hand, given x ∈ XH(L0,L1) and α ∈ Hom(E0
x(0),E

1
x(1)), the

isomorphism (2.17) translates equation (2.13) into(
d(H,J)

)2
α = α ◦m0(E0)(x(0))−m0(E1)(x(1))◦α, (2.18)

where we have used Proposition 2.2.3 iii). From this we have

〈(
d(H,J)

)2
〈a,y〉,x

〉
=

〈a,x〉 ◦m0(E0)(x(0))−m0(E1)(x(1))◦ 〈a,x〉, x = y

0, x 6= y.

In the notation 2.2.17 this reads(
d(H,J)

)2
a = a◦m0(E0)−m0(E1)◦a.

Thus a ∈CF ∗((L0,E0),(L1,E1);H,J) if and only if

a◦m0(E0) = m0(E1)◦a. (2.19)
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Note in particular that when L0 = L1 and E0 = E1 = E , the pre-complex CF∗(E ,E ;H,J) is unob-

structed if and only if m0(E) is a scalar operator. This condition is always satisfied when E has rank

1 and this special case of Floer theory with local coefficients is widely used, especially in topics

related to mirror symmetry. On the other hand CF∗((L,E0),(L,E1);H,J) can be obstructed when

the local systems have higher rank or when E0 6= E1. It is precisely this point that we will exploit in

chapter 3 to obtain restrictions on the topology of monotone Lagrangians.

For the remaining part of this section we will give sketch proofs of the different parts of Theo-

rem 2.2.12. As mentioned above, for all statements apart from ii) one only needs to translate classical

results to our setting with local coefficients. We shall give the needed references and indicate how

to insert local coefficients in the respective arguments.

Proof of Theorem 2.2.12: We already observed in Remark 2.2.10 that, in order for Theo-

rem 2.2.12 i) to hold, we need to choose J ∈
⋂

p,q∈L0∩L1 J 2
reg(p,q). As we shall see, part ii) of

Theorem 2.2.12 imposes stronger restrictions on J and these will determine the set Jreg(L0,L1) ⊆⋂
p,q∈L0∩L1 J 2

reg(p,q). Let us first introduce some more notation.

If L0 and L1 are two Lagrangians which intersect transversely, then:

• for every pair of intersection points r,q ∈ L0∩L1 we set

B(r,q;J) :=
⋃

p∈L0∩L1

M(r, p,1;J)×M(p,q,1;J);

• for every intersection point q ∈ L0∩L1 we set

B(q;J) :=M0,1(q,2,L0;J0)∪M0,1(q,2,L1;J1)∪B(q,q;J);

• for any pair of distinct intersection points r,q ∈ L0∩L1 we set

M(r,q,2;J) :=M(r,q,2;J)∪B(r,q;J)

• for any single intersection point q ∈ L0∩L1 and we set

M(q,q,2;J) :=M(q,q,2;J)∪B(q;J).

With these notions in place, Gromov compactness and gluing for moduli spaces of strips and

discs yield the following:

Theorem 2.2.18. ([Oh93]) Let (L0,L1) be a monotone pair of Lagrangians, which intersect trans-

versely in M and with Nπ

L j ≥ 2 for j ∈ {0,1}. Then for every pair of intersection points r,q ∈ L0∩L1

(not necessarily distinct) there exists a Baire subset J 3
reg(r,q) ⊆ J 2

reg(r,q) such that for every

J ∈ J 3
reg(r,q) one has J0 ∈ Jreg(L0|{r,q}), J1 ∈ Jreg(L1|{r,q}) and the set M(r,q,2;J) has the

structure of a compact 1-dimensional manifold with boundary. Further ∂M(r,q,2;J) = B(r,q;J)

when r 6= q and ∂M(q,q,2;J) = B(q;J).
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We now set Jreg(L0,L1) :=
⋂

r,q∈L0∩L1 J 3
reg(r,q). The proof of part ii) is then confined to the

following proposition:

Proposition 2.2.19. Let J ∈ Jreg(L0,L1). Then for all intersection points q ∈ L0∩L1 and all maps

α ∈ HomF(E0
q ,E1

q ) we have(
dJ)2

α = α ◦m0(q,E0;J0)−m0(q,E1;J1)◦α. (2.20)

Proof. We have:

(
dJ)2

α = ∑
r∈L0∩L1

 ∑
p∈L0∩L1

∑
u∈M(r,p,1;J)
v∈M(p,q,1;J)

Pγ1
v ·γ1

u
◦α ◦Pγ0

u ·γ0
v

 ,

where the dot denotes concatenation of paths. Thus, for every intersection point r the corresponding

element in HomF(E0
r ,E1

r ) appearing in
(
dJ
)2

α can be rewritten as

〈
(
dJ)2

α,r〉= ∑
u∈B(r,q;J)

P
γ1

u
◦α ◦P

γ0
u
, (2.21)

where for u = (u,v) ∈ B(r,q;J) we define γ0
u := γ0

u · γ0
v and γ1

u := γ1
v · γ1

u . One now observes that

whenever r 6= q we have that the elements in B(r,q;J) are naturally paired-up as opposite ends of

the closed intervals which are the connected components of the compactified 1-dimensional moduli

space M(r,q,2;J). Let {u,u′} ⊆ B(r,q;J) be such a pair. It follows (see e.g. [Dam09], Lemma

3.16) that γ0
u = γ0

u′ ∈Π1L0(r,q) and γ1
u = γ1

u′ ∈Π1L1(q,r). Thus we have the identity

P
γ1

u
◦α ◦P

γ0
u
= P

γ1
u′
◦α ◦P

γ0
u′
.

Since all isolated broken strips (u,v) from r to q come in such pairs, every summand in the right-hand

side of (2.21) appears twice, yielding 〈
(
dJ
)2

α,r〉= 0.

We now consider the case when r = q. In that case the boundary of the Gromov compact-

ification M(q,q;J) is B(q;J). For elements u ∈ B(q;J) \ B(q,q;J) we set γ0
u = ∂u, γ1

u ≡ q, if

u = u ∈M0,1(q,2,L0;J0) and γ0
u ≡ q, γ1

u = ∂u, if u = u ∈M0,1(q,2,L1;J1). Again the elements

of B(q;J) are paired-up as end points of closed intervals and when {u,u′} is such a pair, we have

γ
j

u = γ
j

u′ ∈Π1L j(q,q), hence

P
γ1

u
◦α ◦P

γ0
u
= P

γ1
u′
◦α ◦P

γ0
u′
.

Thus ∑u∈B(q;J) P
γ1

u
◦α ◦P

γ0
u
= 0, again since every summand appears twice. Expanding the left-hand

side yields

∑
u∈B(q,q;J)

P
γ1

u
◦α ◦P

γ0
u

+ ∑
u∈M0,1(q,2,L0;J0)

α ◦P∂u − ∑
u∈M0,1(q,2,L1;J1)

P∂u ◦α = 0.

This can be rewritten as

〈
(
dJ)2

α,q〉+α ◦m0(q,E0;J0)−m0(q,E1;J1)◦α = 0,

which proves the proposition.
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The proof of part B) is standard and is based on Floer’s original idea of continuation maps. It

is best seen from the point of view of the complex CF∗((L0,E0),(L1,E1);H,J), generated by linear

maps between fibres of the local systems over start and end points of Hamiltonian chords. Given two

pieces of regular Floer data (H,J), (H ′,J′) one considers a path of Floer data {(Hs,Js)}s∈R which

agrees with (H,J) when s<< 0 and with (H ′,J′) when s>> 0. Then one studies strips which satisfy

the following version of the Floer equation

∂sv+ Js
t (∂tv−X s

t (v)) = 0

which is not translation-invariant. The condition Nπ

L j ≥ 2 is used here to establish compactness for

moduli spaces of such maps of index 0 and 1. The boundaries of these strips can be used for parallel

transport. Using these, one constructs chain maps of pre-complexes

Ψ
H,J
H ′,J′ : CF∗((L0,E0),(L1,E1);H ′,J′)−→CF∗((L0,E0),(L1,E1);H,J). (2.22)

Then, considering homotopies of paths of Floer data, one constructs chain homotopies between the

above chain maps and concludes that the map Ψ
H,J
H ′,J′ is independent (up to homotopy) of the choice

of path of Floer data. Finally, one can show that given a triple of Floer data one has that the maps

Ψ
H,J
H ′,J′ ◦Ψ

H ′,J′

H ′′,J′′ and Ψ
H,J
H ′′,J′′ are also chain homotopic. It then follows that Ψ

H,J
H ′,J′ is always a homotopy

equivalence.

Since the proof does not depend in any way on the rank and/or triviality of the local systems

we refer the reader to [Oh93, Theorem 5.1] (see also [AD14, Chapter 11] for a detailed description

of the same argument for Hamiltonian Floer homology).

2.2.3 The monodromy Floer complex

In this section we introduce monodromy Floer cohomology. It is an F-vector space HF∗mon(L;F),

which is canonically associated to a single monotone Lagrangian L and whose non-vanishing implies

that L cannot be displaced from itself by a Hamiltonian isotopy. On the other hand, we will see in

section 2.3 below that if HF∗mon(L;F) = 0, then HF ∗((L,E0),(L1,E1)) = 0 for all Lagrangians L1

and all local systems E0→ L, E1→ L1.

In order to describe HF∗mon(L;F), we begin again with an F-local system E on a monotone

Lagrangian L with Nπ
L ≥ 2. For each pair of points x and y on L we set

Hommon(Ex,Ey) := SpanF{Pγ : Ex→Ey : γ ∈Π1L(x,y)}.

and we write Endmon(Ex) := Hommon(Ex,Ex). Observe that the space Endmon(Ex) is precisely the

image of F[π1(L,x)Opp]→End(Ex) under the monodromy representation. Now let (H,J) be a regular

Floer datum for L. We make the following definition.

Definition 2.2.20. The monodromy Floer cochain complex of E → L is

CF∗mon(E ;H,J) :=
⊕

x∈XH (L,L)

Hommon(Ex(0),Ex(1)). ♦
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By Proposition 2.2.3 we know that m0(E) is a parallel section of End (E) and so we have

Pγ ◦m0(E)(x(0)) = m0(E)(x(1)) ◦ Pγ for every γ ∈ Π1L(x(0),x(1)). It follows that any element

a ∈CF∗mon(E ;H,J) satisfies condition (2.19) and so we have

CF∗mon(E ;H,J)⊆CF ∗(E ,E ;H,J).

Since the Floer differential d(H,J) and continuation maps Ψ
H,J
H ′,J′ are defined using pre- and post-

composition by parallel transport maps, it is clear that CF∗mon(E ;H,J) is in fact a subcomplex of

CF ∗(E ,E ;H,J) and that the maps Ψ
H,J
H ′,J′ restrict to give chain-homotopy equivalences between mon-

odromy cochain complexes for different Floer data. We then make the following definition.

Definition 2.2.21. The monodromy Floer cohomology of E → L is defined to be

HF∗mon(E) := H∗(CF∗mon(E ;H,J),d(H,J))

for some choice of regular Floer data (H,J). ♦

Remark 2.2.22. By the independence of choice of Floer data, it follows that if HF∗mon(E) 6= 0 for

some E → L, then L cannot be displaced from itself by a Hamiltonian isotopy. //

Recall that we use EFreg to denote the local system induced by the right regular representation of

π1(L) on F[π1(L)]. We then make the following definition.

Definition 2.2.23. The monodromy Floer complex of L over the field F is

CF∗mon(L;H,J) :=CF∗mon(EFreg;H,J).

We call its cohomology the monodromy Floer cohomology of L and denote it by HF∗mon(L;F). ♦

The complex CF∗mon(E ;H,J) depends in a very limited way on the choice of local system E → L.

To formulate this precisely we introduce the following notion.

Definition 2.2.24. Let E0,E1 → L be F-local systems on L. Let p ∈ L be a base point and for

j ∈ {0,1} let ρ j : F[π1(L, p)Opp]→ End(E j
p) denote the monodromy representation associated to E j.

We say that E0 dominates E1 if kerρ0 ⊆ kerρ1. ♦

We then have the following relation.

Proposition 2.2.25. Let E0,E1→ L be local systems on L and suppose that E0 dominates E1. Then

there is a surjective chain map

Φ : CF∗mon(E0;H,J)→CF∗mon(E1;H,J).

If also E1 dominates E0, the map Φ is an isomorphism of complexes.

Terminology 2.2.26. The map Φ will be called the domination map. //



2.2. Floer cohomology and local systems 55

Remark 2.2.27. Note that Definition 2.2.24 requires a containment of kernels at the level of group

ring homomorphisms rather than group homomorphisms. This is necessary for Proposition 2.2.25

to hold. See Remark 5.1.12. //

Proof. Let p ∈ L be a base point and write G = π1(L, p)Opp and ρ j : F[G]→ End(E j
p) for the mon-

odromy representations. The condition kerρ0 ⊆ kerρ1 allows us to define for any x,y∈ L a surjective

linear map

φxy : Hommon(E0
x ,E0

y ) −→ Hommon(E1
x ,E1

y ) (2.23)

P0,γ 7−→ P1,γ

To see that this is indeed well-defined, choose paths εpx ∈ Π1L(p,x), εpy ∈ Π1L(p,y) and use them

to identify Hommon(E j
x ,E j

y ) with Endmon(E j
p) = ρ j(F[G]). Under this identification, the map (2.23)

becomes the map ρ0(F[G])→ ρ1(F[G]), ρ0(g) 7→ ρ1(g) ∀g ∈ G. But this is just the composition

ρ0(F[G])
∼=−−→ F[G]/kerρ0 −→

F[G]/kerρ0

kerρ1/kerρ0

∼=−−→ F[G]/kerρ1
∼=−−→ ρ1(F[G]). (2.24)

This also shows that the map φxy is surjective in general and an isomorphism when kerρ0 = kerρ1.

Further, since all maps in the above composition preserve the ring structure, we also have that if

X ∈ Hommon(E0
x ,E0

y ) and Y ∈ Hommon(E0
y ,E0

z ) then

φxz(Y ◦X) = φyz(Y )◦φxy(X). (2.25)

Putting these maps together we can now define

Φ :=
⊕

x∈XH (L,L)

φx(0)x(1) : CF∗mon(E0;H,J) // CF∗mon(E1;H,J) . (2.26)

Further, since d(H,J) involves only pre- and post-composition by parallel transport maps, we

see from (2.25) that Φ commutes with the Floer differential. Explicitly, if x ∈ XH(L,L) and γ ∈

Π1L(x(0),x(1)) then

d(H,J)(φx(0)x(1)(P0,γ)) = ∑
y∈XH (L,L)

∑
v∈R0

1:1(y:x)

P1,γ1
v
◦φx(0)x(1)(P0,γ)◦P1,γ0

v

= ∑
y∈XH (L,L)

∑
v∈R0

1:1(y:x)

φx(1)y(1)(P0,γ1
v
)◦φx(0)x(1)(P0,γ)◦φy(0)x(0)(P0,γ0

v
)

= ∑
y∈XH (L,L)

φy(0)y(1)

 ∑
v∈R0

1:1(y:x)

P0,γ1
v
◦P0,γ ◦P0,γ0

v


= Φ

(
d(H,J)(P0,γ)

)
.

Now, since for the local system EFreg the corresponding ring map ρreg : F[G]→ End(F[G]) is

injective, EFreg dominates every F-local system E → L and so we have the maps

CF∗mon(L;H,J) Φ−−→CF∗mon(E ;H,J) ↪−−→CF ∗(E ,E ;H,J). (2.27)
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2.3 The monotone Fukaya category
The next standard Floer-theoretic construction to which we add local systems of higher rank is the

monotone Fukaya category. A systematic treatment of high-rank local systems for the wrapped

Fukaya category was developed by Abouzaid in [Abo12] where a modified version of the split-

generation criterion (again due to Abouzaid [Abo10]) was used to infer information about the fun-

damental group of exact Lagrangians in cotangent bundles. In the following, we describe how to

construct such an extended monotone Fukaya category and prove appropriate modifications of the

theorems which we require for our application – the AKS criterion and Abouzaid’s split-generation

criterion. We do so following closely the exposition in [She16], [BC14], [Abo12] and [Sei08a], to

which we refer the reader for more details.

2.3.1 Setup

Given a compact monotone symplectic manifold (M,ω) we associate to it an F-linear A∞ category

F(M) whose objects are pairs (L,E) where L is a compact monotone Lagrangian submanifold with

NL ≥ 2 and E → L is a local system of finite rank over F. The morphism spaces between two objects

are central Floer complexes and the A∞ operations are defined using counts of punctured, (per-

turbed) pseudoholomorphic discs, with the operation µ1 being the Floer differential on the central

Floer complex. For simplicity (and since this is what we need for applications) let us only construct

a full subcategory of F(M) with a finite set of Lagrangians L = {Li}. Since we will be counting

pseudoholomorphic curves with many boundary components on different Lagrangians, one needs an

analogue of monotonicity-for-pairs to hold for n-tuples of Lagrangians (this is needed to ensure that

curves with the same Maslov index have the same energy so that one can apply Gromov compact-

ness). Rather than try and formulate what monotonicity for n-tuples might mean, we will assume

that for each L ∈ L, the map ι∗ : π1(L)→ π1(M) induced by inclusion has trivial image (cf. [BC14,

Assumption (8)]). Under this assumption, the uniform energy bounds hold and the construction of

the Fukaya category can be carried out. We will additionally require the Li to be orientable although

this condition is only needed for Theorem 2.3.8.

For every ordered pair (Li,L j) (i and j not necessarily distinct) of elements of L choose a

regular Hamiltonian H i j : [0,1]×M → R with corresponding flow ψ i j (so ψ
i j
1 (Li) t L j) and then

for every Li choose JLi ∈ Jreg(Li| ∪ j ((Li∩ (ψ i j
1 )−1(L j))∪ (ψ ji

1 (L j)∩Li))) (recall that this notation

means that evaluation maps from simple, JLi–holomorphic discs with one boundary marked point

are transverse to Li at all start and end points of Hamiltonian chords for the chosen H i j). Complete

H i j to a regular Floer datum by choosing Ji j ∈C∞([0,1],J (M,ω)) such that Ji j
0 = JLi and Ji j

1 = JL j .

We now define the morphism spaces in F(M) to be

homF(M)((L
i,E i),(L j,E j)) :=CF ∗((Li,E i),(L j,E j);H i j,Ji j)

and the first A∞ operation µ1 to consist of the differentials d(H i j ,Ji j) on all these complexes. Having
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fixed all Floer data, we now drop it from the notation. We shall write X (Li,L j) for the set of

Hamiltonian chords from Li to L j for the fixed regular Hamiltonian H i j.

The construction of the higher A∞ operations is well-established, at least in the case of rank

1 local systems (see e.g. [She16, Section 2.3], based on the constructions for exact manifolds

from [Sei08a]). In the wrapped setting, higher rank local systems have been described in detail

by Abouzaid [Abo12]. Thus, throughout this discussion we omit a lot of technical details (mostly

from [Sei08a, Section 9]), in particular the fact that Floer and perturbation data can be chosen in

such a way that all moduli spaces which appear are smooth manifolds of the correct dimensions and

admitting the correct compactifications. That this is possible (i.e. that modified proofs from [Sei08a]

apply) is an artefact of monotonicity. The only new observation is that these operations preserve the

central complexes, which we verify in Proposition 2.3.1 below.

Let us now give a brief description of the construction. For every d ≥ 2 and any (d +1)-tuple

of objects {(L j,E j)}0≤ j≤d there is a linear map

µ
d : CF ∗(Ed−1,Ed)⊗·· ·⊗CF ∗(E0,E1)−→CF ∗(E0,Ed),

which is defined by counting isolated perturbed pseudoholomorphic polygons with boundary on

the Lagrangians L0,L1, . . . ,Ld and using their boundary components for parallel transport. More

precisely, let {ζ0,ζ1, . . . ,ζd} be a counterclockwise cyclicly ordered set of points on ∂D2 which are

labelled either positive (also called incoming) or negative (outgoing). We call each ζ j a positive,

respectively negative puncture. A choice of strip-like ends for (D2,ζ0, . . . ,ζd) is a collection of

pairwise disjoint open neighbourhoods ζ j ∈U j ⊆ D2, together with holomorphic diffeomorphisms

ε j : R±× [0,1]→U j \{ζ j}, satisfying ε
−1
j (∂D2∩(U j \{ζ j})) =R±×{0,1} and lim

s→±∞
ε j(s, t) = ζ j,

where R+ = (0,+∞), R− = (−∞,0) and the choice between the two domains is determined by

whether the corresponding puncture is labelled positive or negative.

Consider an ordered list of objects {(L j,E j)}0≤ j≤d and Hamiltonian chords x0 ∈X (L0,Ld) and

{x j}1≤ j≤d , with x j ∈ X (L j−1,L j). Let (D2,ζ0, . . . ,ζd) be as above with ζ0 labelled negative and all

other punctures labelled positive and assume one has made a choice of strip-like ends. Then any

continuous map u : D2 \ {ζ0, . . . ,ζd} → M, mapping the boundary arc between ζ j and ζ j+1 to L j

(with ζd+1 := ζ0) and satisfying lim
s→±∞

u(ε j(s, t)) = x j(t) uniformly in t, gives rise to a linear map

µu : HomF(Ed−1
xd(0)

,Ed
xd(1)

)⊗·· ·⊗HomF(E0
x1(0)

,E1
x1(1)

)−→ HomF(E0
x0(0)

,Ed
x0(1)

)

µu(αd⊗αd−1⊗·· ·⊗α1) = P
γd

u
◦αd ◦P

γ
d−1
u
◦αd−1 ◦ · · · ◦Pγ1

u
◦α1 ◦Pγ0

u
, (2.28)

where γ0
u ∈ Π1L0(x0(0),x1(0)), γd

u ∈ Π1Ld(xd(1),x0(1)) and γ
j

u ∈ Π1L j(x j(1),x j+1(0)), 1 ≤ j ≤

d−1 are the compactified images under u of the arcs between ζ j and ζ j+1 (see Figure 2.1).

For d ≥ 2, we now consider the moduli space of smooth maps u : D2 \ {ζ0, . . . ,ζd} → M as

above which are required to satisfy a suitably perturbed Cauchy-Riemann equation and where the

positions of the points {ζ0, . . . ,ζd} are allowed to vary up to biholomorphisms of D2. We denote this
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αd

α1

α2

E0
x1(0)

E1
x1(1) E1

x2(0)

E2
x2(1)

Ed−1
xd(0)

Ed
xd(1)

x1
x2

xd

x0

γ0
u

γ1
u

γ2
u

γd−1
u

γd
u

Figure 2.1: The structure maps

moduli space by R1:d(x0 : x1, . . . ,xd) and its k-dimensional component by Rk
1:d(x0 : x1, . . . ,xd) (for

this to make sense one needs to first make consistent choices of strip-like ends for the universal fam-

ilies R1:d of abstract holomorphic discs with d positive punctures and one negative and then make

choices of perturbation data for these families which is consistent with gluing, ensures transversal-

ity and agrees with the chosen Floer data on the strip-like ends – see [Sei08a, (9g),(9h),(9i)]; this

ensures that the connected components of R1:d(x0 : x1, . . . ,xd) are indeed manifolds and admit the

desired compactifications; similar procedures need to be applied to all moduli spaces we discuss in

this section). For the case d = 1, the space R1:1(x0 : x1) is just the space of Floer trajectories which

we defined in section 2.2.2. One then defines the A∞ operations by setting:

µ
d : CF ∗(Ed−1,Ed)⊗·· ·⊗CF ∗(E0,E1)−→CF ∗(E0,Ed), (2.29)

µ
d := ∑

x0∈X (L0,Ld)

(x1,...,xd)∈Πd
j=1X (L j−1,L j)

∑
u∈R0

1:d(x0:x1,...,xd)

µu.

Note that µ1 is indeed built out of the differentials d(H i j ,Ji j). We call an object (L,E) of F(M) es-

sential whenever the cohomology of its endomorphism space H∗(homF(M)(E ,E),µ1) = HF ∗(E ,E)

is non-zero. For (2.29) to make sense we need to check the following.

Proposition 2.3.1. Let ad⊗·· ·⊗a1 ∈CF ∗(Ed−1,Ed)⊗·· ·⊗CF ∗(E0,E1). Then µd(ad⊗·· ·⊗a1)

is an element of CF ∗(E0,Ed).
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Proof. Let x j ∈ X (L j−1,L j), 1≤ j ≤ d. Writing α j = 〈a j,x j〉, we know from (2.19) that

α j ◦m0(E j−1)(x j(0)) = m0(E j)(x j(1))◦α j.

Further, since m0(E j) is parallel for each 0≤ j ≤ d we have that if u ∈R1:d(x0 : x1, . . . ,xd), then

Pγ0
u
◦m0(E0)(x0(0)) = m0(E0)(x1(0))◦Pγ0

u

P
γ

j
u
◦m0(E j)(x j(1)) = m0(E j)(x j+1(0))◦P

γ
j

u
, ∀1≤ j ≤ d−1

P
γd

u
◦m0(Ed)(xd(1)) = m0(Ed)(x0(1))◦P

γd
u
.

Thus, from (2.28) we have that µu(αd , . . . ,α1) ◦m0(E0)(x0(0)) = m0(Ed)(x0(1)) ◦ µu(αd , . . . ,α1),

i.e. µu(αd , . . . ,α1) ∈CF ∗(E0,Ed). Since µd(ad ⊗·· ·⊗a1) consists of linear combinations of such

terms, we see that it also lies in CF ∗(E0,Ed).

The A∞ associativity relations

d

∑
j=1

d− j

∑
i=0

µ
d− j+1(ad , . . . ,ai+ j+1,µ

j(ai+ j, . . . ,ai+1),ai . . . ,a1) = 0

are shown to hold by considering the Gromov compactification R1
1:d(x0 : x1, . . . ,xd) of the one-

dimensional component of such moduli spaces (see [Sei08a, (9l)]) and using the fact that the paths

used for parallel transport, which are determined by configurations of broken curves appearing at

opposite ends of an interval in R1
1:d(x0 : x1, . . . ,xd) are homotopic (for an example of a similar

argument see Figure 2.2 below).

Remark 2.3.2. As we remarked before, monotonicity, together with the assumption that the images

ι i
∗(π1(Li))⊆ π1(M) be trivial, ensures uniform energy bounds on pseudoholomorphic maps belong-

ing to spaces of the same expected dimension, so that Gromov compactness applies. In particular

zero-dimensional moduli spaces are compact, so that all sums ranging over such spaces are finite.

Disc and sphere bubbles do not appear in any of the constructions apart from µ1 and we discussed

these at length in sections 2.2.1 and 2.2.2 above. This is because all other constructions involve

only zero- and one-dimensional moduli spaces of solutions to a perturbed Cauchy-Riemann equa-

tion which does not admit an R–action and so they are governed by Fredholm problems of index 0

and 1. The conditions Nπ
M ≥ 1 and Nπ

Li
≥ 2 ensure that any sphere or disc bubble would reduce the

sum of the Fredholm indices governing the remaining components by at least 2, making them all

negative and thus contradicting transversality. //

This finishes the setup of the extended monotone Fukaya categoryF(M), which is now allowed

to contain any set of objects {(Li,E i)}. Note that for any object (L,E) of this category, the structure

maps µ∗ make CF ∗(E ,E) into an A∞ algebra. In fact, since the structure maps involve only com-

positions with parallel transport maps, (CF∗mon(E),µ∗) is an A∞ subalgebra of CF ∗(E ,E). Further,

if E0,E1 → L are two local systems and E0 dominates E1 in the sense of Definition 2.2.24, then
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the map Φ : CF∗mon(E0)→ CF∗mon(E1) from Proposition 2.2.25 is an A∞ morphism (with vanishing

higher order terms). This is proved in the same manner as one shows that Φ is a chain map, namely

by repeated application of (2.25), using the fact that the structure maps µ∗ involve only compositions

with parallel transport maps.

Consider the associated homology category H(F(M)) which has the same objects as F(M) but

whose morphism spaces are

homH(F(M))((L
i,E i),(L j,E j)) := HF ∗((Li,E i),(L j,E j)).

Composition of morphisms in H(F(M)) is induced by the operation µ2 and we denote it by the

symbol ∗. The A∞ relations imply that ∗ is well-defined and associative. In particular (HF∗mon(E),∗)

and (HF ∗(E ,E),∗) are associative F-algebras and there is an algebra homomorphism HF∗mon(E)→

HF ∗(E ,E) induced by the inclusion of A∞ algebras at the chain level. Similarly, if E0 and E1 are two

local systems on L and E0 dominates E1, we have an algebra map H(Φ) : HF∗mon(E0)→HF∗mon(E1).

Remark 2.3.3. The above constructions depend on choices of strip-like ends and regular Floer and

perturbation data. It is a fact that different choices yield quasi-equivalent categories (see [Sei08a],

(10a)). We will not need this here but we will use a much weaker fact: the algebra structure on

HF∗mon(E) and HF ∗(E ,E), induced by the µ2 operation, are preserved by the continuation maps

(2.22). A proof of this fact (without local systems, but as we have seen, adding such does not alter

the arguments) can be found e.g. in [DS98]. //

2.3.2 Units and morphisms of local systems

It is a non-trivial fact that for each object (L,E) of the category H(F(M)) there is an identity mor-

phism eE = e(L,E) ∈ homH(F(M))((L,E),(L,E)) = HF ∗(E ,E). This makes H∗(F(M)) into an honest

F-linear category and in particular, the algebra (HF ∗(E ,E),∗) is unital. We now give a brief de-

scription of the unit, point out some easy vanishing results and use the unit to convert morphisms of

local systems into morphisms in F(M).

Given a chord x ∈ X (L,L) consider the moduli space of perturbed pseudoholomorphic discs

with one outgoing puncture asymptotic to x. We denote this space by R1:0(x) and the union of its

k–dimensional components by Rk
1:0(x). Each element u ∈ R1:0(x) defines a map P∂u : Ex(0)→ Ex(1)

by parallel transport along the boundary. We then define the element

ẽE := ∑
x∈X (L,L)

∑
u∈R0

1:0(x)

P∂u ∈CF∗mon(E)⊆CF ∗(E ,E). (2.30)

By considering the Gromov compactification of R1
1:0(x) one shows that µ1(ẽE) = 0. By abuse of

notation we denote by eE the cohomology class of ẽE in both HF∗mon(E) and HF ∗(E ,E) (this abuse is

not entirely harmless because it can happen that ẽE is not exact in CF∗mon(E) but is exact in CF ∗(E ,E)

– see chapter 5, section 5.1.5; for our current discussion however, this is irrelevant).
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Showing that eE is indeed a unit involves introducing a specific 1-parameter family of pertur-

bations to the Floer equation for strips in order to construct a map h : CF ∗(E ,E ′)→CF ∗(E ,E ′) for

every other object (L′,E ′), such that one has the identity µ2(a, ẽE) = a+ µ1(h(a))+ h(µ1(a)) for

every a ∈ CF ∗(E ,E ′). This shows that right multiplication by ẽE is homotopic to the identity. A

similar argument proves the same for left multiplication. For more details, see [She16, Section 2.4].

Note that, in the case when E ′ = E the map H preserves CF∗mon(E) since it is defined by using parallel

transport along the boundaries of perturbed Floer trajectories. In particular, this discussion implies

the following:

Lemma 2.3.4.

a) The element eE ∈ HF∗mon(E) is a unit for the algebra (HF∗mon(E),∗) and the ring map

HF∗mon(E)→ HF ∗(E ,E) is unital.

b) If E0 and E1 are local systems on L and E0 dominates E1, then one has Φ(ẽE0) = ẽE1 . In

particular H(Φ) : HF∗mon(E0)→ HF∗mon(E1) is a unital algebra homomorphism.

These properties have the following immediate consequences.

Proposition 2.3.5.

1) If HF ∗(E ,E) = 0, then HF ∗((L,E),(L′,E ′)) = 0 for any other object (L′,E ′) in F(M).

2) If HF∗mon(E) = 0 then HF ∗(E ,E) = 0.

3) If E0,E1→ L are local systems, E0 dominates E1 and HF∗mon(E0) = 0 then HF∗mon(E1) = 0.

4) If HF∗mon(L) = 0 then HF ∗((L,E),(L′,E ′)) = 0 for any Lagrangian L′ such that (L,L′) is a

monotone pair and for any local systems E → L, E ′→ L′.

Proof. Part 1) holds because HF ∗((L,E),(L′,E ′)) = homH(F(M))(E ,E ′) is a unital right module over

the ring homH(F(M))(E ,E) = HF ∗(E ,E) = 0. Parts 2) and 3) hold because of the unital algebra maps

HF∗mon(E)→ HF ∗(E ,E) and H(Φ) : HF∗mon(E0)→ HF∗mon(E1), respectively. Part 4) follows from

1), 2), 3) and the fact that Ereg dominates every other local system E → L.

We can use the unit to turn morphisms of local systems on the same Lagrangian into mor-

phisms in the extended Fukaya category F(M). More precisely, we have the following lemma (for

completeness we state it in a rather general form but only the identity (2.31) will be used in the

sequel).

Lemma 2.3.6. Let {(L,E0), (L,E1)},{(K j,W j)}1≤ j≤r,{(Nk,Vk)}1≤k≤s be sets of objects in F(M)

and let F : E0 → E1 be a morphism of local systems. Suppose we are given elements a1 ∈

CF ∗(E1,W1), a j ∈ CF ∗(W j−1,W j) for 2 ≤ j ≤ r, b|1 ∈ CF ∗(V1,E0), b|k ∈ CF ∗(Vk,Vk−1) for

2≤ k ≤ s and ci ∈CF ∗(E i,E i) for i ∈ {0,1}. Then we have
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a) The elements c1 ◦F ∈CF∗(E0,E1) and F ◦ c0 ∈CF∗(E0,E1) satisfy

µ
r+1+s(ar, . . . ,a1,(c1 ◦F),b|1, . . . ,b|s) = µ

r+1+s(ar, . . . ,a1,c1,(F ◦b|1), . . . ,b|s)

µ
r+1+s(ar, . . . ,a1,(F ◦ c0),b|1, . . . ,b|s) = µ

r+m+s(ar, . . . ,(a1 ◦F),c0,b|1, . . . ,b|s)

b) in the setting above if r = 0, then

µ
1+s(F ◦ c0,b|1, . . . ,b|s) = F ◦µ

1+s(c0,b|1, . . . ,b|s)

µ
s(F ◦b|1, . . . ,b|s) = F ◦µ

s(b|1, . . . ,b|s)

and if s = 0, then

µ
r+1(ar, . . . ,a1,c1 ◦F) = µ

r+1(ar, . . . ,a1,c1)◦F

µ
r(ar, . . . ,a1 ◦F) = µ

r(ar, . . . ,a1)◦F.

Consequently c1 ◦F ∈CF ∗(E0,E1) and F ◦ c0 ∈CF ∗(E0,E1).

c) Writing ẽi = ẽE i for i ∈ {0,1}, we have that ẽ1 ◦F equals F ◦ ẽ0 and is a closed element of

CF ∗(E0,E1).

d) The map F ◦ − : CF ∗(V1,E0)→CF ∗(V1,E1) is a chain map, homotopic to the map

µ
2(ẽ1 ◦F,−) : CF ∗(V1,E0)→CF ∗(V1,E1).

Similarly, the map − ◦F : CF ∗(E1,W1) → CF ∗(E0,W1) is a chain map, homotopic to

µ
2(−, ẽ1 ◦F) : CF ∗(E1,W1)→CF ∗(E0,W1).

e) If E2 → L is another local system with corresponding unit cochain ẽ2 and G : E1 → E2 is

a morphism of local systems, then for the cohomology classes [ẽ1 ◦F ] ∈ HF ∗(E0,E1) and

[ẽ2 ◦G] ∈ HF ∗(E1,E2) we have

[ẽ2 ◦G]∗ [ẽ1 ◦F ] = [ẽ2 ◦ (G◦F)]. (2.31)

Proof. Let x|k ∈ X (Nk,Nk−1) for 2 ≤ k ≤ s, x|1 ∈ X (N1,L), x0 ∈ X (L,L), x1 ∈ X (L,K1), x j ∈

X (K j−1,K j) for 2 ≤ j ≤ r. We write α j = 〈a j,x j〉, β|k = 〈b|k,x|k〉 and ςi = 〈ci,x0〉. Finally, let

z ∈ X (Ns,Kr). Then for every u ∈R0
1:r+s+1(z : x|s, . . . ,x|1,x0,x1, . . . ,xr) we have

µu(αr, . . . ,α1,ς1 ◦F(x0(0)),β|1, . . . ,β|s) =
= P

γ
s+r+1
u

◦ · · · ◦P
γ

s+2
u
◦α1 ◦P1,γs+1

u
◦ ς1 ◦F(x0(0))◦P0,γs

u ◦β|1 ◦P
γ

s−1
u
· · ·Pγ1

u
◦β|s ◦Pγ0

u

= P
γ

s+r+1
u

◦ · · · ◦P
γ

s+2
u
◦α1 ◦P1,γs+1

u
◦ ς1 ◦P1,γs

u ◦F(x|1(1))◦β|1 ◦P
γ

s−1
u
· · ·Pγ1

u
◦β|s ◦Pγ0

u

= µu(αr, . . . ,α1,ς1,F(x|1(1))◦β|1, . . . ,β|s).

Summing this identity over all possible relevant Hamiltonian chords and all rigid pseudoholomorphic

discs yields the first claim in a). The second one is done analogously. To prove the first identity in
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b) we note that

µu(F(x(1))◦ ς0,β|1, . . . ,β|s) = P1,γs+1
u
◦F(x0(1))◦ ς0 ◦P0,γs

u ◦β|1 ◦P
γ

s−1
u
· · ·Pγ1

u
◦β|s ◦Pγ0

u

= F(z(1))◦P0,γs+1
u
◦ ς0 ◦P0,γs

u ◦β|1 ◦P
γ

s−1
u
· · ·Pγ1

u
◦β|s ◦Pγ0

u

= F(z(1))◦µu(ς0,β|1, . . . ,β|s).

Again, summing over all chords and disks yields the claim and the other identities follow similarly.

Applying the claim twice with r = s = 0 and using the fact that c1 ∈CF ∗(E1,E1) yields

µ
1(µ1(c1 ◦F)) = µ

1(µ1(c1))◦F = 0,

i.e. c1 ◦F ∈CF ∗(E0,E1). Similarly, F ◦ c0 ∈CF ∗(E0,E1).

For part c) we are in the situation c0 = ẽ0. Then from the above we have

µ
1(F ◦ ẽ0) = F ◦µ

1(ẽ0) = 0.

Further, from the definitions of ẽ0 and ẽ1 we have

F ◦ ẽ0 = ∑x∈X (L,L) ∑u∈R0
1:0(x)

F(x(1))◦P0,∂u

= ∑x∈X (L,L) ∑u∈R0
1:0(x)

P1,∂u ◦F(x(0))
= ẽ1 ◦F.

For part d), note that F ◦− : CF ∗(V1,E0)→ CF ∗(V1,E1) is indeed a chain map, because by

part b) one has µ1(F ◦b|1) = F ◦ µ1(b|1) for every b|1 ∈CF ∗(V1,E0). On the other hand, the map

µ2(ẽ1 ◦F,−) : CF ∗(V1,E0)→CF ∗(V1,E1) is a chain map because µ1(ẽ1 ◦F) = 0. Further, by part

a), these two maps fit into the commutative diagram

CF ∗(V1,E0)
F◦− //

µ2(ẽ1◦F,−) ''

CF ∗(V1,E1)

µ2(ẽ1,−)
��

CF ∗(V1,E1)

in which the vertical arrow is homotopic to the identity. The claim follows. Similarly for the map

−◦F : CF ∗(E1,W1)→CF ∗(E0,W1).

Finally, we prove (2.31):

[ẽ2 ◦G]∗ [ẽ1 ◦F ] = [µ2(ẽ2 ◦G, ẽ1 ◦F)]
= [µ2(ẽ2,G◦ ẽ1 ◦F)] by part a)
= [µ2(ẽ2, ẽ2 ◦ (G◦F))] by part c)
= [µ2(ẽ2, ẽ2)◦ (G◦F)] by part b)
= [ẽ2 ◦ (G◦F)+µ1(c)◦ (G◦F)] for some c ∈CF ∗(E2,E2)
= [ẽ2 ◦ (G◦F)+µ1(c◦ (G◦F))] by part b)
= [ẽ2 ◦ (G◦F)]

2.3.3 Closed-open string map and the AKS theorem

Recall that our main objective in this section is to verify that a version of Abouzaid’s split-generation

criterion holds in the setting of the extended monotone Fukaya category. A key role in the split-

generation criterion is played by the so-called closed-open string map

CO∗ : QH∗(M)→ HH∗(CF ∗((L,E),(L,E)), (2.32)
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whose definition in different settings can be found in [FOOO09], [RS17], [She16]. Its domain is

(in our case) the ungraded small quantum cohomology ring of M, whose underlying vector space

is simply H∗(M;F) but whose ring structure is deformed by “quantum contributions” arising from

counts of pseudoholomorphic spheres (for a brief account see e.g. [She16, Section 2.2]; full details

are given in [MS12, Chapter 11]). We denote this product by ?. It is a fact that ? is associative,

commutative (graded commutative when one works over characteristic different from 2 and QH∗ is

graded) and together with the Poincaré pairing makes QH∗(M) into a Frobenius algebra, i.e.

〈a?b,c〉= 〈a,b? c〉.

Further, the usual unit 1 ∈ H∗(M;F) is also a unit for the ? product.

In general the target of CO∗ is the Hochschild cohomology of the entire A∞ category F(M).

For our application however it suffices to focus only on the endomorphism A∞ algebra of a sin-

gle object (L,E). The Hochschild cochain complex of this endomorphism algebra is defined to be

CC∗(CF ∗(E ,E)) := Πd≥0 CC∗c (CF ∗(E ,E))d , where

CC∗c (CF ∗(E ,E))d := HomF(CF ∗(E ,E)⊗d ,CF ∗(E ,E)),

equipped with the differential

δ ((φ 0,φ 1, . . .))d(αd , . . . ,α1) =
d

∑
j=0

d− j

∑
i=0

µ
d− j+1(αd , . . . ,αi+ j+1,φ

j(αi+ j, . . . ,αi+1),αi . . . ,α1)

+
d

∑
j=1

d− j

∑
i=0

φ
d− j+1(αd , . . . ,αi+ j+1,µ

j(αi+ j, . . . ,αi+1),αi . . . ,α1).

Given an element β ∈ QH∗(M) whose Poincaré dual is represented by a pseudocycle f : B→ M,

one defines a corresponding Hochschild cochain CO∗(β ; f ) = (CO∗(β ; f )d)d≥0 as follows. For ev-

ery tuple of Hamiltonian chords (x,~x) := (x,x1, . . . ,xd) in X (L,L) one considers the moduli space

R1:d;1(x :~x; f ) of perturbed pseudoholomorphic maps u from a disc with d positive boundary punc-

tures, asymptotic to ~x, one negative boundary puncture which is asymptotic to x and an internal

marked point which is mapped to f (B). Every u ∈ R1:d;1(x :~x; f ) defines a map µu as in equation

(2.28). One then sets

CO∗(β ; f )d := ∑
(x,~x)∈X (L,L)d+1

∑
u∈R0

1:d;1(x:~x; f )

µu.

The facts that the resulting element is δ–closed and that its cohomology class is independent

of the choice of pseudocycle f are proved for rank 1 local systems in [She16, Section 2.5] and the

proofs hold just as well in our case (we review a similar argument for the open-closed string map in

more detail below).

By inspecting the definition of the differential δ one sees that the length-zero projection

CC∗(CF ∗(E ,E))→ CF ∗(E ,E), (φ 0,φ 1, . . .) 7→ φ 0 is a chain map. Composing CO∗ with this pro-

jection at the level of cohomology gives the map

CO0 : QH∗(M)→ HF ∗(E ,E).
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Observe that CO0(β , f ) lies in CF∗mon(E) for any pseudocycle f , representing the Poincaré dual

of a cohomology class β . Thus, we actually have the diagram

QH∗(M)
CO0
//

CO0

&&

CO0

""
HF∗mon(L)

H(Φ) // HF∗mon(E) // HF ∗(E ,E) . (2.33)

Proposition 2.3.7. All maps in diagram (2.33) are unital algebra homomorphisms.

Proof. Unitality is easy to see already at the chain level since for any local system E → L, the

element

CO0(1;M) = ∑
x∈X (L,L)

∑
u∈R0

1:0;1(x;M)

µu,

is precisely the unit cochain ẽE ∈CF∗mon(E) (when one chooses the same perturbation data to define

the moduli spaces). Thus the content of this proposition is that CO0 : QH∗(M)→ HF∗mon(L) inter-

twines the products ? and ∗. More generally, the Hochschild cohomology HH∗(CF∗mon(L)) itself is

an algebra when equipped with the so-called Yoneda product (see e.g. [She16, equation (A.4.1)]) and

the length-zero projection to HF∗mon(L) is an algebra homomorphism. The proposition then follows

from the fact that the full map CO∗ : QH∗(M)→ HH∗(CF∗mon(L)) is an algebra homomorphism.

The proof of this fact is a straightforward adaptation of [She16, Proposition 2.1].

We end this subsection by recalling an appropriate version of the Auroux–Kontsevich–Seidel

theorem (cf. [Aur07, Proposition 6.8], [She16, Lemma 2.7]).

Theorem 2.3.8. Let L be an orientable, monotone Lagrangian in a closed, monotone symplectic

manifold (M,ω). Then the map CO0 : QH∗(M)→ HF∗mon(L) satisfies

CO0(c1(T M)) = [m0(Ereg)◦ ẽL].

A proof for rank 1 local systems is given in [She16, Lemma 2.7]. Strictly speaking, this proof

applies only when one works over characteristic different from 2 but the assumption that L is ori-

entable can be used to remove this restriction (the idea is that if L is orientable one can choose a

pseudocycle Poincarè dual to c1(T M) and disjoint from L; see [Ton18, Theorem 1.10] and the dis-

cussion immediately after). Further, checking that the proof applies when L is equipped with the

local system Ereg amounts once again to using the fact that m0(Ereg) is a morphism of local systems.

Note that together with diagram (2.33), Theorem 2.3.8 implies that if E → L is any local system,

then CO0(c1(T M)) = [m0(E)◦ ẽE ].

Consider now the endomorphism of quantum cohomology given by multiplication by the first

Chern class c1(T M)? : QH∗(M)→ QH∗(M). For λ ∈ F denote by QH∗(M)λ the generalised λ–

eigenspace of this map (which is trivial if λ is not an eigenvalue). Then one has the following
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Corollary 2.3.9. Let E → L be a local system and let µ ∈ F. If m0(E)− µIdE is an invertible

endomorphism of E , then CO0 : QH∗(M)→ HF ∗(E ,E) vanishes on QH∗(M)µ .

Proof. Put σ = m0(E)− µIdE . By Theorem 2.3.8 we have CO0(c1(T M)− µ) = [σ ◦ ẽE ]. Let

a ∈ QH∗(M)µ , i.e. there exists k ≥ 0 such that (c1(T M)−µ)?k ?a = 0. Then we have

CO0(a) = [ẽE ]∗CO0(a) = [σ−k ◦ ẽE ]∗ [σ k ◦ ẽE ]∗CO0(a) [by (2.31)]

= [σ−k ◦ ẽE ]∗CO0((c1(T M)−µ)?k ?a) = 0,

as we wanted.

A well-known consequence of Corollary 2.3.9 is that if one allows only rank 1 local systems and

F is algebraically closed, then the Fukaya category splits into summands, indexed by the eigenvalues

of c1(T M)?. We now discuss this splitting in the setting of the extended Fukaya category.

2.3.4 Decomposing F(M)

For each λ ∈ F, let us denote by F(M)λ the full subcategory of F(M) whose objects are pairs (L,E)

with m0(E) = λ IdE . Further, we denote by F(M)nil
λ

the larger subcategory where we require that

objects (L,E) satisfy (m0(E)−λ IdE)
kE = 0 for some integer kE . Then the following easy lemma

shows that there are no non-zero morphisms between objects belonging to F(M)nil
λ0

and F(M)nil
λ1

for

λ0 6= λ1.

Lemma 2.3.10. Let E0 → L0 and E1 → L1 be local systems such that there exist λ0,λ1 ∈ F and

k0,k1 ∈ N such that (m0(E j)−λ jIdE j)k j = 0 for j ∈ {0,1}. Then CF ∗(E0,E1) = 0 unless λ0 = λ1.

Proof. Let a ∈CF ∗(E0,E1;H,J), x ∈ XH(L0,L1) and write α := 〈a,x〉. Further, if we write T0 :=

m0(E0)(x(0)), T1 := m0(E1)(x(1)), condition (2.19) says that α ◦T0 = T1 ◦α . It then follows that

(T1−λ0)
k0 ◦α = α ◦ (T0−λ0)

k0 = 0.

Assume for a contradiction that α 6= 0, i.e. there exists v ∈ E0
x(0) such that α(v) 6= 0. Substituting

into the above yields (T1−λ0)
k0(α(v)) = 0. Then there exists a unique non-negative integer k < k0

such that w := (T1−λ0)
k(α(v)) 6= 0 but (T1−λ0)

k+1(α(v)) = 0. Then we must have T1w = λ0w and

thus (λ0−λ1)
k1w = (T1−λ1)

k1w = 0 which forces λ0 = λ1.

Observe also that direct sum decompositions of local systems induce such decompositions for

the central Floer complexes. Indeed, if (L0,L1) is a monotone pair, then for local systems E01, E02

on L0 and E11, E12 on L1 and a chord x ∈ XH(L0,L1), one has the splitting

Hom((E01⊕E02)x(0),(E11⊕E12)x(1)) =
⊕

i∈{1,2}
j∈{1,2}

Hom(E0 j
x(0),E

1i
x(1)). (2.34)

It is then convenient to represent an element α ∈ Hom((E01⊕E02)x(0),(E11⊕E12)x(1)) as a matrix(
α11 α12
α21 α22

)
with αi j ∈ Hom(E0 j

x(0),E
1i
x(1)). When similarly represented as matrices, the parallel
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transport maps for E01⊕E02 and E11⊕E12 have block-diagonal from. Since the Floer differential

involves only pre- and post-composing elements α by such block-diagonal matrices, it follows that

d(H,J) preserves the decomposition

CF∗((E01⊕E02),(E11⊕E12);H,J) =
⊕

i∈{1,2}
j∈{1,2}

CF∗(E0 j,E1i;H,J),

induced from (2.34). Taking maximal unobstructed subcomplexes, we then have

CF ∗((E01⊕E02),(E11⊕E12);H,J) =
⊕

i∈{1,2}
j∈{1,2}

CF ∗(E0 j,E1i;H,J).

Suppose now that F is algebraically closed. Then we can decompose each finite rank local

system E j→ L j into generalised eigen-subsystems for m0(E j). That is, there exist finite collections

of scalars Spec(m0(E j)) ⊆ F and for each λ ∈ Spec(m0(E j)) there is a positive integer k j,λ and a

non-zero local subsystem E j,λ ≤ E j such that

E j =
⊕

λ∈Spec(m0(E j))

E j,λ

(
m0(E j,λ )−λ IdE j,λ

)k j,λ
= 0.

It follows from our observations above that we then have:

CF ∗(E0,E1) =
⊕

λ∈Spec(m0(E0))∩Spec(m0(E1))

CF ∗(E0,λ ,E1,λ ). (2.35)

Thus, if F is algebraically closed, we lose no information by restricting ourselves to work only in a

particular summand F(M)nil
λ

for some fixed λ ∈ F.

Consider now the decomposition of QH∗(M) into generalised eigenspaces for quantum multi-

plication by the first Chern class:

QH∗(M) =⊕λ∈Spec(c1(T M)?)QH∗(M)λ . (2.36)

We write 1λ for the component of 1 ∈ QH∗(M) in QH∗(M)λ . The fact that (QH∗(M),?) is a

commutative Frobenius algebra implies that (2.36) is in fact a decomposition of algebras and 1λ

is a unit for (QH∗(M)λ ,?). From Corollary 2.3.9, we now have the following version of the AKS

criterion for higher rank local systems.

Proposition 2.3.11. Let (L,E) be an object of F(M)nil
λ

. Then the map CO0 : QH∗(M)→ HF∗mon(E)

vanishes on QH∗(M)µ for all µ 6= λ . In particular, if HF∗mon(E) 6= 0, then λ ∈ Spec(c1(T M)?) and

CO0
λ

:= CO0∣∣
QH∗(M)λ

: (QH∗(M)λ ,1λ )→ (HF∗mon(E),eE)

is unital.
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Proof. Suppose µ 6= λ . Then σ := m0(E)− µIdE = (λ − µ)IdE +(m0(E)−λ IdE) is an invertible

endomorphism of E , since m0(E)− λ IdE is nilpotent. Moreover, σ−1 ◦ ẽE defines an element of

CF∗mon(E). So the argument from Corollary 2.3.9 tells us that CO0 vanishes on QH∗(M)µ . On the

other hand, if HF∗mon(E) 6= 0 then, since CO0 is unital, it cannot vanish identically. Thus we must

have that λ ∈ Spec(c1(T M)). Unitality of CO0
λ

is clear since CO0 is unital and it vanishes on the

other eigensummands.

We thus have that the only potentially non-trivial summands of F(M) are those F(M)nil
λ

for

which λ is an eigenvalue of c1(T M)?. This is in parallel with the well-known situation for rank 1

local systems.

2.3.5 Split-generation

Finally, we discuss a generalisation of Abouzaid’s split-generation criterion [Abo10] to our setting

involving higher rank local systems. Such an extension has already been proved in [Abo12] for the

wrapped Fukaya category and our situation is in fact a lot simpler since we won’t have to deal with

infinite-dimensional Hom–spaces. On the other hand, the restriction to only finite-rank local systems

gives us the freedom to allow for the possibility that both the generating and the generated objects

of F(M) are equipped with higher rank local systems.

Recall first that if A is any cohomologically unital A∞ category then an object E is said to

split-generate an object W if W is quasi-isomorphic to an object in the smallest triangulated (in

the A∞ sense) and idempotent-closed subcategory of Π(TwA) containing E, where Π(TwA) de-

notes the split-closure of the category Tw(A) of twisted complexes overA (see [Sei08a, (3l), (4c)]).

Split-generation is important for computations in Fukaya categories but in the present work we are

interested only in the following well-known consequence.

Fact 2.3.12. Suppose that W is split-generated by E and H∗(homA(W,W ),µ1) 6= 0. Then

H∗(homA(E,W ),µ1) 6= 0. In particular, if (L,E) and (K,W) are objects of F(M) and (K,W)

is split-generated by (L,E), then HF ∗(E ,W) 6= 0 and hence the Lagrangians K and L cannot be

displaced by a Hamiltonian isotopy.

Abouzaid’s criterion gives a sufficient condition for (K,W) to be split-generated by (L,E). As

we saw in section 2.3.4, a necessary condition would be that both objects lie in the same summand

F(M)nil
λ

. For technical reasons (in particular, the proof of Lemma 2.3.15 below) we require the

stronger condition that both objects (L,E) and (K,W) are contained in the smaller subcategory

F(M)λ . From now on, we impose this as a standing assumption. Note that in this case we have

CF ∗(E ,E) =CF∗(E ,E), CF ∗(W,W) =CF∗(W,W) and CF ∗(E ,W) =CF∗(E ,W). Thus we drop

the bars from the notation.

The version of the split-generation criterion we need is the following:
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Theorem 2.3.13. Let (L,E) be an object of F(M)λ . If the map

CO∗
λ

: QH∗(M)λ → HH∗(CF∗(E ,E))

is injective, then any other object (K,W) ∈ F(M)λ is split-generated by (L,E).

This theorem is due to Abouzaid ([Abo10]) in the case of exact Lagrangians in an exact sym-

plectic manifold and when E andW are trivial of rank 1. The case of a general symplectic manifold

is work in progress by Abouzaid-Fukaya-Oh-Ohta-Ono [AFO+]. Still in the exact case, the paper

[Abo12] proves a version in whichW is allowed to be non-trivial and possibly of infinite rank. This

last requirement is the cause of several algebraic complications which we avoid here. The proof for

the monotone setting and with E andW of rank 1 (though possibly non-trivial) is treated in [She16,

Section 2.11]. We include a sketch of that proof, modified to incorporate local systems of any finite

rank. In our application to the Chiang Lagrangian we shall only use the split-generation criterion

in the case when E is trivial of rank 1 (althoughW isn’t) but for completeness we treat the slightly

more general case here.

While the statement of Theorem 2.3.13 concerns only the closed-open string map, its proof

relies on several other maps relating quantum cohomology of M with Hochshild invariants of the

objects (L,E) and (K,W). More precisely, these are:

• the open-closed string map

OC∗ : HH∗(CF∗(E ,E))→ QH∗(M)

from the Hochschild homology of the A∞ algebra CF∗(E ,E) to quantum cohomology of the

ambient manifold,

• the evaluation map

H(µ) : HH∗(CF∗(E ,E),PW(E))→ HF∗(W,W),

from Hochschild homology of CF∗(E ,E) with coefficients in the A∞ bimodule PW(E) :=

CF∗(E ,W)⊗CF∗(W,E) to the Floer cohomology of (K,W),

• the coproduct map

HH∗(∆) : HH∗(CF∗(E ,E))→ HH∗(CF∗(E ,E),PW(E)).

In the following three sections we describe these maps and the objects they relate.

2.3.5.1 Hochschild homology and the open-closed string map

For any A∞ bimoduleN over the A∞ algebra (CF∗(E ,E),µ∗) there is a Hochschild homology group

HH∗(CF∗(E ,E),N ). It is the homology of the complex

CC∗(CF∗(E ,E),N ) :=
⊕
d≥0

N ⊗CF∗(E ,E)⊗d
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with respect to the A∞ cyclic bar differential

b(n,αd , . . . ,α1) = ∑
r≥0,s≥0
r+s≤d

µ
r|1|s
N (αr, . . . ,α1,n,αd , . . . ,αd−s+1)⊗αd−s⊗·· ·⊗αr+1

+ ∑
i≥0, j≥1
i+ j≤d

n⊗αd⊗·· ·⊗αi+ j+1⊗µ
j(αi+ j, . . . ,αi+1)⊗αi⊗·· ·⊗α1,

where µ
·|1|·
N denote the bimodule structure maps forN . SubstitutingN =CF∗(E ,E) one obtains the

group HH∗(CF∗(E ,E)), which is the source of the open-closed string map OC∗.

In the case of rank 1 local systems, this map has been heavily studied by many authors

([FOOO09], [Abo10], [Gan12], [She16], [RS17] etc.). To incorporate local systems of higher fi-

nite rank one needs to algebraically modify the construction using a trace map. We now give a brief

description of how the construction works.

Following [She16, Section 2.6], we define the open-closed string map in terms of a pairing

(OC∗(−),−) : HH∗(CF∗(E ,E))⊗H∗(M;F)→ F. (2.37)

Given a generator

α⊗αd⊗·· ·⊗α1 ∈ HomF(Ex(0),Ex(1))⊗HomF(Exd(0),Exd(1))⊗·· ·⊗HomF(Ex1(0),Ex1(1))

≤ CC∗(CF∗(E ,E))

and a pseudocycle f , representing a homology class a, we consider the moduli space

R0:d+1;1(x,~x; f ), consisting of perturbed pseudoholomorphic discs asymptotic to x and ~x :=

(x1, . . . ,xd) at the boundary punctures and mapping the boundary to L and the internal marked

point to im( f ). We define

(OC∗(α⊗αd⊗·· ·⊗α1),a; f ) := ∑
u∈R0

0,d+1;1(x,~x; f )

tr(P
γd

u
◦αd ◦P

γ
d−1
u
◦αd−1 ◦ · · · ◦Pγ1

u
◦α1 ◦Pγ0

u
◦α),

where on the right hand side one takes the trace of the element in brackets which is an endomor-

phism of Ex(0). For index reasons, the boundary of the Gromov compactification of the 1-dimensional

component R1
0,d+1;1(x,~x; f ) consists only of strip breakings at the incoming punctures and configu-

rations of pairs of discs, one of which carries the internal marked point and the other carries at least

two punctures. With the correct choice of perturbation data, these are precisely the moduli spaces

contributing to the composition

CC∗(CF∗(E ,E)) b // CC∗(CF∗(E ,E))
(OC∗(−),a; f ) // F . (2.38)

We claim that this implies (OC∗(b(α⊗αd⊗·· ·⊗α1)),a; f )= 0. Let us illustrate this by an example.

Suppose that d = 4 and the two broken configurations in Figure 2.2 appear as opposite boundary

points of a connected component ofR1
0:5;1(x,x1,x2,x3,x4; f ).
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α

α1

α2

α3

α4

(u,v)

f

γ0
u

γ1
u

γ2
u

γ0
v

γ1
v

γ2
v

γ3
v

α

α1

α2

α3

α4(u′,v′)

f

γ0
u′

γ1
u′

γ2
u′
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Figure 2.2: Evaluating OC∗ on a Hochschild boundary

Their contributions to the composition (2.38) are given by:

tr
(

Pγ2
u
◦α3 ◦Pγ1

u
◦α2 ◦Pγ0

u
◦
(

Pγ3
v
◦α1 ◦Pγ2

v
◦α ◦Pγ1

v
◦α4 ◦Pγ0

v

))
and

tr
(

P
γ3

u′
◦
(

P
γ2

v′
◦α4 ◦P

γ1
v′
◦α3 ◦P

γ0
v′

)
◦P

γ2
u′
◦α2 ◦P

γ1
u′
◦α1 ◦P

γ0
u′
◦α

)
.

Since there is a 1-parameter family of glued curves interpolating between the two broken configura-

tions, we have that for every 0≤ j≤ 4 the two paths connecting x j(1) to x j+1(0) (where x0 = x5 = x)

arising from (u,v) and (u′,v′) are homotopic. In particular γ3
v ·γ0

u = γ1
u′ ∈Π1L(x1(1),x2(0)), γ2

u ·γ0
v =

γ1
v′ ∈Π1L(x3(1),x4(0)), γ1

v = γ2
v′ ·γ

3
u′ ∈Π1L(x4(1),x(0)) and γ1

u = γ2
u′ ·γ

0
v′ ∈Π1L(x2(1),x3(0)). Using

this we see that the two expressions of which we are taking the trace are cyclic permutations of com-

positions of the same maps and hence the traces agree. Since all broken configurations contributing

to (2.38) come in such pairs, we conclude that the composition vanishes altogether.

On the other hand, given a Hochschild chain ϕ and two pseudocycles f , g representing a,

then by considering moduli spaces of discs with asymptotics determined by ϕ and which map the

internal marked point to a homology between f and g one can show (see [She16, Section 2.6])

that (OC∗(ϕ),a; f )+(OC∗(ϕ),a;g) depends only on b(ϕ) and so vanishes when ϕ is a Hochschild

cycle. One thus obtains a well defined pairing (2.37) which defines the map OC∗.
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2.3.5.2 The bimodule PW(E) and the evaluation map H(µ)

Let us consider for a moment a purely algebraic setup. LetA be an A∞ category and let E be an object

of A. Then for every object W one can consider the space PW (E) := homA(E,W )⊗ homA(W,E)

which is an A∞ bimodule over homA(E,E) with structure maps

µ
r|1|0 : homA(E,E)⊗r⊗PW (E) → PW (E)

µ
r|1|0(αr, . . . ,α1, f ⊗g) = f ⊗µ

r+1(αr, . . . ,α1,g),

µ
0|1|s : PW (E)⊗homA(E,E)⊗s → PW (E)

µ
0|1|s( f ⊗g,α|1, . . . ,α|s) = µ

s+1( f ,α|1, . . . ,α|s)⊗g

and µr|1|s = 0 for r 6= 0 6= s. Thus one has a Hochschild homology group HH∗(homA(E,E),PW (E)).

There is a natural evaluation map:

H(µ) : HH∗(homA(E,E),PW (E))→ H∗(homA(W,W ),µ1),

induced on the chain level by the map:

C(µ) : CC∗(homA(E,E),PW (E)) → homA(W,W )

C(µ) : ( f ⊗g)⊗αd⊗·· ·⊗α1 7→ µ
d+2( f ,αd , . . . ,α1,g).

In this setting one has the following lemma of Abouzaid:

Lemma 2.3.14. ([Abo10, Lemma 1.4]) LetA be a cohomologically unital A∞ category and E, W be

objects in A. If the unit eW ∈ H∗(homA(W,W ),µ1) lies in the image of the evaluation map H(µ),

then W is split-generated by E.

Let us now specialise to the case whereA is the category F(M)λ from section 2.3.1 above. The

bimodule is then PW(E) = P(K,W)(L,E) =CF∗(E ,W)⊗CF∗(W,E). Note that this can be rewritten

as

CF∗(E ,W)⊗CF∗(W,E) =

 ⊕
y∈X (L,K)

Hom(Ey(0),Wy(1))

⊗
 ⊕

z∈X (K,L)

Hom(Wz(0),Ez(1))


=

⊕
y∈X (L,K)
z∈X (K,L)

Hom(Ey(0),Wy(1))⊗Hom(Wz(0),Ez(1))

=
⊕

y∈X (L,K)
z∈X (K,L)

E∨y(0)⊗Wy(1)⊗W∨z(0)⊗Ez(1)

=
⊕

y∈X (L,K)
z∈X (K,L)

Hom(Wz(0),Wy(1))⊗Hom(Ey(0),Ez(1)),

where we have crucially used the fact that E andW have finite rank. So one can write the elements

of the components of PW(E) as linear combinations of terms of one of the following two kinds:
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• f̂y⊗ ĝz ∈ Hom(Ey(0),Wy(1))⊗Hom(Wz(0),Ez(1))

• fzy⊗gyz ∈ Hom(Wz(0),Wy(1))⊗Hom(Ey(0),Ez(1)).

We will find the second description more useful. We then need an expression for the output of the

evaluation map C(µ), when it is applied to elements of the form fzy⊗gyz.

Lemma 2.3.15. For elements fzy⊗gyz ∈Hom(Wz(0),Wy(1))⊗Hom(Ey(0),Ez(1))≤ PW(E) and αd⊗

·· ·⊗α1 ∈ Hom(Exd(0),Exd(1))⊗·· ·⊗Hom(Ex1(0),Ex1(1)) ≤CF∗(E ,E)⊗d , the evaluation map C(µ)

is given by

C(µ)(( fzy⊗gyz)⊗αd⊗·· ·⊗α1) = (2.39)

∑
w∈X (K,K)

∑
u∈R0

1:d+2(w:z,x1,...,xd ,y)

tr(P
γ

d+1
u
◦αd · · · ◦Pγ2

u
◦α1 ◦Pγ1

u
◦gyz)Pγ

d+2
u
◦ fzy ◦Pγ0

u
,

where one takes the trace of the element in brackets which is an endomorphism of Ey(0).

Proof. Note that the contribution of every disc u ∈R0
1:d+2(w : z,x1, . . . ,xd ,y) to

C(µ)(( f̂y⊗ ĝz)⊗αd⊗·· ·⊗α1) = µ
d+2( f̂y,αd , . . . ,α1, ĝz)

is obtained by applying the composition map:

Hom(Ey(0),Wy(1))⊗Hom(Ez(1),Ey(0))⊗Hom(Wz(0),Ez(1))
−◦−◦−// Hom(Wz(0),Wy(1)) (2.40)

to the element f̂y⊗T ⊗ ĝz, where T = P
γ

d+1
u
◦αd ◦ · · · ◦α1 ◦Pγ1

u
. Using again that our local systems

have finite ranks, we have

Hom(Ey(0),Wy(1))⊗Hom(Ez(1),Ey(0))⊗Hom(Wz(0),Ez(1))
= E∨y(0)⊗Wy(1)⊗E∨z(1)⊗Ey(0)⊗W∨z(0)⊗Ez(1)

= Hom(Ez(1),Ey(0))⊗Hom(Ey(0),Ez(1))⊗Hom(Wz(0),Wy(1)).

We then see that the composition map (2.40) coincides with the map

Hom(Ez(1),Ey(0))⊗Hom(Ey(0),Ez(1))⊗Hom(Wz(0),Wy(1)) → Hom(Wz(0),Wy(1))

T ⊗gyz⊗ fzy 7→ tr(T ◦gyz) fzy, (2.41)

as both are given by performing all possible contractions of dual tensor factors in the product

E∨y(0)⊗Wy(1)⊗E∨z(1)⊗Ey(0)⊗W∨z(0)⊗Ez(1).

2.3.5.3 The coproduct map ∆

Following [Abo10, Section 3.3 and 4.2], [Abo12, Section 5.1], [She16, Section 2.11], we relate

CF∗(E ,E) to the bimodule PW(E) via an A∞ bimodule homomorphism obtained from counts of

pseudoholomorphic discs with two outgoing boundary punctures. More precisely, one defines a

coproduct map

∆ : CF∗(E ,E)→ PW(E)
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as follows. Consider holomorphic discs with two negative boundary punctures ζ01, ζ02 and one

positive ζ1, appearing in this cyclic order counterclockwise around the boundary of the disc. For

every choice of Hamiltonian chords x ∈ X (L,L), y ∈ X (L,K) and z ∈ X (K,L), one has the moduli

spaceR2:1(z,y : x) of perturbed pseudoholomorphic discs u which are asymptotic at ζ01, ζ02 and ζ1 to

z, y and x, respectively, and which map the boundary arc between ζ01 and ζ02 to K and the remaining

two arcs to L. Every map u∈R2:1(z,y : x) defines paths γ0
u ∈Π1K(z(0),y(1)), γ1

u ∈Π1L(y(0),x(0)),

γ1
u ∈Π1L(x(1),z(1)) which are the images of the boundary arcs connecting ζ01 to ζ02, ζ02 to ζ1 and

ζ1 to ζ01, respectively. The map ∆ is then defined by setting for every α ∈ Hom(Ex(0),Ex(1))

∆(α) = ∑
y∈X (L,K)
z∈X (K,L)

∑
u∈R0

2:1(z,y:x)

Pγ0
u
⊗ (Pγ2

u
◦α ◦Pγ1

u
)

with Pγ0
u
⊗ (Pγ2

u
◦α ◦Pγ1

u
) ∈ Hom(Wz(0),Wy(1))⊗Hom(Ey(0),Ez(1))≤ PW(E).

One can now extend the map ∆ to a homomorphism of A∞ bimodules. That is, for every r ≥ 0,

s≥ 0 one defines an operation

∆
r|1|s : CF∗(E ,E)⊗r⊗CF∗(E ,E)⊗CF∗(E ,E)⊗s→ PW(E)

by considering discs with two negative punctures and r + 1+ s positive ones. Given chords ~x =

(x1, . . . ,xr), x, ~x| = (x|s, . . . ,x|1), all connecting L to L, and elements αi ∈ Hom(Exi(0),Exi(1)), α ∈

Hom(Ex(0),Ex(1)), α|i ∈ Hom(Ex|i(0),Ex|i(1)) one sets

∆
r|1|s(αr, . . . ,α1,α,α|1, . . . ,α|s) =

∑
y∈X (L,K)
z∈X (K,L)

∑
u∈R0

2:r+1+s(z,y:~x|,x,~x)

Pγ0
u
⊗ (P

γ
r+s+2
u

◦αr ◦P
γ

r+s+1
u

◦ · · · ◦P
γ

s+2
u
◦α ◦P

γ
s+1
u
◦ · · · ◦Pγ2

u
◦α|s ◦Pγ1

u
),

where γ0
u is again the image of the arc between the two negative punctures, which is mapped to K

and the other arcs are ordered counterclockwise around the boundary of the disc. Note that ∆0|1|0 is

the initially defined coproduct map. The fact that ∆ is indeed an A∞ bimodule homomorphism (i.e.

satisfies [Abo10, Equation (4.13)]) is verified again by considering the Gromov compactification of

the one-dimensional component R1
2:r+1+s(z,y :~x|,x,~x). It follows that ∆ induces a map HH∗(∆) in

Hochschild homology. It is defined on the chain level by using all cyclic shifts of arguments of ∆·|1|·.

That is, given an element α⊗αd⊗·· ·⊗α1 ∈CC∗(CF∗(E ,E)), one has

CC∗(∆)(α⊗αd⊗·· ·⊗α1) = ∑
r+s≤d

∆
r|1|s(αr⊗·· ·⊗α1⊗α⊗αd⊗·· ·⊗αd−s+1)⊗αd−s⊗·· ·⊗αr+1.

2.3.5.4 Proof of the split-generation criterion

We are now in a position to give a sketch proof of Theorem 2.3.13. It follows from the following

two facts:

Proposition 2.3.16. (cf. [She16, Corollary 2.5, Proposition 2.6]) There exists a perfect pairing

HH∗(CF∗(E ,E))⊗HH∗(CF∗(E ,E))→ F. (2.42)
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Further, the diagram

QH∗(M)

CO∗

��

∼= // QH∗(M)∨

OC∨∗
��

HH∗(CF∗(E ,E))
∼= // HH∗(CF∗(E ,E))∨

(2.43)

commutes, where the top isomorphism is given by the Poincaré pairing and the bottom one comes

from (2.42).

Proposition 2.3.17. ( cf. [Abo12, Proposition 4.1], [She16, Lemma 2.15]) The following diagram

commutes:

HH∗(CF∗(E ,E))

OC∗
��

HH∗(∆) // HH∗(CF∗(E ,E),PW(E))

H(µ)

��
QH∗(M)

CO0
// HF∗(W,W).

(2.44)

Assuming these facts we have:

Proof of Theorem 2.3.13. Since QH∗(M) is a Frobenius algebra we have that c1(T M)? is symmetric

with respect to the Poincaré pairing <, > and so its generalised eigenspaces are orthogonal. From

Proposition 2.3.16 we thus have the commutative diagram

QH∗(M)λ

CO∗
λ

��

∼= // (QH∗(M)λ )
∨

OC∨∗
��

HH∗(CF∗(E ,E))
∼= // HH∗(CF∗(E ,E))∨

.

Hence, if CO∗
λ

is injective, then OC∗ surjects onto QH∗(M)λ and in particular 1λ ∈

OC∗(HH∗(CF∗(E ,E)). By Proposition 2.3.11 we know that CO0(1λ ) = eW and so eW lies in

the image of CO0 ◦OC∗. By Proposition 2.3.17 we then have that eW lies in the image of H(µ) and

applying Lemma 2.3.14 yields that (K,W) is split-generated by (L,E).

Proof of Proposition 2.3.16. The construction of the pairing (2.42) and the proof that it is perfect

can be taken directly from [She16, Lemma 2.4 & Corollary 2.5]. The only extra input needed to deal

with local systems of higher finite rank is a linear algebra argument, analogous to Lemma 2.3.15

above (the proof of [She16, Lemma 2.4] uses the coproduct map ∆; as seen above, the output of ∆

lies in a slightly awkward tensor product of spaces of linear maps; one needs to rearrange the tensor

factors to make this output more manageable). We omit the details of this proof here.

The fact that diagram (2.43) commutes is proved in [She16, Proposition 2.6].

We now give a sketch proof of Proposition 2.3.17, following [She16, Section 2.11].

Proof of Proposition 2.3.17. Given Hamiltonian chords {x,x1, . . . ,xd} ∈ X (L,L) and w ∈ X (K,K),

consider the moduli space

D(w : x,x1, . . . ,xd) := {(u,v) ∈R1:0;1(w;M)×R0:d+1;1(x,x1, . . . ,xd ;M) : ev(u) = ev(v)} ,
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which consists of pairs of discs, connected at an internal node and asymptotic to the prescribed

chords at their boundary punctures. One can use the component D0(w : x,x1, . . . ,xd) of rigid such

configurations to define a map:

χ : CC∗(CF∗(E ,E))→CF∗(W,W)

χ(α⊗αd⊗ . . .⊗α1) = ∑
w∈X (K,K)

∑
(u′,v′)∈

D0(w:x,x1,...,xd)

tr
(

P
γd

v′
◦αd ◦ · · · ◦P

γ0
v′
◦α

)
P∂u′ . (2.45)

By considering the boundary of the Gromov compactification of the one-dimensional component

D1(w : x,x1, . . . ,xd), one shows that χ is a chain map. As a preparatory step for proving Proposition

2.3.17 one needs the following lemma:

Lemma 2.3.18. Let H(χ) : HH∗(CF∗(E ,E))→HF∗(W,W) denote the induced map on homology.

Then H(χ) = CO0 ◦OC∗.

Proof. Let {e1, . . . ,em} be a basis for H∗(M;F) elements of pure degree and let {e1, . . . ,em} ⊆

H∗(M;F) denote its dual basis. Further set εi = PD(ei) and ε i = PD(ei). Choose pseudocycles fi, gi

representing ei and εi respectively. Then, given a Hochschild cycle ϕ = ∑ j λ j α j⊗α jd ⊗ . . .⊗α j1,

one has

CO0(OC∗(ϕ)) =

[
∑

j
λ jσ

(
α j⊗α jd⊗ . . .⊗α j1;{ fi},{gi}

)]
,

where the square brackets denote the cohomology class in HF∗(W,W) and

σ (α⊗αd⊗ . . .⊗α1;{ fi},{gi}) :=
m

∑
i=1
〈OC∗(α⊗αd⊗ . . .⊗α1),ei; fi〉 CO0(ei;gi)

= ∑
w∈X (K,K)

 ∑
(u,v)∈⊔m

i=1 R
0
1:0;1(w;gi)×R0

0:d+1;1(x,x1,...,xd ; fi)

tr(P
γd

v
◦αd ◦ · · · ◦Pγ0

v
◦α)P∂u

 .

Now, given Hamiltonian chords {x,x1, . . . ,xd} ∈ X (L,L), w ∈ X (K,K) and a bordism h : B→M×

M, realising a homology between ∑
l
i=1 ei× εi and the diagonal, consider the moduli space

H(w : x,x1, . . . ,xd ;h) := {(u,v) ∈R1:0;1(w;M)×R0:d+1;1(x,x1, . . . ,xd ;M) : (ev(u),ev(v)) ∈ im(h)} .

Then
⊔m

i=1R0
1:0;1(w;gi)×R0

0:d+1;1(x,x1, . . . ,xd ; fi) and the zero-dimensional component of discs

connected at a node D0(w : x,x1, . . . ,xd) form part of the boundary of the Gromov compactifica-

tion of the 1-dimensional component H1(w : x,x1, . . . ,xd ;h). By analysing the remaining boundary

components of this compactification and using again that the homotopy classes of the paths involved

in parallel transport remain invariant in 1-parameter families, one finds that the sum ∑
(u,v)∈⊔m

i=1 R
0
1:0;1(w;gi)×R0

0:d+1;1(x,x1,...,xd ; fi)

tr(P
γd

v
◦αd ◦ · · · ◦Pγ0

v
◦α)P∂u
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+

 ∑
(u′,v′)∈

D0(w:x,x1,...,xd)

tr(P
γd

v′
◦αd ◦ · · · ◦P

γ0
v′
◦α)P∂u′

 ∈ HomF(Ww(0),Ww(1))

depends linearly on b(α,αd , . . . ,α1) up to a term which is the HomF(Ww(0),Ww(1))-component of

a µ1-exact element.

To prove Proposition 2.3.17, it remains to be shown that H(χ) = H(µ) ◦HH∗(∆). This is

implied by the following lemma.

Lemma 2.3.19. The maps χ and C(µ)◦CC∗(∆) are chain-homotopic.

Proof. Following [Abo12, Section 5.3], we construct such a homotopy by considering a moduli

space of perturbed pseudoholomorphic maps, whose domain is an annulus Ar = {z∈C : 1≤ |z| ≤ r}

(for some r) with d + 1 positive punctures {ζ = r,ζ1, . . . ,ζd} on the outer circle and one negative

puncture on the inner circle, constrained to lie at −1. Given chords {x,x1, . . . ,xd} ∈ X (L,L) and

w ∈ X (K,K), we denote by C−1:d+1(w : x,x1, . . . ,xd) the moduli space of maps as above, which are

furthermore required to map the boundary component {z ∈ Ar : |z|= 1} to K, the remaining bound-

ary components {z ∈ Ar : |z| = r} to L and which are asymptotic to w at −1 and to {x,x1, . . . ,xd}

at {ζ = r,ζ1, . . . ,ζd}. The boundary of the Gromov compactification of the one-dimensional com-

ponent C−,11:d+1(w : x,x1, . . . ,xd) consist of the following four types of configurations (see [Abo12,

Equations (5.18), (5.19), (5.20)]):

1. a strip breaking at the outgoing puncture; connected components of this stratum are given by

products

R0
1:1(w : w′)×C−,01:d+1(w

′ : x,x1, . . . ,xd)

for some w′ ∈ X (K,K).

2. a strip or a stable disc component (i.e. a disc carrying at least two punctures) breaking off at a

positive puncture; connected components of this stratum are given by products

C−,01:d−s−r+1(w : x′,xr+1, . . . ,xd−s)×R0
1:r+s+1(x

′ : xd−s+1, . . . ,xd ,x,x1, . . . ,xr)

for some x′ ∈ X (L,L) and

C−,01:d− j+2(w : x,x1, . . . ,xi,x′,xi+ j+1, . . . ,xd)×R0
1: j(x

′ : xi+1, . . . ,xi+ j)

for some x′ ∈ X (L,L).

3. a degeneration of the conformal modulus of the annulus as r→ 1; components of the boundary

at r = 1 are given by products

R0
1:d−r−s+2(w : z,xr+1, . . . ,xd−s,y)×R0

2:r+s+1(z,y : xd−s+1, . . . ,xd ,x,x1, . . . ,xr)

for some y ∈ X (L,K), z ∈ X (K,L).



2.4. The pearl complex 78

4. a degeneration of the conformal modulus of the annulus as r→+∞; the boundary at r =+∞

is the moduli space D0(w : x,x1, . . . ,xd) of pairs of discs, connected at a node.

Observe that the degenerations of types 3 and 4 are precisely the ones which account for the

HomF(Ww(0),Ww(1))-component of C(µ) ◦CC∗(∆)(α ⊗αd ⊗ ·· ·⊗α1) and χ(α ⊗αd ⊗ ·· ·⊗α1),

respectively. Further, from the description of C(µ) in Lemma 2.3.15 one can see that both

χ(α⊗αk⊗ . . .⊗α1) and C(µ)◦CC∗(∆)(α⊗αk⊗ . . .⊗α1) weight the parallel transport map along

the boundary component mapping to K by the trace of the the loop of linear maps, obtained by

composing the elements αi with the parallel transport along the boundary components mapped

to L. On the other hand, each a ∈ C−d+1(w : x,x1, . . . ,xd) defines paths γ
j

a ∈ Π1L(x j(1),x j+1(0)),

0 ≤ j ≤ d, which are the images of the boundary arcs connecting ζ j to ζ j+1 (again the notation

means ζ0 = ζd+1 = ζ and x0 = xd+1 = x) and γa ∈Π1K(w(0),w(1)), which is the image of the inner

boundary circle, oriented clockwise. We then define a map

h : CC∗(CF∗(E ,E))→CF∗(W,W)

h(α⊗αd⊗·· ·⊗α1) = ∑
w∈X (K,K)

∑
a∈C−,0d+1(w:x,x1,...,xd)

tr(P
γd

a
◦αd ◦ · · · ◦Pγ0

a
◦α)Pγa .

This is analogous to [Abo12, Equation (5.22)], except that we weight the parallel transport on K

by the trace of the loop on L. Looking at the remaining types of boundary components of the

compactification of C−,11:d+1(w : x,x1, . . . ,xd), we see that the degenerations of types 1 and 2 account

for the Hom(Ww(0),Ww(1))-component of µ1(h(α ⊗αd ⊗ ·· ·⊗α1)) and h(b(α ⊗αd ⊗ ·· ·⊗α1)),

respectively. Using again that all these terms are paired-off as boundary points of closed intervals

we conclude that C(µ)◦CC∗(∆)+ χ +µ1 ◦h+h◦b = 0, i.e. h is a chain-homotopy between χ and

C(µ)◦CC∗(∆).

2.4 The pearl complex
We now recall an alternative approach to calculating self-Floer cohomology of a single monotone

Lagrangian, namely Biran and Cornea’s pearl complex (see [BC09a] for an extensive account of this

theory or [BC07b] for the full details). This is precisely the machinery which we use in all subse-

quent chapters in order to compute Floer cohomology. It provides a much nicer setting for doing so,

because it does not require the introduction of Hamiltonian perturbations or time-dependent complex

structures. In this section we explain how to adapt Biran and Cornea’s theory in order to incorporate

local coefficients.

2.4.1 Definition and obstruction

Let L⊆ (M,ω) be a closed monotone Lagrangian submanifold whose minimal Maslov number sat-

isfies Nπ
L ≥ 2. Further, let L be equipped with a pair of F-local systems E0, E1. Choose a Morse
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function f : L→R and a Riemannian metric g, such that D := ( f ,g) is a Morse-Smale pair. The un-

derlying vector space of the pearl complex is basically just the Morse complex C∗f (L;Hom(E0,E1))

(recall (2.6)) but the differential is deformed by contributions from pseudoholomorphic discs with

boundary on L. We will see that this new differential meets the same obstruction to squaring to

zero as the one on CF∗(E0,E1) and that the two maximal unobstructed subcomplexes are homotopy

equivalent. One difference between C∗f (L;Hom(E0,E1)) and CF∗(E0,E1) is that the former comes

with a Z-grading by Morse index and it will be convenient to keep track of it.3 As we shall see,

the deformed differential respects this grading (i.e. has degree 1) only modulo Nπ
L , so to keep the

grading absolute we follow Biran-Cornea and define:

Definition 2.4.1. The pearl pre-complex of the pair (L,E0), (L,E1) with respect to the Morse func-

tion f is

C∗f (E0,E1) :=C∗f (L;Hom(E0,E1))⊗F F[T±1],

where F[T±1] is the ring of Laurent polynomials in a formal variable T of degree Nπ
L . ♦

Notation 2.4.2. We write C∗f (L,(L,E1)) and C∗f ((L,E0),L) in case E0 or E1 is trivial of rank one and

C∗f (L,L;F) when both are. We also set Cr,s
f (E0,E1) := Cs

f (L;Hom(E0,E1)) ·T r. Given an element

a = ∑y∈Crit( f ) ∑r∈Zαy,r⊗T r ∈C∗f (E0,E1) and a critical point x ∈ Crit( f ), we write

〈a,x〉= ∑
r∈Z

αx,r⊗T r ∈ HomF(E0
x ,E1

x )⊗F[T±1]

to denote the respective component. If we have local systems V,W → L and morphisms of local

systems F ∈ Hom(V,E0), G ∈ Hom(E1,W), we will write

a◦F := ∑
y∈Crit( f )

∑
r∈Z

(αy,r ◦F)⊗T r ∈C∗f (V,E1),

G◦a := ∑
y∈Crit( f )

∑
r∈Z

(G◦αy,r)⊗T r ∈C∗f (E0,W). //

Remark 2.4.3. It is standard in the construction of algebraic invariants from holomorphic curves to

work over a Novikov ring whose purpose is to record the areas of the curves that are being counted. In

more general situations this is a necessity as otherwise the counts are not finite, but in the monotone

case the use of F[T±1] is more of a convenience which allows us to keep track of gradings. In

particular, we are free to set the variable T equal to 1 and thus obtain a complex which is only

Z/Nπ
L -graded or indeed to forget the grading altogether. //

In order to define the appropriate candidate differential, one chooses a time-independent, ω-

compatible almost complex structure J ∈J (M,ω). Then one considers the following moduli spaces

of pearly trajectories.

3 There is also a natural way to put a corresponding grading on CF∗(E0,E1) (see e.g. [BC07b, Section 5.6]) but it is less

straightforward and we will not discuss it here.



2.4. The pearl complex 80

Definition 2.4.4. For any pair of critical points x,y ∈ Crit( f ) a parametrised pearly trajectory from

y to x is defined to be a configuration u = (u1, . . . ,ur) of J-holomorphic discs

u` : (D2,∂D2)→ (M,L), du`+ J ◦du` ◦ i = 0,

such that if φ : R×L→ L denotes the negative gradient flow of f with respect to the metric g, then

there exist elements {t1, . . . , tr−1} ⊆ (0,∞) such that

1. limt→−∞ φt(u1(−1)) = y;

2. for all 1≤ `≤ r−1, φt`(u`(1)) = u`+1(−1);

3. limt→+∞ φt(ur(1)) = x. ♦

The relevant moduli spaces now are:

• For any vector A = (A1, . . . ,Ar) ∈
(
HD

2 (M,L)\{0}
)r we denote by P̃(y,x,A;D ,J) the set of

all parametrised pearly trajectories u = (u1, . . . ,ur) such that [ui] = Ai for all 1≤ i≤ r;

• For any positive integer k we define

P̃(y,x,kNπ
L ;D ,J) :=

⋃
A

µ(A)=k Nπ
L

P̃(y,x,A;D ,J),

where the length r of the vector A is allowed to vary and µ(A) := ∑
r
i=1 IµL(Ai).

• We impose the following equivalence relation between such tuples of J–holomorphic discs:

u = (u1,u2, . . . ,ur) ∼ u′ = (u′1,u
′
2, . . . ,u

′
r′) if and only if r = r′ and there exist elements ϕ` ∈

G−1,1 := {g ∈ PSL(2,R) : g(−1) =−1, g(1) = 1} such that u` ◦ϕ` = u′`. We now set

P(y,x,A;D ,J) := P̃(y,x,A;D ,J)/∼

P(y,x,kNL;D ,J) := P̃(y,x,k Nπ
L ;D ,J)/∼

These definitions extend naturally to the case when A is the empty vector, in which case one

defines P(y,x, /0;D ,J) = P(y,x,0;D ,J) to be the space of unparametrised negative gradient

trajectories of f connecting y to x.

• We also declare the following to be standing notation:

δ (y,x,A) := indy− indx+µ(A)−1,

δ (y,x,k Nπ
L ) := indy− indx+ k Nπ

L −1.

These moduli spaces of pearly trajectories have natural descriptions as pre-images of certain

submanifolds of products of L under suitable evaluation maps and are thus endowed with a topology.

That is, given a vector A 6= /0 as above, one considers the map

evA : MA1(L;J)×·· ·×MAr(L;J)→ L2r,
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evA(u1, . . . ,ur) := (u1(−1),u1(1),u2(−1),u2(1), . . . ,ur(−1),ur(1)).

Then, putting Q := {(x,φt(x)) ∈ L×L : t > 0, x ∈ L\Crit( f )}, we have that

P̃(y,x,A;D ,J) = ev−1
A (W d(y)×Qr−1×W a(x)).

Note that from this description and our discussion about dimensions of moduli spaces of discs in

section 2.2.1, it follows that the expected dimension of the space P(y,x,A;D ,J) is exactly δ (y,x,A).

Following [BC07b], one can also use these descriptions to exhibit P(y,x,A;D ,J) as a topolog-

ical subspace of the much larger space L, defined as follows. Let PL denote the space of continuous

paths {γ : [0,b]→ L : b ≥ 0} (with the compact-open topology) and let PD ⊆ PL denote the sub-

space consisting of paths γ which parametrise negative gradient flowlines of f in the unique way

such that f (γ(t)) = f (γ(0))− t. Then P(y,x,A;D ,J) embeds continuously into the space

L := PD × (M̃A1(L;J)/G−1,1)×PD × (M̃A2(L;J)/G−1,1)×·· ·× (M̃Ar(L;J)/G−1,1)×PD .

Now let u = (u1,u2, . . . ,ur) ∈ P(y,x,A;D ,J) be a pearly trajectory connecting y to x and let

(τ0,u1,τ1,u2, . . . ,τr−1,ur,τr) be the corresponding element of L. For any 1 ≤ ` ≤ r and j ∈ {0,1}

define γ
j

u` : [0,1]→ L, γ
j

u`(t) = ũ`(eiπ( j+t+1)) for some parametrisation ũ` ∈M̃A`(L;J) of the disc u`.

That is, γ0
u` parametrises the image of the “bottom” half-circle, traversed counter clockwise, while

γ1
u` parametrises the “top” half-circle. Since we will only be interested in the homotopy classes of

these paths, the particular choice of parametrisations of the discs are irrelevant. We now define the

following two paths, which are the “bottom side” and “top side” of the pearly trajectory, respectively:

γ
0
u := τ0 · γ0

u1
· τ1 · · ·γ0

ur · τr ∈Π1L(y,x)

γ
1
u := τ

−1
r · γ1

ur · τ
−1
r−1 · · ·γ

1
u1
· τ−1

1 ∈Π1L(x,y). (2.46)

We then get corresponding parallel transport maps P0,γ0
u

: E0
y → E0

x and P1,γ1
u

: E1
x → E1

y . Whenever

we have E0 = E1 = E we will just write P
γ

j
u
= Pj,γ j

u
as before.

Remark 2.4.5. If one considers a function f which is small-enough in the C1-norm, then the graph L f

of d f can be assumed to lie in a Weinstein neighbourhood of L and so is a Hamiltonian deformation

of L in M. Transverse intersection points of L with L f correspond precisely to non-degenerate critical

points of f . This point of view has been explored already by Floer who showed that, if f is in fact

sufficiently small in the C2-norm, then for a specific almost-complex structure J, there is a one-

to-one correspondence between finite-energy J-holomorphic strips between L and L f which do not

leave the prescribed Weinstein neighbourhood and gradient flowlines of f with respect to the metric

gJ = ω(·,J·). Moreover, this correspondence is given simply by u 7→ u(·,0). That is, intuitively,

low-energy strips can be “collapsed” to gradient flowlines on L. Extending this analogy, one can

think of the pearly trajectories defined above as “collapsed” strips, where the “excess energy” which

allows some strips to leave the Weinstein neighbourhood has concentrated in the J-holomorphic
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discs. From this intuitive point of view the paths defined in (2.46) are analogous to the ones we used

in Definition 2.2.9. //

We wish to define a candidate differential on C∗f (E0,E1) by using parallel transport maps along

the paths (2.46) corresponding to isolated pearly trajectories. The relevant theorem, guaranteeing

that this is possible is the following.

Theorem 2.4.6. ([BC07b, Proposition 3.1.3]) For any Morse-Smale pair D , there exists a Baire

subset Jreg(D) ⊆ J (M,ω) such that for every J ∈ Jreg(D) and every pair of points x,y ∈ Crit( f )

the set P(y,x,k Nπ
L ;D ,J) has naturally the structure of a smooth manifold of dimension δ (y,x,k Nπ

L ),

whenever δ (y,x,k Nπ
L ) ≤ 1. Furthermore, when δ (y,x,k Nπ

L ) = 0 the space P(y,x,k Nπ
L ;D ,J) is

compact and hence consists of a finite number of points.

We can now define the candidate differential:

Definition 2.4.7. Fix a Morse-Smale pair D on L and an almost complex structure J ∈ Jreg(D). We

define a degree 1 map d(D,J) : C∗f (E0,E1)→C∗f (E0,E1) to be the unique F[T±1]-linear map which

satisfies the following: for every x ∈ Crit( f ) and every α ∈ HomF(E0
x ,E1

x ),

d(D,J)(α) = ∑
k∈N

∑
y∈Crit( f )

δ (y,x,k Nπ
L )=0

∑
u∈P(y,x,k Nπ

L ;D,J)
(P1,γ1

u
◦α ◦P0,γ0

u
) ·T k.

We write d̄(D,J) : C∗f (L;Hom(E0,E1))→C∗f (L;Hom(E0,E1)) for the map induced by d(D,J) after

setting T = 1. ♦

Propositions 5.1.2 and 5.6.2 in [BC07b] assert that (for a possibly smaller Baire subset of almost

complex structures, still denoted Jreg(D)) the above map is a differential whenever the local systems

E0 and E1 are assumed trivial of rank 1, and the resulting cohomology is canonically isomorphic to

the Floer cohomology HF∗(L,L) (after setting T = 1 or equipping HF∗(L,L) with a grading). With

higher rank local systems, we don’t necessarily have
(

d(D,J)
)2

= 0 and we are thus forced to pass to

the maximal unobstructed subcomplex C∗f (E0,E1). Still, most of the content of [BC07b, Propositions

5.1.2 and 5.6.2] applies to our setting just as well and we summarise these results in the following

theorem.

Theorem 2.4.8. Let (M,ω) be a closed monotone symplectic manifold and let L ⊆M be a closed

monotone Lagrangian submanifold with Nπ
L ≥ 2, equipped with a pair of F-local systems E0,E1 and

a Morse-Smale pair D = ( f ,g). Then there exists a Baire subset Jreg(D)⊆ J (M,ω) such that for

every J ∈ Jreg(D):

A) i) the map d(D,J) is well-defined;

ii) for every a ∈C∗f (E0,E1) one has(
d(D,J)

)2
a = (a◦m0(E0)−m0(E1)◦a) ·T. (2.47)
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In particular, if Nπ
L > 2, then

(
d(D,J)

)2
= 0.

B) Let D = ( f ,g) and D ′ = ( f ′,g′) be two Morse-Smale pairs for L and J ∈ Jreg(D), J′ ∈

Jreg(D ′) be regular almost complex structures. Then there exists a canonical up to homotopy

map of pre-complexes

Ψ
D ′,J′
D,J :

(
C∗f (E0,E1),d(D,J)

)
→
(

C∗f ′(E
0,E1),d(D ′,J′)

)
(2.48)

which induces a homotopy equivalence

Ψ
D ′,J′

D,J :
(

C∗f (E0,E1),d(D,J)
)
→
(

C∗f ′(E0,E1),d(D ′,J′)
)
.

C) Let
(
H, Ĵ

)
be a regular Floer datum for L. Then there is a canonical up to homotopy map of

pre-complexes

(ΨPSS)
H,Ĵ
D,J :

(
C∗f (L;Hom(E0,E1)), d̄(D,J)

)
−→CF∗

(
(L,E0),(L,E1);H, Ĵ

)
, (2.49)

inducing a homotopy equivalence of maximal unobstructed subcomplexes.

Notation 2.4.9. We will write HF ∗BC(E0,E1) for the cohomology H∗(C∗f (E0,E1),d(D,J)), which is a

Z-graded F[T±1]-module. If the obstruction (2.47) vanishes, we will drop the bar from the notation.

In light of part C), we have an isomorphism

HF ∗BC(E0,E1)⊗F[T±1] F
∼=−−→ HF ∗(E0,E1)

so will will not distinguish these notationally. //

Let us now give a sketch proof of Theorem 2.4.8, emphasising part ii) which is the only place

where higher rank local systems make a difference.

Proof of part A) i): This is an immediate consequence of Theorem 2.4.6 above.

Proof of part A)ii): We need to show that for every x ∈ Crit( f ) and α ∈ HomF(E0
x ,E1

x ) one has(
d(D,J)

)2
α = (α ◦m0(E0)(x)−m0(E1)(x)◦α) ·T.

The proof of this fact relies on analysing the natural Gromov compactifications of the spaces

P(y,x,A;D ,J) when δ (y,x,A) = 1.

These compactifications are described in detail by Biran and Cornea in [BC07b, Lemma 5.1.3],

where they also prove that d2 = 0 in the case of trivial rank 1 local systems (we have dropped

the decoration (D ,J) from the differential to alleviate notation). Generalising the same arguments

to the case of arbitrary local systems yields that for any distinct x,y ∈ Crit( f ) and each element

α ∈ HomF(E0
x ,E1

x )⊗F[T±1] one has 〈d2(α),y〉= 0.

However, some care needs to be taken when evaluating 〈d2(α),x〉. To that end we consider

the space of twice marked discs M̃A(L;J)/G−1,1 for some A ∈ π f
2(M,L) with IµL(A) = 2. Since
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Nπ
L ≥ 2, the Gromov compactification M̃A(L;J)/G−1,1 is obtained by adding equivalence classes of

stable maps (see [Fra08, Definition 2.3]) with two components: one is a disc in the class A, while

the other is a constant disc component and contains the two marked points. We distinguish these

configurations into two types, depending on the cyclic order of the special points on the constant

component. That is, with the marked points fixed at −1 and 1, we have (up to equivalence of stable

maps) two possibilities for the nodal point: we write

∂

(
M̃A(L;J)/G−1,1

)
=D−(A)∪D+(A),

where D−(A) consists of equivalence classes with the nodal point of the constant component at −i,

while D+(A) consists of the ones with the nodal point at i. Since both marked points lie on the con-

stant component, the extended evaluation map ev(A) : M̃A(L;J)/G−1,1→ L2 maps D−(A)∪D+(A)

to the diagonal. We shall write D−(A,x) := D−(A)∩ ev−1
(A)(x,x), D

+(A,x) := D+(A)∩ ev−1
(A)(x,x)

and D∓(A,x) :=D−(A,x)∪D+(A,x) for any point x ∈ L. Then, one has the following addendum to

[BC07b, Lemma 5.1.3]:

Theorem 2.4.10. There exists a Baire subset Jreg(D) ⊆ J (M,ω) such that for every J ∈ Jreg(D)

one has that for each x ∈ Crit( f ) and A ∈ π f
2(M,L) with IµL(A) = 2, the Gromov compactification

P(x,x,(A);D ,J) has naturally the structure of a compact 1-dimensional manifold with boundary.

Furthermore, the boundary is given by

∂P(x,x,(A);D ,J) =

 ⋃
z∈Crit( f )

ind(z)=ind(x)−1

P(x,z, /0;D ,J)×P(z,x,(A);D ,J)

 ∪

 ⋃
z∈Crit( f )

ind(z)=ind(x)+1

P(x,z,(A);D ,J)×P(z,x, /0;D ,J)

 ∪ D∓(A,x).

The above description of the boundary ∂P(x,x,(A);D ,J) is not explicitly mentioned in

[BC07b] since a natural bijection between D−(A,x) and D+(A,x) is implicitly used there to glue

the two spaces together and thus treat them as points in the interior of P(x,x,(A);D ,J). An explicit

description of this idea can be found in [Zap15, Section 6.2].

We claim that the above theorem suffices to prove part ii) of Theorem 2.4.8. Indeed, consider

w = [{ũα , ũβ}, {zαβ =∓i, zβα},{(α,−1),(α,1)}] ∈ D∓(A,x),

the notation being [{maps},{nodal points},{marked points}]; note in particular that ũα is constant.

Write ∂ ũβ ∈ Π1L(x,x) for the boundary of ũβ , viewed as a loop based at x = ũβ (zβα). If w ∈

D−(A,x), we define γ0
w := ∂ ũβ and γ1

w to be the constant path at x, while, if w ∈ D+(A,x) we define

γ1
w := ∂ ũβ and γ0

w to be the constant path at x. Note that there are obvious bijections D−(A,x) ∼=

MA
0,1(x,L;J) and D+(A,x)∼=MA

0,1(x,L;J) given by

w = [{ũα , ũβ},{zαβ =∓i, zβα},{(α,−1),(α,1)}] 7−→ uw := [ũβ ,zβα ].
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Observe that if w ∈ D−(A,x), then γ0
w = ∂uw and if w ∈ D+(A,x), then γ1

w = ∂uw. From this it is

immediate (at least when J ∈ Jreg(L|x)) that for every α ∈ HomF(E0
x ,E1

x ) we have

m(E1)(x)◦α−α ◦m(E0)(x) = ∑
A∈πf

2(M,L),
IµL (A)=2

∑
w∈D∓(A,x)

Pγ1
w
◦α ◦Pγ0

w
. (2.50)

Note now that we also have

〈d2
α,x〉 =

 ∑
z∈Crit( f )

ind(z)=ind(x)−1

∑
(u,v)∈

P(x,z,0;D,J)×P(z,x,2;D,J)

P1,γ1
v ·γ1

u
◦α ◦P0,γ0

u ·γ0
v

+

∑
z∈Crit( f )

ind(z)=ind(x)+1

∑
(u,v)∈

P(x,z,2;D,J)×P(z,x,0;D,J)

P1,γ1
v ·γ1

u
◦α ◦P0,γ0

u ·γ0
v

 ·T.
Multiplying equation (2.50) by T and adding it to the above, we obtain what we were after:

〈d2
α,x〉+(m0(E1)(x)◦α−α ◦m0(E0)(x)) ·T = 0,

where the right-hand side vanishes since, by Theorem 2.4.10, the sum runs over all boundary points

of the compact 1-dimensional manifold P(x,x,2;D ,J). This completes the proof of part ii) of The-

orem 2.4.8.

Proofs of part B) and part C): These are proved for trivial rank 1 local systems in [BC07b,

Section 5.1.2] and [BC07b, Proposition 5.6.2], respectively. Straightforward generalisations of these

arguments to the case of higher rank local systems yield the results.

2.4.2 The spectral sequence and comparison with Morse cohomology

In this section we compare the cohomology of the pearl complex C∗f (E0,E1) with the singular

(Morse) cohomology of L with coefficients in an approriate local system. The key tool here is

the Oh-Biran spectral sequence (constructed in [Oh96], [Bir06, Section 5.2] for different models

for Floer cohomology and in the present context in [BC09b]). This spectral sequence will be used

extensively for computations in subsequent chapters so we now briefly describe it.

Observe that the complex C∗f (E0,E1) comes equipped with a decreasing filtration by increasing

powers of T :

· · · ⊇ F−1 C∗f ⊇ F0 C∗f ⊇ F1 C∗f ⊇ · · · (2.51)

F p C∗f (E0,E1) := C∗f (E0,E1) ∩
⊕
r,s∈Z
r≥p

Cr,s
f (E0,E1).

This filtration is preserved by the differential and in fact the map d(D,J) decomposes as

d(D,J) = ∂0⊗1+∂1⊗T +∂2⊗T 2 + · · · , (2.52)
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where ∂k : C∗f (L;Zm0(E0,E1))→ C∗+1−kNπ
L

f (L;Zm0(E0,E1)) sends α ∈ Zm0(E0,E1)x for some x ∈

Crit( f ) to

∂kα = ∑
y∈Crit( f )

ind(y)=ind(x)+1−kNL

∑
u∈P(y,x,kNπ

L ;D,J)
P1,γ1

u
◦α ◦P0,γ0

u
.

Therefore the standard machinery of filtered complexes (see e.g. [McC01]) gives rise to a spectral

sequence whose first page is the homology of the complex
(

C∗f (E0,E1),∂0

)
and which converges to

HF ∗BC(E0,E1). To unravel this, note that since m0(E0) and m0(E1) are morphisms of local systems,

they give rise to a morphism:

Hom(E0,E1) −→ Hom(E0,E1) (2.53)

α 7−→ α ◦m0(E0)−m0(E1)◦α

We denote the local system which is the kernel of (2.53) by Zm0(E0,E1). Since ∂0 is just the Morse

differential ∂ D as described in (2.8), we conclude that the first page of the Oh-Biran spectral se-

quence is given by

E p,q
1

∼= H p+q−pNπ
L (L;Zm0(E

0,E1)) ·T p. (2.54)

Even without the full machinery of the spectral sequence, it is useful to compare the Morse and

Floer cohomology of L. In particular, observe that there is an obvious inclusion of graded vector

spaces

C∗f (L;Zm0(E
0,E1))

−⊗1−−−−→C∗f (E0,E1).

This is not a chain map between the Morse and pearl complexes in general but it becomes one when

restricted to the subcomplex (C∗f ,cls(L;Zm0(E0,E1)),∂ D), defined by

Ck
f ,cls(L;Zm0(E0,E1)) := Ck

f (L;Zm0(E0,E1)), k ≤ Nπ
L −2

CNπ
L−1

f ,cls (L;Zm0(E0,E1)) := ker

(
∂0|

C
Nπ

L −1
f (L;Zm0 (E

0,E1))

)
∩ker

(
∂1|

C
Nπ

L −1
f (L;Zm0 (E

0,E1))

)
Ck

f ,cls(L;Zm0(E0,E1)) := 0, k ≥ Nπ
L .

It is easy to see that the inclusion of (C∗f ,cls(L;Zm0(E0,E1)),∂ D) into the full Morse complex

with coefficients in Zm0(E0,E1) induces an inclusion on homology and we denote its image by

H∗cls(L;Zm0(E0,E1)). By the preceding discussion, we have a map

qL : H∗cls(L;Zm0(E
0,E1))→ HF ∗BC(E0,E1), (2.55)

induced by −⊗ 1.

Remark 2.4.11. The notation we have used here is not standard. The abbreviation “cls” stands for

“classical” and the map qL is meant to be seen as “quantising” classical cohomology. If we were

working with the Hamiltonian, rather than the pearly model for HF ∗(E0,E1), the existence of the

map qL is a non-trivial fact and the map itself is known as the “Lagrangian PSS morphism” [Alb08].

However, as we saw, once the pearl complex machinery is set up and the full power of the Lagrangian
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PSS map ΨPSS is used to identify the homology of the pearl complex with Floer cohomology, the

definition of qL is basically trivial. //

2.4.3 The monodromy pearl complex

We now consider the pearl model for the monodromy complex of section 2.2.3. Note that the spaces

Endmon(Ex) := Hommon(Ex,Ex) for varying x ∈ L fit together to form a local system of rings on L

which we denote by Endmon (E) (in the terminology of [Ste43], it is called a system of operator

rings). We can then define

Definition 2.4.12. The monodromy pearl complex of E with respect to the Morse function f is

C∗f ,mon(E) :=C∗f (L;Endmon (E))⊗F[T±1]

The monodromy pearl complex of L over F is defined by setting E = EFreg in the above and denoted

C∗f ,mon(L;F). ♦

The same kind of arguments as in section 2.2.3 show that (C∗f ,mon(E),d(D,J)) is a subcomplex

of the unobstructed complex (C∗f (E ,E),d(D,J)), that its homology is invariant under changes of D

or J and that the PSS morphism induces an isomorphism

H∗
(

C∗f (L;Endmon (E)), d̄(F ,J)
)
∼= HF∗mon(E).

We will write HF∗BC,mon(E) for the cohomology of (C∗f ,mon(E),d(D,J)) and HF∗BC,mon(L;F) instead

of HF∗BC,mon(EFreg). Note that if E0 dominates E1, then we still get domination maps

Φ : C∗f (L;Endmon (E0)) −→ C∗f (L;Endmon (E1)) (2.56)

H(Φ) : HF∗BC,mon(E0) −→ HF∗BC,mon(E1) (2.57)

simply by relabelling parallel transport maps as in section 2.2.3.

The filtration (2.51) restricts to a filtration of the monodromy pearl complex and we again get a

Oh-Biran spectral sequence converging to HF∗BC,mon(E). Its first page is built out of the cohomology

H∗(L;Endmon (E))⊗F[T±1]. For a general local system E , this is hard to interpret geometrically but

when E = EFreg, the cohomology H∗(L;Endmon (EFreg)) can be identified with the singular cohomology

with compact support of a particular (generally non-regular) cover of L.

Define L̂ := L̃×π1(L) π1(L), where L̃ denotes the universal cover of L and the twisted product

is formed using the deck transformation action of π1(L) on L̃ and the conjugation action of π1(L)

on itself (here π1(L) is given the discrete topology). Noting that the local system Endmon (EFreg) is

precisely the one associated to the (right) conjugation action of π1(L) on F[π1(L)], we see that we

have an isomorphism of local systems Endmon (EFreg)
∼= EL̂. Thus we conclude that the first page of

the Oh-Biran spectral sequence computing HF∗BC,mon(L;F) is given by

E p,q
1

∼= H p+q−pNπ
L

c ( L̂ ;F) · T p. (2.58)
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The cover L̂ has previously appeared in the work of Fukaya [Fuk06]. It has the following

properties which are easy to derive from the definition. First, its connected components are in

one to one correspondence with free homotopy classes of loops on L or, equivalently, conjugacy

classes in π1(L). In particular, it is disconnected unless π1(L) is trivial. The connected component

corresponding to the conjugacy class of an element γ ∈ π1(L) is homeomorphic to the (left) quotient

C(γ)\L̃, where C(γ) is the centraliser of γ in π1(L). Further, if LL denotes the free loop space of L,

then the evaluation map LL→ L factors through L̂ and the fibres of the map LL→ L̂ are connected.

In fact, the fibres of this map can easily be identified with the connected components of the based

loop space of L. In particular, if L is aspherical, then the map LL → L̂ has contractible fibres and

therefore is a homotopy equivalence (cf. [Fuk06, Lemma 12.5]). Combining this with Poincaré

duality one obtains that for an aspherical monotone Lagrangian L of dimension n, there is a spectral

sequence with first page

E p,q
1

∼= Hn+pNπ
L−(p+q)( LL ;F) · T p (2.59)

converging to HF∗BC,mon(L;F).

2.4.4 Algebraic structures

In [BC07b, Sections 5.2, 5.3] Biran and Cornea also define a product and an action of quantum coho-

mology on HF∗BC, when L carries the trivial rank 1 local system. Moreover, with these structures in

place, the map ΨPSS becomes a unital homomorphism of QH∗(M)-algebras, as shown by Zapolsky

in [Zap15, Section 5.2.4]. These constructions generalise in a straightforward way to incorporate

high rank local systems. We now give a very brief account, citing the literature for proofs of the

statements without local systems and leaving the generalisations to the reader.

Given a triple of local systems E0, E1, E2 on L, the product is a degree zero, F[T±1]-linear map

HF ∗BC(E1,E2)⊗HF ∗BC(E0,E1)−→ HF ∗BC(E0,E2). (2.60)

It comes from a map of pre-complexes

C∗f ′(E
1,E2)⊗C∗f (E0,E1)−→ C∗f ′′(E

0,E2),

defined by parallel transport along the “sides” (paths defined analogously to (2.46)) of Y-shaped

pearly configurations. The product (2.60) gives rise to a graded, F[T±1]-linear category 〈L〉F, whose

objects are F-local systems on L and the morphism space between E0 and E1 is HF ∗BC(E0,E1). That

is, the product satisfies the appropriate associativity property ([BC07b, Lemma 5.2.6]) and has a

unit ([BC07b, Lemma 5.2.4]). The unit is most easily defined by picking a Morse function f with

a unique minimum xmin ∈ Crit( f ), in which case the element ẽE := Id⊗1 ∈ End(Exmin)⊗F[T±1] is

a cochain representative of the unit eE ∈ HF 0
BC(E ,E). Note also, that since the product is defined

by parallel transport, it makes HF∗BC,mon(E) into a unital algebra and the domination map (2.57) is

a unital algebra homomorphism. It was verified by Zapolsky in [Zap15, Section 5.2.4] that the map
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ΨPSS induces algebra isomorphisms

HF∗BC,mon(E)⊗F[T±1] F
∼=−−→ HF∗mon(E) (2.61)

HF ∗BC(E ,E)⊗F[T±1] F
∼=−−→ HF ∗(E ,E).

Recall from section 2.3.3 that the length zero closed-open string map CO0 makes the rings on

the right-hand side of (2.61) into QH∗(M)-algebras. To define a similar structure on HF∗BC,mon(E)

and HF ∗BC(E ,E) without collapsing the grading, one also needs to keep track of grading on QH∗(M).

Since the quantum product ? preserves the grading on H∗(M;F) only modulo 2Nπ
M , in order to

keep the grading absolute one considers the vector space H∗(M,F)⊗ F[q±1], where q is a for-

mal variable of degree 2Nπ
M . The quantum product naturally defines a product (still denoted

by ?) on this space, making it into a graded, associative, (graded-)commutative algebra. Using

the identification q = T (2Nπ
M/Nπ

L ) and extending ? to be F[T±1]-linear, we have a graded algebra

QH∗BC(M;F) := (H∗(M;F)⊗F[T±1], ?). Then, the construction from [BC07b, Section 5.3] gives

rise to the quantum module action

QH∗BC(M;F)⊗HF∗BC,mon(E)−→ HF∗BC,mon(E) (2.62)

QH∗BC(M;F)⊗HF ∗BC(E ,E)−→ HF ∗BC(E ,E),

which makes the rings on the right-hand side into graded, unital QH∗BC(M;F)-algebras. We will

write CO0
BC : QH∗BC(M;F)→ HF∗BC,mon(E) for the algebra homomorphism, obtained by acting on

the unit eE ∈ HF0
BC,mon(E). Again, after setting T = 1 and collapsing the grading, the action (2.62)

is identified via the PSS map with the action we considered in section 2.3.3 (this was also checked

in [Zap15, Section 5.2.4]).

Now note that there is an obvious inclusion of graded vector spaces qM : H∗(M;F) →

QH∗BC(M;F), given by just tensoring with 1 ∈ F[T±1]. It will be important to us that when one takes

trivial rank 1 local systems on L, the closed-open string map CO0
BC : QH∗(M;F)→HF∗BC(L,L;F) is

related to the classical restriction i∗ : H∗(M;F)→ H∗(L;F) via the diagram

Hk(M;F) i∗ //

qM

��

Hk
cls(L;F)

qL

��
QHk

BC(M;F)
CO0

BC // HFk
BC(L,L;F)

∀ 0≤ k ≤ Nπ
L −1. (2.63)

Note that the image of HNπ
L−1(M;F) under i∗ is contained in HNπ

L−1
cls (L;F) since at chain level i∗ and

CO0
BC coincide on chains of degree strictly less than Nπ

L and CO0 is a chain map with respect to

the Morse differential on M and the pearl differential on L. Observe also that since Nπ
L ≥ 2, there is

always a map qL : H0(L;F)→ HF0
BC(L,L;F) which sends the unit for classical cohomology to the

unit eL ∈ HF0
BC(L,L;F).

Finally, one more crucial fact which we will need is that the Auroux-Kontsevich-Seidel theorem
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2.3.8 still holds in the pearly setting. That is, if L is orientable, then

CO0
BC(c1(T M)) = [(m0(E)◦ ẽE) ·T ] ∈ HF2

BC,mon(E). (2.64)

This can be proved directly using the pearl models for CO0
BC and HF∗BC,mon or by relying on the

fact that ΨPSS : HF∗BC,mon(E)→ HF∗mon(E) is a unital homomorphism, which intertwines CO0
BC and

CO0.



Chapter 3

Topological restrictions on monotone

Lagrangians in CPn

Лагранжево небето, лагранжево морето,

лагранжева тревата, лагранжев е градът.1

In this chapter we use Floer theory with local coefficients in order to derive some restrictions on

the topology of closed manifolds which admit a monotone Lagrangian embedding in CPn. The local

systems which we will use are very limited – we will only be interested in the cohomology of the

complex C∗f (L,(L,EL′)) for different covers L′ of L for which the complex is unobstructed. This is

exactly the “lifted” Floer cohomology, introduced by Damian in [Dam12]. However, we will heavily

use the algebraic structures discussed in section 2.4.4, in particular, the quantum module action

and the AKS criterion. Moreover, we will need to work with coefficients in rings of characteristic

different from 2 so we now make a small interlude to discuss this issue.

Signs

The Biran-Cornea machinery with coefficients in Z (when it is well-defined) contains much more

information than the theory over characteristic 2 but requires more work to set up. It also requires

some additional assumptions on L for the constructions to be possible. The reason is that one needs to

be able to orient the various moduli spaces and do so coherently, so that configurations corresponding

to opposite ends of a connected component in a 1-dimensional moduli space come with opposite

signs. Note that in all our constructions with local systems in chapter 2, we only used the fact that

contributions from such configurations cancel out. Thus, if there exists an orientation scheme which

makes the theory with trivial local systems well-defined over characteristic other than 2, then the

same scheme can be used to make the high rank theory work, as our proofs above will carry over,

after being modified to incorporate the appropriate signs.

1See footnote on page 116.
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There are several orientation schemes in the literature and it is not entirely clear to what extent

they agree with each other. However, we will not need the actual specifics of such a scheme, only

the fact that it exists. To be more concrete, consider first the following definition:

Definition 3.0.13. Let L be an oriented, monotone Lagrangian and let E → L be an R-local system for

some commutative ring R. Let J be a generic almost complex structure and assume thatM0,1(2,L;J)

is an oriented manifold. Then, if p ∈ L is a regular value for ev : M0,1(2,L;J)→ L, we define

m0(E)(p) := ∑
u∈ev−1(p)

degu(ev)P∂u ∈ End(Ep),

where degu(ev) denotes the local degree of ev at u. ♦

In this chapter we will rely on the following assumption with respect to the above definition:

Assumption 3.0.14. If L⊆M is a monotone Lagrangian with Nπ
L ≥ 2, equipped with an orientation

and a relative spin structure, then:

a) The orientation and relative spin structure on L induce orientations on the moduli spaces

M0,0(2,L;J) andM0,1(2,L;J) for any generic J. With these orientations and m0(E) defined

as in Definition 3.0.13, the invariance properties of Proposition 2.2.3 hold. That is, m0(E) is

an element of End(E) which is independent of the choice of generic J.

b) The moduli spaces of pearly trajectories can be oriented and their isolated points counted with

signs in such a way that the following hold:

i) for any pair of R-local systems E0,E1→ L the resulting pre-complex (C∗f (E0,E1),d(D,J))

satisfies

∀a ∈C∗f (E0,E1)
(

d(D,J)
)2

a =±(a◦m0(E0)−m0(E1)◦a) · T ;

ii) the product (2.60) gives rise to a unital, graded, R[T±1]-linear category 〈L〉R of R-local

systems on L, where the space of morphisms from E0 to E1 is HF ∗BC(E0,E1);

iii) for any R-local system E → L the map CO0
BC : QH∗BC(M;R)→ HF∗BC,mon(E) is a unital

R[T±1]-algebra homomorphism and it satisfies

CO0
BC(c1(T M)) = [(m0(E)◦ ẽE) ·T ],

where ẽE ∈ HF0
BC,mon(E) is any cocycle representing the unit;

iv) in the special case when E is the trivial, rank one R-local system, there is a commutative

diagram

Hk(M;R) i∗ //

qM

��

Hk
cls(L;R)

qL

��
QHk

BC(M;R)
CO0

BC // HFk
BC(L,L;R)

∀ 0≤ k ≤ Nπ
L −1; (3.1)
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v) the ∂0-part of the differential d(D,J) can be identified with the Morse differential ∂ D from

(2.8); in particular, for any pair of R-local systems E0,E1→ L, the first page of the Oh-

Biran spectral sequence which computes HF ∗BC(E0,E1) is identified with the singular

cohomology of L with coefficients in the R-local system Zm0(E0,E1). //

Let us reiterate that as long as there exists an orientation scheme for which Assumption 3.0.14 is

satisfied with all local systems trivial and of rank one, then it is automatically satisfied with arbitrary

local systems. It is known that a choice of orientation and relative spin structure on a Lagrangian

L determines an orientation on all moduli spaces of pseudoholomorphic discs with boundary on L

([FOOO09, Chapter 8], [Sei08a, Lemmas 11.7, 11.17], [Zap15, Section 7.1]). Using this fact, Biran

and Cornea give an orientation procedure for pearly moduli spaces in [BC12, Appendix A] and

sketch the verification of b) ii), iv) and v).

A different approach to orientations for the pearl complex was introduced by Zapolsky in

[Zap15]. Given a monotone Lagrangian L with Nπ
L ≥ 2, he imposes the following restriction:

Assumption(O): For some (equivalently, any) point q ∈ L, the second Stiefel-Whitney class w2(T L)

vanishes on the image of π3(M,L,q) in π2(L,q) under the boundary map.

When this assumption is satisfied, Zapolsky constructs a complex, called the canonical pearl com-

plex of L with coefficients in an arbitrary commutative ring R. We will denote this complex by

C∗f ,Zap(L,L;R). If R = F2 (or any other ring of characteristic 2), then Assumption (O) can be dropped

and in fact the Biran-Cornea complex C∗f (L,L;F2) is naturally a quotient of C∗f ,Zap(L,L;F2). If R

does not have characteristic 2 however, Assumption (O) is necessary in order to define the chain

groups C∗f ,Zap(L,L;R).

These groups are obtained by attaching a particular free R-module with basis indexed by

π2(M,L,x) to each critical point x ∈ Crit( f ). For each rigid pearly trajectory, Zapolsky defines

an isomorphism between the modules attached to its endpoints and the sum of these isomorphisms

gives an endomorphism d(D,J)
Zap of C∗f ,Zap(L,L;R). He then carefully checks that this map squares

to zero and in particular in [Zap15, Section 6.2] he verifies a generalised version of our Assump-

tion 3.0.14 b) i). Zapolsky also defines a product on the cohomology HF∗Zap(L,L;R), a graded-

commutative algebra QH∗Zap(M;R) (which we may call the canonical quantum cohomology of M)

and the corresponding map CO0
Zap : QH∗Zap(M;R)→ HF∗Zap(L,L;R) which he shows to be a unital

algebra homomorphism (in Zapolsky’s paper this is expressed in terms of quantum module action of

QH∗Zap on HF∗Zap without explicit mention of a closed-open map). One can verify directly from the

definitions that the analogue of Assumption 3.0.14 b) iv) holds for the canonical complexes (that is,

after replacing the abbreviation “BC” by “Zap” in diagram (3.1)). There is again a spectral sequence

whose first page contains only topological information (it is the cohomology of L with coefficients in

a particular graded local system of free R-modules, see [KS18, Section 3.1]) and which converges to

HF∗Zap(L,L;R). Zapolsky’s complex can also be twisted by a rather general version of local system
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(see [Smi17, Appendix A]) of which the local systems we consider in this thesis are a special case.

The obstruction issues for the differential to square to zero are more delicate but are still controlled

Maslov 2 discs. In particular, if Nπ
L ≥ 3, then there are no obstructions.

Assumption (O) is the weakest condition on a monotone Lagrangian L ⊆ M under which a

version of Floer theory has been defined over an arbitrary ground ring. In particular, if L is relatively

pin (recall that this means that either w2(T L) or w2(T L)+w1(T L)2 lies in the image of the restriction

map H2(M;F2)→ H2(L;F2)), then L satisfies Assumption (O) (see [Zap15, Section 7], [KS18,

Section 3.4]). Note that this does not require L to be orientable but, if L is orientable, then being

relatively pin is the same as being relatively spin which puts us in the setting of Assumption 3.0.14.

As far as the author knows, there are no known examples of monotone Lagrangians which satisfy

Assumption (O) but are not relatively pin (Zapolsky erroneously gives RP5 ⊆ CP5 as an example

but, as we shall see below, RP5 is relatively spin). On the other hand, in chapter 4, section 4.1.5 we

give for each k ≥ 1 an example of a non-orientable Lagrangian in CP4k+1 whose minimal Maslov

number is 2k+1 and which does not satisfy Assumption (O) (see Lemma 4.1.34).

Here is how this story relates to the construction we need. As explained by Zapolsky in [Zap15,

Section 7], if one fixes a relative pin structure on L, one can take natural quotients of C∗f ,Zap(L,L;R)

in order to obtain simpler versions of Floer cohomology which still satisfy all the desired algebraic

properties. In particular, if L is orientable and carries a relative spin structure, then there exists a

quotient complex of C∗f ,Zap(L,L;R) which can be given a natural structure of a module over R[T±1]

(with T of degree Nπ
L ) and which satisfies all the properties in Assumption 3.0.14b). Thus, from

now on, we declare that whenever we refer to the Biran-Cornea pearl complex with coefficients in a

ground ring of characteristic different from 2, we mean exactly this quotient of C∗f ,Zap(L,L;R).

Remark 3.0.15. Strictly speaking, the quotient complex may depend on the choice of relative

spin structure on L and so can the structure of its cohomology HF∗BC(L,L;R) as a module over

QH∗BC(M;R). This dependence will not enter into our discussion, since we will only be using the

properties listed in Assumption 3.0.14 and these hold for all choices of relative spin structure. //

Some facts about CPn

For the remaining part of this thesis we will be concerned almost exclusively with the symplectic

manifold (CPn;ωFS) for n≥ 1. Here ωFS denotes the Fubini-Study symplectic form, normalised so

that a line CP1 ⊆CPn has area π . We now collect some facts about this manifold, most of which are

well-known and which we will use repeatedly in many of the arguments that follow. The notation

established here will also be used in the rest of this work.

Let R denote any commutative ring. Recall first that the cohomology ring of CPn is

H∗(CPn;R) =
R[H]

(Hn+1)
,

where the generator is H := PDCPn(CPn−1) is called the hyperplane class. With our chosen nor-

malisation of the symplectic form, one has the equality [ωFS] = πH in H2(CPn;R). The first Chern
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class of CPn is c1(TCPn) = (n+1)H and so we have

[ωFS] = 2
π

2(n+1)
c1(TCPn).

In particular, CPn is a monotone symplectic manifold and any monotone Lagrangian L ⊆ CPn has

monotonicity constant λ = π

2(n+1) . Also, if L ⊆ CPn is a Lagrangian with H1(L;R) = 0, then L is

automatically monotone (recall (2.3)).

We denote the standard integrable complex structure on CPn by J0. It is compatible with ωFS

and so defines a Kähler metric gFS on CPn. This metric is also Einstein, making (CPn,gFS,J0) into a

Kähler-Einstein manifold. In particular, if L⊆ CPn is a Lagrangian submanifold, which is minimal

with respect to gFS, then L is monotone by a result of Cieliebak and Goldstein [CG04].

The manifold CPn is simply connected and has π2(CPn)∼=Z. In particular, there is no ambigu-

ity about the definition of minimal Chern number and one has NCPn = n+1. If L ⊆ (CPn,J0) is an

n-dimensional totally real submanifold, there is also no ambiguity about its minimal Maslov number

NL and one has that NL divides 2(n+1). Moreover, L is orientable if and only if NL is even. One can

also make the following topological observation.

Lemma 3.0.16. Let L⊂CPn be a totally real submanifold with minimal Maslov number NL and let

i : L→CPn be the inclusion. Then one has 2(n+1)i∗H = 0 ∈H2(L;Z). Moreover, if H1(L;Z) = 0,

then i∗H has order exactly 2(n+1)
NL

in H2(L;Z).

Proof. The long exact sequence in cohomology for the pair (CPn,L) yields the exact sequence

H1(L;Z)−−→ H2(CPn,L;Z) j∗−−→ Z〈H〉 i∗−−→ H2(L;Z).

Since the Maslov class µL ∈ H2(CPn,L;Z) satisfies j∗(µL) = 2c1(TCPn) = 2(n+ 1)H, we imme-

diately get i∗(2(n+1)H) = 0. Now, if H1(L;Z) = 0, we have that H2(CPn,L;Z) injects into Z〈H〉

and so it must be freely generated by some class g ∈ H2(CPn,L;Z), which is non-zero since µL is

non-zero. By the universal coefficients theorem there exists a class u ∈ H2(CPn,L;Z) with which g

pairs to 1, and so we must have µL = NLg. Applying j∗ to both sides, we get 2(n+1)H = NL j∗(g)

and hence j∗(g) = 2(n+1)
NL

H. By exactness of the above sequence, it follows that i∗H has order 2(n+1)
NL

in H2(L;Z).

After these topological preliminaries, let us note some of the crucial properties of CPn related

to holomorphic curve theory. The quantum cohomology of CPn over an arbitrary commutative ring

R is

QH∗(CPn;R) =
R
[
H,q±1

]
(Hn+1−q)

,

where q is a formal variable of degree 2(n+1) which we may sometimes implicitly set to 1, if we are

not interested in the grading. Note the crucial fact that H ∈ QH2(CPn;R) is an invertible element.

Using this, together with the action of quantum cohomology on Lagrangian Floer cohomology, one
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can show that, if L⊆ CPn is a monotone Lagrangian, then

1≤ NL ≤ n+1. (3.2)

This bound was first established by Seidel in [Sei00, Theorem 3.1] but a proof along the lines of our

above discussion can be found in [BC09b, Lemma 6.1.1].

Finally, we observe that combining Lemma 3.0.16 with the algebraic structures from section

2.4.4, has some immediate consequences for monotone Lagrangians in CPn with high minimal

Maslov number.

Lemma 3.0.17. Let L be a monotone Lagrangian inCPn with minimal Maslov number NL≥ 3. Let R

be any commutative ring and if R has characteristic different from 2, assume that L is orientable and

relatively spin. Then HF∗BC(L,L;R) is 2(n+1)-torsion. Further, if H1(L;Z) = 0, then HF∗BC(L,L;R)

is (2(n+1)/NL)-torsion.

Proof. Since NL ≥ 3, we can specialise diagram (3.1) to obtain

H2(CPn;R) i∗ //

qCPn

��

H2
cls(L;R)

qL

��
QH2

BC(CPn;R)
CO0

BC // HF2
BC(L,L;R),

from which we see that CO0
BC(H) = qL(i∗(H)). By Lemma 3.0.16, this implies that we have

CO0
BC(2(n+1)H) = 0 and, if H1(L;Z) = 0, then CO0

BC((2(n+1)/NL)H) = 0. Since H is invertible

in QH∗BC(CPn;R) and CO0
BC is a unital algebra map, we obtain the result we wanted.

Remark 3.0.18. Note that if L is not orientable and relatively spin, Lemma 3.0.17 can still be useful if

H1(L;Z)= 0 and 2(n+1)/NL is odd, because in this case it tells us that HF∗BC(L,L;F2) vanishes. //

3.1 Lagrangians which look like RPn

This section is based on the paper [KS18] which is joint work with Jack Smith and is devoted to

proving Theorem A. What we prove in fact is the following equivalent statement:

Theorem 3.1.1. Let L ⊆ CPn be a closed, connected monotone Lagrangian submanifold with min-

imal Maslov number NL = n+ 1. Then the fundamental group of L is isomorphic to Z/2 and the

universal cover of L is homeomorphic to Sn.

To see that this is equivalent to Theorem A, note that if L is homeomorphic to the quotient

of Sn by a free Z/2-action, then [HM64, Lemma 3] tells us that L is homotopy equivalent to RPn.

Conversely, if L is homotopy equivalent to RPn, then its fundamental group is Z/2 and its universal

cover L̃ is a homotopy sphere. But then the Poincaré conjecture (which is used in the proof of

Theorem 3.1.1) implies that L̃ is homeomorphic to Sn.
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Remark 3.1.2. We will only give the full details of the proof in the case when n is odd. The case

of even n is completely analogous but requires the use of Floer theory over Z for non-orientable

Lagrangians and thus relies on Zapolsky’s machinery. It is carried out in [KS18]. //

From now until the end of this section we let L denote a monotone Lagrangian in CPn of

minimal Maslov number NL = n+ 1. We also assume that n ≥ 2, since the case n = 1 of Theorem

3.1.1 is trivial. Lemma 3.0.17 is the crucial observation which allows us to prove the desired result

but to be able to apply it we need to know that L is relatively pin. To this end we use some known

results of Biran-Cornea about the Floer cohomology of L over F2 ([BC09b, Lemmas 6.1.3, 6.1.4]).

Since Biran-Cornea state their results under an a priori stronger assumption on L than the one we are

imposing here, we give the full proofs. We begin with a simple topological observation.

Lemma 3.1.3. We have H1(L;F2) 6= 0.

Proof. The long exact sequence in homology for the pair (CPn,L) gives the exact sequence

H2(CPn;Z)−→ H2(CPn,L;Z)−→ H1(L;Z)−→ 0.

Applying the left-exact functor HomZ(−,F2) we obtain the exact sequence

0−→ H1(L;Z/2) α−→ HomZ(H2(CPn,L;Z),F2)
β−→ HomZ(H2(CPn;Z),F2),

and the penultimate term contains the mod 2 reduction I′µL
of IµL/(n+1). Since IµL/(n+1) restricts

to 2Ic1/(n+ 1) on H2(CPn;Z), and this is always even, we deduce that β (I′µL
) is zero. This means

that I′µL
is in the image of α , and as I′µL

itself is non-zero, we must have H1(L;F2) 6= 0.

Now consider the Floer cohomology of L over F2. The pth column of the first page of the

associated spectral sequence is then H∗(L;F2)[−pn], and for degree reasons the only potentially

non-zero differentials in the whole spectral sequence map from Hn(L;F2)[−(p− 1)n] ∼= F2 to

H0(L;F2)[−pn] ∼= F2 on this page. By construction these maps are independent of p, so it suffices

to understand the case p = 0.

From this spectral sequence and the action of CO0
BC(H) we obtain the following two lemmas,

which are basically [BC09b, Lemmas 6.1.3, 6.1.4].

Lemma 3.1.4. There is an isomorphism of graded F2-vector spaces

HF∗BC(L,L;F2)∼=
∞⊕

p=−∞

H∗(L;F2)[−p(n+1)].

That is HFk(L,L;F2) ∼= ⊕∞
p=−∞Hk+(n+1)p(L;F2) ∼= H`k(L;F2), where 0 ≤ `k ≤ n and k ≡ `k

mod (n+1). Further, Hk(L;F2)∼= F2 for all 0≤ k ≤ n.

Proof. By the preceding discussion we see that to prove the first part, it is enough to show that the

differential

d1 : Hn(L;F2)[n]→ H0(L;F2)
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on the first page of the spectral sequence vanishes. Since the codomain comprises just 0 and the

classical unit, we are done if the latter is not in the image of d1. But the classical unit is also the

unit eL for the Floer product and so we simply need to check that HF∗BC(L,L;F2) is non-zero. To see

that this is indeed the case, observe that H1(L;F2) survives the spectral sequence and is non-zero by

Lemma 3.1.3.

We thus have that HF∗BC(L,L;F2) ∼=
⊕

∞
p=−∞ H∗(L;F2)[−p(n+ 1)]. In particular, we see that

HF0
BC(L,L;F2)∼= H0(L;F2)∼= F2 and HF−1

BC (L,L;F2)∼= Hn(L;F2)∼= F2. But by invertibility of the

hyperplane class H in quantum cohomology, Floer multiplication by CO0
BC(H) gives an isomor-

phism HFk
BC(L,L;F2)∼= HFk+2

BC (L,L;F2) for every k ∈ Z and so we must have HFk
BC(L,L;F2)∼= F2

for all k ∈ Z. This finishes the proof.

Observe that Lemma 3.1.4 allows us to immediately complete the n = 2 case of Theorem 3.1.1

since, by the classification of surfaces, RP2 is the only closed surface whose first cohomology group

over F2 is isomorphic to F2. It also allows us to deduce the following.

Lemma 3.1.5. The group H2(L;F2) is isomorphic to F2 and is generated by i∗H, where i : L→CPn

is the inclusion. In particular, L is relatively pin.

Proof. By the above lemma we already know that H2(L;F2) is isomorphic to F2 and in fact, during

the proof we saw that the following must hold:

1. Floer multiplication by CO0
BC(H) gives an isomorphism HF0

BC(L,L;F2)
∼−−→ HF2

BC(L,L;F2);

2. HF0
BC(L,L;F2) is a copy of F2, generated by the unit eL;

3. the map qL : H2(L;F2)→ HF2(L,L;F2) is an isomorphism (this map is well-defined when

n = 2, since even then d1 : H2(L;F2)→ H0(L;F2) vanishes).

By the first two items, we conclude that HF2
BC(L,L;F2) is a copy of F2, generated by CO0

BC(H)∗eL =

CO0
BC(H). Now, specialising diagram (3.1) gives the commutative diagram

H2(CPn;F2)
i∗ //

qCPn

��

H2(L;F2)

qL

��
QH2

BC(CPn;F2)
CO0

BC // HF2
BC(L,L;F2).

The left-hand vertical map is an isomorphism between copies of F2, and the preceding discussion

shows that the same is true for the right-hand vertical map and the bottom horizontal map. Hence

the top horizontal map is also an isomorphism, which is what we wanted.

At this point we make the assumption that L is orientable, which is equivalent to assuming that

n is odd, since CPn is simply-connected. By Lemma 3.1.5, we know that in this case L is relatively

spin, so we can unleash the full power of Floer theory over Z. Further, since NL = n+1 ≥ 3, there

is no obstruction to using local systems of arbitrary rank for coefficients. For any cover L′ of L, let
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EL′ denote the corresponding Z-local system. Then each column on the first page of the Oh-Biran

spectral sequence which computes HF∗BC(L,(L,EL′)) is isomorphic to a shifted copy of H∗(L;EL′)

which by Proposition 2.1.1 is simply H∗c (L
′;Z). Further, all of the intermediate cohomology groups

(meaning 0< ∗< n) survive the spectral sequence for degree reasons. The key result is the following:

Proposition 3.1.6. For any cover L′ of L the compactly-supported cohomology groups Hk
c (L
′;Z) for

0 < k < n are 2-torsion and 2-periodic.

Proof. Since these intermediate cohomology groups survive to HF∗BC(L,(L,EL′);Z), they are acted

upon by the invertible element CO0
BC(H) of degree 2. This gives us 2-periodicity.

To prove 2-torsion, first let L′ = L and note that since NL ≥ 3, Lemma 3.0.17 tells us that

HF∗BC(L,L;Z) is 2(n+1)-torsion. Since HF∗BC(L,L;Z) contains the intermediate cohomology of L,

then the latter is also torsion which, in particular, tells us that H1(L;Z)= 0 since the first cohomology

must always be torsion-free. Now, by the second part of Lemma 3.0.17, we see that HF∗BC(L,L;Z) is

2-torsion. Since for each cover L′ the cohomology HF∗BC(L,(L,EL′);Z) is a (right) unital module over

the ring HF∗BC(L,L;Z), the former must also be 2-torsion. This in turn means that the intermediate

compactly-supported cohomology groups of each L′ are 2-torsion.

We can now complete the proof of Theorem 3.1.1, by showing that L has fundamental group

Z/2 and universal cover homeomorphic to Sn.

Proof of Theorem 3.1.1 for n odd. Apply Proposition 3.1.6 to every connected cover L′ of L to see

that for every such cover the group Hn−1
c (L′;Z) is 2-torsion. Since L is orientable, Poincaré duality

tells us that Hn−1
c (L;Z) is isomorphic to H1(L;Z) and so the latter is 2-torsion.

By the Hurewicz theorem, this means that every subgroup of π1(L) has 2-torsion abelianisation.

In particular, by considering the cyclic subgroups, we see that every element of π1(L) has order 2, so

the group is abelian (every commutator aba−1b−1 is square (ab)2 and hence equal to the identity).

We deduce that π1(L) is isomorphic to H1(L;Z) and is 2-torsion. It is also finitely-generated (since

L is compact) and so π1(L)∼= (Z/2)k for some k ∈N. On the other hand, by Lemma 3.1.4, we know

that H1(L;F2)∼= F2 and so k = 1.

Consider now the universal cover L̃ of L, which is compact by the above discussion. By the

Hurewicz and universal coefficients theorems H1(L̃;Z) vanishes and H2(L̃;Z) is torsion-free. Then,

by Proposition 3.1.6 we see that L̃ is an integral homology sphere. Since L̃ is also simply-connected,

the homology Whitehead theorem (see e.g. [May83]) and the Poincaré conjecture imply that L̃ is

homeomorphic to Sn.

Remark 3.1.7. The proof when n is even proceeds along the same lines but one needs to replace “BC”

by “Zap” everywhere. We are allowed to do this since by Lemma 3.1.5 L is relatively pin. There is

also a small difference in the last part of the proof in order to apply Poincaré duality correctly. //
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3.2 Monotone Lagrangians in CP3

In this section we focus on monotone Lagrangians in CP3 and prove Theorem B. Observe that we

have NCP3 = 4 and so the possible values for the minimal Maslov number of a monotone Lagrangian

are 1, 2 and 4. Since we cannot apply monotone Floer theory to Lagrangians with NL = 1, we restrict

our attention to the cases NL = 2 and NL = 4 in which we would like to classify Lagrangians up to

diffeomorphism (recall that in dimension 3 the smooth and topological categories are equivalent).

While in the case NL = 2 we remain far from this goal, Theorem 3.1.1 allows us to deal with the case

NL = 4 straight away:

Proposition 3.2.1. ([KS18, Corollary 3]) If L ⊆ CP3 is a monotone Lagrangian with minimal

Maslov number 4, then L is diffeomorphic to RP3.

Proof. By Theorem 3.1.1, we know that L is homeomorphic to a quotient of S3 by a free involution.

By a result of Livesay ([Liv62, Theorem 3]) any such involution is conjugate to the antipodal map

by a homeomorphism. Thus L is homeomorphic (equivalently, diffeomorphic) to RP3.

From now on we focus on the case NL = 2. Note that this implies that L is orientable and by

a well-known theorem of Stiefel [Sti35], all closed, orientable 3-manifolds are parallelisable. In

particular, they are spin, so we are free to use Floer theory with coefficients in any commutative

ring. The main Floer-theoretic results we rely on in this section are the properties of the obstruction

section from Assumption 3.0.14 a) and the following easy corollary of the AKS criterion:

Lemma 3.2.2. Let L ⊆ CP3 be a monotone Lagrangian with NL = 2 and let K be any field of

characteristic different from 2. If m0(L;K) = 0, then HF∗BC(L,L;K) = 0.

Proof. Suppose m0(L;K) = 0. By the AKS theorem we have

CO0
BC(4H) = CO0

BC(c1(TCP3)) = m0(L;K)eL = 0 ∈ HF∗BC(L,L;K).

Since H is invertible in QH∗BC(CP3;K) and K is a field of charateristic different from 2, then 4H

is also invertible. But then, since CO0
BC is a unital algebra map, we see that 0 must be invertible in

HF∗BC(L,L;K) and thus HF∗BC(L,L;K) = 0.

In what follows we use the above result and the geometry of the moduli spaces of holomorphic

discs in order to restrict the topology that a monotone Lagrangian inCP3 of minimal Maslov number

2 can have. Before we can start applying any Floer theory however, we need some preliminary ob-

servations about the topology of certain 3-manifolds. Note that throughout this section a 3-manifold

will always be assumed compact and without boundary.

Notation 3.2.3. For a group G and an element g ∈ G we write C(g) for the centraliser of g, 〈g〉

for the cyclic subgroup generated by g and [g] for the image of g in the abelianisation of G. If R

is a commutative ring and R[G] is the group algebra of G over R, we write ε : R[G]→ R for the
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augmentation sending all elements of G to 1 ∈ R. For an element a ∈ R[G] we define the support of

a to be the set supp(a)⊆ G of elements which appear with non-zero coefficients in a. //

3.2.1 Preliminaries on 3-manifolds

Recall first that a closed 3-manifold N is called prime if the only way to write it as a connected sum

of two manifolds is if one of them is the 3-sphere. The Prime Decomposition Theorem of Kneser and

Milnor states that any closed orientable 3-manifold M can be decomposed as M = N1#N2# · · ·#Nr,

where each Ni is a prime 3-manifold and this decomposition is unique, up to rearranging the factors.

Observe that if a 3-manifold is not prime, then the belt spheres of the connecting tubes in the

prime decomposition are embedded and homotopically non-trivial 2-spheres. A 3-manifold is called

irreducible if every embedded 2-sphere bounds a 3-ball. Thankfully, the distinction between prime

and irreducible 3-manifolds can be settled very easily: the only orientable 3-manifold which is prime

but not irreducible is S1×S2 ([Hem76, Lemma 3.13]).

Papakyriakopoulos’s Sphere Theorem ([Hem76, Theorem 4.3]) tells us that if N is an orientable,

irreducible 3-manifold, then π2(N) = 0. Thus, if N is orientable and irreducible and π1(N) is infinite,

it follows by an application of the Hurewicz theorem to the universal cover of N that N is aspherical.

Therefore, orientable, prime 3-manifolds come in three groups: the ones with finite fundamental

group, S1×S2 and the aspherical ones.

3.2.1.1 Spherical manifolds

The 3-manifolds with finite fundamental group are the subject of the famous Elliptisation Theorem.

It is a generalisation of the Poincaré conjecture and states that every closed 3-manifold with finite

fundamental group is a quotient of the round S3 by a free action of a finite group of isometries. The

Elliptisation Theorem is part of the Geometrisation Theorem, proved by Grigori Perelman and we

assume it in this work. The finite subgroups Γ of SO(4) which can act freely on S3 have been listed

by Milnor [Mil57] and fall into the following classes:

1. the trivial group,

2. Q8n = 〈x,y : x2 = (xy)2 = y2n〉 with abelianisation Z/2⊕Z/2,

3. P48 = 〈x,y : x2 = (xy)3 = y4,x4 = 1〉 with abelianisation Z/2,

4. P120 = 〈x,y : x2 = (xy)3 = y5,x4 = 1〉 with trivial abelianisation,

5. D2k(2n+1) = 〈x,y : x2k
= 1,y2n+1 = 1,xyx−1 = y−1〉, k ≥ 2, n≥ 1 with abelianisation Z/2k,

6. P′8·3k = 〈x,y,z, : x2 = (xy)2 = y2,zxz−1 = y,zyz−1 = xy,z3k = 1〉 with abelianisation Z/3k,

7. the product of any of the above with a cyclic group Cm with m co-prime to the order.
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We note for later that the only cases in which the abelianisation (i.e. the first homology group of the

corresponding 3-manifold) contains an element of order 4 are:

Γ∼=C4n or Γ∼= D2k(2n+1)×Cm for n≥ 1, k ≥ 2, gcd(2k(2n+1),m) = 1. (3.3)

3.2.1.2 Seifert fibred manifolds

A larger class of 3-manifolds, with which we will mostly be concerned, are the so-called Seifert

fibrable manifolds. We now define them and briefly describe their basic properties. For more details

we refer the reader to [JN83].

Definition 3.2.4. A Seifert fibration of a closed, oriented2 3-manifold M is a smooth map q : M→ Σ

to a closed (possibly non-orientable) surface Σ such that for each point x ∈ Σ there exists a neigh-

bourhood x ∈Ux ⊆ Σ, a pair of coprime integers α,α ′ with α 6= 0 and a commuting diagram

q−1(Ux)

q

��

// S1×D2

��

(eiθ ,reiϕ)
_

��

Ux
x 7−→ 0 // D2 rα ei(αϕ+α ′θ)

where the horizontal arrows are diffeomorphisms. The set q−1(Ux) is called a model neighbourhood

of the fibre q−1(x) and |α| is called the multiplicity of that fibre. If |α|> 1, we call q−1(x) a singular

fibre, otherwise we call it a regular fibre. Note that the only fibre in q−1(Ux) which is potentially

singular is q−1(x).

Two Seifert fibrations q1 : M→ Σ1, q2 : M→ Σ2 are called isomorphic if there exists a com-

muting diagram

M

q1

��

// M

q2

��
Σ1 // Σ2

where the horizontal arrows are diffeomorphisms and the top arrow is orientation preserving.

We call an oriented 3-manifold M Seifert fibrable, if it admits a Seifert fibration. If an isomor-

phism class of such fibrations is understood, we call M a Seifert fibred manifold. ♦

Note that since only the central fibre in any model neighbourhood can be singular and the

base Σ is compact, there can only be a finite number of singular fibres. Seifert fibrable manifolds

are completely classified in the following sense: there is a complete set of invariants of a Seifert

fibration (called the normalised Seifert invariants) which determine it up to isomorphism and, for

manifolds admitting more than one isomorphism class of Seifert fibrations, the invariants of all such

classes are known ([JN83, Theorem 5.1], [GL18]).

The (non-normalised) Seifert invariants of a given Seifert fibration are tuples of the form

(g;(α1,β1), . . . ,(αn,βn)), where g is an integer and (αi,βi) is a pair of coprime integers for each
2There is a definition of a Seifert fibration for non-orientable manifolds as well but we won’t need it in this work.
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1≤ i≤ n. From this data one can construct a Seifert fibration whose base is an oriented genus g sur-

face, if g≥ 0, or a connected sum of |g| copies or RP2, if g is negative. The resulting Seifert fibred

3-manifold will be denoted by M(g;(α1,β1), . . . ,(αn,βn)). The details of how the construction goes

and how to normalise the invariants can be found in [JN83]. For our purposes all we need are the

following facts:

1. The Seifert fibred manifold M(g;(α1,β1), . . . ,(αn,βn)) has at most n singular fibres and their

multiplicities are among the numbers {|α1|, |α2|, . . . , |αn|}. The remaining αi are all equal to

±1.

2. Let M = M(g;(α1,β1), . . . ,(αn,βn)) and let x ∈M be a point which lies on a regular fibre. If

g≥ 0, then π1(M,x) has the presentation

〈
a1,b1,a2,b2, . . . ,ag,bg,q1,q2, . . . ,qn,h |

h central, qαi
i hβi , q1q2 . . .qn[a1,b1] . . . [an,bn]

〉
,

while, if g < 0, then π1(M,x) has the presentation

〈
a1,a2, . . . ,a|g|,q1,q2, . . . ,qn,h |

a jha−1
j = h−1, [h,qi], qαi

i hβi , q1q2 . . .qna2
1a2

2 . . .a
2
|g|

〉
. (3.4)

In these presentations h denotes the class of the regular fibre through x.

A Seifert fibration q : M→ Σ gives rise to two important subgroups of π1(M) which we now define.

Definition 3.2.5. Let Σ+ denote the minimal orientable cover of Σ (i.e. Σ itself, if it is orientable,

or its orientable double cover, otherwise) and let π+ : Σ+→ Σ be the covering map. The subgroup

C := q−1
∗ (π+

∗ (π1(Σ
+)) ≤ π1(M) is called the canonical subgroup of π1(M). Let N := 〈h〉 ≤ π1(M)

denote the subgroup generated by the class of a regular fibre. The group N is called the Seifert fibre

subgroup of π1(M). ♦

Note that C is the whole of π1(M) when Σ is orientable and has index 2, otherwise. In particular,

it is always a normal subgroup. Also, it can be seen from the presentations that N is also normal.

This justifies the omission of base points in the above definition.

Let us now briefly discuss Seifert fibrable manifolds from the point of view of the 3-dimensional

geometries. Recall that a 3-dimensional model geometry is a pair (X ,G), where X is a simply con-

nected (not necessarily closed) 3-manifold and G is a Lie group of diffeomorphisms of X , acting

transitively on X with compact stabilisers and maximal amongst such groups of diffeomorphisms.

One says that a closed 3-manifold M is modelled on (X ,G) if M is diffeomorphic to X/Γ for some

discrete subgroup Γ ≤ G acting freely on X . Thurston (see e.g. [Thu97, Theorem 3.8.4]) has clas-

sified all 3-dimensional model geometries for which there exists at least one closed 3-manifold
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modelled on (X ,G) and they are: E3 (Euclidean), S3 (spherical), H3 (hyperbolic), S2×E1, H2×E1,

˜SL(2,R), Nil and Sol (in each case the group G is the group of isometries of the given space, when

the space is equipped with the obvious Riemannian metric, in the case of the first five, or any left-

invariant metric, in the case of the last three). A 3-manifold is called geometric if it is modelled on

one of these 8 geometries. It is a fact (see [Sco83a, Theorem 5.2]) that if a 3-manifold is geometric,

then it can be modelled on exactly one of these geometries.

All Seifert fibrable 3-manifolds are geometric ([Sco83a, Theorem 5.3]) and the model geometry

is determined by two invariants of the Seifert fibration – its Euler number and the orbifold Euler

characteristic of the base. Moreover, 6 of the 8 geometries – all apart fromH3 and Sol – are populated

only by Seifert fibrable manifolds. It is also known that Seifert fibrable spaces which admit more

than one isomorphism class of Seifert fibrations necessarily possess one of the geometries S3, S2×E1

or E3 ([Sco83a, Theorem 3.8]). In particular, a non-Euclidean, aspherical Seifert fibrable manifold

admits a unique Seifert fibration up to isomorphism.

We now discuss the Euclidean 3-manifolds in a little more detail, because they play an important

role in our partial classification of monotone Lagrangians in CP3.

3.2.1.3 The chiral platycosms

It is well known that there are only 10 diffeomorphism classes of closed 3-manifolds which admit a

Euclidean geometry (see [Sco83a, Table 4.4] and the discussion thereafter). We will adopt Conway’s

terminology from the paper [CR03] which refers to these as platycosms and gives names to all of

them. Of the 10 platycosms, exactly 6 are orientable – the chiral platycosms – and they are:

1. the torocosm T 3 := S1×S1×S1, a.k.a. the 3-torus,

2. the dicosm L2 = M(−2;(1,0)); it is the only Euclidean circle bundle over the Klein bottle

with orientable total space and it also admits a Seifert fibration over the sphere with invariants

M(0;(2,1),(2,1),(2,−1),(2,−1)) (see [JN83, Theorem 5.1])

3. the tricosm L3 = M(0;(1,−1),(3,1),(3,1),(3,1)) which is the mapping torus of an order 3

diffeomorphism of T 2,

4. the tetracosm L4 = M(0;(1,−1),(2,1),(4,1),(4,1)) which is the mapping torus of an order 4

diffeomorphism of T 2,

5. the hexacosm L6 = M(0;(1,−1),(2,1),(3,1),(6,1)) which is the mapping torus of an order 6

diffeomorphism of T 2,

6. the didicosm L22 =M(−1;(1,−1),(2,1),(2,1)), a.k.a. the Hantzsche -Wendt manifold, which

is the only 3-dimensional Euclidean rational homology sphere.

All platycosms are quotients of E3 by a crystallographic group Γ, i.e. a discrete and co-compact

subgroup of the group of isometries of 3-dimensional Euclidean space. By a well-known theorem
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of Bieberbach, the subgroup Λ ≤ Γ, consisting of all translations in Γ, is isomorphic to Z3 and has

finite index. Moreover, any other abelian subgroup of Γ with finite index is contained in Λ (see e.g.

[Szc12, Lemma 2.6]). This means that for each platycosm L, there exists a minimal torus cover

pmin : T 3→ L such that any other cover p : T 3→ L factors through pmin.

What will be important to us is the map that pmin induces on first homology groups. Using

[CR03, Table 6], we now describe this map for all chiral platycosms:

1. For the 3-torus, the map pmin is just the identity.

2. For the dicosm L2, one has H1(L2;Z) ∼= Z/2⊕Z/2⊕Z and the map (pmin)∗ : H1(T 3;Z)→

H1(L2;Z) can be represented by the matrix

Z⊕Z⊕Z


1 0 0
0 1 0
0 0 2


// Z/2⊕Z/2⊕Z . (3.5)

3. For the tricosm L3, one has H1(L3;Z)∼=Z/3⊕Z and the map (pmin)∗ : H1(T 3;Z)→H1(L3;Z)

can be represented by the matrix

Z⊕Z⊕Z

(
1 1 0
0 0 3

)
// Z/3⊕Z . (3.6)

4. For the tetracosm L4, one has H1(L4;Z) ∼= Z/2⊕ Z and the map (pmin)∗ : H1(T 3;Z) →

H1(L4;Z) can be represented by the matrix

Z⊕Z⊕Z

(
1 1 0
0 0 4

)
// Z/2⊕Z . (3.7)

5. For the hexacosm L6, one has H1(L6;Z) ∼= Z and the map (pmin)∗ : H1(T 3;Z)→ H1(L6;Z)

can be represented by the matrix

Z⊕Z⊕Z

(
0 0 6

)
// Z . (3.8)

6. For the didicosm L22, one has H1(L22;Z) ∼= Z/4⊕Z/4 and the map (pmin)∗ : H1(T 3;Z)→

H1(L22;Z) can be represented by the matrix

Z⊕Z⊕Z

(
2 0 2
0 2 2

)
// Z/4⊕Z/4 . (3.9)

3.2.1.4 Dominating maps from circle bundles to Seifert fibred manifolds

Finally in this preliminary section we prove a useful property of maps from a principal circle bundle

to an aspherical Seifert fibred manifold – the degree of such a map must be divisible by the mul-

tiplicities of all singular fibres of the target. This will be proved in Lemma 3.2.9. The main tool
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we rely on is the classification up to homotopy of maps between aspherical Seifert fibred manifolds,

proved by Yongwu Rong ([Ron93, Theorem 3.2]). To be able to use his results however, we first

need a couple of definitions.

Definition 3.2.6. Let f : M→N be a map between 3-manifolds and let K1,K2, . . . ,Ks be a collection

of knots in N. We say that f is a branched covering, branched over K1,K2, . . . ,Ks, if the following

two conditions hold:

1. f |M\ f−1(∪s
i=1Ki)

: M \ f−1(∪s
i=1Ki)→ N \ (∪s

i=1Ki) is a covering map,

2. for each 1≤ i≤ s the preimage f−1(Ki) is a collection of disjoint closed curves Ci1,Ci2, . . . ,Ciki

in M, such that for each 1≤ j ≤ ki there exist tubular neighbourhoods

ϕi j : S1×D2 → Ui j ⊆M

S1×{0} → Ci j

ψi j : S1×D2 → Vi j ⊆ N

S1×{0} → Ki

of Ci j and Ki, a pair of positive integers mi j,ni j and an integer qi j such that f (Ui j) = Vi j and

the diagram

S1×D2

ϕi j

��

(u,z)7→(uni j ,uqi j zmi j ) // S1×D2

ψi j

��
Ui j

f // Vi j

commutes. The integer mi j is called the branch multiplicity of f at Ci j. ♦

In [Ron93] Rong defines an operation called a vertical pinch which transforms one Seifert fibred

manifold into another, where the base of the second one has potentially smaller genus. We will only

need to apply vertical pinches to circle bundles, so we only give a definition in this simplified case.

Definition 3.2.7. Let q : M → Σ be an oriented S1 bundle over an oriented closed surface Σ. Let

C⊆ Σ be a simple closed curve which separates Σ into Σ1 and Σ2. Let M1 := q−1(Σ1), M2 := q−1(Σ2)

and suppose that there exists a map f : M2→ S1×D2 such that

f |
∂M2

: ∂M2→ S1×∂D2

is a homeomorphism. Then there exists a degree 1 map

π = id∪ f : M = M1∪q−1(C) M2 −→M := M1∪ f |∂M2
(S1×D2).

We call π a vertical pinch of M along C. ♦

We now observe that applying a vertical pinch to a circle bundle produces another circle bundle.
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Lemma 3.2.8. In the setting of Definition 3.2.7 and with Σ := Σ1 ∪∂ D2 one has that M naturally

admits a circle bundle structure q̄ : M→ Σ which extends q|M1
: M1→ Σ1.

Proof. We have M = M1 ∪ f |∂M2
(S1 ×D2) and on M1 we still have the circle bundle structure

q|M1
: M1→ Σ1. We need to extend this map to S1×D2. Since q|M2

: M2→ Σ2 is an oriented circle

bundle over an oriented surface with boundary, it is trivial and so we can choose a section Σ2 ↪→M2,

identifying M2 with S1×Σ2. Now let the action of f |
∂M2

: S1×∂Σ2→ S1×∂D2 on first homology

be given by a matrix
(

a b
c d

)
∈ SL(2,Z), where we have chosen the pairs ([S1×pt], [pt×∂Σ2]) and

([S1× pt], [pt× ∂D2]) as bases for H1(S1× ∂Σ2;Z) and H1(S1× ∂D2;Z), respectively. We have a

commuting diagram

Z⊕Z(
a b
c d

)
��

H1(S1×∂Σ2;Z) //

f |∂M2
��

H1(S1×Σ2;Z)

f
��

Z⊕Z H1(S1×∂D2;Z) // H1(S1×D2;Z)

Since [pt×∂Σ2] vanishes in H1(S1×Σ2;Z), we see from the diagram that we must have b = 0 and

so a = d = ±1. In particular, [S1× pt] is mapped by f to a generator of H1(S1×D2;Z). Hence

the fibration q◦
(

f |S1×∂Σ2

)−1
: S1×∂D2→C extends to a circle fibration q̄|S1×D2 : S1×D2→ D2

which agrees with q|M1
: M1 → Σ1 on the boundary. So these two maps glue to define a circle

fibration q̄ : M→ Σ1∪∂ D2.

With these notions at hand, we can now use the main result of [Ron93] and prove the lemma that we

need.

Lemma 3.2.9. Let M be an oriented circle bundle over an oriented, closed surface of positive genus

and let L be an oriented, aspherical Seifert fibred manifold. Let f : M→ L be a map of degree d.

Then d is divisible by the multiplicity of each singular fibre of the Seifert fibration of L.

Remark 3.2.10. By taking double covers of the domain and target if necessary, one can relax the

requirement that M be an oriented bundle. The conclusion remains the same, except that if L has

singular fibres of order 2, this does not force the degree of f to be divisible by 2: consider for

example the identity map on the dicosm, when the target is given the Seifert fibration over S2 with

four singular fibres of multiplicity 2. //

Proof. If d = 0, there is nothing to prove, so assume d 6= 0. Then by [Ron93, Theorem 3.2] the map f

is homotopic to a composition p◦ f̄ ◦π , where π : M→M is a composition of finitely many vertical

pinches, f̄ : M→ L is a fibre-preserving branched covering, branched over fibres and p : L→ L is

a covering. Here M is given the circle bundle structure provided by iterated application of Lemma

3.2.8.

In fact, as pointed out in [Ron93, Remark 2], the covering p can be taken to be the identity,

if L is not a Euclidean manifold. It is not hard to see (by an argument analogous to the proof of
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Lemma 3.2.20 below) that, if p cannot be taken to be the identity, then L is a torus and so p factors

through the minimal torus covering pmin. It can be checked directly that the degree of pmin is always

divisible by all multiplicities of singular fibres of a Seifert fibration of a chiral platycosm. So from

now on, we assume that L is not Euclidean and that p is the identity. Then, since deg(π) = 1, we

have deg( f̄ ) = deg( f ) = d. We now compute the degree of f̄ .

Let K ⊆ L denote a fibre of multiplicity α of the Seifert fibration of L. Choose an orientation of

K, let x ∈K be a point and let r ∈ π1(L,x) denote the corresponding class of K. From the description

of the local neighbourhood of a Seifert fibre, we see that the element h := rα generates the Seifert

fibre subgroup of π1(L,x). Now fix y ∈M such that f̄ (y) = x and let t ∈ π1(M,y) denote the class of

the circle fibre passing through y. Since L is non-Euclidean, [Ron93, Lemma 2.1] (or see the proof

of Lemma 3.2.20 below) implies that f̄∗(t) = hn for some n ∈ Z.

Since f̄ is a fibre-preserving branched covering, branched over fibres, we have that f̄−1(K) =

C1tC2t . . .tC`, where each Ci is a fibre of M at which f̄ has some branch multiplicity mi ∈ N>0.

We claim that each restriction f̄
∣∣
Ci

: Ci→ K is a finite covering of degree |nα|.

To see this, assume without loss of generality that y∈C1 and set k1 = deg( f̄
∣∣
C1
). Then we have

the equation f̄∗(t) = rk1 at the level of fundamental groups. However, we know that f̄∗(t) = hn and

h = rα . So the above equation becomes rk1 = rnα . Since L is aspherical, π1(L,x) is torsion-free, so

we must have k1 = nα . Now for i ∈ {2, . . . , `}, let yi ∈Ci be a pre-image of the base point x ∈ L and

let ti ∈ π1(M,yi) denote the class of Ci. Writing ki = deg( f̄
∣∣
Ci
), we have f̄∗(ti) = rki . But we know

that f̄∗(ti) is a conjugate of f̄∗(t) = hn (by an element of π1(L,x) which is the homotopy class of the

image under f̄ of some path in M which connects yi and y). From the presentations (3.4), we see

that the conjugacy class of hn is either {hn} or {hn,h−n}. Thus we have f̄∗(ti) = h±n and the same

argument as above shows that ki =±nα . We have shown that the restriction f̄
∣∣
Ci

: Ci→ K is indeed

a finite covering of degree |nα| for every i ∈ {1, . . . , `}.

Now let x′ ∈ L be a regular value of f̄ which is close to x. Then, from the definition of branched

covering, we see that f̄−1({x′}) has cardinality ∑
`
i=1 |n||α|mi. Since the local degree of a branched

covering does not change sign, we must have |d| = |deg( f̄ )| = |nα(∑`
i=1 mi)| which is divisible by

|α|, as we wanted to show.

3.2.2 Proof of the main result

We are now ready to prove the following result, which together with Proposition 3.2.1 yields Theo-

rem B.

Theorem 3.2.11. Let L ⊆ CP3 be a closed, monotone Lagrangian with NL = 2. Then L satisfies

exactly one of the following:

a) L is diffeomorphic to a quotient of S3 by a discrete subgroup Γ≤ SO(4) with Γ∼=C4k for k≥ 1

or Γ∼= D2k(2n+1)×Cm for k ≥ 2, n≥ 1, gcd(2k(2n+1),m) = 1;
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b) L is diffeomorphic to S1×S2;

c) L is diffeomorphic to T 3 or the tricosm L3;

d) L is a non-Euclidean principal circle bundle over an orientable, aspherical surface and the

Euler class of this bundle is divisible by 4.

Before we go into the proof, let us extract an immediate corollary regarding rational homology

spheres:

Corollary 3.2.12. Let L⊆CP3 be a closed Lagrangian submanifold. If H1(L;Q) = 0, then either L

is diffeomorphic to RP3 or to one of the manifolds in case a) of Theorem 3.2.11.

Proof. The condition H1(L;Q) = 0 implies that L is monotone. Further, since L is a closed 3-

manifold, it has vanishing Euler characteristic and so we must have H2(L;Q) = 0, H3(L;Q) ∼= Q.

Hence L is a rational homology sphere, in particular it is orientable. So either L has minimal Maslov

number 4, in which case it is diffeomorphic to RP3 by Proposition 3.2.1, or it has minimal Maslov

number 2 and we see that the only rational homology spheres which are allowed by Theorem 3.2.11

are the spherical space forms in case a).

We now begin the proof of Theorem 3.2.11, starting with some simple topological observations

which already allow us to deal with case a).

3.2.2.1 Soft observations

In this short section we make some observations about the topology of L which follow simply from

the existence of a Maslov 2 class in H2(CP3,L;Z), satisfying certain conditions. In what follows, L

always denotes a closed Lagrangian (in fact, it suffices for L to be totally real) submanifold of CP3

with NL = 2. Note that we have a well-defined surjective homomorphism 1
2 IµL : H2(CP3,L;Z)→ Z

and, if j∗ : H2(CP3;Z) → H2(CP3,L;Z) is the natural map, then 1
2 IµL( j∗(H2(CP3;Z))) = 4Z.

Hence, by the long exact sequence in homology for the pair (CP3,L), we get a well-defined ho-

momorphism I†
µL : H1(L;Z)→ Z/4 which fits into the commutative diagram

H2(L;Z) 0 // H2(CP3;Z)
j∗ // H2(CP3,L;Z)

1
2 IµL
��

∂ // H1(L;Z)

I†
µL
��

// 0

0 // Z 4 // Z // Z/4 // 0

(3.10)

We use the homomorphism I†
µL to prove the following three easy lemmas.

Lemma 3.2.13. Let [u]∈H2(CP3,L;Z) be a Maslov 2 class with boundary ∂ [u]∈H1(L;Z). If there

is a class [r] ∈H1(L;Z) and an integer m such that ∂ [u] = m [r], then m is odd (in particular, m 6= 0).

Further, if ∂ [u] has finite order k in H1(L;Z), then 4 divides k. In particular, if H1(L;Z) is finite,

then it contains an element of order 4.
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Proof. If [u] ∈ H2(CP3,L;Z) is a Maslov 2 class, then I†
µL(∂ [u]) = 1. Thus, if ∂ [u] = m [r], we have

mI†
µL([r]) = 1 ∈ Z/4, so m is odd. On the other hand, if ∂ [u] has finite order k in H1(L;Z), then we

have 0 = k I†
µL(∂ [u]) = k in Z/4, so 4 divides k.

This already suffices to see where case a) of Theorem 3.2.11 comes from. Indeed, if π1(L) is

finite, then by the Elliptisation theorem L must be diffeomorphic to the quotient of S3 by one of the

groups listed in Section 3.2.1.1. From Lemma 3.2.13, we see that the only possibilities are the ones

given in (3.3).

The next lemma will be used in combination with Lemma 3.2.9 in order to prove Proposition

3.2.22 below.

Lemma 3.2.14. Suppose that L is Seifert fibred and let h ∈ π1(L) denote a generator of the Seifert

fibre subgroup. Suppose further that there exist a Maslov 2 class [u] ∈ H2(CP3,L;Z) and a (nec-

essarily odd) integer n such that ∂ [u] = n[h], where [h] ∈ H1(L;Z) denotes the homology class of

h. Then the base of the Seifert fibration is orientable and the multiplicities of all singular fibres are

odd.

Proof. It can be seen from the presentation (3.4) of the fundamental group of L, that if the base of

the Seifert fibration were non-orientable, then 2[h] = 0 and so 2∂ [u] = 0, which contradicts Lemma

3.2.13. Hence the base is orientable. Now let [r] ∈ H1(L;Z) denote the homology class of a fibre of

multiplicity α . It follows by the description of the model neighbourhood, that [h] = ±α[r] and so

∂ [u] =±nα[r]. By Lemma 3.2.13 α must be odd.

The next lemma will be used to show that CP3 does not contain monotone Lagrangian chiral

platycosms, other than T 3 and, potentially, the tricosm.

Lemma 3.2.15. Suppose L is a chiral platycosm, other than T 3 or the tricosm. Fix a Seifert fibration

on L, where if L is the dicosm, we are free to choose either of the two isomorphism classes of Seifert

fibrations. Let [u] ∈ H2(CP3,L;Z) be a Maslov 2 class. Then ∂ [u] does not lie in the image of the

Seifert fibre subgroup under the Hurewicz homomorphism π1(L)→H1(L;Z). Further, if p : T 3→ L

is a covering, then ∂ [u] is not contained in p∗H1(T 3;Z).

Proof. The possible Seifert fibrations of chiral platycosms other than T 3 were given in Section

3.2.1.3. Except in the case of the tricosm, each of these Seifert fibrations either has fibres of even

multiplicity or is over a non-orientable base (or both, in the case of the didicosm). It follows by

Lemma 3.2.14 that ∂ [u] cannot be contained in the Hurewicz image of the Seifert fibre subgroup.

Suppose now that p : T 3→ L is a covering and ∂ [u]∈ p∗H1(T 3;Z). Since p must factor through

the minimal torus covering pmin : T 3→ L, we have in particular that ∂ [u] ∈ (pmin)∗H1(T 3;Z). How-

ever, by inspecting (3.5), (3.7), (3.8) and (3.9), we see that

I†
µL

(
(pmin)∗H1(T 3;Z)

)
⊆ 2(Z/4).
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This contradicts the fact that I†
µL(∂ [u]) = 1.

3.2.2.2 The main argument

We are finally ready to dive into Floer theory and prove Theorem 3.2.11. From now on we let L

denote a closed, connected, monotone Lagrangian in CP3 with NL = 2. As we already explained in

the previous section, if L has finite fundamental group, then it must be one of the manifolds in case

a) of Theorem 3.2.11. Therefore, we also assume that L has infinite fundamental group.

In order to obtain information about the fundamental group of L we will use Floer theory with

local coefficients. In fact, the only local system we will need is ER
reg→ L but it will be important to

work over different ground rings R. We make the following observation:

Lemma 3.2.16. Let K be a field and suppose that the pearl complex for the pair (L,(L,EKreg)) is

unobstructed. Then either K has characteristic 2 or m0(L;K) 6= 0.

Proof. Since we are assuming that L has infinite fundamental group, its universal cover is non-

compact and so, by Proposition 2.1.1 and Poincaré duality, we have

H0(L;EKreg) = H0
c (L̃;K)∼= H3(L̃;K) = 0,

H2(L;EKreg) = H2
c (L̃;K)∼= H1(L̃;K) = 0,

H3(L;EKreg) = H3
c (L̃;K)∼= H0(L̃;K)∼=K

for any field K. Hence, if the pearl complex for the pair (L,(L,EKreg)) is unobstructed, the Oh-

Biran spectral sequence which computes its cohomology degenerates on the first page and we obtain

HF∗BC(L,(L,EKreg)) 6= 0. Since this group is a unital module over HF∗BC(L,L;K), the latter must also

be non-zero. It follows from Lemma 3.2.2 that either K has characteristic 2 or m0(L;K) is non-

zero.

Now let us fix a point x ∈ L. Then we can identify the fibre of ER
reg over x with the

group ring R[π1(L,x)] and the monodromy representation of π1(L,x) is given by right multiplica-

tion. In particular, we can identify the endomorphism m0(ER
reg)(x) ∈ End(ER

reg,x) with an element

m0(L,x;R) ∈ R[π1(L,x)] by evaluating it on the unit 1 ∈ R[π1(L,x)]. The fact that m0(ER
reg) com-

mutes with parallel transport translates to the fact that m0(L,x;R) lies in the centre of the group ring

R[π1(L,x)].

The first step to constraining the topology of L is to find an element in π1(L) with finite index

centraliser. Following Damian [Dam15], we do this by showing that m0(L,x;C) is non-zero.

Proposition 3.2.17. If x ∈ L is any point, then supp(m0(L,x;Z)) is non-empty and all its elements

are non-trivial in π1(L,x). In particular π1(L,x) contains a non-trivial element whose centraliser

has finite index.
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Proof. If supp(m0(L,x;Z)) = /0, then m0(L,x;C) = 0 and hence m0(ECreg) = 0 and m0(L;C) =

ε(m0(L,x;C)) = 0. So the pearl complex for (L,(L,ECreg)) is unobstructed, but this immediately

contradicts Lemma 3.2.16. The fact that supp(m0(L,x;C)) does not contain the unit 1 ∈ π1(L,x)

follows from Lemma 3.2.13.

The existence of the element with finite index centraliser allows us to conclude the following.

Corollary 3.2.18. L is a prime 3-manifold.

Proof. Suppose for a contradiction that L is not prime, i.e. L = N1#N2 for some other manifolds

N1,N2, neither of which is homeomorphic to S3. Then, by the Poincaré-Perelman theorem, we know

that N1 and N2 cannot be simply connected and hence π1(L)∼= G∗H for some non-trivial groups G

and H.

On the other hand, Proposition 3.2.17 shows that there exists a non-trivial element a ∈ π1(L)

whose centraliser C(a) has finite index in π1(L). It is shown in [MKS66, Corollaries 4.1.4, 4.1.5,

4.1.6] that the centraliser of any non-trivial element in G∗H is either infinite cyclic or contained in

some conjugate of G or H. Since a conjugate of a free factor can never have finite index in a free

product of non-trivial groups, we must have that C(a)∼= Z.

We claim that this implies G ∼= H ∼= Z/2. Suppose that this is not the case and without loss

of generality let x and y be distinct non-trivial elements of G and z be a non-trivial element of H.

Consider the elements x̂ = xz and ŷ = yz. Since [π1(L) : C(a)]< ∞, the pigeonhole principle implies

that there exist k, l ∈ N>0 such that x̂k ∈ C(a), ŷl ∈ C(a). Since C(a) is abelian, x̂k and ŷl must

then commute. However, substituting x̂ = xz and ŷ = yz into the equality x̂kŷl = ŷl x̂k, we obtain an

equality of elements of G ∗H, which are expressed as different reduced sequences in the sense of

[MKS66, Chapter 4]. This contradicts [MKS66, Theorem 4.1].

Thus we must have π1(L) ∼= Z/2 ∗Z/2. But then H1(L;Z) ∼= Z/2⊕Z/2 is finite but does not

contain an element of order 4. This contradicts Lemma 3.2.13.

We now know that L is prime. If L is not irreducible, then it is diffeomorphic to S1 × S2

which is case b) of Theorem 3.2.11. The remaining possibility is that L is irreducible and since its

fundamental group is infinite we have that L is aspherical. We then have the following corollary of

Proposition 3.2.17.

Corollary 3.2.19. Let L ⊆ CP3 be an orientable, aspherical, monotone Lagrangian with NL = 2.

Then L is Seifert fibrable.

Proof. This follows from some heavy theorems about the topology of 3-manifolds. Again, let a ∈

π1(L,x) denote a non-trivial element with finite index centraliser. Let L denote the finite cover of

L with π1
(
L
) ∼= C(a). Then L is a compact, aspherical 3-manifold whose fundamental group has

non-trivial centre and so by the Seifert Fibre Space Conjecture (now a theorem, see e.g. the survey

[Pré14] and the references therein) L must be Seifert fibrable. Since a finite cover of L is Seifert
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fibrable and π1(L) is infinite, it follows by Scott’s rigidity theorem (see the last paragraph on p.35 of

[Sco83b]) that L itself is Seifert fibrable.

Knowing that L is Seifert fibrable gives us very good control over its fundamental group. The

next lemma uses this to restrict the form that supp(m0(L,x;Z)) can take, depending on whether L is

Euclidean or not.

Lemma 3.2.20. Let L ⊆ CP3 be an orientable, aspherical, monotone Lagrangian with NL = 2 and

let q : L→ Σ be a Seifert fibration of L. Let x ∈ L be a point and let h ∈ π1(L,x) denote a generator

for the Seifert fibre subgroup. Then one of the following holds:

a) Σ is orientable and there exists a positive integer k, non-zero integers c1,c2, . . . ,ck and distinct

odd integers n1 < n2 < · · ·< nk, such that

m0(L,x;Z) = c1hn1 + c2hn2 + · · ·+ ckhnk ∈ Z[π1(L,x)].

Moreover, the multiplicities of all singular fibres of q are odd.

b) There exists a finite covering p : T 3→ L such that

supp(m0(L,x;Z))∩ p∗(π1(T 3,y)) 6= /0,

where y ∈ π−1(x). In particular, L admits a Euclidean geometry.

Proof. Let C,N ≤ π1(L,x) denote respectively the canonical and Seifert fibre subgroups of the fixed

Seifert fibration q : L→ Σ. If supp(m0(L,x;Z)) is contained in N, then we are in case a). Indeed,

since N = 〈h〉 and supp(m0(L,x;Z)) is non-empty, there exists a positive integer k and non-zero

integers c1,c2, . . . ,ck such that

m0(L,x;Z) = c1hn1 + c2hn2 + · · ·+ ckhnk ∈ Z[π1(L,x)]

for some distinct integers n1 < n2 < · · ·< nk. By Lemma 3.2.13 we have that Σ is orientable and ni

is odd for all 1≤ i≤ k. By Lemma 3.2.14, we have that the multiplicities of the singular fibres of q

are odd.

Suppose now that supp(m0(L,x;Z)) is not contained in N and let a ∈ supp(m0(L,x;Z)) be an

element which lies outside the Seifert fibre subgroup. Then by [JS79, Proposition II.4.7] we know

that the subgroup H :=C∩C(a) is abelian and of index at most 2 in C(a). Since by Proposition 3.2.17

we have that [π1(L,x) : C(a)]< ∞, it follows that [π1(L,x) : H]< ∞ and so the cover p : L→ L with

fundamental group π1(L,y) ∼= H is a finite cover (here y is any lift of x). Then L is a compact,

aspherical 3-manifold with an abelian fundamental group. For cohomological reasons we must have

H ∼= Z3 and since Eilenberg–MacLane spaces are determined up to homotopy by their fundamental

group, it follows that L is homotopy equivalent to T 3. By a famous theorem of Waldhausen [Wal68,

Corollary 6.5], L is then diffeomorphic to T 3.
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Finally, note that a must lie in C, since otherwise [JS79, Proposition II.4.7] tells us that C(a)

would need to be cyclic but this contradicts the fact that C(a) contains a copy of Z3. Thus a ∈

C∩C(a) = H = p∗(π1(T 3,y)) and we are in case b).

From this, we immediately have:

Corollary 3.2.21. Let L be a chiral platycosm, other than T 3 or the tricosm. Then L does not admit

a monotone Lagrangian embedding in CP3.

Proof. Suppose that there exists such an embedding. Then Lemma 3.2.20 tells us that there must

exist a Maslov 2 disc such that either ∂u lies in the Seifert fibre subgroup of π1(L) (for some Seifert

fibration) or it lies in p∗(π1(T 3)) for some torus cover p : T 3→ L. Passing to homology, we obtain

a contradiction with Lemma 3.2.15.

Lemma 3.2.20 and Corollary 3.2.21 show that if we are not in cases a), b) or c) of Theorem

3.2.11, then L is non-Euclidean and we understand m0(L,x;Z) explicitly. Using this, we finish the

proof of Theorem 3.2.11, by showing that the only remaining possibility is case d).

Proposition 3.2.22. Let L ⊆ CP3 be a monotone, orientable, aspherical Lagrangian with NL = 2

and suppose that L does not admit a Euclidean geometry. Then L is diffeomorphic to a principal

circle bundle over an orientable surface of genus g ≥ 1. The Euler class of this bundle is divisible

by 4.

Proof. By Corollary 3.2.19, we know that L admits a Seifert fibration q : L→ Σ. Further, since L is

aspherical and does not admit a Euclidean geometry, we know that this Seifert fibration is unique up

to isomorphism. We now use the geometry of the moduli space of Maslov 2 discs to show that q has

no singular fibres.

Suppose J is a generic almost complex structure such that the point x is a regular value for

ev : M0,1(2,L;J)→ L. Let S1,S2, . . . ,Sm denote the conjugacy classes in π1(L,x) corresponding

to the free homotopy classes {∂ fu : u ∈ M0,1(2,L;J)}. Note that if u1 and u2 lie in the same

connected component ofM0,1(2,L;J), then they can be joined by a continuous path of discs and so

∂ fu1 = ∂ fu2. So the decomposition ofM0,1(2,L;J) into connected components can be written as

M0,1(2,L;J) = tm
i=1t

`i
j=1 Mi j, where for all 1≤ i≤ m, if u ∈Mi j ∩ ev−1(x), then ∂u ∈ Si. We write

evi j : Mi j→ L for the restriction of ev to the i j-th component and for each 1≤ i≤ m we define

mi
0 :=

`i

∑
j=1

∑
u∈ev−1

i j (x)

degu(evi j)∂u ∈ Z[π1(L,x)]. (3.11)

Then for each 1≤ i≤ m, the support of mi
0 satisfies supp(mi

0)⊆ Si and we have

m0(L,x;Z) =
m

∑
i=1

`i

∑
j=1

∑
u∈ev−1

i j (x)

degu(evi j)∂u =
m

∑
i=1

mi
0. (3.12)
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On the other hand, by Lemma 3.2.20 we know that Σ is orientable and m0(L,x;Z) takes the form

m0(L,x;Z) = c1hn1 + c2hn2 + · · ·+ ckhnk . (3.13)

Since Σ is orientable, we have from (3.4) that for each 1≤ i≤ k, the element hni is central in π1(L,x)

and so its conjugacy class is a singleton. Comparing the expressions (3.12) and (3.13), we see that we

must have k ≤ m and without loss of generality we may assume Si = {hni}, mi
0 = cihni for 1≤ i≤ k

and mi
0 = 0 for k+1≤ i≤m. Finally, again since Si is a singleton, we get that for each 1≤ i≤ k and

1 ≤ j ≤ `i the boundaries of any two discs u1,u2 ∈ ev−1
i j (x) define the same based homotopy class

∂u1 = ∂u2 = hni in π1(L,x). Hence definition (3.11) simplifies and we obtain

ci =
`i

∑
j=1

deg(evi j) ∀ 1≤ i≤ k. (3.14)

Observe now that the moduli spaceM0,1(2,L;J) of discs with one boundary marked point is nat-

urally a principal circle bundle over the moduli space M0,0(2,L;J) of unmarked discs with the

projection given by forgetting the marked point. That is, each connected component Mi j is a prin-

cipal bundle over some orientable surface Σi j. Then each evi j : Mi j → L is a map from a principal

circle bundle over an orientable surface to an aspherical, orientable, Seifert fibred manifold. Hence,

by Lemma 3.2.9, it follows that for each 1 ≤ i ≤ m, 1 ≤ j ≤ `i the degree deg(evi j) is divisible by

the multiplicities of all singular fibres of the Seifert fibration of L.

Suppose for a contradiction that the Seifert fibration of L indeed has a singular fibre of mul-

tiplicity |α| > 1. Then, by Lemma 3.2.20, α is odd and in particular, there exists an odd prime p

which divides α . From equation (3.14) it follows that α divides ci for each 1 ≤ i ≤ k and so by

(3.13) we have

m0(L,x;Fp) = 0 ∈ Fp[π1(L,x)].

Hence the pearl complex of the pair (L,(L,EFp
reg)) is unobstructed and m0(L;Fp) = 0. This contradicts

Lemma 3.2.16 because p is odd.

We have shown that the Seifert fibration of L over Σ has no singular fibres and since both Σ and

L are orientable, it follows that L is a principal circle bundle over Σ. Since L is aspherical, we must

have that the genus of Σ is at least 1. Now let e ∈ H2(Σ;Z) denote the Euler class of this bundle.

By (3.13), we know that there exists u ∈M1 j for some 1≤ j ≤ `1 such that [∂u] = n1[h] ∈H1(L;Z).

Now, if e = 0, we clearly have that 4 divides e([Σ]) (note that in this case we also need to have

genus(Σ) > 1, since we are assuming that L does not admit a Euclidean geometry). On the other

hand, since [h] ∈ H1(L;Z) is precisely the class of a circle fibre, we have that if e 6= 0, then [h] has

order |〈e, [Σ]〉| in H1(L;Z). Hence 〈e, [Σ]〉[∂u] = 0 and so [∂u] has finite order in H1(L;Z) and that

order divides 〈e, [Σ]〉. It follows by Lemma 3.2.13 that 4 divides 〈e, [Σ]〉.

This finishes the proof of Theorem 3.2.11.



Chapter 4

Symplectic geometry of the twistor fibration

CP2n+1→HPn

С льожандревите майки, лагранжеви дечица,

льожандреви китари, лагранжево звънят. 1

In this chapter we investigate the fibration

CP1 −→ CP2n+1 Π−−→HPn (4.1)

from the point of view of symplectic geometry. Heuristically, this fibration is just

complex lines in a

quaternionic line

C2 ∼=H≤Hn+1

−→
complex lines in

C2n+2 ∼=Hn+1
−→

quaternionic lines

in Hn+1

and this is the perspective we take throughout most of this chapter. However, (4.1) fits into the

more general picture of twistor fibrations for quaternion-Kähler manifolds (introduced by Salamon

in [Sal82]) and, when n = 1, general twistor spaces of oriented Riemannian 4-manifolds (as defined

in [AHS78], following pioneering ideas of Penrose). We focus very narrowly on the question:

Question 4. How does a Lagrangian L⊆ CP2n+1 project to HPn?

In section 4.1 we explain the correspondence between smooth Legendrian subvarieties and

Lagrangian submanifolds of CP2n+1. We use our results from chapter 3 in order to prove Theorems

C and D from the introduction. In section 4.2 we study locally the projections to HP1 = S4 of

general Lagrangians in CP3. In section 4.3 we show that any function f : CP2n+1 → HPn whose

Hamiltonian vector field is vertical with respect to Π is constant.

1Adapted from the Bulgarian children’s song “Оранжева песен” (“Orange song”) which itself is adapted from the

Russian song of the same name by Arkady Arkanov, Grigori Gorin (music by Konstantin Pevzner). I’ve changed the word

“оранжев” (orange) to “льожандрев/лагранжев” (Legendrian/Lagrangian).
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Notation 4.0.1. We denote the round n-sphere of radius r by Sn(r). If E is a vector bundle over a

manifold X , we write S(E) to denote the sphere bundle inside E as a topological space. If E carries

a bundle metric, we denote the sphere bundle of radius r by Sr(E). //

4.1 The Legendrian–Lagrangian correspondence

4.1.1 Background

We begin with some general background on the theory of quaternion-Kähler manifolds and their

twistor spaces. For more details the reader is referred to [Bes08, Chapter 14] and [Sal82].

4.1.1.1 Quaternion-Kähler manifolds

An almost-quaternionic structure on a manifold M is a rank 3 subbundle Q ≤ End(T M) which is

locally spanned by sections I, J, K, satisfying I2 = J2 = K2 = IJK = −Id. Note that if M admits

an almost quaternionic structure Q, then for every x ∈ M, the tangent space TxM can be given the

structure of a (necessarily free) left H-module and so dimM = 4n. Further, Q equips M with a

preferred orientation, namely the one induced by any local almost complex structure in Q. On

each tangent space TxM there is an S2-worth of complex structures contained in Q, parametrised by

{aIx+bJx+cKx : a2+b2+c2 = 1}. Thus the space Z(M,Q) := {A∈Q : A2 =−Id} is an S2-bundle

over M. It is called the twistor space of the almost-quaternionic manifold (M,Q). We will write

τ : Z(M,Q)→M for the natural projection.

Remark 4.1.1. In general, to every Riemannian manifold (M,g) of even dimension, one can associate

its full twistor space Z(M,g) which is the fibre-subbundle of End(T M) consisting of g-orthogonal

pointwise complex structures. If M is oriented, Z(M,g) has two diffeomorphic connected com-

ponents Z+(M,g) and Z−(M,g), consisting of complex structures which induce the prescribed–

respectively opposite–orientation on M. Note that if Q is an almost-quaternionic structure on M,

then one can always define a Riemannian metric g which makes all complex structures in Q orthog-

onal2, i.e. such that Z(M,Q)⊆Z+(M,g). //

We now have the following definitions.

Definition 4.1.2. A quaternion-Kähler structure on a manifold M is a pair (g,Q), where g is a

Riemannian metric on M and Q is an almost-quaternionic structure such that the following two

conditions hold:

a) g is compatible with Q, i.e. for every x ∈M every complex structure Ix ∈ Z(M,Q)x is orthog-

onal with respect to gx,

b) the bundle Q is parallel with respect to the Levi-Civita connection of g. ♦

2Let g′ be any Riemannian metric and define g(X ,Y ) = 1
4 (g
′(X ,Y )+ g′(IX , IY ) + g′(JX ,JY ) + g′(KX ,KY )) for some

local basis I,J,K of Q.



4.1. The Legendrian–Lagrangian correspondence 118

Definition 4.1.3. If M is a smooth manifold of dimension 4n with n > 1 and M is equipped with a

quaternion-Kähler structure (g,Q), then the triple (M,g,Q) is called a quaternion-Kähler manifold

(or qK-manifold for short). ♦

Quaternion-Kähler manifolds and their twistor spaces enjoy many rigidity properties. First of

all, qK-manifolds are known to be automatically Einstein ([Ber55], [Ale67], [Ish74]) and in partic-

ular they have constant scalar curvature. Further, note that the twistor space Z(M,Q), being a sub-

manifold of End(T M), inherits a Riemannian metric g′Z from the Sasaki metric on End(T M) and the

tangent bundle TZ(M,Q) splits into a horizontal and vertical component. The vertical component

at an element Ix ∈ Z(M,Q)x is naturally identified with the vector space {B ∈ Qx : IxB+BIx = 0}

and so it inherits a complex structure B 7→ IxB. On the other hand, the horizontal component is

isomorphic to TxM via the linearisation of the projection Z(M,Q)→ M and so has a tautological

complex structure given by Ix. Taking the direct sum of these complex structures defines a natu-

ral almost complex structure JZ on Z(M,Q). Salamon [Sal82, Theorem 4.1] and independently

Bérard-Bergery have shown that JZ is in fact integrable. Moreover, the vertical tangent bundle is

a holomorphic line bundle over Z(M,Q) and, whenever the scalar curvature of M is non-zero, the

horizontal distribution defines a holomorphic contact structure on Z(M,Q) (that is, it is locally the

kernel of a holomorphic 1-form α such that α ∧ (dα)n is nowhere vanishing; see [Sal82, Theorem

4.3]). The fibres of the projection Z(M,Q)→M are then all biholomorphic to CP1 and are known

as twistor lines.

Remark 4.1.4. The reason that n= 1 is excluded from Definition 4.1.3 is that every oriented Rieman-

nian 4-manifold M automatically admits a quaternion-Kähler structure with twistor space Z+(M,g),

which needn’t be a complex manifold in general. However, as was shown in the seminal paper

[AHS78], the twistor space of a self-dual Einstein 4-manifold is a complex manifold, which is

why some authors choose to extend the definition of a qK-manifold to include self-dual Einstein

4-manifolds. We also adopt this convention in this work. //

In the theory of qK-manifolds, special attention is given to positive ones – that is, qK-manifolds

of positive scalar curvature. If M is a positive qK-manifold, then [Sal82, Theorem 6.1] tells us

that (Z(M,Q),gZ ,JZ) is a Kähler-Einstein manifold of positive scalar curvature, where gZ is an

appropriate rescaling of g′Z in the vertical directions. In particular, the twistor space is a contact

Fano variety. Using this fact, LeBrun and Salamon ([LS94]) have shown that for any n, there are

only finitely many positive qK-manifolds of dimension 4n, up to homothety. In fact the only known

examples are certain symmetric spaces called Wolf spaces ([Wol65]). It is a long-standing conjecture

of LeBrun and Salamon that these are the only positive qK-manifolds.

Note that from a symplectic point of view, positive qK-manifolds are interesting because their

twistor spaces are monotone symplectic manifolds. We now briefly discuss some submanifolds of a

qK-manifold M which, whenever M has positive scalar curvature, give rise to monotone Lagrangians
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in the twistor space.

4.1.1.2 Totally complex and Kähler submanifolds

There is extensive literature on interesting classes of submanifolds of qK-manifolds (see for exam-

ple the survey [Mar06] and the references therein). The ones which are of particular interest to

us are the so-called maximal Kähler submanifolds and maximal totally complex (MTC, for short)

submanifolds, which we now define.3

Let X2d be a smooth manifold of dimension 2d, (M4n,g,Q) be a qK-manifold and let f : X→M

be an immersion. We say that f is a locally almost complex immersion if for each x ∈ X there exists

an open neighbourhood U ⊆ X and a section IU of f ∗Z(M,Q) such that IU f∗TU = f∗TU . We

will drop the word “locally” from this definition if one can choose U = X . Note that if n = 1 and

d = 1 then any immersion is locally almost complex. Given a locally almost complex immersion

f : X →M, we introduce the following terminology:

• We say that f is a totally complex immersion if Jx ( f∗TxX) ⊥ f∗TxX for each x ∈ X and each

Jx ∈ Z(M,Q)x such that JxIU
x =−IU

x Jx. Note that such an immersion can only exist if d ≤ n.

• We say that f is a locally Kähler immersion, if for each neighbourhood U , the manifold

(U, IU , f ∗g) is Kähler.

• We say that f is a locally totally Kähler immersion if ∇̃vIU = 0 for each x ∈ X and v ∈ TxX ,

where ∇̃ denotes the Levi-Civita connection on (M,g).

For the latter two items, we will again drop the word “locally” if one can choose U = X . The

terminology “totally Kähler immersion” in this case is non-standard but we can quickly dispense of

it, due to the following proposition:

Proposition 4.1.5. Let f : X2d → M4n be a locally almost complex immersion into a qK-manifold

(M4n,g,Q). Then:

a) if f is totally complex, then it is locally Kähler;

b) if d = 1, then f is totally complex; it is locally totally Kähler if and only if its local lifts

to Z(M,Q), determined by the sections IU , are horizontal. That is, a locally totally Kähler

immersion of a surface in a qK-manifold is a superminimal immersion in the sense of Bryant

([Bry82]).

c) if n > 1, d > 1 and the scalar curvature of M is non-zero, then the following are equivalent:

i) f is totally complex;

ii) f is locally Kähler;
3 Some of the definitions we give may differ slightly from elsewhere in the literature. This is because we want to make a

clear distinctions between embedded and immersed submanifolds.
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iii) f is locally totally Kähler;

iv) the local lifts of f to Z(M,Q), determined by the sections IU , are horizontal.

Proof. Some parts of this proposition are simple rephrasings. For the non-trivial implications, see

[AM01, Theorem 1.8].

In particular, observe that whenever n ≥ 2, if f : X →M4n is a locally Kähler immersion then

dimRX ≤ 2n. Whenever we have equality, we say that f is a maximal locally Kähler immersion or,

equivalently, a maximal totally complex (or MTC, for short) immersion. If X ⊆M is an embedded

submanifold, we say that it is an MTC submanifold if the inclusion is an MTC immersion. Further,

we say that X is a maximal Kähler submanifold if the inclusion is a Kähler immersion.

It is important to note that every locally Kähler immersion can be seen as a globally Kähler

immersion, but one may need to replace the domain by a double cover. More precisely:

Proposition 4.1.6. [Tak86, Theorem 4.1] Let f : X2d → (M4n,g,Q) be a locally totally Kähler im-

mersion into a qK-manifold and suppose that either d = 1 or the scalar curvature of M is non-zero.

Then there exists a Kähler manifold (X̂ , ĝ, Î ), a Riemannian covering π : (X̂ , ĝ)→ (X , f ∗g) and a

holomorphic, horizontal immersion f̂ : X̂ →Z(M,Q) such that f ◦π = τ ◦ f̂ and f ◦π is a Kähler

immersion.

Sketch proof. Define the set I f := {(x, I) ∈ f ∗Z(M,Q) : I( f∗TxX) = f∗TxX}. By Proposition 4.1.5,

we know that f is a totally complex immersion and so we see that the natural projection I f → X

is a two-to-one covering, because the fibre above each point x ∈ X consists of exactly two complex

structures Ix and−Ix. Now the space I f can have one or two connected components. One obtains the

result by taking X̂ to be a connected component of I f and π : X̂ → X and f̂ : X̂ →Z(M,Q) to be the

restrictions of the corresponding natural maps f ∗Z(M,Q)→ X , f ∗Z(M,Q)→Z(M,Q).

The immersion f̂ : X̂ →Z(M,Q), constructed in the above proof is called the twistor lift of f

(in case I f is disconnected, there are two equally good choices of twistor lifts). Observe now that if

X ⊆M4n is an embedded MTC submanifold (or a superminimal surface, if n = 1), then its twistor

lift is an embedded complex Legendrian submanifold ofZ(M,Q), i.e. it is everywhere tangent to the

holomorphic contact structure and has maximal possible dimension. Conversely, if X ⊆Z(M,Q) is a

Legendrian submanifold such that the projection τ|X : X→M has embedded image, then τ(X) is an

MTC submanifold of M (or an embedded superminimal surface, if n = 1). Following Alekseevsky

and Marchiafava [AM05], we say that a (connected) Legendrian submanifold X ⊆ Z(M,Q) is of

Type 1 if τ|X : X → M is an embedding and we say that it is of Type 2 if τ(X) is embedded but

τ|X : X → τ(X) is a double cover.

Remark 4.1.7. Note that most Legendrian submanifolds are of neither type (contrary to what [AM05,

Proposition 5.4] might lead one to believe) because, while τ|X : X →M is certainly an immersion,

its image need not be embedded in general. //



4.1. The Legendrian–Lagrangian correspondence 121

The reason that we are interested in MTC submanifolds is because whenever the ambient qK-

manifold is positive, they give rise to monotone Lagrangians in the twistor space. More generally,

if M4n is any qK-manifold with non-vanishing scalar curvature, and X ⊆ M is a totally complex

submanifold (or superminimal surface, if n = 1), then one can consider the set

L(X) := {(x,Jx) ∈ Z(M,Q)|X : Jx(TxX)⊥ TxX}.

Since X is totally complex, the fibre of L(X) above a point x ∈ X is precisely the geodesic circle

{Jx ∈Z(M,Q)x : JxIx =−IxJx}, where Ix is one of the two complex structures in Q preserving TxX .

Thus L(X) is a circle bundle over X . Moreover, using the fact that the twistor lift of X is horizontal,

one can show that JZ(TL(X)) ⊥ TL(X) or, in other words, L(X) is isotropic with respect to the

non-degenerate 2-form ωZ := gZ(JZ · , ·). Recall now that when M is a positive qK-manifold, the

form ωZ is closed and hence for any MTC submanifold X ⊆M, the manifold L(X) is Lagrangian.

The same is true whenever n = 1 (note that the only compact, Einstein, self-dual 4-manifolds with

positive scalar curvature are S4 and CP2 as shown in [FK82]), and X is a superminimal surface.

Moreover, one can show that the Lagrangians constructed in this way are minimal with respect to

the Riemannian metric gZ . Since Z(M,Q) is Kähler-Einstein, the main result of [CG04] shows that

L(X) is monotone.

Remark 4.1.8. The existence of this minimal Lagrangian lift has been observed most recently by

Ejiri and Tsukada in [ET05] but similar constructions are much older. In particular, for the case

of superminimal surfaces in S4, the construction is already present in Ejiri’s paper [Eji86, Section

15] (see also [CDVV96], [BDVV96], [BSV02, Section 2]). There is an analogous idea, due to

Reznikov ([Rez93]), who constructs Lagrangians in symplectic twistor spaces Z+(M,g) from half-

dimensional totally geodesic submanifolds N ⊆ M by considering all complex structures along N

which send T N to its orthogonal complement. The Floer theory of such Lagrangians in the twistor

spaces of certain hyperbolic 6-manifolds has been investigated by Evans in [Eva14]. //

In order to avoid having to constantly distinguish between the cases n = 1 and n≥ 2, it is more

convenient to speak of Lagrangian submanifolds of Z(M,Q), corresponding directly to Legendrian

subvarieties ofZ(M,Q). We refer to this as the Legendrian–Lagrangian correspondence and we call

Lagrangians which arise this way twistor Lagrangians. Note that a twistor Lagrangian is embedded

if and only if the corresponding Legendrian subvariety is of Type 1 or Type 2 and so we distinguish

embedded twistor Lagrangians into Type 1 and Type 2 accordingly.

4.1.1.3 CP2n+1 and HPn

The easiest example of a positive qK-manifold is quaternionic projective space HPn, equipped with

its standard Fubini-Study metric. The bundle Q consists of those endomorphisms of THPn which

in the standard charts can be expressed by (right) multiplication by purely imaginary quaternions.

Note that HP1 is isometric to a standard S4 (of radius 1/2 with our current conventions) which is
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Einstein and self-dual, so fits with the extended definition of a qK-manifold. The twistor space

(Z(HPn,Q),gZ ,JZ) turns out to be Kähler-isometric to (CP2n+1,gFS,J0) and the fibration (4.1) is

nothing but the standard projection Z(HPn,Q)→HPn. These facts are well-known but for our own

peace of mind and in order to have a convenient setup for calculations, we will verify them explicitly

in the next section.

4.1.2 Proof of the correspondence

In this section we prove the Legendrian–Lagrangian correspondence for CP2n+1. As we said, this

is proved for twistor spaces of general qK-manifolds with non-vanishing scalar curvature in [ET05]

but without the uniqueness statement which is Theorem 4.1.23 below. We only prove this theorem

for CP2n+1 but the same argument is applicable in the general situation too.

Before we give the statements and proofs, we will make our setup precise, establish some

notation and verify explicitly several well-known facts.

4.1.2.1 Setup

Let H = SpanR{1, i, j,k} denote the quaternion algebra and put H× = H\{0}. Given a quaternion

q = a+ ib+ jc+kd we define Re(q) = a, Co(q) = a+ ib, q̄ = a− ib− jc−kd. We view Hn+1 as

a module over H, where H acts by right multiplication. We equip Hn+1 with the complex structure

which is right multiplication by i. Thus we get the identifications

R4n+4 −→ C2n+2

(x0,y0, . . . ,x2n+1,y2n+1) 7−→ (x0 + iy0, . . . ,x2n+1 + iy2n+1)
C2n+2 −→ Hn+1

(z0,z1, . . . ,z2n+1) 7−→ (z0 + jz1, . . . ,z2n + jz2n+1).

(4.2)

Remark 4.1.9. Note that this gives the identification R4 → H, (a,b,c,d) 7→ a+ ib+ jc− kd. In

particular, if we orient H by the complex structure, a positive basis is {1, i, j,−k}. //

We now let HPn := (Hn+1 \ {0})/H× denote quaternionic projective space and we write

ΠH : Hn+1 \ {0} → HPn for the quotient map. Similarly, if we just quotient by the action of C×

we get a quotient map ΠC : Hn+1 \ {0} → CP2n+1. For all v ∈ Hn+1 \ {0}, w ∈ Hn+1 these maps

satisfy the following identities which we will use repeatedly in calculations:

dvΠC(w) = dvλ ΠC(wλ + vµ) ∀ λ ∈ C×, µ ∈ C

dvΠH(w) = dvpΠH(wp+ vq) ∀ p ∈H×, q ∈H. (4.3)

Given v ∈ Hn+1 \ {0} we will write vC = ΠC(v) and vH = ΠH(v). By slight abuse of notation we

will use the same expressions to denote the complex and quaternionic lines spanned by v in Hn+1,

i.e vC= {vz ∈Hn+1 : z ∈ C} and vH= {vp ∈Hn+1 : p ∈H}.

Our main object of study in this chapter is the map Π : CP2n+1 → HPn which fits into the
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diagram

Hn+1 \{0}

ΠCxx
ΠH

��

CP1 // CP2n+1

Π

&&
HPn

In the homogeneous coordinates on CP2n+1 and HPn which we have from (4.2), this map is given

simply by

Π([z0 : z1 : . . . : z2n : z2n+1]C) = [z0 + jz1 : . . . : z2n + jz2n+1]H.

Throughout this chapter we will use this subscript notation [−]C, [−]H to indicate which projective

space we are working on.

In order to equip CP2n+1 and HPn with their familiar geometric structures, we consider the

following H–valued sesquilinear form on Hn+1:

〈(p0, . . . , pn),(q0, . . . ,qn)〉 := p̄0q0 + p̄1q1 + · · ·+ p̄nqn.

It is immediate to verify that it satisfies the properties

〈v,w p〉= 〈v,w〉 p, 〈v p,w〉= p̄〈v,w〉 ∀ v,w ∈Hn+1, p ∈H.

This pairing naturally equips Hn+1 with

1. the Euclidean inner product Re〈 · , · 〉= dx2
0 +dy2

0 + · · ·+dx2
2n+1 +dy2

2n+1,

2. the (real) symplectic form ωstd := Re〈 · i , · 〉= dx0∧dy0 + · · ·+dx2n+1∧dy2n+1,

3. the complex symplectic form ωC := Co〈 · j , · 〉= dz0∧dz1 + · · ·+dz2n∧dz2n+1

4. the hermitian pairing Co〈 · , · 〉= Re〈 · , · 〉+ iωstd .

We endow CP2n+1 with the Fubini-Study metric gFS and the corresponding symplectic form ωFS in

the standard way: given v ∈ S4n+3(1), we have an isomorphism dvΠC : vC⊥→ TvCCP2n+1 and we

define gFS, ωFS by the formulae

gFS(dvΠC(w1),dvΠC(w2)) := Re〈w1,w2〉

ωFS(dvΠC(w1),dvΠC(w2)) := ωstd(w1,w2) ∀v ∈ S4n+3(1), w1,w2 ∈ vC⊥. (4.4)

The standard integrable almost complex structure J0 on CP2n+1 is the unique one making the pro-

jection ΠC : Hn+1 \{0}→ CP2n+1 holomorphic, i.e.:

J0(dvΠC(w)) = dvΠC(w i) ∀v ∈Hn+1 \{0}, w ∈Hn+1.
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We also have the isomorphism dvΠH : vH⊥ → TvHHPn and we equip HPn with the Riemannian

metric g given by the formula

g(dvΠH(w1),dvΠH(w2)) := Re〈w1,w2〉 ∀v ∈ S4n+3(1), w1,w2 ∈ vH⊥. (4.5)

The identities (4.3), show that all these structures are well-defined. Note that gFS induces a splitting

TCP2n+1 = V ⊕H, where V := ker dΠ andH := V⊥ and the metric g is the unique one making Π a

Riemannian submersion. This splitting is in fact symplectic, since for all v ∈Hn+1 \{0} the spaces

vC⊥∩ vH and vH⊥ are ωstd−symplectic subspaces of Hn+1. That is, we have a splitting

ωFS = ω
V ⊕ω

H (4.6)

into a vertical and a horizontal component.

Finally, we will identify HP1 with a round sphere of radius 1/2 via the isometry

Φ : (HP1,g) −→ S4(1/2) ⊆ R5 = H⊕R

[p : q]H 7−→ 1
2(|p|2 + |q|2)

(
2pq̄, |p|2−|q|2

)
. (4.7)

The map Φ is nothing but the composition

HP1 −→ H∪{∞} −→ S4(1/2)
[p : q]H 7−→ pq−1

a 7−→ 1
2(1+|a|2)

(
2a, |a|2−1

)
,

where the second map is the usual inverse stereographic projection. One can easily check that Φ is

an isometry by noting that the differential of the map Φ ◦ΠH : S7(1)→ S4(1/2) at a point (p,q) is

an isometry between the horizontal space (p,q)H⊥ and TΦ([p:q]H)S
4(1/2) = Φ([p : q]H)⊥.

Identifying CP2n+1 and the twistor space of HPn

Now let us exhibit the link with twistor geometry. The almost-quaternionic structure Q on HPn is

defined as follows: for all v ∈Hn+1 \{0}

QvH = {A ∈ End(TvHHPn) : ∃p ∈ SpanR{i, j,k} such that

A(dvΠH(w)) = dvΠH(wp) ∀w ∈Hn+1}.

Again using the identities (4.3) it is easy to see that this is well-defined. To see that (g,Q) defines

a quaternion-Kähler structure, consider a path γ : (−ε,ε)→ HPn and a section A : (−ε,ε)→ Q of

Q along γ . We need to show that ∇t A(t) ∈ Qγ(t) for all t ∈ (−ε,ε), where ∇ is the Levi-Civita

connection of (HPn,g). To do this, we choose a vector field Y : (−ε,ε)→ THPn along γ and we

pick horizontal lifts v : (−ε,ε)→ S4n+3(1), w : (−ε,ε)→ Hn+1 of γ and Y , respectively. That

is, for all t ∈ (−ε,ε) we have ΠH(v(t)) = γ(t), v̇(t) ∈ v(t)H⊥ and dv(t)ΠH(w(t)) = Y (t), w(t) ∈

v(t)H⊥. Now note that for each t ∈ (−ε,ε), there exists a unique p(t) ∈ SpanR{i, j,k} such that

dv(t)ΠH : v(t)H⊥→ Tv(t)HHPn intertwines right multiplication by p(t) and the endomorphism A(t).
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Now, letting ∇ denote the Levi-Civita connection on S4n+3(1) and using the general fact that one

can compute covariant derivatives on the base of a Riemannian submersion by taking horizontal lifts,

differentiating and pushing back down ([Pet06, Proposition 13]), we calculate:

(∇t A(t))Y (t) = ∇t (A(t)Y (t))−A(t)∇t Y (t)

= dv(t)ΠH(∇t (w(t)p(t)))−A(t)dv(t)ΠH(∇t w(t))

= dv(t)ΠH(ẇ(t)p(t)+w(t)ṗ(t))−dv(t)ΠH(ẇ(t)p(t))

= dv(t)ΠH(w(t)ṗ(t)).

So for each t ∈ (−ε,ε) the endomorphism ∇t A(t) satisfies ∇t A(t)(dv(t)ΠH(w′)) = dv(t)ΠH(w′ ṗ(t))

for each w′ ∈ v(t)H⊥. Thus ∇t A(t) ∈ Qγ(t) by the definition of Q.

The metric g induces a bundle metric on End(THPn) which is given by

∀A,B ∈ End(TvHHPn) {A,B} :=
4n

∑
s=1

gvH(A(es),B(es)),

where {e1,e2, . . . ,e4n} is any orthonormal basis for TvHHPn. Let τ : End(THPn)→ HPn denote

the projection and let θ ∈C∞(End(THPn),T ∗End(THPn)⊗τ∗End(THPn)) denote the connection

1-form for the Levi-Civita connection of g. Define a Riemannian metric gS on End(THPn) by

∀X ,Y ∈ T End(THPn) gS(X ,Y ) = g(τ∗X ,τ∗Y )+
1

16n
{θ(X),θ(Y )}.

That is, gS is a vertical rescaling of the standard Sasaki metric on End(THPn) induced by g.

Now consider the twistor space Z(HPn,Q) = {A ∈ Q : A2 =−Id}. Let gZ denote the restric-

tion of gS to Z(HPn,Q), write TZ(HPn,Q) = VZ ⊕HZ for the splitting of the tangent bundle to

the twistor space into a vertical and a horizontal component.

We now define a fibre-preserving embedding

I : CP2n+1

Π

((

// Q⊆ End(THPn)

τ

��
HPn

by associating to each point vC ∈ CP2n+1 a complex structure I(vC) : TvHHPn → TvHHPn via the

equation

∀w ∈ vH⊥ I(vC)dvΠH(w) := dvΠH(w i). (4.8)

Using the first identity from (4.3), it is easy to verify that this map is well-defined. It is also clear

that the image of I is precisely Z(HPn,Q). We now show that I identifies the spaces CP2n+1 and

Z(HPn,Q) with all their relevant structures.

Lemma 4.1.10. The map I : CP2n+1 → Z(HPn,Q) satisfies I∗gZ = gFS and it is (J0,JZ)-

holomorphic.
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Proof. Since I sends fibres of Π to fibres of τ , it clearly satisfies I∗V = VZ . We now show that it

also satisfies I∗H = HZ . To see this, let γ : (−ε,ε)→ CP2n+1 be a horizontal path. We want to

show that I(γ(t)) is horizontal, i.e. that ∇t(I(γ(t))) = 0 for all t ∈ (−ε,ε). In other words, for any

vector field Y : (−ε,ε)→ THPn along Π ◦ γ we must show that ∇t(I(γ(t))Y (t)) = I(γ(t))∇t Y (t).

To do this, we again pick horizontal lifts v : (−ε,ε)→ S4n+3(1), w : (−ε,ε)→ Hn+1 of γ and Y ,

respectively: for all t ∈ (−ε,ε) we have ΠC(v(t)) = γ(t), v̇(t) ∈ v(t)C⊥ and dv(t)ΠH(w(t)) = Y (t),

w(t) ∈ v(t)H⊥. Crucially, since γ is horizontal with respect to Π, we can choose the lift v(t) so that

it satisfies v̇(t) ∈ v(t)H⊥ for all t ∈ (−ε,ε), that is, v(t) is now also a horizontal lift of Π◦ γ . We can

now compute:

∇t
(
I(γ(t))Y (t)

)
− I(γ(t))∇t Y (t) = ∇t

(
I(v(t)C)dv(t)ΠH(w(t))

)
− I(v(t)C)∇t

(
dv(t)ΠH(w(t))

)
= ∇t

(
dv(t)ΠH(w(t)i)

)
− I(v(t)C)dv(t)ΠH(∇t w(t))

= dv(t)ΠH(∇t(w(t)i))− I(v(t)C)dv(t)ΠH(ẇ(t))

= dv(t)ΠH(ẇ(t)i)−dv(t)ΠH(ẇ(t)i) = 0,

which is what we wanted to show.

So the differential of I splits as I∗ = IV∗ ⊕ IH∗ : V ⊕ H → VZ ⊕ HZ . Since both

Π : (CP2n+1,gFS)→ (HPn,g) and τ : (Z(HPn,Q),gZ)→ (HPn,g) are Riemannian submersions

and τ ◦ I = Π, it is clear that IH∗ is a linear isometry. Therefore, in order to prove I∗gZ = gFS, it

suffices to show that IV∗ is a linear isometry.

One way to see this is to recall that each fibre ΠC(vH) of Π is a complex line in (CP2n+1,gFS)

and hence is isometric to a round 2-sphere of radius 1/2. On the other hand, the corresponding fibre

Z(HPn,Q)vH of the twistor space of HPn is the 2-sphere in the Euclidean space (QvH,
1

16n{· , ·}),

consisting of those elements of Q which square to −Id. So it suffices to show that the radius of

that sphere is also 1/2, for example, by computing the length of the element I(vC) ∈ Z(HPn,Q)vH

with respect to the metric 1
16n{· , ·}. For future use, let us directly compute the inner product of two

elements, say I(vC) and I(vqC) for some q ∈H×. For that purpose, we assume that ‖v‖= 1, we let

{e1,e2, . . . ,e4n} be an orthonormal basis for vH⊥ and then we compute, using (4.3), (4.5) and (4.8):

1
16n
{I(vC),I(vqC)} =

1
16n

4n

∑
s=1

gvH(I(vC)dvΠH(es),I(vqC)dvΠH(es))

=
1

16n

4n

∑
s=1

gvH(dvΠH(es i),dvqΠH(es q i))

=
1

16n

4n

∑
s=1
Re〈es i , es q iq−1〉

=
1
4
Re
(
−iq iq−1) . (4.9)

In particular, putting q = 1 we see that 1
16n{I(vC),I(vC)}=

1
4 , which is what we wanted.

An even more explicit approach is to directly compute the map IV∗ . To that end, pick any vector

w∈VvC = dvΠC(vC⊥∩vH) and let p∈H be such that vp∈ vC⊥∩vH and dvΠC(vp) = w. Note that
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the first condition implies Co(p) = 0. To compute the image vector dvCI(w) ∈QvH ⊆ End(TvHHPn)

we consider its action on a basis element dvΠH(es) ∈ TvHHPn (here we have identified the vertical

tangent bundle to Q with Q itself). For the vertical path t 7→ ΠC(v+ tvp) ∈ ΠC(vH) we have the

identity

I((v+ tvp)C)dv+tvpΠH(es) = dv+tvpΠH(es i)

⇔ I((v+ tvp)C)dvΠH(es(1+ t p)−1) = dvΠH(es i(1+ t p)−1). (4.10)

Differentiating the identity (1+ t p)(1+ t p)−1 = 1 at t = 0 yields d
dt

∣∣
t=0 (1+ t p)−1 = −p. Then

differentiating (4.10) at t = 0 gives the identity

dvCI(dvΠC(vp))(dvΠH(es))+ I(vC)dvΠH(−es p) = dvΠH(−es ip)

⇔ dvCI(w)(dvΠH(es)) = dvΠH(es(p i− ip))

= dvΠH(2es p i),

where in the last line we have used that Co(p) = 0 and so p i =−ip. From here we compute

1
16n
{dvCI(w),dvCI(w)} =

1
16n
{dvCI(dvΠC(vp)),dvCI(dvΠC(vp))}

=
1

16n

4n

∑
s=1

gvH(dvΠH(2es p i),dvΠH(2es p i)

=
1

16n
4n‖2p i‖2 = ‖p‖2,

On the other hand

‖w‖2 = gFS(dvΠC(vp),dvΠC(vp)) = ‖vp‖2 = ‖p‖2.

Thus IV∗ : V → VZ is indeed an isometry.

Finally, let us show that I intertwines the almost complex structures. Again, we check this

separately for IV∗ and IH∗ . For IV∗ , let v,w, p and es be as above and note that

dvCI(J0(w))(dvΠH(es)) = dvΠH(2es p i i) =−dvΠH(2es p).

On the other hand, since dvCI(w) ∈ VZ , we have that JZ(dvCI(w)) = I(vC)◦dvCI(w) ∈ QvH. But

(I(vC)◦dvCI(w))dvΠH(es) = I(vC)dvΠH(2es p i) = dvΠH(2es p i i) =−dvΠH(2es p),

as we wanted. To check that IH∗ intertwines J0 and JZ , it suffices to check that for every w′ ∈ vH⊥

one has (dI(vC)τ ◦ dvCI ◦ J0)dvΠC(w′) = (I(vC) ◦ dI(vC)τ ◦ dvCI)dvΠC(w′). But this is immediate

from the fact that τ ◦ I = Π and the definitions of J0 and I(vC).

We have thus verified that (Z(HPn,Q),gZ ,JZ) is a Kähler manifold which is Kähler-isometric

to (CP2n+1,gFS,J0). From now on we will not distinguish the two spaces and we will refer to the
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fibres of Π as twistor lines. One important observation which follows from this identification is that

the horizontal part ωH of the Fubini-Study form ωFS is “tautological”, i.e. we have

ω
H
vC(w1,w2) = gvH(I(vC)dvCΠ(w1),dvCΠ(w2)) ∀w1,w2 ∈ TvCCP2n+1. (4.11)

This can also be seen directly from formulae (4.4) and (4.5). The vertical part ωV on the other hand

is simply the area form on each fibre, giving the twistor lines area π .

Antipodal points and opposite equators

Since each twistor line is isometric to a round sphere, there is a well-defined notion of antipodal

point and equator.

Definition 4.1.11. For each point x ∈ CP2n+1 we define its antipodal point to be the unique point

X (x) which lies on the twistor line through x and is at maximal distance from x. We call the map

X : CP2n+1→ CP2n+1 the fibrewise antipodal map.

We define the equator opposite x to be the set S(x) of points which lie on the twistor line through

x and are equidistant from x and X (x). ♦

Note that since the twistor lines are totally geodesic, we can use the exponential map of the

Fubini-Study metric to give a formula for X and to parametrise equators. More precisely, we see

thatX is given byX (x)= expgFS
(x, π

2 v) where v∈Vx is any vector with ‖v‖= 1. As for the equators,

we make the following definition:

Definition 4.1.12. Let X be a smooth manifold and let ϕ : X → CP2n+1 be a smooth map. Let Yϕ

denote the circle bundle over X defined by Yϕ := {(x,v)∈ ϕ∗V : ‖v‖= π/4}. We define the opposite

equator map corresponding to ϕ to be

ϕ̂ : Yϕ → CP2n+1, ϕ̂(x,v) = expgFS
(ϕ(x),v).

Whenever X ⊆ CP2n+1 is embedded and ϕ is the inclusion map, we will write YX instead of Yϕ .

Further, if the image ϕ̂(YX ) =
⋃

x∈X S(x) is embedded, we’ll denote it by ZX and call it the opposite

equator manifold of X . ♦

While this definition gives a nice global parametrisation of the opposite equator manifold, it

is extremely inconvenient for direct calculations. To remedy this problem, we make the following

observation:

Lemma 4.1.13. For each v∈Hn+1\{0}, the antipodal point to vC is (v j)C and the equator opposite

vC can be parametrised by

S(vC) = {v(1+ jeiθ )C ∈ CP2n+1 : θ ∈ R/2πZ}.

In coordinates: the fibrewise antipodal map is given by the formula

X : CP2n+1 −→ CP2n+1

[z0 : z1 : . . . : z2n : z2n+1]C 7−→ [−z̄1 : z̄0 :−z̄3 : z̄2 : . . . :−z̄2n+1 : z̄2n]C (4.12)
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and the equator opposite [z0 : z1 : . . . : z2n : z2n+1]C is

{[z0− eiθ z̄1 : z1 + eiθ z̄0 : . . . : z2n− eiθ z̄2n+1 : z2n+1 + eiθ z̄2n]C : θ ∈ R/2πZ}. (4.13)

Proof. Recall that the map I identifies the twistor line ΠC(vH) with a sphere in the Euclidean space

(QvH,
1

16n{· , ·}). So to see that the antipodal point to vC is vjC, it suffices to show that I(v jC) =

−I(vC). Indeed ∀w ∈Hn+1 we have

I(v jC)(dvΠH(w)) = I(v jC)(dvjΠH(w j)) = dvjΠH(w ji) = dvΠH(−w i) =−I(vC)(dvΠH(w)).

Suppose now that q ∈ H× is such that vqC lies in S(vC). This is equivalent to the equation

{I(vC),I(vqC)} = 0, which from (4.9) becomes Re(iq iq−1) = 0. Putting q = x+ jy we get the

equation |y|2− |x|2 = 0. As we are only interested in q up to right multiplication by a complex

number, we may assume that x = 1, y = eiθ for some θ ∈ R/2πZ. So the equator opposite vC is

given by

S(vC) = {v(1+ jeiθ )C ∈ CP2n+1 : θ ∈ R/2πZ}.

The formulae in homogeneous coordinates are then immediate from the identifications (4.2).

Remark 4.1.14. Note that formula (4.13) determines a well-defined subset S1 ⊆CP2n+1 correspond-

ing to the point x= [z0 : z1 : . . . : z2n : z2n+1]C but it does not determine a parametrisation of this circle.

If one chooses a lift x̃ ∈ C2n+2 of x however, then the formula can be used as a parametrisation. //

Holomorphic contact structure

Recall that for any qK-manifold with non-vanishing scalar curvature, the vertical and horizontal dis-

tribution on the twistor space are respectively a holomorphic line bundle and a holomorphic contact

structure ([Sal82, Theorem 4.3]). In the case of CP2n+1, it follows that V is a line bundle which

restricts to the tangent bundle on each twistor line and hence V is isomorphic to OCP2n+1(2). Thus

the projection prV : TCP2n+1→V must be given by an OCP2n+1(2)-valued holomorphic 1-form α̂ ,

whose C-valued expression α̂U in each trivialising chart U forOCP2n+1(2) is such that α̂U ∧ (dα̂U )n

is nowhere vanishing. This form can be succinctly written in homogeneous coordinates as

α̂ [z0:z1:...:z2n:z2n+1]C = z0dz1− z1dz0 + z2dz3− z3dz2 + · · ·+ z2ndz2n+1− z2n+1dz2n. (4.14)

By this we mean that for each 0≤ i≤ 2n+1 there is a trivialisation ψi of V over the standard chart

Ui = {[z0 : z1 : . . . : zi−1 : 1 : zi+1 : . . . : z2n : z2n+1]C : z j ∈ C ∀ j 6= i} in which prV is given by the

C-valued form α i, obtained from (4.14) by formally substituting zi = 1, dzi = 0.

To explain why this is the case, consider the 1-form α on Hn+1 = C2n+2 given again by the

expression (4.14). Then it is immediate to check that for each v ∈Hn+1 \{0} and w ∈Hn+1 one has

αv(w) = ωC(v,w) = Co〈vj,w〉. (4.15)
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In other words, αv(w) is the complex coefficient of vj in the orthogonal projection of w onto vjC=

vC⊥∩vH. Since d v
‖v‖

ΠC : vC⊥→ TvCCP2n+1 is an isometry which maps vC⊥∩vH to VvC, we have

the identity

prV(dvΠC(w)) = αv(w)dvΠC

(
1
‖v‖2 vj

)
∀v ∈Hn+1 \{0}, w ∈Hn+1. (4.16)

In particular, a (real) subspace V ≤ TvCCP2n+1 is horizontal if and only if α|(dvΠC)−1(V ) = 0

and a submanifold X ⊆ CP2n+1 is horizontal if and only if α|(ΠC)−1(X) = 0. Further,

if we write ϕ̃i : C2n+1 → Hn+1 = C2n+2 for the map ϕ̃i(z0,z1, . . . ,zi−1, ẑi,zi+1, . . . ,z2n+1) =

(z0,z1, . . . ,zi−1,1,zi+1, . . . ,z2n+1), so that ϕi := ΠC ◦ ϕ̃i : C2n+1 → Ui give the standard charts on

CP2n+1, we can trivialise V|Ui
via the map

ψi : C2n+1×C−→ V|Ui
, ψi(z,λ ) = λdϕ̃i(z)ΠC

(
1

‖ϕ̃i(z)‖2 ϕ̃i(z)j
)
. (4.17)

It is not hard to check that the transition maps are given by ψ
−1
j ◦ψi(z,λ ) =

(
ϕ
−1
j ◦ϕi(z),λ/z2

j

)
,

which are exactly the transition maps for OCP2n+1(2). Moreover, the identities (4.16) and (4.17)

show that

ψ
−1
i (prV(dzϕi(w))) = ψ

−1
i

(
αϕ̃i(z)(dzϕ̃i(w))dϕ̃i(z)ΠC

(
1

‖ϕ̃i(z)‖2 ϕ̃i(z)j
))

= (z,(ϕ̃∗i α)z(w)) = (z,α i
z(w)).

C-isotropic and Legendrian submanifolds

We now briefly describe the properties of submanifolds of CP2n+1 which are horizontal with respect

to Π, that is, submanifolds which are everywhere tangent to the holomorphic contact structure. To

that end, we first introduce some notation and terminology.

Notation 4.1.15. We will use the following notation: given a complex vector space W , we will write

V ≤R W , V ≤C W to denote that V is a real or complex subspace of W , respectively. If V ≤R W is a

real subspace, we write VC := SpanC(V ). //

Definition 4.1.16. A subspace V ≤R Hn+1 is called ωC−isotropic if ωC|V = 0. It is called

ωC−Lagrangian if it is ωC−isotropic and dimRV = 2(n+1) . ♦

We immediately note the following:

Lemma 4.1.17. Let V ≤R Hn+1 be a subspace. The following are equivalent

1. V is ωC−isotropic;

2. VC =V +V i is ωC-isotropic;

3. V j⊥V and V k⊥V .

In particular, if V is ωC-isotropic, then dimR(V ) ≤ 2dimC(VC) ≤ 2(n + 1) and so, if V is

ωC−Lagrangian, then V =VC is a complex subspace of Hn+1.
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Proof. The equivalence of the three assertions follows from the fact that for every v1,v2 ∈ V , we

have

ωC(v1,v2) = 0⇔ Co(〈v1j,v2〉) = 0⇔ Re(〈v1j,v2〉)− iRe(〈v1k,v2〉) = 0⇔{v2,v2i} ⊥ {v1j,v1k}.

The remaining conclusions follow by comparing dimensions.

Lemma 4.1.18. Let V ≤R Hn+1 be an ωC−isotropic subspace and let v ∈ V be a non-zero vector.

Then there exists a complex subspace V ′ ≤C vH⊥ such that VC = vC⊕V ′.

Proof. Let prvH : Hn+1 → vH denote the projection along vH⊥. We clearly have vC ≤ vH∩VC ≤

prvH(VC). The claim will then follow if we can show that dimC(prvH(VC)) = 1. But if that is not

the case, then since dimC vH= 2 we must have prvH(VC) = vH, so in particular there exists v′ ∈VC

such that prvH(v
′) = vj. But then we have ωC(v,v′) = Co(〈vj,v′〉) = Co(〈vj,vj〉) = ‖v‖2 6= 0 which

contradicts the fact that VC is ωC−isotropic.

We now turn to CP2n+1. We make the following definition.

Definition 4.1.19. A real subspace V ≤R TvCCP2n+1 is called C−isotropic if dvΠ
−1
C (V ) is

ωC−isotropic. It is called Legendrian if dvΠ
−1
C (V ) is ωC−Lagrangian. A map ϕ : X → CP2n+1

of smooth manifolds is called C-isotropic if dxϕ(TxX) is a C-isotropic subspace of TxCP2n+1 for all

x ∈ X . If dimRX = 2n and ϕ is an immersion, we call it a Legendrian immersion. If X ⊆CP2n+1 is a

submanifold and ϕ is the inclusion, we will call X aC-isotropic (resp. Legendrian) submanifold. ♦

While these definitions seem to differ from the analogous situation in real contact geometry,

where a submanifold is called isotropic whenever it is tangent to the contact distribution, we now

show that this is actually not the case: a submanifold of CP2n+1 is C-isotropic if and only if it is

horizontal. More precisely, we have the following lemma.

Lemma 4.1.20.

a) A subspace V ≤R TvCCP2n+1 is C-isotropic if and only if V ≤HvC and

I(v(1+ jeiθ )C)(Π∗V )⊥Π∗V ∀ θ ∈ R/2πZ.

b) For a map of smooth manifolds ϕ : X → CP2n+1 the following are equivalent:

b1) ϕ is C-isotropic;

b2) ϕ is horizontal, i.e. dxϕ(TxX)≤Hϕ(x) for all x ∈ X;

b3) each local lift v : U → Hn+1, where U ⊆ X is an open set and ΠC ◦ v = ϕ|U , satisfies

v∗α = 0.

In particular, if ϕ : X → CP2n+1 is a horizontal immersion, then dimRX ≤ 2n and ϕ is a

Legendrian immersion if and only if it is horizontal and dimRX = 2n. Moreover, in this case
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X can be equipped with an almost complex structure, so that X is a complex n-manifold and

ϕ is holomorphic.

Proof. First we prove part a). Suppose V ≤R TvCCP2n+1 is C−isotropic and write Ṽ = dvΠ
−1
C (V )≤

Hn+1. By Lemma 4.1.18 we can write ṼC = vC⊕V ′ where V ′ ≤ vH⊥. Then V ≤VC = dvΠC(V ′)≤

dvΠC(vH⊥) =HvC. Now let w1,w2 ∈ Π∗V and let w̃1, w̃2 ∈ vH⊥ be their lifts under dvΠH. Then

w̃1, w̃2 ∈V ′ and since V ′ is ωC−isotropic, Lemma 4.1.18 again tells us that we can write w̃2 = w̃1z+

w̃′2 for some z ∈C and w̃′2 ∈ w̃1H⊥. Then, assuming without loss of generality that v ∈ S4n+3(1), we

have:

gvH(w1,I(v(1+ jeiθ )C)w2) = gvH(dvΠH(w̃1),I(v(1+ jeiθ )C)dvΠH(w̃2))

= Re(〈w̃1, w̃2(1+ jeiθ )i(1+ jeiθ )−1〉)

= Re(−〈w̃1, w̃2keiθ 〉)

= −Re(‖w̃1‖2kz̄eiθ )−Re(〈w̃1, w̃′2〉keiθ ) = 0.

Conversely, suppose that V ≤R HvC and I(v(1+ jeiθ ))Π∗V ⊥ Π∗V for all θ ∈ R/2πZ. From the

first assumption we have dvΠ
−1
C (VC) = vC⊕V ′ for V ′ ≤C vH⊥ and it suffices to show that V ′ is

ωC−isotropic. If w̃1, w̃2 ∈ V ′, then the second assumption and the same calculation as above show

that for all θ ∈ R/2πZ we have

0 =−Re(〈w̃1, w̃2〉keiθ ) =−Re(keiθ 〈w̃1, w̃2〉) = Re(〈w̃1e−iθ k, w̃2〉).

In particular, putting θ = 0,π/2 yields

Re(〈w̃1k, w̃2〉) = Re(〈w̃1j, w̃2〉) = 0.

By Lemma 4.1.17 it follows that V ′ is ωC−isotropic. This concludes the proof of part a).

Let us now prove part b). The fact that b1) implies b2) follows immediately from part a). On the

other hand b2) is equivalent to b3) by identity (4.16). It remains to be shown that b3) implies b1). Fix

x ∈ X and let U ⊆ X be an open neighbourhood of x such that ϕ|U admits a local lift v : U →Hn+1.

We want to show that dxϕ(TxX) is C-isotropic, i.e. that dv(x)Π
−1
C (dxϕ(TxX)) is ωC-isotropic. Note

that the equation ΠC ◦ v = ϕ|U implies that

dv(x)Π
−1
C (dxϕ(TxX)) = dxv(TxX)+ker(dv(x)ΠC) = dxv(TxX)+ v(x)C.

Now define the map v̂ : U ×C→ Hn+1, v̂(x,λ ) = v(x)λ . Since v̂∗(TxX ⊕C) = v∗(TxX)+ v(x)C,

we need to show that v̂∗ωC = 0. Note that for each λ ,µ ∈ C and w ∈ TxX , we have the formula

d(x,λ )v̂(w,µ) = dxv(w)λ + v(x)µ and so

(v̂∗α)(x,λ )(w,µ) = λ (v∗α)x(w)+µ αv(x)λ (v(x)) = 0 + Co〈v(x)λ j,v(x)〉= 0.

Thus v̂∗α = 0 and hence v̂∗ωC = 1
2 v̂∗dα = 0, which is what we wanted.
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The dimensional restrictions on manifolds admitting a horizontal immersion intoCP2n+1 follow

immediately from Lemma 4.1.17, which also tells us that if ϕ is a Legendrian immersion, then

ϕ∗(TxX) is a complex subspace of Tϕ(x)CP2n+1. Hence ϕ∗J0 is a well-defined almost complex

structure on X which is also integrable since J0 is integrable. This makes X into a complex n-

manifold and ϕ becomes a holomorphic immersion.

4.1.2.2 Statement and proof

We can now give the precise statement of the Legendrian–Lagrangian correspondence. First, we

define the type of Lagrangians L ⊆ CP2n+1 which we will consider, namely the ones for which the

restricted projection Π|L : L→HPn is locally an S1-bundle.

Definition 4.1.21. (cf. [DRGI16]) Let φ : L→ CP2n+1 be a Lagrangian immersion. We say that φ

is compatible with the twistor fibration Π, if there exists a smooth manifold X of dimension 2n, a

submersion π : L→ X and an immersion ϕ̄ : X →HPn such that

i) the map π : L→ X gives L the structure of a smooth locally trivial circle bundle over X ;

ii) Π◦φ = ϕ̄ ◦π .

We call ϕ̄ : X →HPn the base immersion corresponding to φ . ♦

With this definition in place, the Legendrian–Lagrangian correspondence is summarised in the

following two theorems.

Theorem 4.1.22. Let X be a complex manifold and let ϕ : X→CP2n+1 be a Legendrian immersion.

As usual, set Yϕ := {(x,v) ∈ ϕ∗V : ‖v‖= π/4} and consider the opposite equator map

ϕ̂ : Yϕ → CP2n+1, ϕ̂(x,v) = expgFS
(ϕ(x),v).

Then ϕ̂ is a minimal Lagrangian immersion.

Clearly ϕ̂ is compatible with the twistor fibration and its corresponding base immersion is

ϕ̄ = Π◦ϕ . The next theorem shows that this is essentially the only way that compatible Lagrangian

immersions arise.

Theorem 4.1.23. Let φ : L→ CP2n+1 be a Lagrangian immersion which is compatible with Π, has

circle bundle structure π : L→ X and corresponding base immersion ϕ̄ : X →HPn. Then for every

sufficiently small open set U ⊆ X there exists a Legendrian embedding ϕU : U →CP2n+1 which lifts

ϕ̄|U and satisfies ϕ̂U (YϕU ) = φ(π−1(U)).

Isotropic opposite equator manifolds

We now prove Theorem 4.1.22 and Theorem 4.1.23. They will follow from two local results about

C-isotropic maps into CP2n+1 which we formulate and prove in the next two propositions.
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Proposition 4.1.24. Let X be a smooth manifold and let ϕ : X → CP2n+1 be a smooth map. Let

ϕ̂ : Yϕ → CP2n+1 denote its corresponding opposite equator map. Then ϕ̂ ∗ωFS = 0 if and only if ϕ

is C-isotropic.

Proof. Since the statement is entirely local, we may assume that X is a small ball and that we have

a lift v : X → S4n+3(1) such that ϕ = ΠC ◦ v. Let Y = (R/2πZ)×X and define

φ̃ : Y →Hn+1, φ̃(θ ,x) = v(x)(1+ jeiθ ).

Then by Lemma 4.1.13, the map φ := ΠC ◦ φ̃ parametrises ϕ̂(Yϕ) and so ϕ̂ ∗ωFS = 0 if and only if

φ ∗ωFS = 0.

Suppose that ϕ is a C−isotropic. We first show that the horizontal form ωH vanishes on φ∗TY .

We have

ω
H(d(θ ,x)φ ·T(θ ,x)Y, d(θ ,x)φ ·T(θ ,x)Y ) = gΠ(ϕ(x))(I(φ(θ ,x))Π∗ϕ∗TxX ,Π∗ϕ∗TxX)

= gvH(I(v(1+ jeiθ )C)ΠH∗v∗TxX ,ΠH∗v∗TxX)

= 0, (4.18)

where the first line comes from (4.11) and the last line follows from Lemma 4.1.20 a) and the

assumption that ϕ is C−isotropic.

We now need to show that ωV also vanishes on φ∗TY . Since (V,ωV) is a (real) rank 2 sym-

plectic vector bundle and by construction φ∗T (R/2πZ)≤V , then ωV vanishes on φ∗TY if and only

if prV(φ∗TY ) = φ∗T (R/2πZ), i.e. if and only if prV(φ∗T X) ≤ φ∗T (R/2πZ). To show this, it is

enough to prove that if x ∈ X and w ∈ TxX , then

d(θ ,x)φ̃(w)≤
(
φ̃(θ ,x)H

)⊥⊕ φ̃(θ ,x)C⊕SpanR

(
d(θ ,x)φ̃

(
∂

∂θ

))
. (4.19)

Observe first that

d(θ ,x)φ̃
(

∂

∂θ

)
=

∂

∂θ
(v(x)(1+ jeiθ )) =−v(x)keiθ .

Now since ϕ is C−isotropic, we have that SpanC(dxv(TxX)) is an ωC−isotropic subspace of Hn+1.

So by Lemma 4.1.18, we can write dxv(w) = v(x)z+w′ for some z ∈ C and w′ ∈ (v(x)H)⊥. Then

we have

d(θ ,x)φ̃(w) = (dxv(w))(1+ jeiθ )

= w′(1+ jeiθ )+ v(x)z(1+ jeiθ )

= w′(1+ jeiθ )+ v(x)(1+ jeiθ )z− v(x)jeiθ z+ v(x)jeiθ z̄

= w′(1+ jeiθ )+ v(x)(1+ jeiθ )z+2Im(z)v(x)keiθ

∈
(
φ̃(θ ,x)H

)⊥⊕ φ̃(θ ,x)C⊕SpanR

(
d(θ ,x)φ̃

(
∂

∂θ

))
.
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Now for the converse: suppose ωFS vanishes on φ∗TY . We will show that v∗α = 0. First we

claim that for every (θ ,x) ∈ Y we have

prV(d(θ ,x)φ(T(θ ,x)Y )) = SpanR

(
d(θ ,x)φ

(
∂

∂θ

))
.

Indeed, if this is not the case, then since dimRVφ(θ ,x) = 2 and φ∗(∂/∂θ) 6= 0, there exists a vector

w ∈ T(θ ,x)Y such that ωV (φ∗(w),φ∗(∂/∂θ)) = 1. But since φ∗ (∂/∂θ) ∈ Vφ(θ ,x) we have

ωFS

(
φ∗(w),φ∗

(
∂

∂θ

))
= ω

V
(

φ∗(w),φ∗

(
∂

∂θ

))
= 1

which contradicts the assumption that φ ∗ωFS = 0.

Then, we must have prV(φ∗TY ) = φ∗T (R/2πZ) and so for every w ∈ TxX , θ ∈ R/2πZ, we

have d(θ ,x)φ̃(w) ∈
(
φ̃(θ ,x)H

)⊥⊕ φ̃(θ ,x)C⊕SpanR
(

d(θ ,x)φ̃
(

∂

∂θ

))
as above. Thus we can write

dxv(w)(1+ jeiθ ) = w′+ v(x)(1+ jeiθ )z+λv(x)keiθ

for some w′ ∈ vH⊥, z ∈ C and λ ∈ R. Then we have

dxv(w) = w′
(1− jeiθ )

2
+ v(x)z+ v(x)

(
λ

2
− Im(z)

)
keiθ (1− jeiθ )

= w′
(1− jeiθ )

2
+ v(x)

(
Re(z)+

λ

2
i
)
+ v(x)

(
λ

2
− Im(z)

)
keiθ

Applying the 1-form α to both sides we obtain

αv(v∗w) = Co
〈

vj ,
(

λ

2
− Im(z)

)
keiθ

〉
= ‖v‖2

(
Im(z)− λ

2

)
ieiθ

The left-hand side is independent of θ , while the right-hand side is purely imaginary for θ = 0 and

real for θ = π/2. We conclude that αv(v∗w) = 0 which is what we wanted to show.

Next we show that if an isotropic submanifold of CP2n+1 of dimension at least n+ 1 inter-

sects the twistor lines in circles, then it is in fact the opposite equator manifold of a C-isotropic

submanifold. Again, since the result is local, we assume that we can lift all maps to Hn+1.

Proposition 4.1.25. Let X be a smooth manifold with dimX ≥ n+ 1 and put Y = (R/2πZ)×X.

Suppose φ̃ : Y →Hn+1 is a smooth map such that φ := ΠC ◦ φ̃ is an immersion, satisfying φ ∗ωFS = 0

and Π∗φ∗(∂/∂θ) = 0. Then there exists a C-isotropic immersion ϕ : X→CP2n+1 such that φ(Y ) =

ϕ̂(Yϕ), where ϕ̂ is the opposite equator map of ϕ .

Proof. Let us write φ̄ := Π ◦ φ . Since by assumption φ̄ is independent of θ , it factors through a

map ϕ̄ : X →HPn. We first observe that we must have φ ∗ωV = 0. Indeed, for each w ∈ T(θ ,x)Y the

following holds:

0 = φ
∗
ωFS

(
∂

∂θ
,w
)

= ω
V
(

φ∗

(
∂

∂θ

)
, prV(φ∗w)

)
+gϕ̄(x)

(
I(φ(θ ,x))φ̄∗

(
∂

∂θ

)
, φ̄∗w

)
= ω

V
(

φ∗

(
∂

∂θ

)
, prV(φ∗w)

)
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Since φ is an immersion, we have that φ∗ (∂/∂θ) 6= 0 and so we must have prV(φ∗TY ) ≤

SpanR (φ∗ (∂/∂θ)). Hence φ ∗ωV = 0 and moreover ϕ̄ is an immersion.

We now know that φ ∗ωH = φ ∗ωFS = 0 and so for any point x ∈ X we have

gϕ̄(x) (I(φ(θ ,x))ϕ̄∗TxX , ϕ̄∗TxX) = 0 ∀θ ∈ R/2πZ. (4.20)

Consider the subspace Px := SpanR{I(φ(θ ,x)) : θ ∈ R/2πZ} ≤ Qϕ̄(x) and let I, J, K be a basis for

Qϕ̄(x), satisfying I2 = J2 = K2 = IJK = −Id. By (4.20), we have that A(ϕ̄∗TxX) ⊥ ϕ̄∗TxX for each

A ∈ Px. Since φ is an immersion and I is an embedding, we have that I∗φ∗(∂/∂θ) 6= 0 and so Px

is at least 2-dimensional. The condition dimX ≥ n+ 1 then forces Px to be exactly 2-dimensional:

otherwise we must have Px = Qϕ̄(x) and so I (ϕ̄∗TxX) ⊥ ϕ̄∗TxX , J (ϕ̄∗TxX) ⊥ ϕ̄∗TxX , K (ϕ̄∗TxX) ⊥

ϕ̄∗TxX which implies 4dim(ϕ̄∗TxX)≤ dimHPn = 4n, contradicting the fact that ϕ̄ is an immersion.

Hence Px∩Z(HPn,Q)ϕ̄(x) is an equator of the twistor line and the map I(φ( · ,x)) : R/2πZ→

Px ∩Z(HPn,Q)ϕ̄(x) is a covering. In order to pick out one of the poles opposite to this equator, we

use the fixed lift φ̃ of φ . We define a map ϕ ′ : Y → CP2n+1 via the equation

I(ϕ ′(θ ,x))d
φ̃(θ ,x)ΠH(w) = d

φ̃(θ ,x)ΠH(wj) ∀(θ ,x) ∈ Y, w ∈ T(θ ,x)Y. (4.21)

One can then easily check that {I(ϕ ′(θ ,x)),I(φ(θ ,x))}= 0 for all θ ∈R/2πZ. Thus ϕ ′ is indepen-

dent of θ with I(ϕ ′( · ,x)) constant at one of the poles opposite the equator I(φ(R/2πZ,x)). Letting

ϕ : X→CP2n+1 be the map through which ϕ ′ factors, it follows by construction that φ(Y ) = ϕ̂(Yϕ).

In particular ϕ̂ ∗ωFS = 0 and so by Proposition 4.1.24 that map ϕ is C-isotropic. It is also an immer-

sion since ϕ̄ = Π◦ϕ is an immersion.

Theorem 4.1.23 now follows easily.

Proof of Theorem 4.1.23. Recall that we have a Lagrangian immersion φ : L→ CP2n+1 which is

compatible with Π with base immersion ϕ̄ : X →HPn. We want to show that ϕ̄ admits local Legen-

drian lifts. So let U ⊆ X be a small open set such that ϕ̄|U is an embedding. Then φ |
π−1(U) is also

an embedding, where π : L→ X is the circle fibration. After possibly shrinking U , we may trivialise

the circle bundle π−1(U)→U and choose a lift φ̃U : π−1(U)→Hn+1 of φ |
π−1(U). These maps then

satisfy all hypotheses of Proposition 4.1.25 and so there exists a Legendrian lift ϕU : U → CP2n+1

of ϕ̄|U and φ(π−1(U)) = ϕ̂U (YϕU ).

Observe also that Proposition 4.1.24 establishes most of Theorem 4.1.22. That is, it tells us

that, if ϕ : X → CP2n+1 is a Legendrian immersion, then ϕ̂ is a Lagrangian immersion. It remains

to be shown that ϕ̂ is minimal. We do this in the next section.

Minimality

Recall that the sphere S4n+3(1) carries a standard real contact structure ξ = T S4n+3∩ (T S4n+3)i. We

call a (2n+ 1)-dimensional submanifold of the sphere R-Legendrian if it is everywhere tangent to

ξ .
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Remark 4.1.26. It is not without cringing that we impose this terminology but it is necessary to avoid

the clash with Legendrian subvarieties of CP2n+1 which dominate a large portion of this thesis. The

reader may find consolation in the fact that R-Legendrian (ouch) submanifolds will be mentioned

only very briefly in this section. //

It follows immediately from the definition of the Fubini-Study form that every R-Legendrian

submanifold of S2m+1 projects to an immersed Lagrangian in CPm. Conversely, every Lagrangian

submanifold of CPm locally admits an R-Legendrian lift. To prove that the opposite equator map of

a Legendrian immersion in CP2n+1 is minimal, we rely on a well-known result (see e.g. [CLU06,

Proposition 2.2]), which states that a Lagrangian immersion φ : Mm→ CPm is minimal if and only

if for every y0 ∈ M, there exists an open neighbourhood U ⊆ M of y0 and a local R-Legendrian

lift φ̃ : U → S2m+1, such that the real cone ConeR
(
φ̃(U)

)
:=
{

λ φ̃(y) ∈ Cm+1 : y ∈U, λ ∈ R×
}

is

special Lagrangian in Cm+1. That is, if and only if for any frame {e1, . . . ,em} of U one has that the

phase map

U → S1, y 7→
detC

(
φ̃(y), φ̃∗e1(y), . . . , φ̃∗em(y)

)
|detC

(
φ̃(y), φ̃∗e1(y), . . . , φ̃∗em(y)

)
|

is constant.

The following lemma provides the desired local R-Legendrian lifts.

Lemma 4.1.27. Let X be a complex ball with dimCX = n and let v : X → S4n+3(1) be such that

ϕ := ΠC ◦ v : X −→ CP2n+1 is a holomorphic Legendrian embedding. Let Y = R/2πZ×X. Then

the map

φ̃ : Y → S4n+3(1), φ̃(θ ,x) = v(x)

(
e−i θ

2 + jei θ
2

√
2

)

is R-Legendrian and φ := ΠC ◦ φ̃ parametrises ϕ̂ (Yϕ).

Proof. The fact that φ = ΠC ◦ φ̃ parametrises ϕ̂ (Yϕ) is just the observation that for all x ∈ X , the

equator opposite ϕ(x) is

S(v(x)C) = {v(x)(1+ jeiθ )C ∈ CP2n+1 : θ ∈ R/2πZ}

=

{
v(x)

(
e−i θ

2 + jei θ
2

√
2

)
C ∈ CP2n+1 : θ ∈ R/2πZ

}
.

We now need to show that φ̃∗TY ≤ T S4n+3 ∩ (T S4n+3i), or, equivalently, that for every (θ ,x) ∈ Y

we have d(θ ,x)φ̃ (T(θ ,x)Y ) ⊥ SpanC
(
φ̃(θ ,x)

)
. Since ‖φ̃‖ ≡ 1 we only need to show that

φ̃(θ ,x) i ⊥ d(θ ,x)φ̃ (T(θ ,x)Y ).

First we compute

d(θ ,x)φ̃
(

∂

∂θ

)
=

1√
2

v(x)
(
− i

2
e−i θ

2 + j
i
2

ei θ
2

)
=

1
2
√

2
v(x)

(
−e−i θ

2 + jei θ
2

)
i. (4.22)
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Hence:

Re
(〈

φ̃(θ ,x) i , d(θ ,x)φ̃
(

∂

∂θ

)〉)
=

1
4
Re
(〈

v(x)
(

e−i θ
2 + jei θ

2

)
i , v(x)

(
−e−i θ

2 + jei θ
2

)
i
〉)

=
1
4
Re
(
−i
(

ei θ
2 − jei θ

2

)(
−e−i θ

2 + jei θ
2

)
i
)

= 0.

Now let w ∈ TxX . Since ϕ is Legendrian, Lemma 4.1.18 tells us that there exist w′ ∈ v(x)H⊥ and

z∈C such that dxv(w) = v(x)z+w′. Note further that since ‖v‖≡ 1, we must also have that dxv(w)∈

v(x)R⊥ and so z = λ i for some λ ∈ R. We then have:

Re
(〈

φ̃(θ ,x) i , d(θ ,x)φ̃(w)
〉)

=
1
2
Re
(〈

v(x)
(

e−i θ
2 + jei θ

2

)
i , (v(x)λ i+w′)

(
e−i θ

2 + jei θ
2

)〉)
=

λ

2
Re
(
−i
(

ei θ
2 − jei θ

2

)
i
(

e−i θ
2 + jei θ

2

))
= 0,

where in the second line we used that w′ ∈ v(x)H⊥. This concludes the proof.

We now show that the real cone over the above R-Legendrian lift is special Lagrangian. By

[CLU06, Proposition 2.2], it follows that φ is a minimal Lagrangian immersion, and this completes

the proof of Theorem 4.1.22.

Lemma 4.1.28. Let X, v, ϕ , Y , φ̃ be as in Lemma 4.1.27. Then ConeR
(
φ̃(Y )

)
is special Lagrangian

in C2n+2.

Proof. Fix x ∈ X and let {e1,e2, . . . ,en} be a unitary C-basis for TxX with respect to the Kähler

metric ϕ∗gFS. For each 1≤ s≤ n we can uniquely write

dxv(es) = λsv(x)i+ vs ∈Hn+1 for λs ∈ R and vs ∈ v(x)C⊥.

Observe that since dv(x)ΠC
∣∣
v(x)C⊥ : v(x)C⊥ → Tv(x)CCP2n+1 is a C−linear isometry sending vs to

dxϕ(es), we have that {v1, . . . ,vn} are unitary in Hn+1, i.e. Co(〈vs,vt〉) = δst for all 1 ≤ s, t ≤ n.

Setting v0 := v(x), we have

Co(〈vi,v j〉) = δi j ∀0≤ i, j ≤ n. (4.23)

Now note that {v0,v1, . . . ,vn} is aC-basis for Tv(x)Π
−1
C (ϕ(X)). Since ϕ is Legendrian, we know

that Tv(x)Π
−1
C (ϕ(X)) is ωC-Lagrangian and so we have

Co(〈vi j,v j〉) = ωC(vi,v j) = 0 ∀0≤ i, j ≤ n. (4.24)

From (4.23) and (4.24) we obtain that 〈vi,v j〉 = 0 for all 0 ≤ i, j ≤ n. This is the crucial ingredient

we need, since now we know that

detC
(
v0, v0 j, v1, v1 j, . . . , vn, vn j

)
=

1
(n+1)!

ω
n+1
C
(
v0, v0 j, v1, v1 j, . . . , vn, vn j

)
= 1. (4.25)



4.1. The Legendrian–Lagrangian correspondence 139

By slight abuse of notation, let us use right multiplication by i to also denote the complex structure

on T X . This is justified because ϕ is a holomorphic map and so we have the identity

dxϕ(es i) = dv(x)ΠC(vs i) ∀ 1≤ s≤ n.

So {e1, e1 i, e2, e2 i, . . . , en, en i} is an R−basis of TxX and for all 1≤ s≤ n there exists λ ′s ∈ R such

that

dxv(es i) = λ
′
s v(x) i+ vs i.

Therefore, writing u(θ) :=
(

e−i θ
2 +jei θ

2√
2

)
, we have the following R-basis for T

φ̃(θ ,x)ConeR
(
φ̃ (Y )

)
:

{
φ̃(θ ,x), d(θ ,x)φ̃

(
∂

∂θ

)
, d(θ ,x)φ̃(e1), d(θ ,x)φ̃(e1 i), . . . d(θ ,x)φ̃(en), d(θ ,x)φ̃(en i)

}
=

=
{

v0 u(θ);v0 u̇(θ);λ1 v0 iu(θ)+ v1 u(θ), λ
′
1 v0 iu(θ)+ v1 iu(θ), . . .

. . . , λn v0 iu(θ)+ vn u(θ), λ
′
n v0 iu(θ)+ vn iu(θ)

}
.

Observe that u̇(θ) = − 1
2 iu(θ) so the second term becomes − 1

2 v0 iu(θ) and using Gaussian elimi-

nation we can transform the above basis into

{
v0 u(θ), v0 iu(θ), v1 u(θ), v1 iu(θ), . . . , vn u(θ), vn iu(θ)

}
.

Writing u = u(θ) and using the identity iu = u i+ 2√
2
kei θ

2 , we can now just compute the desired

complex determinant:

detC(v0 u, v0 iu, v1 u, v1 iu, . . . , vn u, vn iu) =

= detC

(
v0 u, v0 u i+

2√
2

v0 kei θ
2 , v1 u, v1 u i+

2√
2

v1 kei θ
2 , . . . , vn u, vn u i+

2√
2

vn kei θ
2

)
= detC

(
v0 u,

2√
2

v0 kei θ
2 , v1 u,

2√
2

v1 kei θ
2 , . . . ,vn u,

2√
2

vn kei θ
2

)
= detC

(
1√
2

v0 e−i θ
2 +

1√
2

v0 jei θ
2 ,

2√
2

v0 j(−iei θ
2 ),

1√
2

v1 e−i θ
2 +

1√
2

v1 jei θ
2 ,

2√
2

v1 j(−iei θ
2 ),

. . . ,
1√
2

vn e−i θ
2 +

1√
2

vn jei θ
2 ,

2√
2

vn j(−iei θ
2 )

)
= detC

(
v0 e−i θ

2 , v0 j(−iei θ
2 ), v1 e−i θ

2 , v1 j(−iei θ
2 ), . . . , vn e−i θ

2 , vn j(−iei θ
2 )
)

= (−i)n+1 detC(v0, v0 j, v1, v1 j, . . . , vn, vn j)

= (−i)n+1 by (4.25).

This is independent of θ and x, which is what we wanted to show.

4.1.3 Known examples

The Legendrian–Lagrangian correspondence allows one to look at submanifolds ofCP2n+1 andHPn

from different points of view. These are summarised in Table 4.1 (note that in Table 4.1 and in the

discussion that follows, we only consider smooth Legendrian varieties).
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Holomorphic Contact

Geometry of CP2n+1

Geometry of

Submanifolds of HPn

Symplectic Geometry

of CP2n+1

n = 1

Legendrian curves in

CP3

immersed superminimal

surfaces in HP1 = S4

immersed twistor

Lagrangians in CP3

Legendrian curves in

CP3 of Type 1 or Type 2

embedded superminimal

surfaces in HP1 = S4

embedded twistor

Lagrangians in CP3

n≥ 2

Legendrian subvarieties

of CP2n+1

MTC immersions in

HPn

immersed twistor

Lagrangians in CP2n+1

Legendrian subvarieties

of CP2n+1 of Type 1 or

Type 2

embedded MTC

submanifolds of HPn

embedded twistor

Lagrangians in CP2n+1

Table 4.1: Twistor correspondences for submanifolds of CP2n+1 and HPn

If one is only interested in immersed twistor Lagrangians/superminimal sufaces/MTC subman-

ifolds, then there are plenty of examples because Legendrian subvarieties of CP2n+1 have been

extensively studied. This was initiated in the seminal paper [Bry82] by Bryant, where he showed

that every closed Riemann surface admits a Legendrian embedding in CP3. In higher dimensions

it was believed that smooth Legendrian subvarieties are quite rare and for a long time the only

known examples were certain homogeneous varieties known as “subadjoint varieties”. The first non-

homogeneous example of a smooth Legendrian surface in CP5 was constructed by Landsberg and

Manivel in [LM07]. This was quickly followed by a few more examples by Buczynski. Finally, in

[Buc08a] Buczynski used a symplectic reduction argument to show that a generic hyperplane section

of a smooth Legendrian subvariety of CP2n+1 always admits a Legendrian embedding in CP2n−1.

Applying this to the subadjoint varieties leads to large families of examples in every dimension (see

[Buc09, Example A.15, Theorem A.16]).

On the other hand, if one is interested only in Legendrian subvarieties of Type 1 or Type 2,

that is, the ones which give rise to embedded twistor Lagrangians and MTC submanifolds, then the

situation is quite different. In section 4.1.4 below we use the results from section 3.1 to show that the

only Type 1 Legendrian subvarieties are horizontal linear subspaces CPn ⊆ CP2n+1. In other words

– the only maximal Kähler submanifold of HPn is the totally geodesic CPn. The corresponding

twistor Lagrangian is the standard RP2n+1.

As for Type 2 Legendrians, the only known examples so far are the subadjoint varieties. In

fact, all subadjoint varieties of (complex) dimension more than 1 were listed by Tsukada in [Tsu85,

Corollary 6.11] who showed that their projections to HPn are the only parallel MTC submanifolds

of HPn, that is the only ones which have parallel second fundamental form. Later the condition

of being parallel has been shown to be equivalent to the requirement that the MTC submanifold is

locally Kähler-Einstein or locally reducible ([Tsu04]) and is also equivalent to being homogeneous

([BGP09]). Here is Tsukada’s list:
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1. One infinite family of Type 2 Legendrian varieties obtained as follows. For each m ≥ 1 let

Qm ⊆ CPm+1 denote the quadric hypersurface. Then the Segre embedding CP1×CPm+1→

CP2m+3 restricts to a Legendrian embedding CP1×Qm→ CP2m+3. Explicitly, putting Qm =

{[u0 : u1 : . . . : um+1]C ∈ CPm+1 : ∑
m+1
i=0 u2

i = 0}, the embedding is

σ : CP1×Qm −→ CP2m+3

([x : y]C, [u0 : u1 : . . . : um+1]C) 7−→ [xu0 : yu0 : xu1 : yu1 : . . . : xum+1 : yum+1]C.

It is immediate to check that σ∗(α̂) = 0 and

X (σ( [x : y]C, [u0 : u1 : . . . : um+1]C )) = σ( [−ȳ : x̄]C, [ū0 : ū1 : . . . : ūm+1]C ).

We denote this Type 2 Legendrian variety by X(1,m) and the corresponding twistor Lagrangian

by Z(1,m).

2. The ωC-Lagrangian Grassmanian GrLag(C6,ωC) =
Sp(3)
U(3) ⊆CP

13 giving an MTC submanifold

in HP6. We denote this variety by X6 and the corresponding twistor Lagrangian by Z6.

3. The complex Grassmannian GrC(3,6) =
U(6)

U(3)×U(3) ⊆ CP
19 giving an MTC submanifold of

HP9. We denote this variety by X9 and the corresponding twistor Lagrangian by Z9.

4. The homogeneous space SO(12)
U(6) ⊆CP

31 giving an MTC submanifold ofHP15. We denote this

variety by X15 and the corresponding twistor Lagrangian by Z15.

5. The homogeneous space E7
E6·T 1 ⊆ CP55 giving an MTC submanifold of HP27. We denote this

variety by X27 and the corresponding twistor Lagrangian by Z27.

For the representation theory of subadjoint varieties see e.g. [Muk98] and [LM02]. See also

[Buc08b] which gives the explicit equations defining the Legendrian embeddings of the subadjoint

varieties. As one can see from these references, there is one other subadjoint variety apart from

the ones in the above list, namely the twisted cubic X1 := v3(CP1) ⊆ CP3 (v3 denotes the degree 3

Veronese embedding). This is again of Type 2, the superminimal surface to which it projects is the

well-known Veronese surface RP2 ⊆ S4 and its corresponding twistor Lagrangian Z1 is precisely the

Chiang Lagrangian L∆ ⊆ CP3 (see section 5.1.1 below). We will refer to Z1, Z6, Z9, Z15, Z27 and

Z(1,m) for m≥ 1 as the subadjoint Lagrangians.

We now begin our systematic study of Type 1 and Type 2 twistor Lagrangians in CP2n+1.

4.1.4 Type 1 twistor Lagrangians

By projectivising an ωC-Lagrangian subspace of C2n+2 one obtains a Type 1 Legendrian embedding

CPn ⊆ CP2n+1, whose image under Π is a totally geodesic Kähler submanifold of HPn. Letting

X = CPn ⊆ CP2n+1 denote this Type 1 Legendrian and ϕ denote the inclusion, we have that the

opposite equator map

ϕ̂ : YX = {(x,v) ∈ V|X : ‖v‖= π/4} −→ CP2n+1
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is an embedding. Recalling that V =OCP2n+1(2), we see that the twistor Lagrangian corresponding

to X is diffeomorphic to the circle bundle inside OCPn(2), that is ZX = RP2n+1. This is the stan-

dard Lagrangian embedding of RP2n+1: to obtain exactly the copy of RP2n+1 parametrised by real

homogeneous coordinates, one can take the horizontal CPn cut out by the equations z2k+1 = iz2k,

0≤ k ≤ n, whose opposite equator manifold is the set

ΠC( {(1− i)e−i θ
2 (z0 + iz̄0eiθ , iz0 + z̄0eiθ , . . . ,z2n + iz̄2neiθ , iz2n + z̄2neiθ ) :

(z0,z2, . . . ,z2n) ∈ Cn+1 \{0},θ ∈ R/2πZ} ).

Note that the group Sp(n+1) acts transitively on ωC-Lagrangian subspaces of C2n+2 so there

is only one linear Legendrian CPn ⊆ CP2n+1 up to this action. We now prove that this is also the

only Type 1 Legendrian variety.

Theorem 4.1.29. If X ⊆ CP2n+1 is a Type 1 Legendrian subvariety, then X is a linear CPn.

Proof. Since X is Type 1, the corresponding twistor Lagrangian ZX is diffeomorphic to the principal

circle bundle YX = S(OX (2)). Our goal is to show that NZX = 2n+ 2 so that we can apply Theo-

rem 3.1.1 (recall that twistor Lagrangians are automatically monotone by [CG04], because they are

minimal Lagrangians in a Kähler-Einstein manifold).

Since the Hurewicz homomorphism π2(CP2n+1,ZX )→H2(CP2n+1,ZX ;Z) is surjective, we can

find a continuous map u : (D2,∂D2)→ (CP2n+1,ZX ) whose class [u] ∈ H2(CP2n+1,ZX ;Z) realises

the minimal Maslov number, i.e. IµZX
(u) = NZX . Now consider the reflected disc ǔ := X ◦ u ◦ c,

where c : D2 → D2 denotes complex conjugation. Since ZX is setwise fixed by X , ǔ is also a disc

with boundary on ZX and since X is antihomolomorphic, we have that X ∗µZX = −µZX and so

IµZX
(ǔ) = IµZX

(u) = NZX . Now, since ZX → X is a principal S1-bundle and X acts on ZX as the

antipodal map on the fibres, we see that X|ZX
: ZX→ ZX is homotopic to the identity map because we

can use the S1-action to rotate the fibres 180 degrees.4 In particular thenX acts trivially on H1(ZX ;Z)

and so we have ∂ [u] =−∂ [ǔ ] ∈ H1(ZX ;Z), where the minus sign comes from complex conjugation.

Then [u]+ [ǔ ] must lie the image of the natural map j∗ : H2(CP2n+1;Z)→ H2(CP2n+1,ZX ;Z) and

hence

2IµZX
([u]) = IµZX

([u]+ [ǔ ]) ∈ IµZX
( j∗(H2(CP2n+1;Z)) = 2(2n+2)Z.

So 2n+2 divides NZX . By the bound (3.2), we must then have NZX = 2n+2, as we wanted.

Theorem 3.1.1 now tells us that π1(ZX )∼= Z/2 and the universal cover of ZX is homeomorphic

to S2n+1. Recall that ZX is diffeomorphic to S (OX (2)). So Z̃X := S (OX (1)) is a connected double

cover of ZX and hence it must be homeomorphic to S2n+1. Now let i : X → CP2n+1 denote the

inclusion and note that the restriction of the hyperplane class i∗H ∈ H2(X ;Z) is the Euler class of

the circle bundle S1→ Z̃X → X . Using the Gysin long exact sequence for this circle bundle together

4Thanks to Jack Smith for pointing this out.



4.1. The Legendrian–Lagrangian correspondence 143

with the fact that H i(Z̃X ;Z) = 0 for all 1≤ i≤ 2n, we get that the map

H i(X ;Z)
^(i∗H)// H i+2(X ;Z)

is an isomorphism for all 0 ≤ i ≤ 2n− 2. Hence the degree of X as a subvariety of CP2n+1 is

deg(X) =
∫

X (i
∗H)n = 1. It follows (see [GH94, page 173]) that X is a linear subvariety of CP2n+1

and so it is a linear horizontal CPn.

4.1.5 Type 2 twistor Lagrangians

Having seen that there are no interesting Type 1 twistor Lagrangians, we now move on to the ones

of Type 2. In this section we derive some topological properties that any Type 2 twistor Lagrangian

must have.

Let X ⊆ CP2n+1 be a Type 2 Legendrian subvariety. We will write X := Π(X) ⊆ HPn for the

corresponding MTC submanifold (or superminimal surface, if n= 1). Topologically X is the quotient

of X by the Z/2-action of the fibrewise antipodal map X|X . As before, we write YX := {(x,v) ∈

V|X : ‖v‖ = π/4} for the circle bundle S(OX (2)), and ZX for the actual twistor Lagrangian. Note

that the opposite equator map ϕ̂ : YX → ZX is a double cover.

Lemma 4.1.30. The following hold:

1) X is orientable if and only if n is even.

2) The bundle S1→ ZX
Π−→ X is non-orientable. In particular the homology class of a circle fibre

has order 2 in H1(ZX ;Z).

3) The manifold ZX is orientable if and only if n is odd.

4) The minimal Maslov number of ZX is NZX = n+ 1. Moreover, if [u1], [u] ∈ H2(CP2n+1;Z)

denote respectively the class of a hemisphere of a twistor fibre passing through ZX and any

class with Maslov index n+1, then [u]−X∗[u] = [u1].

Proof. The map X|X : X → X is an antiholomorphic involution and so it is orientation-preserving

exactly when n = dimCX is even. This implies 1). To prove 2), we lift the action of X to V by

setting:

X̃ : V → V, X̃ (x,v) = (X (x),−dxX (v)).

Thinking about how the antipodal map interacts with the exponential map on a round 2-sphere of

radius 1/2, we see that we have the relation

expgFS
(X̃ (x,v)) = expgFS

(x,v) ∀x ∈ CP2n+1, v ∈ Vx, ‖v‖= π/4. (4.26)

So the restriction of X̃ acts on YX , the quotient is ZX and ϕ̂ is the quotient map. Now let V be a

nowhere vanishing vector field on YX which is everywhere positively tangent to the circle fibres of
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the bundle YX
π−→ X (recall that this bundle is canonically oriented by the S1-action). Then we have

X̃∗V =−V and so X̃ reverses the orientation on fibres. It follows from this and the diagram

YX

ϕ̂

��

π // X

Π|X
��

ZX
Π|ZX // X

that the bundle S1 → ZX → X is a non-orientable fibre bundle. Now let δ : R/Z→ X be a loop

such that following the fibre of ZX around δ reverses its orientation. Then the circle bundle K :=

δ ∗ZX → R/Z is a Klein bottle. Let f : K → ZX denote the natural map, choose a point p ∈ f (K)

and let γ : R/Z→ ZX be a parametrisation of the circle fibre through p. Then there exist maps

γ̃ : R/Z→ K, δ̃ : R/Z→ K such that f ◦ γ̃ = γ , Π◦ f ◦ δ̃ = δ and γ̃(0) = δ̃ (0) ∈ f−1(p). It follows

that in π1(K, γ̃(0)) we have the relation δ̃ · γ̃ · δ̃−1 = γ̃−1. Applying f∗ and passing to homology yields

2[γ] = 0 ∈ H1(ZX ;Z). Now let u1 : (D2,∂D2)→ (CP2n+1,ZX ) be a holomorphic parametrisation of

one of the hemispheres of the twistor line ` whose equator is parametrised by γ . Then ǔ1 :=X ◦u1 ◦c

is a holomorphic parametrisation of the other hemisphere and so

[u1]+ [ǔ1] = j∗[`] ∈ H2(CP2n+1,ZX ;Z),

where j∗ : H2(CP2n+1;Z)→ H2(CP2n+1,ZX ;Z) as usual denotes the natural map. Applying IµZX

to the above equation and using the fact that X ∗µZX = −µZX , we see that IµZX
([u1]) = 2n+ 2. In

particular, [γ] = ∂ [u1] is non-zero and hence it has order exactly 2 in H1(ZX ;Z). This completes the

proof of 2).

To show 3), observe that we have the exact sequence 0→ SpanR(V )→ TYX → π∗T X → 0.

From this we see that X̃
∣∣∣
YX

is orientation preserving if and only if X|X is orientation reversing

which, by 1), happens exactly when n is odd. In other words, ZX is orientable if and only if n is odd.

From the long exact sequence in homotopy for the fibre bundle S1→ ZX
Π−→ X we have the exact

sequence of groups π1(S1)→ π1(ZX )
Π∗−→ π1(X)→ 1. Applying the Hurewicz homomorphism and

using the fact that abelianisation is right-exact, we have the short exact sequence

0→ 〈[γ] = ∂ [u1]〉 → H1(ZX ;Z) Π∗−→ H1(X ;Z)→ 0.

Now let u : (D2,∂D2)→ (CP2n+1,ZX ) be a disc which realises the minimal Maslov number, i.e.

IµZX
([u]) = NZX . Put ǔ := X ◦u◦ c and note that since Π◦X = Π we have that

Π∗(∂ [u]+∂ [ǔ ]) = 0 ∈ H1(X ;Z).

It follows from the above exact sequence that ∂ ([u] + [ǔ ]) ∈ 〈∂ [u1]〉 and so ∂ (2[u] + 2[ǔ ]) = 0.

Hence there exists [v]∈H2(CP2n+1;Z) such that 2[u]+2[ǔ ] = j∗([v]) and applying IµZX
to this gives

4NZX ∈ 4(n+1)Z. It follows from the bound (3.2) that NZX ∈ {n+1,2n+2}.

Suppose for contradiction that NZX = 2n+ 2. Then by Theorem 3.1.1 we have π1(ZX ) ∼= Z/2

and since YX → ZX is a connected double cover, YX must be simply connected. In particular, the
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circle fibre of the bundle S1→YX → X is contractible in YX . But this contradicts the fact that there is

a fibre-preserving inclusion YX = S(OX (2)) ↪→ S(OCP2n+1(2))∼= RP4n+3 and the circle fibre defines

a non-trivial class in the fundamental group of the latter space. This is the desired contradiction and

so we must have NZX = n+1.

Note also that since ∂ ([u] + [ǔ ]) ∈ 〈∂ [u1]〉 ∼= Z/2, there exists an integer k ∈ {0,1} such that

∂ ([u] + [ǔ ]− k[u1]) = 0 and hence there exists a homology class [w] ∈ H2(CP2n+1;Z) such that

[u]+[ǔ ]−k[u1] = j∗([w]). Applying IµZX
to both sides yields 2(n+1)(1−k) = 2Ic1([w])∈ 4(n+1)Z

which implies that k = 1 and [w] = 0. Therefore [u]−X∗[u] = [u]+ [ǔ ] = [u1].

Applying part 3) of Lemma 4.1.30 to the twistor Lagrangians corresponding to subadjoint vari-

eties, we see that Z(1,m) is orientable precisely when m is even, Z6 is non-orientable and Z9, Z15 and

Z27 are orientable.

Next we turn our attention to the mod 2 algebraic topology of ZX . In particular, we are interested

under what circumstances ZX is relatively pin or satisfies Assumption (O). Regarding the first point,

we have the following result:

Lemma 4.1.31. For a Type 2 twistor Lagrangian ZX , the following hold:

1) The first and second Stiefel-Whitney classes of ZX satisfy

w1(T ZX )
2 = 0

w2(T ZX ) = Π|∗ZX
(w2(T X)).

2) The Lagrangian ZX is relatively pin if and only if w2(T ZX ) = 0.

3) If w2(T ZX ) = 0, then w2(T X) = 0, i.e. the Legendrian variety X is spin. The converse is also

true, whenever H1(X ;F2) = 0.

Remark 4.1.32. Note that it is an open question whether every smooth Legendrian subvariety of

CP2n+1 for n≥ 2 is simply connected. //

Proof. The first part of 1) holds for any Lagrangian L in CP2n+1 because the complex structure J0

identifies the tangent and normal bundles to L and so w1(T L)2 = w2
(

TCP2n+1
∣∣
L

)
= 0 since the mod

2 reduction of c1(TCP2n+1) vanishes. To prove the second part, recall that the tangent bundle to ZX

splits as T ZX = (V ∩T ZX )⊕ (H∩T ZX ), because prV(T ZX ) = V ∩T ZX (see for example the proof

of Proposition 4.1.25). Moreover, there is a bundle isomorphism H∩T ZX ∼= Π|∗ZX
T X . Hence we

have:

w1(T ZX ) = w1(V ∩T ZX ) + Π|∗ZX
w1(T X) (4.27)

w2(T ZX ) = w1(V ∩T ZX )^ Π|∗ZX
w1(T X) + Π|∗ZX

w2(T X). (4.28)

Now note that the complex structure J0 on CP2n+1 defines an isomorphism V ∩T ZX ∼= V/(V ∩T ZX )

and so w2(V|ZX
) = w1(V ∩ T ZX )

2. On the other hand, w2(V) is the mod 2 reduction of the first
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Chern class of V ∼= OCP2n+1(2) and hence vanishes. Thus w1(V ∩ T ZX )
2 = 0. Now, if n is odd,

then ZX is orientable and so (4.27) tells us that w1(V ∩T ZX ) = Π|∗ZX
w1(T X). Therefore we have

w1(V ∩T ZX )^ Π|∗ZX
w1(T X) = w1(V ∩T ZX )

2 = 0 and so w2(T ZX ) = Π|∗ZX
w2(T X) by (4.28). On

the other hand, if n is even, then X is orientable and so (4.28) tells us that w2(T ZX ) = Π|∗ZX
w2(T X).

This finishes the proof of 1).

To prove 2), we write MX = Π−1(X) and let iMX : MX → CP2n+1 and incZX : ZX →MX denote

the respective inclusions. Suppose that ZX is relatively pin. Since w1(T ZX )
2 = 0 and w2(T ZX ) =

Π|∗ZX
w2(T X), this is equivalent to the existence of k ∈ {0,1} such that

Π|∗ZX
w2(T X) = inc∗ZX

(i∗MX
(kH)), (4.29)

where H denotes the (mod 2 reduction of) the hyperplane class. We want to show that k = 0.

Using Π|ZX
= Π|MX

◦ incZX , we see that (4.29) is equivalent to

inc∗ZX
(Π|∗MX

w2(T X)+ k i∗MX
H) = 0. (4.30)

By the long exact sequence in cohomology for the pair (MX ,ZX ) we have the exact sequence

H2(MX ,ZX ;F2)
α // H2(MX ;F2)

inc∗ZX // H2(ZX ;F2)

and so (4.30) is equivalent to

Π|∗MX
w2(T X)+ ki∗MX

H ∈ α(H2(MX ,ZX ;F2)). (4.31)

Observe now that the space MX/ZX is homeomorphic to the Thom space of the bundle OX (2).

Explicitly, if we model the Thom space as DX/YX , where DX := {(x,v) ∈ V|X : ‖v‖ ≤ π/4},

then the exponential map provides the desired homeomorphism DX/YX → MX/ZX . It follows that

H2(MX ,ZX ;F2) is 1-dimensional and generated by the Thom class [φ ] which pairs to 1 with any

hemisphere of a twistor line `⊆MX . Since the whole twistor line is the sum of two hemispheres, we

have that 〈α([φ ]), [`]〉MX ;F2 = 0. It then follows from (4.31) that:〈
Π|∗MX

w2(T X) + k i∗MX
H , [`]

〉
MX ;F2

= 0 ⇔〈
w2(T X) , Π∗[`]

〉
X ;F2

+ k 〈H , [`]〉CP2n+1;F2
= 0 ⇔

k = 0,

which is what we wanted to show.

To prove 3), let λ denote the rank 1 subbundle of Q|X , consisting of endomorphisms of THPn

which preserve T X and let λ⊥ denote its orthogonal complement in Q|X . Then X is naturally iden-

tified with the S0-bundle S(λ )⊆ λ , while ZX is naturally identified with the S1-bundle S(λ⊥)⊆ λ⊥.

Since λ ⊕λ⊥ = Q|X and all Stiefel-Whitney classes of Q vanish (the corresponding cohomology

groups of HPn are zero), we get the identities w1(λ ) = w1(λ
⊥), w2(λ

⊥) = w1(λ )
2 and w1(λ )

3 = 0.

Substituting the second identity into the mod 2 Gysin sequence for the bundle S1 → ZX → X , we



4.1. The Legendrian–Lagrangian correspondence 147

obtain the exact sequence

H0(X ;F2)
^w1(λ )

2
// H2(X ;F2)

Π|∗ZX // H2(ZX ;F2). (4.32)

On the other hand, by the mod 2 Gysin sequence of the bundle S0 → X → X (a.k.a. the transfer

sequence of the double cover), we have the exact sequence

0 // H0(X ;F2)
^w1(λ ) // H1(X ;F2)

Π|∗X // H1(X ;F2)

// H1(X ;F2)
^w1(λ ) // H2(X ;F2)

Π|∗X // H2(X ;F2)

(4.33)

Now suppose that Π|∗ZX
w2(T X) = 0. Then (4.32) tells us that w2(T X) ∈ SpanF2

(w1(λ )
2) and

so Π|∗X w2(T X) = 0 by the second line of (4.33). But Π|∗X T X = T X and so X is spin.

On the other hand, suppose H1(X ;F2) = 0. Then by the first line of (4.33) we get that

H1(X ;F2) = SpanF2
(w1(λ )) and so ker

(
Π|∗X : H2(X ;F2)→ H2(X ;F2)

)
= SpanF2

(w1(λ )
2) by the

second line of (4.33). Now, if X is spin, then Π|∗X w2(T X) = w2(T X) = 0 and hence w2(T X) ∈

SpanF2
(w1(λ )

2). From (4.32), it follows that Π|∗ZX
w2(T X) = 0.

Let X be one of the subadjoint varieties. Since all such varieties are simply connected, part 3)

of Lemma 4.1.31 tells us that ZX is (relatively) pin if and only if X is spin. The varieties X6, X9, X15

and X27 are known to be spin, see [AC16, Theorems 3.25 and 3.27]. Hence Z6 is pin and Z9, Z15,

Z27 are spin.

On the other hand, X(1,m) is spin if and only if Qm is spin and it is well-known that this happens

precisely when m is even or equal to 1 (this follows from the adjunction formula, see equation (4.35)

below). We conclude that when m is odd and strictly bigger than 1, the Lagrangian Z(1,m) is neither

orientable, nor (relatively) pin. In fact, in this case Z(1,m) does not satisfy Assumption (O). To prove

this, we first make the following observation:

Lemma 4.1.33. A Type 2 twistor Lagrangian ZX satisfies Assumption (O) if and only if w2(T X)

vanishes on the image of the map π∗ : π2(YX )→ π2(X).

Proof. Note first that if L is a Lagrangian in CPm, then the boundary map ∂ : π3(CPm,L)→ π2(L)

is an isomorphism. This can be seen easily from the long exact sequence in homotopy for the pair

(CPm,L), using the fact that the Lagrangian condition forces the map π2(L)→ π2(CPm) to vanish.

In particular, L satisfies Assumption (O) exactly when w2(T L) vanishes on π2(L).

Now consider the double cover ϕ̂ : YX → ZX . It induces an isomorphism on π2 and also

ϕ̂∗T ZX = TYX , so we get

〈w2(T ZX ),π2(ZX )〉= 〈w2(TYX ),π2(YX )〉. (4.34)

On the other hand, since the projection π : YX → X is a principal circle bundle, the vertical bundle to

YX is trivial and so we have TYX ∼= R⊕π∗T X . Thus w2(TYX ) = π∗w2(T X) which combined with

(4.34) gives the desired result.
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Lemma 4.1.34. Let k ≥ 1. Then Z(1,2k+1) does not satisfy Assumption (O).

Proof. By Lemma 4.1.33, it suffices to show that w2(T (CP1×Q2k+1)) does not vanish on the image

of π2(YCP1×Q2k+1
) in π2(CP1×Q2k+1). We now compute this image.

Note that for all m≥ 2, Qm contains a lineCP1∼= `⊆Qm (it is well known that Q2∼=CP1×CP1

and any higher dimensional quadric contains Q2) and when m ≥ 3, the class of this line generates

π2(Qm) which is a copy of Z (for m > 3 this is immediate from the Lefschetz hyperplane theo-

rem, while the case m = 3 can be seen for example from the long exact sequence in homotopy

groups of the fibration SO(2)×SO(3)→ SO(5)→ Q3 coming from the well-known identification

Qm = SO(m+2)/(SO(2)×SO(m))). Hence, using [CP1×pt] and [pt× `] as basis, we have an iso-

morphism π2(CP1×Qm)∼= Z×Z and the long exact sequence of homotopy groups for the fibration

S1→ YCP1×Qm
→ CP1×Qm takes the form

0 // π2(YCP1×Qm
) // π2(CP1×Qm) //

∼=
��

π1(S1) //

∼=
��

π1(YCP1×Qm
) // 0

0 // π2(S(OCP1×Qm
(2,2))) α // Z×Z

β // Z // π1(S(OCP1×Qm
(2,2))) // 0

Our goal is to compute the image of α or, equivalently, the kernel of β . To that end, consider

the inclusions i1 : CP1 ∼= CP1×pt ↪→ CP1×Qm and i2 : CP1 ∼= pt× ` ↪→ CP1×Qm. In each case,

the restriction of YCP1×Qm
is a copy of RP3:

i∗j YCP1×Qm
= i∗j S(OCP1×Qm

(2,2)) = S(OCP1(2)) = RP3 for j ∈ {1,2}.

So we obtain the following diagram with exact rows:

0 // 0 // Z 2 //

∼=
��

Z //

∼=
��

Z/2 //

∼=
��

0

0 // π2(RP3) //

��

π2(CP1) //

(i1)∗
��

π1(S1) //

∼=
��

π1(RP3) //

��

0

0 // π2(S(OCP1×Qm
(2,2))) α // Z×Z

β // Z // π1(S(OCP1×Qm
(2,2))) // 0

0 // π2(RP3) //

OO

π2(CP1) //

(i2)∗

OO

π1(S1) //

∼=

OO

π1(RP3) //

OO

0

0 // 0 // Z 2 //

∼=

OO

Z //

∼=

OO

Z/2 //

∼=

OO

0

From this we read off that π2(S(OCP1×Qm
(2,2)))∼= Z, π1(S(OCP1×Qm

(2,2)))∼= Z/2 and the central

row of the diagram is nothing but the sequence

0 // Z

(
−1
1

)
// Z×Z

(
2 2

)
// Z // Z/2 // 0.
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That is, the image of the map π2(YCP1×Qm
)→ π2(CP1 ×Qm) is a copy of Z, generated by the

“antidiagonal” class ∆ :=−[CP1×pt]+ [pt× `].

Now put m = 2k+1 and note that

w2(T (CP1×Q2k+1)) = pr∗Q2k+1
w2(T Q2k+1)

=
[
pr∗Q2k+1

c1(T Q2k+1)
]

2

=
[
pr∗Q2k+1

(2k+1) H|Q2k+1

]
2

=
[
pr∗Q2k+1

H|Q2k+1

]
2
, (4.35)

where [ ]2 denotes reduction mod 2, H denotes the hyperplane class in CP2k+2 and the second to

last line follows from the adjunction formula for the quadric Q2k+1 ⊆ CP2k+2. Therefore

〈
w2(T X(1,2k+1)) , ∆

〉
X(1,2k+1);F2

= 〈H , [`]〉CP2k+2;F2
= 1 6= 0.

This finishes the proof.

4.1.6 Legendrian curves in CP3 and the Chiang Lagrangian

Finally, we turn our attention to the case of smallest dimension. That is, we consider the original

Penrose twistor fibration CP1 → CP3 → HP1 ∼= S4 (1/2) and the problem of finding embedded

twistor Lagrangians in CP3. First, let us give some examples (we will see later that these are the

only examples).

Of course, we have the standard RP3 which is the twistor Lagrangian associated to a horizontal

Legendrian line CP1 ⊆ CP3. For more interesting examples, we consider a family of twisted cubics

{Xλ : λ ∈ C×}, where Xλ is parametrised by:

ϕλ : C∪{∞}→ CP3

ϕλ (t) =
[
t3 : λ

2 :
√

3λ t :
√

3λ t2
]
C
. (4.36)

It is immediate to check that ϕ∗
λ

α̂ = 0 and so this defines a family {Xλ}λ∈C× of Legendrian rational

curves of degree 3. The associated circle bundle Yϕλ
→ CP1 is easily seen to be diffeomorphic to

the lens space L(6,1):

Yϕλ

∼= ϕ
∗
λ

S(OCP3(2)) = S(OCP1(6))∼= L(6,1).

An easy calculation shows that

X (ϕλ (t)) = ϕ1/λ̄
(−1/ t̄ )

and so Xλ isX -invariant whenever |λ |= 1. It is not hard to check that in this case, Xλ is a Legendrian

of Type 2. For the rest of this thesis, X1 will denote the Type 2 Legendrian twisted cubic

X1 = ϕ1(C∪{∞}) =
{[

t3 : 1 :
√

3 t :
√

3 t2
]
C
∈ CP3 : t ∈ C∪{∞}

}



4.1. The Legendrian–Lagrangian correspondence 150

and Z1 will denote its corresponding twistor Lagrangian. The corresponding embedded supermini-

mal surface X1 ∼= RP2 in HP1 ∼= S4 (1/2) is known as the Veronese surface. As we will explicitly

verify in section 5.1.1, the Lagrangian Z1 is precisely the Chiang Lagrangian.

The homogeneous structure of the Chiang Lagrangian has proven very valuable in the study

of its Floer theory by Evans and Lekili in [EL15] and Smith in [Smi15] and is also the perspective

we adopt in chapter 5. Our current perspective however is useful because it exhibits Z1 and RP3 as

members of the same family – they are both twistor Lagrangians (as we shall see, they are in a sense

the only embedded twistor Lagrangians in CP3).

From this point of view, it is also easy to manipulate the Legendrian curves and exhibit an

interesting transformation between these Lagrangians. To that end, we investigate the behaviour of

the family {Xλ} as λ tends to zero and to infinity. Let us define the following Legendrian lines:

`1 := {[0 : z1 : z2 : 0]C : (z1,z2) ∈ C2 \ (0,0)}, `2 := {[z0 : 0 : z2 : 0]C : (z0,z2) ∈ C2 \ (0,0)}

`3 := {[z0 : 0 : 0 : z3]C : (z0,z3) ∈ C2 \ (0,0)}, `4 := {[0 : z1 : 0 : z3]C : (z1,z3) ∈ C2 \ (0,0)}.

Note that `3 = X (`1) and `4 = X (`2). We have the following lemma.

Lemma 4.1.35. Let {λn}n∈N be a sequence in C× with limn→∞ λn = 0. The Gromov limit of the

curves Xλn consists of `1 and a double cover of `2. Similarly, if limn→∞ λn = ∞, then the Gromov

limit consists of `3 and a double cover of `4.

Proof. Consider the case limn→∞ λn = 0. The parametrisation (4.36) is not good for computing the

Gromov limit since it converges to the constant map at [1 : 0 : 0 : 0]C which is not even the nodal

point `1∩ `2 = [0 : 0 : 1 : 0]C of the limit. So consider the parametrisations

hλ (t) := ϕλ (λ t) =
[
λ t3 : 1 :

√
3 t :
√

3λ t2
]
C
.

Letting λn→ 0, the sequence hλn converges to the map h0 : CP1→ CP3, h0(t) =
[
0 : 1 :

√
3 t : 0

]
C

which is a parametrisation of `1. To see `2 in the limit, choose a branch for the holomorphic square

root which is defined on {λn}n∈N and consider the parametrisations

kλn(t) := ϕλn

(√
λn t
)
=
[
t3 :
√

λn :
√

3 t :
√

3
√

λn t2
]
C
.

Letting λn → 0, the sequence kλn converges to the map k0 : CP1 → CP3, k0(t) =
[
t2 : 0 :

√
3 : 0

]
C

which is a double cover of `2. Finally, we know that this is the entire Gromov limit, because it

accounts for all the energy of a twisted cubic: E(h0)+E(k0) =
∫
`1

ωFS +2
∫
`2

ωFS = 3π = E(ϕλn).

Similarly, letting λn→ ∞ in the parametrisations hλn and kλn , one obtains that in this case the

Gromov limit of Xλn consists of `3 and a double cover of `4.

Now consider what happens at the level of Lagrangians as λ varies along the real axis from 0

to 1. At λ = 0, the two Legendrian lines `1 and `2 meet at the point [0 : 0 : 1 : 0]C and intersect the

twistor line ` := {z2 = z3 = 0} in the antipodal points p0 := [0 : 1 : 0 : 0]C and p∞ := [1 : 0 : 0 : 0]C.
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Hence, the associated twistor Lagrangians are two copies of RP3 which intersect cleanly along two

circles. Note that p0 = ϕλ (0) and p∞ = ϕλ (∞) for all λ ∈ C×, so in fact the points p0 and p∞ are

common for all twisted cubics in the family. Thus, for λ ∈ (0,1), the corresponding Lagrangian

is an immersed L(6,1), intersecting itself in a circle which is the equator of ` opposite p0 and p∞.

Finally, when λ = 1, the immersed L(6,1) collapses on itself two-to-one to give the embedded Z1.

Let us now prove the promised uniqueness result.

Theorem 4.1.36. Let X ⊆ CP3 be a Legendrian curve.

a) If X is of Type 1, then X is a line.

b) If X is of Type 2, then X is a twisted cubic and there exists F ∈ Sp(2) such that F(X1) = X.

Proof. Part a) is, of course, just a special case of Theorem 4.1.29. However, appealing to Theorem

4.1.29 in this dimension really is an overkill and in fact the result follows directly from Friedrich’s

formula for the Euler class of the normal bundle to immersions in S4 with holomorphic twistor lifts

([Fri84]). Let us now give the proof, since it is short and we will need the Euler number calculation

for the proof of part b) anyway.

Let f : Σk → CP3 be a Legendrian embedding of degree d of an oriented genus k surface and

let f := Π ◦ f be the corresponding superminimal immersion in HP1. Let ν( f ) := f ∗THP1/T Σk

denote the normal bundle of this immersion. Then its Euler class satisfies

〈
e(ν( f )), [Σk]

〉
= 2(d + k−1). (4.37)

To see this, note that if νH( f ) := f ∗H/T Σk denotes the horizontal normal bundle to the Leg-

endrian curve, we have ν( f ) ∼= νH( f ) as oriented bundles over Σk. On the other hand, we

have a decomposition f ∗TCP3 = f ∗V ⊕ T Σk ⊕ νH( f ) of complex vector bundles on Σk. Taking

the first Chern class on both sides and using the isomorphism V ∼= OCP3(2) yields the equality

f ∗(4H) = f ∗(2H)+ e(T Σk)+ e(νH( f )) in H2(Σk;Z). Using that f has degree d and the isomor-

phism ν( f )∼= νH( f ), we obtain (4.37).

Now, if f is of Type 1, then f is an embedding of an oriented surface in S4 (equivalently, R4)

and so ν( f ) is trivial. By (4.37) this immediately gives d = 1, k = 0, which proves part a).

Suppose now that f is of Type 2 and let X = f (Σk). Then X = Π(X) ⊆ S4 is an embedded

non-orientable surface of Euler characteristic χ = 1−k and f : Σk→ X is the oriented double cover.

The surface X has a fundamental class
[
X
]
∈ H2(X ;Eor) and its normal bundle ν

(
X
)

has an Euler

class e(ν(X))∈H2(X ;Eor), where Eor→ X denotes the local system, whose fibre at each point x∈ X

is the free Z-module of rank 1, generated by the two orientations of TxX , modulo the relation that

they sum to zero 5. Since Eor⊗Eor ∼= Z is the trivial Z-local system of rank 1, there is a well-defined

5We are being a little sloppy here about the choices one needs to make for this statement to hold as given. See [Mas69,

Appendix 1].
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pairing H2(X ;Eor)⊗H2(X ;Eor)→ Z and so one can associate a number
〈
e(ν(X)),

[
X
]〉
∈ Z to the

embedded surface X ⊆ S4. In [Mas69], Massey proved a conjecture of Whitney, which states that

for any non-orientable surface of Euler characteristic χ , embedded in S4, this number must lie in

the range {2χ − 4,2χ, . . . ,4− 2χ}. In our case, we have χ = 1− k, so the allowed values for this

number are {−2−2k,2−2k, . . . ,2+2k}.

Now note that since f : Σk → X is the oriented double cover and ν( f ) = f ∗ν(X), we have the

relation 〈
e(ν( f )), [Σk]

〉
= 2

〈
e(ν(X)),

[
X
]〉
.

Using (4.37) and Massey’s bounds, we see that the degree of a Type 2 Legendrian curve must satisfy

d ∈ {−1−3k,3−3k,7−3k, . . . ,−1+ k,3+ k}∩N>0. (4.38)

Hence, if k = 0, the only possible degree is d = 3, that is, X is a twisted cubic. The proof that X

must then be Sp(2)-equivalent to X1 is given in Lemma 4.1.37 below.

It remains to be shown that we can’t have k≥ 1. Note that the bound d ≤ k+3 is really low for

the degree of a Legendrian curve of genus k ≥ 1, as can be inferred for example from the results of

[CM96]. In fact, [CM96, Theorem 1 and Proposition 7] imply that there are no embedded (let alone

Type 2) Legendrian curves of genus 1, 2 or 3 and degree less than 7. It may well be the case that

there is no embedded Legendrian curve of genus k and degree at most k+ 3 for any k ≥ 1 but the

author has not been able to find such a proof. Therefore, we focus only on Type 2 Legendrians and

we finish the proof of case b) using our results on monotone Lagrangians in CP3.

Suppose for contradiction that X ⊆CP3 is a Legendrian curve of Type 2 and genus k≥ 1. Then

ZX is an embedded, monotone Lagrangian. By Lemma 4.1.30, ZX is orientable and has minimal

Maslov number 2. Since k≥ 1, we have that π1(ZX ) is infinite and non-cyclic. Moreover, ZX is not a

Euclidean manifold, because its double cover YX = S(OX (2)) is a non-trivial principal circle bundle

over an orientable surface and such 3-manifolds do not admit a Euclidean geometry. In particular,

ZX admits a unique up to isomorphism Seifert fibration and in fact we know exactly what it is: by

construction ZX is a non-orientable circle bundle over the non-orientable surface X . Now Theorem

3.2.11 tells us that such a monotone Lagrangian in CP3 cannot exist and this is the contradiction we

were after.

Lemma 4.1.37. Let X ⊆ CP3 be a Type 2 Legendrian twisted cubic. Then there exists a linear

transformation A ∈ Sp(2)⊆ GL(4,C) whose associated projective transformation FA : CP3→ CP3

satisfies FA(X1) = X.

Proof. Recall that PGL(4,C) acts transitively on the set of twisted cubics in CP3. Moreover, the
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stabiliser of X1 under this action is a copy of PGL(2,C), embedded via the homomorphism6

GL(2,C) −→ GL(4,C) (4.39)

(
a b
c d

)
7−→ 1

(ad−bc)3


d3 −c3

√
3c2d −

√
3cd2

−b3 a3 −
√

3a2b
√

3ab2
√

3b2d −
√

3a2c a2d +2abc −b2c−2abd
−
√

3bd2
√

3ac2 −bc2−2acd ad2 +2bcd

 .

This stabilising PGL(2,C) acts triply-transitively on X1.

Now consider again the pair of antipodal points p0 = [0 : 1 : 0 : 0]C and p∞ = [1 : 0 : 0 : 0]C

on X1. Let p̂0 and p̂∞ be two points on the Type 2 cubic X , which satisfy X (p̂0) = p̂∞. From our

discussion above, we know that there exists a linear map A′ ∈ GL(4,C) whose associated projective

transformation FA′ satisfies FA′(X1) = X , FA′(p0) = p̂0 and FA′(p∞) = p̂∞. Making these choices

leaves us with one degree of freedom for FA′ and therefore two degrees of freedom for A′, which we

shall now fix.

Let us denote the standard complex basis of C4 by

e0 =


1
0
0
0

 , e1 =


0
1
0
0

 , e2 =


0
0
1
0

 , e3 =


0
0
0
1

 .

Under the identifications (4.2), we have e1 = e0j and e3 = e2j and so {e0,e2} form a basis of H2 as

a right H-module. For consistency, we will express elements of C4 as right C-linear combinations

of {e0,e1,e2,e3}.

Now let us write ê0 := A′(e0) and note that by rescaling A′ if necessary, we may assume that

‖ê0‖= 1. By our choice of A′, there exists a constant λ ∈C× such that A′(e0j) = ê0jλ . Now observe

that, if we put b = c = 0, a = 1 in (4.39) and we set d to be a third root of λ , we obtain an element

B ∈ GL(4,C) such that FB(X1) = X1 and B(e0) = e0, B(e0j) = e0j 1
λ

. We set A := A′ ◦B, so that

A(e0j) = ê0j. We aim to show that A is an element of

Sp(2) = Sp(4,C)∩GL(2,H)⊆ GL(4,C).

First we show that A lies in Sp(4,C), i.e. A preserves the complex symplectic form ωC = Co〈 · j, · 〉.

To do this we use the fact that X = FA(X1) is a Legendrian curve.

Given a curve X◦ ∈ {X1,X} and a point x ∈ X◦ we denote the affine tangent space to X◦ at x

by T̂xX◦. Since X◦ is a Legendrian curve in CP3, the affine tangent space T̂xX◦ is an ωC-Lagrangian

subspace of C4 for every x ∈ X◦. Using the parametrisations ϕ1(t) = [t3 : 1 :
√

3 t :
√

3 t2]C and

ϕ̌(t) = ϕ(1/t) = [1 : t3 :
√

3 t2 :
√

3 t] of the cubic X1, we find that

T̂p0X1 = SpanC{e0j,e2}, T̂p∞
X1 = SpanC{e0,e2j},

6 This comes from viewing C4 as the third symmetric power of the dual to the standard vector representation of GL(2,C)

on C2. See equations (5.2) and (5.3) in chapter 5.
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T̂ϕ(t)X1 = SpanC
{

e0t3 + e0j+ e2
√

3t + e2j
√

3t2, e03t2 + e2
√

3+ e2j2
√

3 t
}

and therefore

T̂p̂0X = SpanC {ê0j,A(e2)} , T̂p̂∞
X = SpanC {ê0,A(e2j)} ,

T̂FA(ϕ(t))X = SpanC
{

ê0t3 + ê0j+A(e2)
√

3t +A(e2j)
√

3t2, ê03t2 +A(e2)
√

3+A(e2j)2
√

3 t
}
,

where we have used the fact that A(e0j) = A(e0)j = ê0j. Since X is Legendrian, these spaces must

be ωC-Lagrangian, which gives us the equations

Co〈ê0,A(e2)〉= 0, Co〈ê0j,A(e2j)〉= 0 (4.40)

Co
〈(

ê0t3 + ê0j+A(e2)
√

3t +A(e2j)
√

3t2
)

j, ê03t2 +A(e2)
√

3+A(e2j)2
√

3 t
〉
= 0 ∀ t ∈ C.

(4.41)

From (4.40) we find that there exist a,b ∈ C and ê2, ê3 ∈ (ê0H)⊥ such that

A(e2) = ê0ja+ ê2 and A(e2j) = ê0b+ ê3.

Substituting this in (4.41), we obtain that

−2a
√

3 t3 +3(2Co〈ê2j, ê3〉+Co〈ê3j, ê2〉−ab−1)t2−2b
√

3 t = 0 ∀ t ∈ C

and so a = b = 0 and Co〈ê2j, ê3〉= 1.

Summarising, we now have A(e0) = ê0, A(e0j) = ê0j, A(e2) = ê2, A(e2j) = ê3 and these satisfy

‖ê0‖= 1, {ê2, ê3} ⊆ (ê0H)⊥, Co〈ê2j, ê3〉= 1. We conclude that A ∈ Sp(4,C).

It remains to be shown that A lies in GL(2,H), i.e. that A commutes with right multiplication

by j. Since we already have A(e0j) = A(e0)j, all we need to check is that A(e2j) = A(e2)j, i.e. that

ê3 = ê2j. This will follow from the fact that X is a X -invariant curve. Indeed, since X (X) = X

and FA(X1) = X we see that for each t ∈ C∪{∞}, there must exist T = T (t) ∈ C∪{∞} such that

X (FA(ϕ1(t))) = FA(ϕ1(T )). In particular, for each t ∈ C×, there exist T,λ ∈ C× such that

A
(

e0t3 + e0j+ e2
√

3 t + e2j
√

3 t2
)

j = A
(

e0T 3 + e0j+ e2
√

3T + e2j
√

3T 2
)

λ

⇔ ê0j t̄ 3− ê0 + ê2j
√

3 t̄ + ê3j
√

3 t̄ 2 = ê0T 3
λ + ê0jλ + ê2

√
3T λ + ê3

√
3T 2

λ .

From here we find that λ = t̄ 3, T =−µ/t̄ for some µ ∈
{

1,e2πi/3,e4πi/3
}

and

ê2j+ ê3j t̄ = ê3µ
2− ê2µ t̄ ∀ t ∈ C×.

Hence, we get that ê2j = ê3µ2 and ê3j = −ê2µ which suffices to conclude that µ = 1 and thus

ê2j = ê3 which is what we wanted.
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4.2 The Lagrangian equation forCP3 from a twistor perspective

In section 4.1 we studied Lagrangian immersions in CP2n+1 which were compatible with the twistor

fibration. We now consider the more generic situation in which φ : L→ CP2n+1 is a Lagrangian

immmersion, such that Π ◦φ : L→ HPn is also an immersion. In fact, we change our perspective:

we start from an immersion ι : M2n+1→ HPn of some (2n+1)-dimensional manifold and we look

for a Lagrangian lift ι̃ : M→ CP2n+1. We focus specifically on the case n = 1, because then M is

a hypersurface in HP1 = S4(1/2) and the Lagrangian lift ι̃ can be identified with a unit vector field

on M, satisfying a certain linear PDE involving the second fundamental form of the immersion ι . In

this way we essentially split the equation for an immersion ι̃ to be Lagrangian into a coupled system

of equations for an immersion ι into HP1 and a vector field on M. This is not surprising, given the

splitting (4.6) but we still find it interesting to see exactly what equations we get.

4.2.1 The general equation

For the better part of this section, we work in a rather general setting. Namely, let (N4,g) be an

oriented Riemannian 4-manifold and let ι : M→ N be an immersion of an oriented 3-manifold. For

each point p ∈M we have an oriented 3-dimensional subspace ι∗TpM ⊆ Tι(p)N. This determines a

unit vector field v4 ∈C∞(M, ι∗T N) by the requirement that if {v1,v2,v3} is a positive orthonormal

frame for M, then {v1,v2,v3,v4} is a positive orthonormal frame for N along M. Before we move on,

let us make a small detour through the linear algebra which underpins our subsequent discussion.

4.2.1.1 Some linear algebra

Let V be a 4-dimensional oriented vector space with fixed inner product g. Let {v1,v2,v3,v4} be a

positive orthonormal basis with dual basis {φ 1,φ 2,φ 3,φ 4}. We have the usual musical isomorphisms

V ⊗V
[ // V ∗⊗V
#

oo
[ // V ∗⊗V ∗
#

oo

vi⊗ v j
� //

φ i⊗ v j�oo
� //

φ i⊗φ j�oo

(4.42)

and the inclusions

V ∧V // V ⊗V V ∗∧ V ∗ // V ∗⊗V ∗

vi∧ v j
� // vi⊗ v j− v j⊗ vi φ i∧φ j � // φ i⊗φ j−φ j⊗φ i.

(4.43)

Note that with respect to the inner products induced by g on tensor and exterior powers of V the

maps (4.42) are isometries while the maps (4.43) are conformal and stretch lengths by a factor

of
√

2. As is standard, whenever we use [ (resp. #) on 2-vectors (resp. 2-forms) we are always

implicitly precomposing by the inclusions (4.43). Finally, the orientation on V determines a Hodge

star operator ∗ which on 2-vectors and 2-forms squares to the identity. We denote its respective

+1-eigenspaces by Λ2
+V and Λ2

+V ∗.
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Now, any unit vector v ∈V determines an injective map

ψv : v⊥ → Λ
2
+V ∗

u 7→ u[∧ v[ + ∗(u[∧ v[), (4.44)

which in this dimension is an isomorphism. Moreover:

Lemma 4.2.1. The inverse ψ−1
v : Λ2

+V ∗→ v⊥ is given by

ψ
−1
v (α) =−α

#(v). (4.45)

Proof. Let u ∈ v⊥. We want to show that ψv(u)#(v) =−u. If u = 0, there is nothing to prove, so we

assume u 6= 0 and without loss of generality v1 =
u
‖u‖ and v4 = v. Then

ψv4(u)
#(v) = ‖u‖ψv4(v1)

#(v4) = ‖u‖(φ 1∧φ
4 +φ

2∧φ
3)#(v4)

= ‖u‖(φ 1⊗ v4−φ
4⊗ v1)(v4) =−‖u‖v1 =−u.

Now note that the map ψv is conformal and multiplies lengths by
√

2. Therefore, any ordered

pair (v,w) of unit vectors determines an orthogonal transformation

Sv,w : V → V

v 7→ w

u 7→ ψ
−1
w (ψv(u)) ∀ u ∈ v⊥. (4.46)

We have the following lemma:

Lemma 4.2.2. The map Sv,w is given by the formula

Sv,w = g(v,w)IdV + (v∧w−∗(v∧w))[. (4.47)

Proof. Without loss of generality, we assume that v = v4. Then, we have the identities Sv4,w(v4) = w

and, by Lemma 4.2.1, Sv4,w(u) = −ψv4(u)
#(w) for u ∈ Span{v1,v2,v3}. From these one computes

that, if w = ∑
4
i=1 µ ivi, then the matrix for Sv4,w in the frame {v1,v2,v3,v4} is

µ4 −µ3 µ2 µ1

µ3 µ4 −µ1 µ2

−µ2 µ1 µ4 µ3

−µ1 −µ2 −µ3 µ4

 .

It is easy to check that this is precisely the matrix for the operator on the right-hand side of (4.47).

4.2.1.2 Some covariant differentiation

Now let us go back to the geometric setting. Recall that we have an immersion ι : M → N of

an oriented 3-manifold into an oriented Riemannian 4-manifold (N,g) and this determines a unit
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normal field v4 ∈C∞(M, ι∗T N) along M. Then, if Λ2
+N := Λ2

+(T
∗N) denotes the bundle of self-dual

2-forms on N, by the previous section we get a bundle isomorphism

Ψ : T M → ι
∗
Λ

2
+N

v 7→ ψv4(v) = v[∧ v[4 + ∗(v[∧ v[4). (4.48)

Now consider the twistor space of N:

Z[
+(N,g) =

{
(x, p) ∈ Λ

2
+N : ‖p‖=

√
2
}
,

that is, the
√

2−sphere bundle inside the bundle of self-dual 2-forms on N (in this section it is

more convenient to deal with 2-forms rather than complex structures). Then the vector bundle iso-

morphism Ψ : T M → ι∗Λ2
+N restricts to a diffeomorphism S(T M)→ ι∗Z[

+(N,g), where S(T M)

denotes the bundle of unit length tangent vectors to M with respect to the metric induced from N.

Using this isomorphism, we identify unit vector fields on M with lifts of ι to the twistor space.

The space Z[
+(N,g) carries a natural tautological 2-form ωτ defined by

ω
τ

(x,p) = τ
∗p ∀x ∈ N, p ∈ Z[

+(N,g)x

where τ : Z[
+(N,g)→ N is the projection. For each λ 6= 0, one can extend ωτ to a non-degenerate

2-form ωλ , given by setting ∀v, w ∈ T(x,p)Z[
+(N,g)

ω
λ

(x,p)(v,w) = ω
τ(v,w)+λω

S2
(prV(v),prV(w))

= p(τ∗v,τ∗w)+λω
S2
(prV(v),prV(w)),

where V = kerτ∗ is the vertical tangent bundle and ωS2 ∈C∞(Z[
+(N,g),Λ2V∗) is the 2-form which

restricts to the area form on each fibre of τ , giving it area 8π .

While the form ωλ is always non-degenerate, it is very rarely closed, so it does not define a

symplectic structure on the twistor space in general. Precisely this problem, for manifolds of any

dimension, was addressed by Reznikov in [Rez93], where he defines a natural closed form ωrez on

the twistor space and studies under what conditions on (N,g) the form ωrez is non-degenerate. In

the case where (N,g) is hyperbolic, this was studied further by Fine-Panov in [FP09] leading to

the construction of many non-Kähler compact monotone symplectic manifolds. The Floer theory of

some of these manifolds and their Lagrangians was then studied by Evans in [Eva14].

However, recall that we are mainly interested in N = HP1 ∼= S4(1/2) in which case we saw

in section 4.1 that the form ω
1
8 is closed, because (Z[

+(HP1,g),ω
1
8 ) is symplectomorphic to

(CP3,ωFS) (in fact, in this case ω
1
8 agrees with the Reznikov form up to an overall constant). Since

we will not use the closedness of ωλ in our arguments, we will keep the general perspective and

look for the conditions that a unit vector field on M should satisfy, in order for the corresponding lift

of ι to Z[
+(N,g) to be ωλ -Lagrangian.
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To unravel these conditions, consider the splitting T Λ2
+N =H⊕Ṽ into horizontal and vertical

subspaces, induced by the Levi-Civita connection ∇ on N. Using the bundle isomorphism Ψ, this

translates into a splitting T M = Ĥ⊕V̂ , i.e. we get an affine connection on M. Let prV̂ : T M→ V̂ be

the projection along Ĥ and let us denote the corresponding covariant derivative by ∇̂. The following

is then our main observation:

Proposition 4.2.3. The connection ∇̂ is given by the formula

∇̂VW = ∇VW + s(V )×W ∀V,W ∈C∞(M,T M), (4.49)

where

i) ∇ is the Levi-Civita connection of (M, ι∗g),

ii) s :=−∇v4 : T M→ T M is the shape operator of the immersion ι : M→ N,

iii) the cross product of two vectors V,W in T M is defined to be V ×W := ∗(V ∧W ), where ∗

denotes the Hodge star operator on (M, ι∗g) with respect to the fixed orientation on M.

A unit vector field Z on M defines an ωλ -Lagrangian lift of M if and only if for all vector fields V,W

on M one has

dvol(Z,V,W )+2λdvol(Z, ∇̂V Z, ∇̂W Z) = 0, (4.50)

where dvol denotes the volume form on (M, ι∗g). This is equivalent to the existence of a positive

orthonormal frame {X ,Y,Z} on M such that

∇̂ZZ = 0

∇̂X Z× ∇̂Y Z = − 1
2λ

Z. (4.51)

Proof. We break the proof into its natural three parts – first we prove formula (4.49), then we estab-

lish equation (4.50) and finally we show that it is equivalent to (4.51).

Proof of formula (4.49): Let x ∈M be a point and V ∈ TxM be a tangent vector. Consider a path

γ : [0,1]→M such that γ(0) = x, γ̇(0) = V and let W be a vector field along γ . We write v4(t) :=

v4(γ(t)). Then, by definition of covariant differentiation, we have ∇̂VW = d
dt

∣∣
t=0

(
P̂γ(t)−1W (t)

)
,

where P̂γ denotes parallel transport with respect to ∇̂. Using the isomorphism Ψ, this rewrites as

∇̂VW =
d
dt

∣∣∣∣
t=0

Ψ
−1 (Pγ(t)−1

Ψ(W (t))
)
,

where Pγ denotes parallel transport on N with respect to ∇. Thus we have

∇̂VW =
d
dt

∣∣∣∣
t=0

Ψ
−1
(

Pγ(t)−1
(

W [∧ v[4 +∗(W [∧ v[4)
))

=
d
dt

∣∣∣∣
t=0

Ψ
−1
(

Pγ(t)−1(W )[∧Pγ(t)−1(v4)
[+∗

(
Pγ(t)−1(W )[∧Pγ(t)−1(v4)

[
))

=
d
dt

∣∣∣∣
t=0

(
ψv4(0)

)−1 ◦ψPγ (t)−1(v4(t))
(
Pγ(t)−1(W )

)
=

d
dt

∣∣∣∣
t=0

SPγ (t)−1(v4(t)),v4(0)
(
Pγ(t)−1(W )

)
.



4.2. The Lagrangian equation for CP3 from a twistor perspective 159

Now, from formula (4.47) we have that the above equals the sum of the following three terms:

1. d
dt

∣∣
t=0 g

(
Pγ(t)−1(v4(t)),v4(0)

)
Pγ(t)−1(W ) = g

(
∇V v4,v4(0)

)
W (0)+∇VW = ∇VW

2.

d
dt

∣∣∣∣
t=0

(
Pγ(t)−1(v4(t))∧ v4(0)

)[ (
Pγ(t)−1(W )

)
=

(
∇V v4∧ v4(0)

)[
(W )

= g
(

∇V v4,W
)

v4(0)−g(v4(0),W )∇V v4

= −II(V,W ),

where II : T M⊗T M→ T M⊥ is the second fundamental form and the last line is the Wein-

garten formula;

3.

− d
dt

∣∣∣∣
t=0

(
∗
(
Pγ(t)−1(v4(t))∧ v4(0)

))[ (
Pγ(t)−1(W )

)
= −

(
∗
(

∇V v4∧ v4(0)
))[

(W )

= (∗(s(V )∧ v4(0)))
[ (W ).

Summing the three terms we obtain

∇̂VW = ∇VW +(∗(s(V )∧ v4(0)))
[ (W ) (4.52)

Now fix a positive orthonormal frame {v1,v2,v3} for (M, ι∗g). So {v1,v2,v3,v4} is a positive or-

thonormal frame for (N,g) along M and we let {φ 1,φ 2,φ 3,φ 4} denote the dual frame. Then for any

vector Y ∈ TxM we have

g
(
(∗(s(V )∧ v4(0)))

[ (W ) , Y
)

= ∗(s(V )[∧φ
4)(W,Y ) = ∗

(
3

∑
i=1

φ
i(s(V ))φ

i∧φ
4

)
(W,Y )

=
(
φ

1(s(V ))φ 2∧φ
3−φ

2(s(V ))φ 1∧φ
3 +φ

3(s(V ))φ 1∧φ
2)(W,Y )

= (φ 1∧φ
2∧φ

3)(s(V ),W,Y ) = dvol(s(V ),W,Y )

= g(s(V )×W,Y ) (4.53)

From (4.52) and (4.53) we get

g
(

∇̂VW,Y
)
= g(∇VW,Y )+g(s(V )×W,Y ), (4.54)

which gives formula (4.49). Note further that (4.54) shows that ∇̂(ι∗g) = 0, i.e ∇̂ is a metric con-

nection.

Establishing equation (4.50): Now let Z be a unit vector field on M, such that Ψ ◦ Z : M →

Z[
+(N,g) is an ωλ -Lagrangian lift of ι : M→ N. That is, we want Z∗Ψ∗ωλ = 0. Unravelling this
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we have

0 = Z∗Ψ∗ωλ (V,W ) = ω
λ

∣∣∣
Ψ(Z)

(Ψ∗Z∗V,Ψ∗Z∗W )

= Ψ(Z)(τ∗Ψ∗Z∗V,τ∗Ψ∗Z∗W )+λω
S2
(prVΨ∗Z∗V,prVΨ∗Z∗W )

= Ψ(Z)(V,W )+λΨ
∗
ω

S2 (
prV̂(Z∗V ),prV̂(Z∗W )

)
= (Z[∧ v[4 +∗(Z[∧ v[4))(V,W )+2λ (Zy dvol)

(
∇̂V Z, ∇̂W Z

)
= ∗(Z[∧ v[4)(V,W )+2λdvol

(
Z, ∇̂V Z, ∇̂W Z

)
= dvol(Z,V,W )+2λdvol

(
Z, ∇̂V Z, ∇̂W Z

)
.

Note that the factor of 2 appears because of the fibrewise scaling introduced by Ψ.

Equivalence of (4.50) and (4.51): Let Z be a unit vector field on M. Then, since ∇̂ is a metric

connection, we have that g
(

∇̂V Z,Z
)
= 0 for all V ∈ T M. That is, the image of the linear map

∇̂Z : T M→ T M is contained in Z⊥ and, in particular, ∇̂Z has non-trivial kernel.

Suppose now that Z satisfies equation (4.50) for all V,W ∈ T M. If V is a tangent vector to

M such that ∇̂V Z = 0, then (4.50) tells us that dvol(Z,V,W ) = 0 for all tangent vectors W and so

V ∈ Span(Z). Thus ker
(

∇̂Z
)
≤ Span(Z) and since we know that ∇̂Z has non-trivial kernel, we

must have ker
(

∇̂Z
)
= Span(Z). In particular ∇̂ZZ = 0.

We now complete Z to a positive orthonormal frame {X ,Y,Z}. Using that ∇̂ZZ = 0, we see that

equation (4.50) is satisfied for all V and W , if and only if

2λdvol
(

Z, ∇̂X Z, ∇̂Y Z
)

= −dvol(Z,X ,Y )

⇔ g
(

Z, ∇̂X Z× ∇̂Y Z
)

= − 1
2λ

.

Since
{

∇̂X Z, ∇̂Y Z
}
⊆ Z⊥ we have that ∇̂X Z× ∇̂Y Z ∈ Span(Z) and thus

∇̂X Z× ∇̂Y Z =− 1
2λ

Z.

Hence equations (4.51) holds.

Conversely, if the system (4.51) holds for a positive frame {X ,Y,Z}, then it is immediate to

check that the 2-form Z ydvol+2λdvol
(

Z, ∇̂Z, ∇̂Z
)

is identically zero.

4.2.1.3 Some tautologies

Suppose that Z is a unit vector field on M which defines an ωλ -Lagrangian lift of M to Z[
+(N,g).

We now make some pointwise observations which reflect the tautological nature of such a vector

field. Note that Z[
+(N,g)

∣∣
M is a hypersurface in Z[

+(N,g) and so the non-degenerate 2-form ωλ

has a 1-dimensional kernel when restricted to Z[
+(N,g)

∣∣
M . Similarly, for every x ∈M every 2-form

p ∈ Z[
+(N,g)x has a 1-dimensional kernel, when restricted to TxM. We then have the following fact.

Proposition 4.2.4. For every x ∈ M, p ∈ Z[
+(N,g)x, the unit vector Zp

x := Ψ−1
x (p) ∈ TxM gener-

ates the kernel of p|TxM and its horizontal lift Z̃p
x ∈ H(x,p) ≤ T(x,p)Z[

+(N,g) generates the kernel of



4.2. The Lagrangian equation for CP3 from a twistor perspective 161

ωλ
∣∣
Z[
+(N,g)|M

. In particular, if ι̃ : M→Z[
+(N,g) is an ωλ -Lagrangian lift with corresponding unit

vector field Z, then

ker
(

ω
λ

∣∣∣
Z[
+(N,g)|M

)∣∣∣∣
ι̃(M)

= Span
(

Z̃
)
, (4.55)

where Z̃ denotes the horizontal component of ι̃∗Z.

Proof. First we show that p(Zp
x ,V ) = 0 for every V ∈ TxM. Let X ,Y ∈ TxM be unit vectors such that

{X ,Y,Zp
x } is a positive orthonormal frame for TxM. It then suffices to show that

p(Zp
x ,X) = p(Zp

x ,Y ) = 0.

Indeed:

p(Zp
x ,X) = Ψx(Zp

x )(Z
p
x ,X) =

(
(Zp

x )
[∧ v[4 +∗

(
(Zp

x )
[∧ v[4

))
(Zp

x ,X)

= ∗
(
(Zp

x )
[∧ v[4

)
(Zp

x ,X) = (X [∧Y [)(Zp
x ,X)

= g(X ,Zp
x )g(Y,X)−g(Y,Zp

x )‖X‖2 = 0

Similarly for p(Zp
x ,Y ) = 0. Now if Z̃p

x denotes the horizontal lift of Zp
x , then for any W ∈

T(x,p)
(
Z[
+(N,g)

∣∣
M

)
we have τ∗W ∈ TxM and so ωλ (Z̃p

x ,W ) = p(Zp
x ,τ∗W )+ λωS2(0,prVW ) = 0.

Hence Z̃p
x generates the kernel of ωλ

∣∣
Z[
+(N,g)|M

.

Now, if ι̃ : M → Z[
+(N,g) is an ωλ -Lagrangian lift, then for each x ∈ M, the space

ι̃∗TxM is a ωλ -Lagrangian subspace of Tι̃(x)Z[
+(N,g), contained in the codimension 1 subspace

Tι̃(x)
(
Z[
+(N,g)

∣∣
M

)
. Hence ker

(
ωλ
∣∣
Z[
+(N,g)|M

)∣∣∣
ι̃(M)
≤ ι̃∗T M, that is, along the Lagrangian, the

characteristic line field of the hypersurface is tangent to the Lagrangian. But now, since Z is defined

by the equation ι̃ = Ψ◦Z, equation (4.55) follows by our previous pointwise considerations.

4.2.2 An example: the Clifford torus

We now consider a familiar example, namely the standard Clifford torus T 3
Cl ⊆ CP3. Recall that it

is the image of the product torus (S1)4 ⊆ C4 under the map ΠC, so in homogeneous coordinates we

can parametrise it as (R/2πZ)3→CP3, (θ1,θ2,θ3) 7→
[
eiθ1 : eiθ2 : eiθ3 : 1

]
C. From this and formula

(4.12) we see that T 3
Cl is preserved by the fibrewise antipodal map X . For our calculations it will be

more convenient to change coordinates by setting θ1 = θ ,θ2 = ϕ −ψ , θ3 = θ −ψ . Thus, writing

T 3 := (R/2πZ)3, our parametrisation becomes

F̃ : T 3 −→ CP3

(θ ,ϕ,ψ) 7−→
[
eiθ : ei(ϕ−ψ) : ei(θ−ψ) : 1

]
C

(4.56)

and we have X ◦ F̃(θ ,ϕ,ψ) = F̃(θ +ϕ +π,−ϕ,ψ −ϕ). By composing with the twistor fibration

we obtain the map F := Π◦ F̃ : T 3→HP1, given by

F(θ ,ϕ,ψ) =

[
e−iϕ +1

2
eiψ + j

eiϕ −1
2

e−iθ : 1
]
H
. (4.57)
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From this we see that the image of the Clifford torus under the twistor fibration is the set

S := Π(T 3
Cl) = F(T 3) = {[p : 1]H : ‖p‖= 1} ⊆HP1

which is isometric to an equatorial S3(1/2) in S4(1/2) via the isometry Φ from (4.7). Moreover,

observe that F(θ ,0,ψ) =
[
eiψ : 1

]
H and F(θ ,π,ψ) =

[
−je−iθ : 1

]
H. That is, the two 2-dimensional

tori7 F̃({ϕ = 0}) and F̃({ϕ = π}) in T 3
Cl are collapsed by Π to the Hopf link HL⊆ S, defined by

Φ(HL) =
{

z+ jw ∈H : |z|2 + |w|2 = 1
4
, zw = 0

}
×{0} ⊆ S3(1/2)×{0} ⊆H⊕R.

It is not hard to see that, away from these 2-tori, the map

Π|T 3
Cl

: T 3
Cl \ F̃(ϕ ∈ {0,π})−→ S\HL (4.58)

is a double cover and the pre-image of every point consists of two fibrewise antipodal points on T 3
Cl .

Now, since the image Π(T 3
Cl) = S ⊆ HP1 is a totally geodesic submanifold, its shape operator

vanishes and so the connection ∇̂ from Proposition 4.2.3 becomes just the Levi-Civita connection

on S. Hence, since the Clifford torus is Lagrangian in CP3, equation (4.51) tells us that T 3
Cl locally

corresponds to a geodesic unit vector field on S. More precisely, because of the sign ambiguity

coming from the fact that (4.58) is a double cover with X as the deck involution, T 3
Cl \ F̃(ϕ ∈ {0,π})

should be identified with the sphere bundle inside a rank 1 geodesic distribution on S \HL. We

call this rank 1 geodesic distribution (and also its integral curves) the Clifford foliation. Since this

foliation consists of great circles in S3, one should be able to visualise it and thus “see” the Clifford

torus embedded as a Lagrangian in CP3.

To determine the Clifford foliation, we consider the map

Φ
′ : HP1 \{[1 : 0]H} −→H, Φ

′ ([p,q]H) = pq−1.

The restriction of Φ′ to S identifies it with Sp(1) = {p ∈ H : ‖p‖ = 1} and this identification is

conformal and stretches distances by a factor of 2. We will exhibit the Clifford foliation on S by

pushing it forward to Sp(1). The key is the following diagram:

CP3 I //

Π

**

Z+(HP1,g) [ //

τ

&&

Z[
+(HP1,g)

��

⊇ Z[
+(HP1,g)

∣∣
S

Ψ−1
//

��

S1(TS)
dΦ′ //

yy

S2(T Sp(1))

��
HP1 ⊇ S Φ′ // Sp(1)

Recall that the definition (4.48) of the isomorphisms Ψ requires a choice of orientation on the 3-

manifold, so we assume that we have chosen an orientation on S. We denote by NS the unit normal

to S determined by the orientation on HP1 and the chosen orientation on S. Then Lemma 4.2.1

tells us that if x ∈ S is a point and α is an element of Z[
+(HP1,g)x, then Ψ−1

x (α) = −α#
(
NSx
)
.

7Getting neat equations for these tori is the reason for changing coordinates in the beginning.
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Now, from the above diagram, we see that the unit tangent vector to Sp(1), determined by the point

F̃(θ ,ϕ,ψ) ∈ T 3
Cl , is given by

1
2

Φ
′
∗ ◦Ψ

−1
(

I
(

F̃(θ ,ϕ,ψ)
)[)

=−1
2

Φ
′
∗

[
I
(

F̃(θ ,ϕ,ψ)
)(

NSF(θ ,ϕ,ψ)

)]
. (4.59)

The right hand side is not difficult to compute. First, an easy calculation shows that the derivative of

the map ΠH ◦Φ′ : H2 \ (H×{0})−→H is given by

d(p,q)ΠH ◦Φ
′(u,v) = uq−1− pq−1vq−1. (4.60)

On the other hand, since Φ′|S : S −→ Sp(1) is a conformal diffeomorphism which doubles all

lengths, we have that if [p : q]H ∈ S (i.e. ‖p‖ = ‖q‖), then the unit normal to S at [p : q]H satis-

fies Φ′∗

(
NS[p:q]H

)
= 2pq−1 (up to a sign, but this can be fixed by changing the chosen orientation

on S). Using (4.60), it is immediate to verify that d[p:q]HΦ′
(
d(p,q)ΠH(p,−q)

)
= 2pq−1 and so we

conclude that

NS[p:q]H
= d(p,q)ΠH(p,−q). (4.61)

Now put p = eiθ + jei(ϕ−ψ) and q = ei(θ−ψ)+ j, so that F̃(θ ,ϕ,ψ) = ΠC(p,q). Plugging this and

(4.61) into the right-hand side of (4.59), we see that the unit vector we want to find is

−1
2

d[p:q]HΦ
′ (I(ΠC(p,q))

(
d(p,q)ΠH(p,−q)

))
= −1

2
d[p:q]HΦ

′ (d(p,q)ΠH(pi,−qi)
)

= −1
2

d(p,q)Φ
′ ◦ΠH(pi,−qi)

= −p iq, (4.62)

where we have used the definition of the map I and formula (4.60). Since T 3
Cl is X -invariant, the sign

is irrelevant. Plugging in the values of p and q into (4.62) and writing F ′ := Φ′ ◦F , we find that the

Clifford foliation at F ′(θ ,ϕ,ψ) is spanned by the vector

Z|F ′(θ ,ϕ,ψ) :=
e−i(ϕ+π)+1

2
ei(ψ+ π

2 ) + j
ei(ϕ+π)−1

2
e−i(θ+ π

2 )

=

(
∂

∂θ
+2

∂

∂ϕ
+

∂

∂ψ

)
F ′(θ ,ϕ,ψ).

It is then not hard to see that

sin(ϕ/2)F ′(θ ,ϕ,ψ) + cos(ϕ/2) Z|F ′(θ ,ϕ,ψ) ∈ SpanR{j,k}

cos(ϕ/2)F ′(θ ,ϕ,ψ) − sin(ϕ/2) Z|F ′(θ ,ϕ,ψ) ∈ SpanR{1, i}

and therefore for every ϕ /∈ πZ one has

Z|F ′(θ ,ϕ,ψ) ∈ SpanR{F ′(θ ,ϕ,ψ),1, i} ∩ SpanR{F ′(θ ,ϕ,ψ), j,k}.

We conclude that the Clifford foliation consists of all great circles on S3, obtained by intersecting

a great 2-sphere that contains one component of the Hopf link with one that contains the other

component.
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Figure 4.1: The Clifford foliation

4.3 No vertical Hamiltonians
In this section we prove the following:

Proposition 4.3.1. Let U ⊆HPn be a connected open set. Suppose that f : CP2n+1→R is a smooth

function whose Hamiltonian vector field X f is vertical on Π−1(U), i.e.

dxΠ
(
X f

x
)
= 0 ∀x ∈Π

−1(U).

Then f is constant on Π−1(U).

Proof. First we note that it suffices to prove the statement for n = 1. Indeed, in the setting of the

proposition, suppose x̃ and ỹ are two distinct points in Π−1(U)⊆CP2n+1. Suppose further that their

projections x = Π(x̃) and y = Π(ỹ) are distinct (the argument when x̃ and ỹ lie in the same fibre is

even easier). Since U is connected, we can find a sequence of points x = x0,x1, . . . ,xN = y in U

such that for all i ∈ {1,2, . . . ,N} the set Ui := U ∩HP1
i is a connected open subset of HP1

i , where

HP1
i denotes the quaternionic line through xi−1 and xi. Then X f is vertical on Π−1(Ui) and hence,
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assuming the proposition holds for n= 1, f is constant on Π−1(Ui). But then f (x̃)= f (x̃0)= f (x̃1)=

· · ·= f (x̃N) = f (ỹ), where x̃i ∈ CP2n+1 is any lift of xi for i ∈ {1,2, . . . ,N} and x̃0 = x̃, x̃N = ỹ.

We now prove the case n = 1. That is, we assume that U ⊆ HP1 is a connected open set and

f : CP3→ R is a function whose Hamiltonian vector field X f is vertical on Π−1(U). Let p ∈U and

note that it suffices to prove that f is constant Π−1(B), where B⊆U is a small geodesic ball, centred

at p.

Since the complex structure J0 preserves the vertical bundle V , we have that X f is vertical at a

point x ∈ CP3 if and only if
(
gradgFS

f
)

x
=−J0(X

f
x ) is vertical. That is, X f

x ∈ Vx if and only if

dx f (Hx) = 0. (4.63)

We now identify HP1 with S4 = S4(1/2) via the isometry Φ and we identify CP3 with

S√2(Λ
2
+S4) via Φ∗ ◦ [ ◦ I. Note that this identification preserves the splittings into horizontal and

vertical bundles, so we get a function (still denoted by) f : S√2(Λ
2
+S4)→ R, whose differential an-

nihilates the horizontal distribution at all points which project to a geodesic ball (still denoted by)

B⊆ S4, centred at a point x0 = Φ(p). We now extend f radially, setting

f̃ : Λ
2
+(S

4)\{zero section} −→ R

f̃ (α) = f

( √
2

‖α‖
α

)

Note that d f̃ annihilates the horizontal distribution at all points which project to B.

Now choose stereographic coordinates x = (x1,x2,x3,x4) on S4(1/2), centred at the point x0, so

that the geodesic ball B corresponds to a ball Br(0)⊆R4 of some positive radius r. Let y=(y1,y2,y3)

be fibre coordinates on Λ2
+(S

4) with respect to the basis

{α1 := dx1∧dx2 +dx3∧dx4, α2 := dx1∧dx3−dx2∧dx4, α3 := dx1∧dx4 +dx2∧dx3}.

We introduce the quaternionic notation x = x1 + x2i+ x3j+ x4k and y = y1i+ y2j+ y3k. For the

function f̃ we also write

∇x f̃ :=
∂ f̃
∂x1 +

∂ f̃
∂x2 i+

∂ f̃
∂x3 j+

∂ f̃
∂x4 k and ∇y f̃ :=

∂ f̃
∂y1 i+

∂ f̃
∂y2 j+

∂ f̃
∂y3 k.

In appendix A we show that in these coordinates the condition that d f̃ annihilates the horizontal

distribution above B, translates to the equation

1+‖x‖2

2
∇x f̃ =

(
2∇y f̃ · y + ∇y f̃ × y

)
x ∀x ∈ Br(0), ∀y ∈ R3 \{0}, (4.64)

where juxtaposition of vectors denotes quaternion multiplication.

Note that the function f̃ was constructed so that it is scale invariant in the y-direction, i.e.
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∇y f̃ · y = 0. Substituting this into (4.64), we see that f̃ satisfies

1+‖x‖2

2
∇x f̃ =

(
∇y f̃ × y

)
x (4.65)

⇔ 1+‖x‖2

2
∇x f̃ =

(
∇y f̃

)
yx.

⇒ 1+‖x‖2

2
(
∇x f̃

)
x−1y−1 = ∇y f̃ , ∀x 6= 0. (4.66)

Now multiplying equation (4.65) on the right by x̄ and rearranging we get

(
∇x f̃

)
x̄ =

2‖x‖2

1+‖x‖2 ∇y f̃ × y.

Taking real parts on both sides yields ∇x f̃ · x = 0.

Now fix a point y ∈ R3 \ {0}. Since ∇x f̃ · x = 0 for all x ∈ Br(0), we know that for all t ∈[
0, r
‖x‖

)
we have f̃ (t x,y) = f̃ (x,y). Setting t = 0 we obtain f̃ (x,y) = f̃ (0,y) for all x ∈ Br(0). Thus

f̃
∣∣
Br(0)×(R3\{0}) is actually just a function of y and so ∇x f̃ = 0 for all (x,y) ∈ Br(0)× (R3 \ {0}).

But then, by equation (4.66) and continuity, we find that ∇y f̃ = 0 and hence f̃
∣∣
Br(0)×(R3\{0}) is

constant.



Chapter 5

Non-displaceability of some twistor

Lagrangians

Тази песничка навред, все така ще пея.

Знам добре и за напред ще дружа със нея.

Даже и да си голям, славно е да виждаш сам.

Last verse of “Оранжева песен”.

In this section we prove that the orientable subadjoint Lagrangians are not displaceable. By

work of Evans-Lekili ([EL15]), this was known for the Chiang Lagrangian L∆ = Z1 ⊆ CP3 which

displays a significantly different behaviour from the others by virtue of having minimal Maslov

number equal to 2. In section 5.1, we use the results of [EL15] to compute the Floer cohomology of

L∆ with coefficients in high rank local systems and prove Theorem E.

In section 5.2, we treat the other orientable subadjoint Lagrangians and we prove Theorem F.

5.1 The Chiang Lagrangian and RP3

5.1.1 Identifying Z1 and L∆

In section 4.1.6 we saw the twistor Lagrangian Z1, associated to a Type 2 Legendrian twisted cubic

X1. From this description, we know that Z1 is a monotone Lagrangian, which is orientable and spin,

has minimal Maslov number 2 and admits the structure of a circle bundle over RP2 whose pull-back

to S2 is the lens space L(6,1). We now verify that Z1 is indeed the Chiang Lagrangian L∆ which

was described in [Chi04] as an orbit of a Hamiltonian SU(2) action on CP3. Let us first give the

definition.

We view CP3 ∼= Sym3 (CP1
)

as configurations of triples of points on CP1. The action of

SL(2,C) on CP1 by Möbius transformations then defines an action on CP3 whose restriction to the

compact form SU(2)⊆ SL(2,C) is Hamiltonian (see e.g. [Smi15, Section 3.1]). Setting

∆ :=
{
[1 : 1]C, [ω2 : 1]C, [ω4 : 1]C

}
∈ Sym3 (CP1)∼= CP3 with ω := eiπ/3, (5.1)
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we then have a decomposition CP3 = W∆ ∪Y∆, where W∆ = SL(2,C) ·∆ is the orbit consisting of

all triples of pairwise distinct points and Y∆ is a compactifying divisor consisting of triples with

at least two coinciding points (note then that Y∆ is cut out by the discriminant of a cubic, which

is a section of OCP3(4); that is, Y∆ is an anticanonical hypersurface). For a suitable identification

of CP1 and S2(1), the set ∆ corresponds to an equilateral triangle, equatorially inscribed in the

sphere. From this point of view, CP3 is a special case of an SL(2,C)-quasihomogeneous 3-fold

XC, obtained by compactifying an SL(2,C)-orbit WC of a configuration C ∈ Symn (CP1
)
= CPn of

n distinct points in CP1. It is known by work of Aluffi and Faber ([AF93]) that X∆ = CP3 is the

first of only four cases in which such a compactifiaction is smooth. The other three are the 3-folds

XT ⊆ CP4, XO ⊆ CP6 and XI ⊆ CP12, obtained by choosing C to consist of the vertices of a regular

tetrahedron, octahedron and icosahedron, respectively. It is a fact that in all 4 cases, when C is

chosen to be such a regular configuration, its orbit LC under the action of the compact real form

SU(2)⊆ SL(2,C) is a Lagrangian submanifold of XC. The four Lagrangians L∆, LT , LO and LI have

come to be known as the Platonic Lagrangians. The Chiang Lagrangian is then the first (admittedly,

somewhat degenerate) such Lagrangian:

Definition 5.1.1. The Chiang Lagrangian is the orbit L∆ := SU(2) ·∆ in X∆ = CP3. ♦

To see that this is indeed the same Lagrangian Z1 which we considered in section 4.1.6, recall

that the identification

CP3 ∼= Sym3 (CP1)
is obtained by viewing C4 as the space C[x,y]3 of degree 3 homogeneous polynomials in 2 variables

and sending each element f ∈ C[x,y]3 \{0} to its projectivised zero set. We make the identification

of C4 with C[x,y]3 via the map

C4 −→ C[x,y]3

(z0,z1,z2,z3) 7−→ z0 x3 + z1 y3 + z2
√

3xy2 + z3
√

3x2y. (5.2)

A matrix A ∈ SU(2) acts on f ∈ C[x,y]3 by

(A · f )(x,y) := f
(

A−1
(

x
y

))
(5.3)

and in this way SU(2) acts on the projectivised zero set of f in CP1 by usual projective transfor-

mations. Recall that we identify C4 with H2 via (4.2). Using (4.12) and (5.2) it is straightforward

to check that the above action of SU(2) is right H-linear and in fact it defines a homomorphism

SU(2) → U(4) ∩GL(2,H) = Sp(2). So it descends to an action of SU(2) on HP1 by isome-

tries and the twistor fibration Π : CP3 → HP1 is equivariant. For the record, if we parametrise

SU(2) =
{(

a −b̄
b ā

)
: a,b ∈ C, |a|2 + |b|2 = 1

}
, then the homomorphism SU(2)→ Sp(2) we get

with our identifications is explicitly given by(
a −b̄
b ā

)
7−→

(
ā3 + jb̄3

√
3(āb2 + ja2b̄)√

3(āb̄2 + jā2b̄) a(|a|2−2|b|2)− jb(2|a|2−|b|2)

)
. (5.4)
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Note that ∆ is the projectivised zero set of the polynomial f∆(x,y) = x3 − y3 which un-

der the identification (5.2) corresponds to the point (1,−1,0,0) ∈ C4. Since L∆ is the or-

bit of ∆ under the SU(2) action and Π is equivariant, we have that Π(L∆) is the orbit of

Π(∆) = [1 : 0]H ∈ HP1. From (5.4) one easily finds that the stabiliser of [1 : 0]H is the

set Stab([1 : 0]H) =

{(
eiθ 0
0 e−iθ

)
: θ ∈ R/2πZ

}
∪
{(

0 eiθ

−e−iθ 0

)
: θ ∈ R/2πZ

}
and so

Π(L∆) = SU(2) ·Π(∆) = SU(2)/Stab([1 : 0]H)∼= RP2. Thus L∆ is an embedded Lagrangian, com-

patible with the twistor fibration and hence by Theorem 4.1.23 we know that L∆ is a twistor La-

grangian which projects to a (necessarily) superminimal RP2. The twistor lift of this RP2 is the

unique Legendrian curve in CP3 which projects to it. It is not hard to find this curve: just consider

the orbit SU(2) · [1 : 0 : 0 : 0]C. On the one hand, it certainly projects to the orbitRP2 = SU(2) · [1 : 0]H

because [1 : 0 : 0 : 0]C is a lift of [1 : 0]H and Π is equivariant. On the other hand, using the iden-

tification (5.2), [1 : 0 : 0 : 0]C corresponds to the line spanned by the polynomial f (x,y) = x3 and

so its SU(2)-orbit is precisely the projectivisation of the set of polynomials in C[x,y]3 whose de-

homogenisation has a triple root. This space is isomorphic to CP1 and can easily be parametrised

by

CP1 = C∪{∞} −→ P(C[x,y]3) = CP3

t 7−→
[
(tx+ y)3]

C =
[
t3 : 1 :

√
3 t :
√

3 t2
]
C
,

where we have again used the identification (5.2). Thus, the orbit SU(2) · [1 : 0 : 0 : 0]C is indeed

a Legendrian curve which projects to the superminimal RP2 = SU(2) · [1 : 0]H and hence it is its

twistor lift. Moreover, observe that this lift is exactly the Type 2 twisted cubic which we denoted by

X1 in section 4.1.6 and so we have indeed identified L∆ and Z1.

Viewing Z1 as the homogeneous space L∆ is extremely valuable for enumerating the holomor-

phic discs which it bounds inCP3. Moreover, since L∆ is exhibited as a finite quotient of S3, it can be

effectively visualised. Further still, identifying the SU(2)-action on CP1 by projective transforma-

tions with the action on S2(1) by quaternionic rotations allows one to translate problems about the

geometry of L∆ into problems about equilateral triangles inscribed in the unit sphere in Euclidean

3-space. We now combine these different points of view in order to thoroughly understand the

topology of L∆ and to compute its Floer cohomology with arbitrary local systems. This calculation

is heavily based on the results of Evans and Lekili from [EL15].

5.1.2 Topology of L∆

The Lie algebra su(2) is the real-linear span of the Pauli matrices:

σ1 :=
(

i 0
0 −i

)
, σ2 :=

(
0 1
−1 0

)
and σ3 :=

(
0 i
i 0

)
.

From now on, all occurrences of “exp” refer to the exponential map in SU(2). For a unit vector

V = (v1,v2,v3) ∈ S2(1) and t ∈ R we will write exp(tV ) to mean exp(t(v1σ1 + v2σ2 + v3σ3)). The
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action of SU(2) on CP1 by projective transformations can be identified with the action of SU(2) on

S2(1) by quaternionic rotations, as long as we adopt the following conventions (for any other choice

the two actions would, of course, be conjugate):

• for any unit vector V ∈ S2(1), exp(θV ) acts on S2(1) by a right-hand rotation in the axis V

by an angle of 2θ ; this is the adjoint action of SU(2) on S2 ⊆ su(2), where we identify su(2)

with R3 via the basis {σ1,σ2,σ3};

• we identify C∪{∞} ∼= CP1 via z 7→ [z : 1]C, ∞ 7→ [1 : 0]C;

• we identify C∪{∞} ∼= S2(1) via z 7→
(
|z|2−1
|z|2+1 ,

2Re(iz)
|z|2+1 , 2Im(iz)

|z|2+1

)
, ∞ 7→ (1,0,0), i.e. via stereo-

graphic projection from (1,0,0) followed by multiplication by −i.

The latter two identifications combine to give the diffeomorphism

Φ : CP1 −→ S2(1)

Φ([x : y]C) =

(
|x|2−|y|2

|x|2 + |y|2
,

2Re(ixȳ)
|x|2 + |y|2

,
2Im(ixȳ)
|x|2 + |y|2

)
.

This way the triple ∆ =
{
[1 : 1]C, [ω2 : 1]C, [ω4 : 1]C

}
corresponds to the equilateral triangle with

vertices V ′1 := (0,0,1), V ′3 := (0,−
√

3/2,−1/2), and V ′2 := (0,
√

3/2,−1/2) (our choice of names

for the vertices will become apparent when we discuss a particular Morse function on L∆ below).

The Chiang Lagrangian is then the manifold of all equilateral triangles, equatorially inscribed in

S2(1). We call these maximal equilateral triangles.

Using (5.4), it is easy to see that the stabiliser of ∆ under the SU(2) action is the binary dihedral

group of order 12, given explicitly by

Γ∆ =

{(
ωk 0
0 ω

k

)
: k ∈ {0,1, . . .5}

}
∪
{(

0 iωk

iω k 0

)
: k ∈ {0,1, . . .5}

}
⊆ SU(2).

Abstractly, we view this group by the presentation

Γ∆ =
〈

a,b | a6 = 1,b2 = a3,ab = ba−1
〉
,

the above complex representation being given by a 7→
(

ω 0
0 ω

)
and b 7→

(
0 i
i 0

)
. So we have

L∆
∼= SU(2)/Γ∆ and SU(2) is tiled by 12 fundamental domains for the right action of Γ∆. Further,

the quotient map q : SU(2)→ L∆ induces a natural isomorphism

Γ∆ → π1(L∆,q(Id))Opp (5.5)

x 7→ [q◦ `x],

where `x : [0,1]→ SU(2) is any path with `(0) = Id and `(1) = x. In figure 5.1 below we give a

schematic description of a fundamental domain for the right action of Γ∆ on SU(2). The picture

is essentially borrowed from [EL15] with the difference that the fundamental domain given there
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σ2
σ3

σ1

·x1 ·x2
·x3

·x1

·x2
·x3

·
x2

·
x3

·
x1

·
x2

·
x3·

x1

Figure 5.1: The fundamental domain for L∆. Opposite quadrilateral faces are

identified by a 90◦ rotation and the two hexagonal faces are

identified by a 60◦ rotation so that colours of edges match. The

fundamental domain is viewed as sitting in SU(2) with Id at the

center of the prism and the matrices {σ1,σ2,σ3} ⊆ TIdSU(2) are

given for orientation.

is (erroneously) for a left Γ∆-action. A detailed derivation of the domain can be found in [Smi15,

Section 5.1].

Evans and Lekili also describe a Morse function on L∆ by specifying its critical points and some

of its flowlines. We shall use essentially the same Morse function (depicted in figure 5.2 below) to

compute Floer cohomology but since we want to work with local coefficients, we are particularly

concerned with where exactly its index 1 downward gradient flowlines (with respect to the round

metric on SU(2) = S3(1)) pass. This is what we shall now spell out. Throughout this discussion it

is useful to keep in mind the picture of rotating maximal equilateral triangles. For example, for any

unit vectors V,W ∈R3 we think of the point q(exp(sV )exp(tW )) ∈ L∆ as the triangle, obtained from

∆ by first applying a right-hand rotation by 2t in the axis W and then a right-hand rotation by 2s in

the axis V .

Recall that we defined V ′1 := (0,0,1), V ′2 := (0,
√

3/2,−1/2), V ′3 := (0,−
√

3/2,−1/2). We now

further set h := exp
(

π

6 σ1
)
∈ SU(2) and V1 := h ·V ′1 = (0,−

√
3/2,1/2), V2 := h ·V ′2 = (0,

√
3/2,1/2),

V3 := h ·V ′3 = (0,0,−1). We then define the Morse function f : L∆→ R to have:

• one minimum at m′ := q(Id) =4V ′1V ′2V ′3;

• three critical points of index 1: x′1 := q
(
exp
(

π

4 V ′1
))

, x′2 := q
(
exp
(

π

4 V ′2
))

and x′3 :=

q
(
exp
(

π

4 V ′3
))

. They are connected to the minimum m′ via 6 flowlines whose com-

pactified images can be parametrised for t ∈ [0,1] by γ ′i (t) := q
(
exp
(
(1− t) π

4 V ′i
))

and

γ̃ ′i (t) := q
(
exp
(
−(1− t) π

4 V ′i
))

for i ∈ {1,2,3};

• three critical points of index 2: x1 := q
(
exp
(

π

4 V1
)

h
)
, x2 := q

(
exp
(

π

4 V2
)

h
)

and x3 :=

q
(
exp
(

π

4 V3
)

h
)
;
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• one maximum at m := q(h)=4V1V2V3. It connects to the index 2 critical points via 6 flowlines

whose images are similarly given by γi(t) := q
(
exp
(
t π

4 Vi
)

h
)

and γ̃i(t) := q
(
exp
(
−t π

4 Vi
)

h
)

for t ∈ [0,1] and i ∈ {1,2,3};

• there are 12 gradient flowlines connecting critical points of index 2 to critical points of index

1. For our purposes we do not need a similarly precise description of their images and the

schematic description from figure 5.2 c) will do.

x1

x2 x3

x1

x2x3

x2

x3 x1

x2

x3x1

mγ̃2

γ̃3
γ1

γ2

γ3
γ̃1

a)

m′
γ̃ ′3x′3

γ ′1

x′1

γ ′2 x′2

γ ′3

x′3γ̃ ′1

x′1

γ̃ ′2
x′2

b)

σ

m′

m

σ̃

δ33δ̃23

δ13 δ23
δ11δ31

δ21 δ̃31

δ22δ12

δ32 δ̃12

c)

Figure 5.2: A Morse function f : L∆ → R. All flowlines of index 1 are depicted with arrows pointing in the

direction of downward gradient flow. Note that in diagram c) the flowlines δi j and δ̃i j always go

from xi to x′j. The index 3 flowlines σ and σ̃ and the different colouring (green and blue) of the

flowlines will be used below for the calculation of parallel transport maps.

For the sake of completeness, let us now give a formula for such a function. To describe it we

will use coordinates on L∆ coming from the Hopf coordinates on S3. Consider the following “Euler

angles map”:

G : (R/2πZ)3→ SU(2), G(θ ,ϕ,ψ) := exp
(

ϕ +ψ

2
σ1

)
· exp(θσ3) · exp

(
ϕ−ψ

2
σ1

)
.

The map G has degree 4 and its singular values (i.e. where “gimbal lock” occurs) form the standard

Hopf link {exp(tσ1) : t ∈ [0,2π]} ∪ {exp(tσ1) · exp((π/2)σ3) : t ∈ R/2πZ}. Now our Morse

function f : L∆→ R (or rather, its pull-back under q◦G) is given by

f (θ ,ϕ,ψ) =−cos4(θ)cos(6ϕ)− sin4(θ)cos(6ψ) (5.6)

and one can easily check that in these coordinates its critical points are indeed m′ = (0,0,0), x′1 =(
π

4 ,0,0
)
, x′2 =

(
π

4 ,
2π

3 , 2π

3

)
, x′3 =

(
π

4 ,
π

3 ,
π

3

)
, x1 =

(
π

4 ,
π

6 ,
π

6

)
, x2 =

(
π

4 ,
5π

6 , 5π

6

)
, x3 =

(
π

4 ,
3π

6 , 3π

6

)
and

m =
(
0, π

6 ,
π

6

)
.
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V ′1

V ′2
V ′3

V1 V2

V3

x1

x2

x3

x′1

x′2
x′3

γ ′1

γ ′1

γ ′2

γ ′2

γ ′3

γ ′3

γ1

γ1

γ2

γ2

γ3

γ3

γ̃ ′1

γ̃ ′1

γ̃ ′2

γ̃ ′2

γ̃ ′3

γ̃ ′3

γ̃1

γ̃1

γ̃2

γ̃2

γ̃3

γ̃3

F11

B11

F12

B12

F22

B22

F23

B23

F33

B33

F31

B31

Figure 5.3: Another representation of the Morse function f . The minimum m′ corresponds to the triangle

4V ′1V ′2V ′3 and the maximum m is 4V1V2V3. The critical points of index one {x′i}1≤i≤3 and index

two {xi}1≤i≤3 correspond to maximal equilateral triangles with one side along the segment with the

respective label. The flowlines of index 1 through the minimum and maximum are also illustrated

by the pairs of circular arcs with matching labels. Each downward flowline consists of triangles

rotating around a fixed vertex, with their other two vertices tracing out the two arcs in the indicated

directions. The labels of these arcs match the ones on the flowlines in figure 5.2.
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5.1.3 Computation of Floer cohomology with local coefficients

5.1.3.1 Morse differential

Let V be any vector space over F2 and let ρ : Γ∆ → Aut(V ) be a representation. Through the iso-

morphism Γ∆
∼= π1(L∆,m′)Opp, ρ determines a right action of π1(L∆,m′) on V and so we obtain a

local system W → L∆ with fibre isomorphic to V by the recipe from (2.5). As Morse data for the

pearl complex we shall use the pair D = ( f ,g), where f is the Morse function (5.6) and g is the

round metric on SU(2). We will first explicitly compute the Morse differential ∂ D on the complex

C∗f (L∆;End (W)).

We thus need to calculate parallel transport maps onW along the index 1 flow lines of f . To

that end we first fix an identificationWm′
∼=V . Next, we also identify with V the fibres ofW which

lie over other critical points. We do so in the unique way so that parallel transport maps along the

paths (γ ′1)
−1, (γ ′2)

−1, (γ ′3)
−1, σ−1, (σ−1 ·γ1), (σ−1 ·γ2) and (σ−1 ·γ3) are represented by the identity

map V →V . From now on we refer to the paths in this list as identification paths and we draw them

in green on all diagrams (see also figure 5.2 above).

Suppose now that ` is a path from s(`) ∈ Crit( f ) to t(`) ∈ Crit( f ). By pre-concatenating ` with

the identification path to s(`) and post-concatenating it with the inverse of the identification path to

t(`) we obtain the corresponding loop ˆ̀, based at m′. We identify this loop with an element
[ ˆ̀] ∈ Γ∆

via the isomorphism (5.5). Then, using the identifications above, the parallel transport map is given

by
ρ
([ ˆ̀])

P̀ : V −−−−−−−→ V

∼ = ∼ =

Ws(`) Wt(`)

(5.7)

We now use this setup, together with the universal cover SU(2)→ L∆ to calculate ∂ D . Note that

the fundamental domain whose centre lies at Id ∈ SU(2) borders 8 other fundamental domains with

centres at a = exp(σ1π/3), a5 = exp(−σ1π/3), b = exp(σ3π/2), ab, a2b, a3b, a4b and a5b. The

ones with centres at ab, a and a5b are schematically depicted (after stereographic projection from

−Id ∈ SU(2)) in figures 5.4, 5.5 and 5.6, respectively.1

Let us now compute Pγ̃ ′2
: Wx′2

→Wm′ (the identifications with V from (5.7) will be used im-

plicitly in this and all our subsequent calculations). The corresponding loop is (γ ′2)
−1 · γ̃ ′2. A lift of

this loop at Id ∈ SU(2) is shown in figure 5.4. From there we read off:

AB
Pγ̃ ′2

: Wx′2
−−−−−−−→ Wm′ ,

where we write A := ρ(a) and B := ρ(b). Similarly we can compute P
δ̃23

: Wx2 →Wx′3
by lifting the

corresponding loop (σ)−1 · γ2 · δ̃23 · γ ′3 to the universal cover. This is done in figure 5.5 and we read

off:
1These schematic figures (as well as figures 5.1, 5.2, 5.3, 5.8) were created using the tikz-3dplot package by Jeff Hein. See

Figure 3 in [EL15] or figures 5.9, 5.10 below for accurate pictures of the stereographically projected fundamental domains.
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·Id

x1
x2 x3

x1

x2x3

x2
x3 x1

x2

x3x1

· ab

x2

x3

x1

x2

x3

x1

x2

x3

(γ ′2)
−1

γ̃ ′2

Figure 5.4: Parallel transport along γ̃ ′2.

· Id

x1
x2 x3

x1
x2x3

x2
x3

x1

x2

x1

·a

x2

x3

x1 x2

x3

x1

δ̃23

γ ′3

σ−1
γ2

Figure 5.5: Parallel transport along δ̃23.

A
P

δ̃23
: Wx2 −−−−−−−→ Wx′3

.

We compute one more example, namely Pγ̃3 : Wm →Wx3 . The loop (σ)−1 · γ̃3 · (γ3)
−1 ·σ lifts as

shown in figure 5.6. This yields:

A5B
Pγ̃3 : Wm −−−−−−−→ Wx3 .

Continuing this way we obtain all the needed maps for the calculation of ∂ D , which we summarise

in the following table:

Pγ̃ ′1
= B Pδ11 = Id Pδ12 = Id Pδ13 = A Pγ̃1 = A3B

Pγ̃ ′2
= AB Pδ21 = A2B P

δ̃12
= A Pδ23 = Id Pγ̃2 = A4B

Pγ̃ ′3
= A2B Pδ31 = A2B Pδ22 = Id P

δ̃23
= A Pγ̃3 = A5B

P
δ̃31

= A3B Pδ32 = A3B Pδ33 = Id

(5.8)



5.1. The Chiang Lagrangian and RP3 176

· Id

x1
x2 x3

x1

x2x3

x2
x3 x1

x2

x3x1

σ−1

γ̃3

·a5b

x1

x2

x3

x3

x2

x3

x1

x1

γ
−1
3σ

Figure 5.6: Parallel transport along γ̃3.

Now every flowline γ connecting y to x gives us a map End(Wx) → End(Wy) by conjugation

α 7→ P−1
γ ◦ α ◦ Pγ and the sum of all these maps is the Morse differential ∂ D on the complex

C∗f (L∆;End (W)). Using (5.8) we obtain:

• for every α ′ ∈ End(Wm′):

∂
D(α ′) =

(
α
′+B−1

α
′B, α

′+(AB)−1
α
′(AB), α

′+(A2B)−1
α
′(A2B)

)
∈ End(Wx′1

)⊕End(Wx′2
)⊕End(Wx′3

) (5.9)

• for every (α ′1,α
′
2,α

′
3) ∈ End(Wx′1

)⊕End(Wx′2
)⊕End(Wx′3

):

∂
D(α ′1,α

′
2,α

′
3) =

(
α
′
1 +α

′
2 +A−1

α
′
2A+A−1

α
′
3A ,

(A2B)−1
α
′
1(A

2B)+α
′
2 +A−1

α
′
3A+α

′
3 ,

(A2B)−1
α
′
1(A

2B)+(A3B)−1
α
′
1(A

3B)+(A3B)−1
α
′
2(A

3B)+α
′
3
)

∈ End(Wx1)⊕End(Wx2)⊕End(Wx3) (5.10)

• and for every (α1,α2,α3) ∈ End(Wx1)⊕End(Wx2)⊕End(Wx3):

∂
D(α1,α2,α3) = α1 +(A3B)−1

α1(A3B)+α2 +(A4B)−1
α2(A4B)

+α3 +(A5B)−1
α3(A5B)

∈ End(Wm) (5.11)

5.1.3.2 Contributions from holomorphic discs

The classification of holomorphic discs of Maslov indices 2 and 4 with boundary on L∆ (which

are precisely the ones appearing in the pearly differential) has been carried out in [EL15] (see also

[Smi15]). Our main goal for this section will be to trace where their boundaries pass and to determine

the parallel transport maps along the paths γ
j

u for all relevant pearly trajectories u.
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Let us first recall the main notions and results on holomorphic discs from [EL15] which give

us total control over the positions of the Maslov 2 discs.

Definition 5.1.2. Let L be a manifold and let K be a Lie group acting on L. Denote the stabiliser of a

point x ∈ L by Kx. An x-admissible homomorphism is defined to be any homomorphism R : R→ K

such that R(2π) ∈ Kx. Such a homomorphism is called primitive if R(θ) /∈ Kx, ∀θ ∈ (0,2π). ♦

Definition 5.1.3. Let X be a manifold and let K be a Lie group acting on X . Suppose further

that L⊆ X is a submanifold preserved by the action. A disc u : (D2,∂D2)→ (X ,L) is called axial if,

after possibly reparametrising u, there exists a u(1)-admissible homomorphism R such that u(reiθ ) =

R(θ) ·u(r) for every r ∈ [0,1], θ ∈R. For the particular case when K = SU(2) we also define the axis

of a non-constant axial disc u to be the normalised infinitesimal generator R′(0)/‖R′(0)‖ ∈ S2(1),

where again we identify su(2) with R3 via the basis {σ1,σ2,σ3}. ♦

Recall that we denote the standard (integrable) almost complex structure on CP3 by J0. Using

the above notions, one can summarise Evans and Lekili’s classification results for J0-holomorphic

discs u : (D2,∂D2)→ (CP3,L∆) in the following three theorems.

Theorem 5.1.4. ([EL15, Lemma 3.3.1]) All J0-holomorphic discs u : (D2,∂D2)→ (CP3,L∆) are

regular.2

Theorem 5.1.5. ([EL15, Sections 3.5, 6.1]) All J0-holomorphic discs of Maslov index 2 with bound-

ary on L∆ are axial. Through every point on L∆ there pass exactly three such discs, namely the

appropriate SU(2)-translates of the discs {u′1,u′2,u′3} with u′i(1) = m′ for i ∈ {1,2,3} and axes V ′1,

V ′2 and V ′3 respectively.

Theorem 5.1.6. (originally [EL15], but see [Smi15, Proposition 6.5] for a simpler proof) There are

precisely two J0-holomorphic discs w1,w−1 : (D2,∂D2)→ (CP3,L∆) of Maslov index 4 and passing

through m and m′. They are both simple and axial with axes (1,0,0) and (−1,0,0). 3

Note first that Theorem 5.1.5 immediately allows us to compute the value of the obstruction

section m0(W) at the point m′. Indeed, the boundaries of the three Maslov 2 discs passing through

m′ are given by

∂u′1 = (γ ′1)
−1 · γ̃ ′1, ∂u′2 = (γ̃ ′2)

−1 · γ ′2 and ∂u′3 = (γ ′3)
−1 · γ̃ ′3. (5.12)

Referring to table (5.8), we have P∂u′1
= B, P∂u′2

= (AB)−1 = A4B and P∂u′3
= A2B. This gives:

m0(W)(m′) = (Id+A2 +A4)B. (5.13)

Remark 5.1.7. Recall that, in order for the complex CF∗((L∆,W),RP3) to be unobstructed, we

need m0(W) = 0. Using (5.13) and the identity (A2− Id)(A4 +A2 + Id) = 0, it is easy to see that
2In particular J0 ∈ Jreg(L∆).
3The discs w1 and w−1 are the two hemispheres of the twistor fibre through m′.
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m0(W) = 0 precisely when A2 has no non-zero fixed vector. Now note that, due to the relation

ba2b−1 = a4, any 1-dimensional representation of Γ∆ must satisfy A2 = 1 and so any rank 1 local

system over a field F of characteristic 2 has non-vanishing obstruction section (the point here is that

this holds not just for F2 but for all of its extensions as well). Since the rank is 1, this implies that the

central complex is identically zero. This shows that, in order to achieve non-vanishing cohomology,

it is necessary to work with higher rank local systems. //

The three theorems above actually allow us to completely determine all isolated pearly trajec-

tories which a candidate differential d(D,J0) : C∗f (W,W)→C∗f (W,W) would count. Note that while

Theorems 5.1.4, 5.1.5 and 5.1.6 give us a strong control over the moduli spaces of discs involved

in d(D,J0), we cannot a priori be sure that J0 is an element of the set Jreg(D) from Theorem 2.4.8.

This potential problem has been dealt with already in [EL15] and further elaborated on in [Smi15,

Appendix A] and the solution is to perturb the Morse data D by pushing it forward through a dif-

feomorphism of L∆ which can be chosen arbitrarily close to the identity. Since such a perturbation

will preserve homotopy classes of paths, it will not affect any of our calculations, so we work di-

rectly with the pre-complex C∗f (W,W) and determine the candidate differential d(D,J0). To alleviate

notation we shall also temporarily drop the decorations (D ,J0).

From equation (2.52) we know that the maps which we need to figure out are:

∂1 : End(Wx′1
)⊕End(Wx′2

)⊕End(Wx′3
) → End(Wm′),

∂1 : End(Wx1)⊕End(Wx2)⊕End(Wx3) → End(Wx′1
)⊕End(Wx′2

)⊕End(Wx′3
),

∂1 : End(Wm) → End(Wx1)⊕End(Wx2)⊕End(Wx3),
∂2 : End(Wm) → End(Wm′).

To determine the first one of these, we are interested in pearly configurations, consisting of a

single Maslov 2 disc u such that u(−1) ∈W d(m′) and u(1) ∈W a(x′i). Since W d(m′) = {m′} such

a disc must be one of {u′1,u′2,u′3}. From (5.12) and the table (5.8) we see that the corresponding

parallel transport maps are

P
γ0

u′1
= Id, P

γ0
u′2
= (AB)−1 = A4B, P

γ0
u′3
= Id

P
γ1

u′1
= B, P

γ1
u′2
= Id, P

γ1
u′3
= A2B.

Thus for every (α ′1,α
′
2,α

′
3) ∈ End(Wx′1

)⊕End(Wx′2
)⊕End(Wx′3

) we have

∂1(α
′
1,α

′
2,α

′
3) = Bα

′
1 +α

′
2(A

4B)+(A2B)α ′3 ∈ End(Wm′). (5.14)

Similarly, to determine ∂1 : End(Wm) → End(Wx1)⊕ End(Wx2)⊕ End(Wx3) we look for

pearly configurations containing one Maslov 2 disc u such that u(−1)∈W d(xi) and u(1)∈W a(m) =

{m}. From Theorem 5.1.5 we know that these discs must be axial. Consulting figure 5.3 we see that

their axes are {V1,V2,V3} and, denoting by ui the disc with axis Vi, we have: γ0
u1
= (γ̃1)

−1, γ1
u1
= γ1,

γ0
u2
= γ

−1
2 , γ1

u2
= γ̃2, γ0

u3
= (γ̃3)

−1, γ1
u3
= γ3. Again from the table (5.8) we see

Pγ0
u1
= (A3B)−1 = B, Pγ0

u2
= Id, Pγ0

u3
= (A5B)−1 = A2B

Pγ1
u1
= Id, Pγ1

u2
= A4B, Pγ1

u3
= Id.
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Thus for every α ∈ End(Wm) we have:

∂1(α) =
(
αB,(A4B)α,α(A2B)

)
∈ End(Wx1)⊕End(Wx2)⊕End(Wx3). (5.15)

Determining ∂1 : End(Wx1)⊕End(Wx2)⊕End(Wx3)→ End(Wx′1
)⊕End(Wx′2

)⊕End(Wx′3
)

requires a bit more work. In the case of trivial local systems Evans-Lekili are able to deduce that

this part of the differential must be zero by a simple algebraic argument using the fact that the whole

pearly differential has to square to zero ([EL15, Corollary 7.2.4]). We cannot appeal to such an

argument in our case (indeed, for specific choices ofW this part of the differential is non-zero, see

section 5.1.4 below) and so we must analyse all relevant pearly trajectories. That is, we are looking at

pearly trajectories consisting of one Maslov 2 disc u, satisfying u(−1) ∈W d(x′i) and u(1) ∈W a(x j),

as depicted in figure 5.7. To find all such trajectories we consider again figure 5.3 and argue in terms

of triangles inscribed in the unit sphere in R3.

x′i x j

γ0
u

γ1
u

u

Figure 5.7: A pearly trajectory u = (u) connecting x′i to x j.

Theorem 5.1.5 and our choice of Morse function give us that each of the following three sets

• the descending manifold of x′i

• the boundary of the Maslov 2 disc u

• the ascending manifold of x j

consists of triangles, obtained from a single maximal equilateral triangle by applying a rotation

which keeps one of its vertices fixed. In fact we know that for the descending manifold of x′i the

fixed vertex is V ′i and for the ascending manifold of x j, it is Vj. For any unit vector p ∈ S2(1), let S1
p

denote the circle, obtained by intersecting S2(1) with the plane p⊥− 1
2 p. Then, since u(−1) lies on

the descending manifold of x′i, we have that one of the vertices of u(−1) is V ′i and the other two lie

on S1
V ′i

. Similarly one of the vertices of u(1) is Vj and the other two lie on S1
V j

. Let us temporarily

denote the axis of u by A ∈ S2(1). Note then that A is a vertex which all triangles in u(∂D2) share,

in particular, it is a vertex of both u(−1) and u(1). So V ′i 6= A 6= Vj and we see that we must have

A ∈ S1
V ′i
∩ S1

V j
. From figure 5.3, this is equivalent to j ≡ i or i+ 1 (mod 3) and A = Fi j or A = Bi j.

Let us denote by uFi j and uBi j the Maslov 2 axial discs with axes Fi j and Bi j respectively.
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Proposition 5.1.8. For every i, j ∈ {1,2,3} with j ≡ i or i+ 1 (mod 3), there are precisely two

pearly trajectories uFi j and uBi j connecting x′i to x j. They are given by uFi j = (uFi j) and uBi j = (uBi j).

If j ≡ i+2 (mod 3), there are no pearly trajectories connecting x′i to x j.

Proof. Our discussion above already proves the uniqueness and non-existence parts of the propo-

sition. We only need to show that uFi j and uBi j do indeed give rise to pearly trajectories from x′i

to x j when j ≡ i or i+ 1 (mod 3). That is, we need to show that both uFi j(∂D2) and uBi j(∂D2)

intersect the ascending manifold of x j. To rephrase this once again, we need to show that whenever

j ≡ i or i+1 (mod 3), there exists one maximal equilateral triangle with Vj and Fi j among its ver-

tices and another one with Vj and Bi j among its vertices. From figure 5.3, we can immediately see

the only two such triangles, namely4VjFi jB j j and4VjFj jBi j, where j ∼= i+1 (mod 3).

V ′1

V ′2V ′3

V1

F12(t0)

B11(t0)
E

H

2t0

Figure 5.8: Parametrising disc boundaries.

It is worth looking carefully at the ro-

tations that one needs to apply to a triangle

4V ′i FiiBi j or 4V ′i Fi jBii in order to land in

the family of maximal equilateral triangles

with Vi or Vj as a vertex. This will allow

us to parametrise the boundaries uFi j(∂D2)

and uBi j(∂D2). Let us do this only for uB11

since all other calculations are identical by

the symmetries of figure 5.3.

For all t ∈ (0,π/4] one of the vertices

of exp(tV ′1) · ∆ is V ′1 and the other two lie

on S1
V ′1

. Let us denote these two vertices by

F12(t) and B11(t), where F12(t) is the one

with positive x-coordinate (the letters F and

B are to be read as “front” and “back”; see figure 5.3). Define c(t) := cos(]V ′1V1F12(t)). Let E

denote the midpoint of the line segment V ′2V ′3, i.e. the centre of S1
V ′1

. Then ]B11(t)EV ′2 = 2t and so

]V ′2EF12(t) = π−2t. By the cosine rule for4V ′2EF12(t) we have:

|F12(t)V ′2|2 = |EV ′2|2 + |EF12(t)|2−2|EV ′2||EF12(t)|cos(π−2t)

=
3
2
(1+ cos(2t)) = 3cos2(t).

Then from Pythagoras’s theorem for4V1F12(t)V ′2 we get

|V1F12(t)|2 = 4−3cos2(t). (5.16)

On the other hand, the cosine rule for4V ′1V1F12(t) gives

|V ′1F12(t)|2 = |V ′1V1|2 + |V1F12(t)|2−2|V ′1V1||V1F12(t)|c(t). (5.17)
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Substituting (5.16), together with |V ′1V1|= 1 and |V ′1F12(t)|=
√

3 into (5.17), we obtain

c(t) =
2−3cos2(t)

2
√

4−3cos2(t)
.

Set t0 := arccos
(√

2√
3

)
and let S2

V ′1F12(t0)
denote the sphere in R3 whose diameter is the line segment

V ′1F12(t0). Since c(t0) = 0 we have that ]V ′1V1F12(t0) is a right angle and so

V1 ∈ S2
V ′1F12(t0)

∩S2(1) = S1
B11(t0)

. (5.18)

Put t1 := π

2 − t0. Note that cos(]V1V ′1F12(t0)) = |V1V ′1|/|V ′1F12(t0)| = 1√
3
= cos(t1). Thus we must

have cos(]V1V ′1F12(t0)) = t1 and so, if H is the midpoint of V ′1F12(t0) (i.e. the centre of S1
B11(t0)

),

then ]F12(t0)HV1 = 2t1. From this and (5.18) we deduce that a right-hand rotation by 2t1 in the

axis B11(t0) sends the point F12(t0) to V1. In other words, acting by exp(t1B11(t0)) on the triangle

4F12(t0)V ′1B11(t0) = exp(t0V ′1) ·∆ gives a triangle, one of whose vertices is V1 and hence the other

two (among which is B11(t0)) lie on S1
V1

. First of all, this shows that B11(t0) ∈ S1
V1
∩ S1

V ′1
and so

B11(t0) = B11; by symmetry F12(t0) = F12. Second, we see that the axial Maslov 2 disc with axis

B11 intersects the descending manifold of x′1 at the point q(exp(t0V ′1)) (that is, 4V ′1F12B11) and the

ascending manifold of x1 at the point q(exp(t1B11) · exp(t0V ′1)) (that is,4V1F31B11).

In this way, we can parametrise all the paths γ∗u� for ∗= 0 or 1 and �= Fi j or Bi j. For example

for �= F12 or B11 we get

γ
0
u� = q

(
exp(t�) · exp

(
t0V ′1

))
, t ∈ [0, t1]

γ
1
u� = q

(
exp(t�) · exp

(
t0V ′1

))
, t ∈ [t1,π/2]

and for �= F11 or B12 we get

γ
0
u� = q

(
exp(t�) · exp

(
t1V ′1

))
, t ∈ [0, t0]

γ
1
u� = q

(
exp(t�) · exp

(
t1V ′1

))
, t ∈ [t0,π/2].

Using these and the parametrisations for the index 1 flowlines of f , described in section 5.1.2, one

can plot the lifts of the paths γ∗u , associated with the pearly trajectories u = (uFi j) or u = (uBi j). Two

such lifts are shown in figure 5.9 and figure 5.10 and the Mathematica code used to produce all plots

can be found in the UCL repository for this thesis.

From these plots the parallel transport maps are immediate to read off. Applying this procedure

to all 12 pearly trajectories {uFi j , uBi j : i ≡ j, j+1 (mod 3)} we obtain the results summarised in

table 5.1. We have thus computed that for every (α1,α2,α3) ∈ End(Wx1)⊕End(Wx2)⊕End(Wx3)

we have

∂1(α1,α2,α3) =
(
(A2B)α1 +α1(A4B)+(A2B)α2 +A5

α2(A5B) ,

(A2B)α2 +α2B+(A3B)α3A+α3B ,

(A4B)α3 +α3B+Aα1(A3B)+(A5B)α1A5
)

∈ End(Wx′1
)⊕End(Wx′2

)⊕End(Wx′3
). (5.19)
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Id
a4b

x′1

x1

γ0
uB11

γ
−1
1

(γ ′1)
−1

γ̃1

Figure 5.9: A lift of the path γ0
uB11

together with the descending manifolds of the index 1 critical points and the

ascending manifolds for index 2 critical points for the fundamental domains centred at Id and a4b.

Lifts of the index 3 flowline σ are represented by the dashed line segments. From this plot one

reads off that P
γ0

uB11
= A4B.

Finally, let us determine ∂2 : End(Wm)→ End(Wm′) which counts pearly trajectories of total

Maslov index 4 connecting m′ to m. We claim that such a trajectory cannot consist of a pair of

Maslov 2 discs (v1,v2). Indeed, otherwise, we would need to have v1(−1) = m′, v2(1) = m and

v1(1) > v2(−1). The first two conditions and Theorem 5.1.5 imply that we must have v1 = u′i,

v2 = u j for some i, j ∈ {1,2,3} and so v1(∂D2) =W d(x′i), v2(∂D2) =W a(x j). But this contradicts

the requirement v1(1)> v2(−1), because by formula (5.6) we have that f (x′i) =− 1
2 < 1

2 = f (x j) for

all i, j ∈ {1,2,3}.

So a Maslov 4 pearly trajectory must consist of a single Maslov 4 disc u, satisfying u(−1) = m′

and u(1) = m. Thus u must be one of the discs {w1,w−1} described in Theorem 5.1.6. Figure 5.3
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Id

x1

x′1

γ1
uB11

b

γ1

γ ′1

Figure 5.10: A lift of the path γ1
uB11

with the fundamental domains centred at Id and b. From this plot one reads

off that P
γ1

uB11
= Id.

x′1 x1uF11

Id

A2B

x′1 x1uB11

A4B

Id

x′1 x2uF12

Id

A2B

x′1 x2uB12

A5B

A5

x′2 x2uF22

Id

A2B

x′2 x2uB22

B

Id

x′2 x3uF23

A

A3B

x′2 x3uB23

B

Id

x′3 x3uF33

Id

A4B

x′3 x3uB33

B

Id

x′3 x1uF31

A3B

A

x′3 x1uB31

A5

A5B

Table 5.1: Parallel transport maps for the pearly trajectories {uFi j , uBi j : i≡ j, j+1 (mod 3)}.
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can be used to infer that γ0
w1

= (σ)−1, γ1
w1

= σ̃ , γ0
w−1

= (σ̃)−1 and γ1
w−1

= σ . It is clear then that

Pγ0
w1

= Id, Pγ1
w1

= A, Pγ0
w−1

= A5, Pγ1
w−1

= Id

and hence for every α ∈ End(Wm) we have:

∂2(α) = Aα +αA5 ∈ End(Wm′). (5.20)

We end this section by writing down the complete candidate Floer differential d = d(D,J0). We

set the formal variable T to 1, collapsing the Z-grading on C∗f (W,W) to a (Z/2)-grading and we

write

d0 :
⊕

�=m′,x1,x2,x3

End(W�) →
⊕

�=x′1,x
′
2,x
′
3,m

End(W�)

d1 :
⊕

�=x′1,x
′
2,x
′
3,m

End(W�) →
⊕

�=m′,x1,x2,x3

End(W�)

for the two components of the map d. Now from equations (5.9), (5.10), (5.11), (5.14), (5.15), (5.19)

and (5.20) we have:

• for every (α ′,α1,α2,α3) ∈ End(Wm′)⊕End(Wx1)⊕End(Wx2)⊕End(Wx3)

d0(α ′,α1,α2,α3) =

(
∂0(α

′)+∂1(α1,α2,α3), ∂0(α1,α2,α3)

)
=

([
α ′+B−1α ′B

]
+(A2B)α1 +α1(A4B)+(A2B)α2 +A5α2(A5B) ,[

α ′+(AB)−1α ′(AB)
]
+(A2B)α2 +α2B+(A3B)α3A+α3B ,[

α ′+(A2B)−1α ′(AB)
]
+(A4B)α3 +α3B+Aα1(A3B)+(A5B)α1A5 ,[

α1 +(A3B)−1α1(A3B)+α2 +(A4B)−1α2(A4B)+

+α3 +(A5B)−1α3(A5B)
])

∈ End(Wx′1
)⊕End(Wx′2

)⊕End(Wx′3
)⊕End(Wm).

(5.21)

• for every (α ′1,α
′
2,α

′
3,α) ∈ End(Wx′1

)⊕End(Wx′2
)⊕End(Wx′3

)⊕End(Wm)

d1(α ′1,α
′
2,α

′
3,α) =

(
∂1(α

′
1,α

′
2,α

′
3)+∂2(α) , ∂0(α

′
1,α

′
2,α

′
3)+∂1(α)

)
=

(
Bα ′1 +α ′2(A

4B)+(A2B)α ′3 +
[
Aα +αA5

]
,[

α ′1 +α ′2 +A−1α ′2A+A−1α ′3A
]
+αB ,[

(A2B)−1α ′1(A
2B)+α ′2 +A−1α ′3A+α ′3

]
+(A4B)α ,[

(A2B)−1α ′1(A
2B)+(A3B)−1α ′1(A

3B)+

+(A3B)−1α ′2(A
3B)+α ′3

]
+α(A2B)

)
∈ End(Wm′)⊕End(Wx1)⊕End(Wx2)⊕End(Wx3).

(5.22)

With these expressions at hand we are now in a position to prove Theorem E.

5.1.4 Proof of non-displaceability

In appendix B we give an explicit description of all indecomposable representations of Γ∆ over F2.

We find that there is a unique non-trivial irreducible representation which we denote by D. It is a
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two-dimensional faithful representation of the dihedral group of order 6 and its pullback to Γ∆ is

given explicitly by

ρD : Γ∆ → GL(2,F2)

ρD(a) =
(

1 1
1 0

)
, ρD(b) =

(
1 1
0 1

)
. (5.23)

LetWD denote the resulting local system on L∆. It is immediate to check from (5.13) that one has

m0(WD) = 0 and thus the complex
(

C∗f (WD,WD),d(F ,J0)
)

is unobstructed. Further, since ρD is

surjective, we have

C∗f (WD,WD) =C∗f (WD,WD) =C∗f ,mon(WD).

A direct calculation shows the following.

Proposition 5.1.9. We have HF0
BC(WD,WD)∼= HF1

BC(WD,WD)∼= (F2)
2.

Proof. We identify both
⊕
�=m′,x1,x2,x3

End(WD
�) and

⊕
�=x′1,x

′
2,x
′
3,m

End(WD
�) with End((F2)

2)4 =

(Mat2×2(F2))
4. For (Mat2×2(F2))

4 we choose a basis as follows:

• set e1 =

(
1 0
0 0

)
, e2 =

(
0 1
0 0

)
, e3 =

(
0 0
1 0

)
, e4 =

(
0 0
0 1

)

• for each l ∈ N write l = 4(l)+ 〈l〉 for the division with remainder of l by 4

• for each 1≤ l ≤ 16 and 1≤ k ≤ 4 define the matrix Blk ∈Mat2×2(F2) by

Blk :=


e〈l〉, when 〈l〉 6= 0 and k = (l)+1

e4, when 〈l〉= 0 and k = (l)

the zero matrix, otherwise.

• define a basis B := {Bl : 1≤ l ≤ 16} for (Mat2×2(F2))
4 by setting Bl := (Bl1,Bl2,Bl3,Bl4).

For example

B1 =

((
1 0
0 0

)
,

(
0 0
0 0

)
,

(
0 0
0 0

)
,

(
0 0
0 0

))
, B6 =

((
0 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
0 0

)
,

(
0 0
0 0

))
.

Plugging (5.21) and (5.22) into a computer programme (the Mathematica code can be found in the

UCL repository for this thesis), one finds that with respect to the basis B the operators d0 and d1 are
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given respectively by the matrices

D0 =



0 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0
1 0 1 1 0 1 0 1 0 0 1 1 0 0 0 0
0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0
0 0 1 0 0 1 0 1 1 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1
0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0
1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1
1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0
0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0
0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1
0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0
0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1



D1 =



1 0 1 0 1 1 0 0 0 0 1 0 1 1 1 0
0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 1
0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 1
1 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0
0 1 0 0 0 1 1 0 0 0 1 0 1 1 0 0
0 0 1 0 1 1 0 1 1 1 1 1 0 0 1 0
0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 1
0 0 0 1 1 0 0 0 1 0 1 1 1 0 0 0
0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0
0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0
1 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1
1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0
1 1 0 1 1 1 1 1 0 1 0 0 1 0 0 0
0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 1
1 0 1 1 0 0 1 1 0 0 0 1 0 0 1 0


One then computes that rank(D0) = 6, rank(D1) = 8 and thus

HF0
BC((L∆,WD),(L∆,WD))∼= HF1

BC((L∆,WD),(L∆,WD))∼= (F2)
2.

Remark 5.1.10. It is a fact (see section 5.1.5 below) thatWD is the minimal F2-local system on L∆

for which the central Floer cohomology is non-vanishing. By this we mean that any other finite rank

local systemW → L∆ with HF ∗(W,W) 6= 0 must haveWD as a direct summand. //

Corollary 5.1.11. The Floer cohomology HF∗(RP3,(L∆,WD)) is non-zero and so L∆ and RP3

cannot be displaced by a Hamiltonian diffeomorphism of CP3.

Proof. In the setup of the split-generation criterion (Theorem 2.3.13) set L = RP3 and E to be

the trivial F2-local system of rank 1. By [Ton18, Proposition 1.1] the map CO∗ : QH∗(CP3)→

HH∗(CF∗(RP3,RP3)) is injective and so RP3 split-generates F(CP3). From Proposition 5.1.9

we have that (L∆,WD) is an essential object in F(CP3). By Fact 2.3.12 it then follows that

HF∗(RP3,(L∆,WD)) 6= 0.
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5.1.5 Some additional calculations

In this section, we fully describe the behaviour of the central and monodromy Floer complexes for

all indecomposable F2-local systems on L∆. In appendix B we show that there are 6 isomorphism

classes of indecomposable representations of Γ∆ over F2. These fall into the following 3 groups:

1. the representations V1,V2,V3,V4 (with dimVj = j) which are the indecomposable representa-

tions of the cyclic group C4 over F2 with V1 being the trivial one and V4 being the regular

representation. Since C4 is the quotient of Γ∆ by C3 = {1,a2,a4}, these are also representa-

tions of Γ∆ and are given by

ρ1(b) = Id, ρ2(b) =
(

0 1
1 0

)
, ρ3(b) =

0 0 1
1 0 1
0 1 1

 , ρ4(b) =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 ,

(5.24)

2. the irreducible representation D given by (5.23),

3. a faithful Γ∆-representation U4 of dimension 4, given by

ρU4(a) =


1 1 1 0
1 0 0 1
0 0 1 1
0 0 1 0

 , ρU4(b) =


1 1 1 1
0 1 0 1
0 0 0 1
0 0 1 0

 . (5.25)

For convenience, let us drop the notational distinction between a representation of Γ∆ and a local

system on L∆. Using (5.13) one computes that (L∆,D) and (L∆,U4) are objects of F(CP3)0, while

∀ j ∈ {1,2,3,4} the pair (L∆,Vj) is an object of F(CP3)nil
1 and m0(Vj)(m′) = ρ j(b). Since 1 /∈

Spec(c1(CP3)?) = {0}, then from Proposition 2.3.10 and Proposition 2.3.11 we immediately have:

1) CF ∗(Vj,D)∼=CF ∗(Vj,U4)∼= 0 ∀ j ∈ {1,2,3,4}

2) HF∗mon(Vj)∼= HF ∗(Vj,Vj)∼= 0 ∀ j ∈ {1,2,3,4}

Note further that the Floer complex is obstructed for Vj when j ∈ {2,3,4} and unobstructed other-

wise. Using our general expressions for the Morse and Floer differentials (5.9), (5.10), (5.11), (5.21)

and (5.22), one can also compute:

3) H i(L∆;Zm0(Vj,Vj))∼= H i(L∆;Endmon (Vj))∼= (F2)
j ∀i ∈ {0,1,2,3} ∀ j ∈ {1,2,3,4}

4) H i(L∆;Zm0(D,D))∼= H i(L∆;End (D))∼= H i(L∆;Endmon (D))∼= F2 ∀i ∈ {0,1,2,3}

5) H i(L∆;Zm0(U4,U4))∼= H i(L∆;End (U4))∼=

(F2)
2, i ∈ {0,3}

0, i ∈ {1,3}

6) H i(L∆;Endmon (U4))∼= (F2)
2 ∀i ∈ {0,1,2,3}

7) HF i
BC(D,D)∼= HF i

BC,mon(D)∼= (F2)
2 ∀i ∈ {0,1}
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8) HF i
BC(U4,U4)∼= 0 ∀i ∈ {0,1}

9) HF i
BC,mon(U

4)∼= (F2)
4 ∀i ∈ {0,1}

Note first from 2), 7) and 8) that D is the only indecomposable representation of Γ∆ whose associated

local system has non-vanishing (central) Floer cohomology. This gives the minimality claim we

made in Remark 5.1.10.

Second, we observe that even though U4 dominates D (see the end of appendix B), (L∆,U4) is

a trivial object in F(CP3)0. However, HF∗mon(U4) 6= 0, as expected from the fact that (L∆,D) is an

essential object.

Remark 5.1.12. Another point to note here is that the discrepancy

H∗(L∆;Endmon (V3)) 6∼= H∗(L∆;Endmon (V4))

which we get from 3) is evidence that the domination relation from Definition 2.2.24 really needs the

inclusion of kernels to be at the level of group rings, rather than groups for Proposition 2.2.25 to hold

(recall Remark 2.2.27). Indeed, the group homomorphisms Γ∆→ EndF2(Vj) have the same kernels

for j ∈ {3,4}, namely {1,a2,a4}. If the conclusions of Proposition 2.2.25 were true in this situation,

then the map (2.56) would define an isomorphism of the Morse complexes (C∗f (L;Endmon (V3),∂
D)

and (C∗f (L;Endmon (V4),∂
D) which have different homologies. //

Further, it is not hard to see that the regular representation of Γ∆ is isomorphic to V4⊕U4⊕U4

(see the end of appendix B) and direct calculation shows that 4

H i(L∆;Endmon (EF2
reg))

∼= (F2)
6 ∀i ∈ {0,1,2,3} (5.26)

HF i
BC,mon(L∆;F2) ∼= (F2)

4 ∀i ∈ {0,1}.

It is worth noting that, by 1), 2) and 8) one has HF ∗(EF2
reg,EF2

reg) = 0 but one can detect the non-

displaceability of L∆ from the non-vanishing of HF∗mon(L∆;F2).

Finally note that from 1), 2), 3) and 7) we see that we can add copies of Vj to D and this will

increase the dimension of H∗(L∆;Zm0( · , ·)), but not that of the central Floer cohomology. That is,

when using such local systems, the corrections to the Morse differential on C∗f (V,V ) coming from

holomorphic discs are non-trivial but they also do not kill the cohomology entirely. As (5.26) shows,

the same behaviour is exhibited by the monodromy complex.

5.2 Orientable subadjoint Lagrangians
We now consider twistor Lagrangians in CP2n+1 with n ≥ 2. By Lemma 4.1.30, their minimal

Maslov number is n+ 1 ≥ 3 and so there are no obstructions to Floer theory with high rank local

systems. This fact, together with a simple dimension count, allows us to prove the following.

4 Note that the cover L̂∆ which we considered at the end of section 2.4.3 is L̂∆ = L∆tL∆tL(6,1)tL(6,1)tRP3 tRP3.
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Lemma 5.2.1. Let n≥ 2 and let X ⊆ CP2n+1 be a Type 2 Legendrian subvariety. Suppose that

dim(Hn(X ;F2))+dim
(
Hn−1(X ;F2)

)
≥ 3+dim

(
H1(X ;F2)

)
. (5.27)

Then HF∗BC(ZX ,ZX ;F2) 6= 0.

Proof. We consider HF∗BC(ZX ,(ZX ,EYX )), where EYX is the rank two F2-local system, associated to

the double cover YX → ZX . The spectral sequence which computes this Floer cohomology degener-

ates on the third page and its first page is built out of the cohomology of YX . More precisely, it is

given by

· · · → H∗(YX ;F2)[2n]→ H∗(YX ;F2)[n]→ H∗(YX ;F2)→ H∗(YX ;F2)[−n]→ H∗(YX ;F2)[−2n]→ . . .

(each term represents a column, the square brackets denote grading shift as usual, and the arrows

represent the differential which maps horizontally from one column to the next). In particular, the

non-trivial piece of the zeroth row on the first page is

0−→ H2n(YX ;F2)−→ Hn(YX ;F2)−→ H0(YX ;F2)−→ 0.

Note that, if this 5-term sequence is not exact at the middle position E−1,0
1 = Hn(YX ;F2), then for

degree reasons there is no differential on the next page of the spectral sequence which can kill the

cohomology. We conclude that, if

dim(Hn(YX ;F2))> dim
(
H2n(YX ;F2)

)
+dim

(
H0(YX ;F2)

)
, (5.28)

then HF∗BC(ZX ,(ZX ,EYX )) 6= 0 and hence HF∗BC(ZX ,ZX ;F2) 6= 0. Noting that dim
(
H0(YX ;F2)

)
= 1

and, by Poincaré duality, dim
(
H2n(YX ;F2)

)
= dim

(
H1(YX ;F2)

)
, we see that (5.28) is equivalent to

the inequality

dim(Hn(YX ;F2))≥ 2+dim
(
H1(YX ;F2)

)
. (5.29)

We now show that (5.29) is equivalent to (5.27).

This is done using the Gysin sequence for the circle bundle S1→ YX = S(OX (2))→ X . Since

the Euler class of this bundle vanishes modulo 2, the Gysin sequence gives short exact sequences

0→ Hk(X ;F2)→ Hk(YX ;F2)→ Hk−1(X ;F2)→ 0 for all k ∈ Z.

Putting k = 1, we get

dim
(
H1(YX ;F2)

)
= dim

(
H1(X ;F2)

)
+dim

(
H0(X ;F2)

)
= 1+dim

(
H1(X ;F2)

)
, (5.30)

while, putting k = n, gives

dim(Hn(YX ;F2)) = dim(Hn(X ;F2))+dim
(
Hn−1(X ;F2)

)
. (5.31)

Substituting (5.30) and (5.31) into (5.29), we obtain inequality (5.27).
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We can now prove non-displaceability for the orientable subadjoint Lagrangians. The reason

that we restrict our attention to the orientable ones is that the argument relies on a simple dimension

count which fails for Z(1,2k+1) and Z6. Note also that, if Z is any of the subadjoint Lagrangians

other than L∆ and {Z(1,2k+1) : k ≥ 0}, and K is a field of characteristic different from 2, then

HF∗BC(Z,Z;K) = 0 (replacing “BC” by “Zap” in the case of Z6 which is pin but non-orientable).

Indeed, for any such Z one has H1(Z;Z) = 0 and if dim(Z) = 2n+1, then NZ = n+1 > 3 so Lemma

3.0.17 implies that HF∗(Z,Z;K) must be 2(2n+2)/(n+1) = 4–torsion.

Proposition 5.2.2. The following hold:

1) For each k ≥ 1, the Floer cohomology HF∗BC
(
Z(1,2k),Z(1,2k);F2

)
is non-zero.

2) The Floer cohomologies HF∗BC (Z9,Z9;F2), HF∗BC (Z15,Z15;F2) and HF∗BC (Z27,Z27;F2) are

non-zero.

Proof. The proof of this proposition amounts to a simple dimension count, using the known co-

homology of the homogeneous spaces X(1,2k), X9, X15 and X27. All of these spaces are simply

connected, so by Lemma 5.2.1, it suffices to show that

dim(Hn(X�;F2))+dim
(
Hn−1(X�;F2)

)
≥ 3, (5.32)

where X� ranges through the above spaces and n = dimC (X�).

Consider first part 1), where the Legendrian variety is X(1,2k) = CP1×Q2k ⊆ CP4k+3. For the

quadrics one has:

Hs(Q2k;Z) =


Z 0≤ s≤ 4k is even and s 6= 2k

Z⊕Z s = 2k

0 otherwise.

(5.33)

From this we get H2k+1(CP1×Q2k;F2)∼= 0 and

H2k(CP1×Q2k;F2)∼= H2k−2(Q2k;F2)⊕H2k(Q2k;F2)∼= (F2)
3

and so inequality (5.32) is satisfied.

We now move on to part 2).

First, recall that X9 ∼= U(6)/(U(3)×U(3)) = GrC(3,6). By [MT91, Chapter III, Theorem

6.9(2) ] we know that

H∗ (GrC(3,6);Z)∼=
Z[c1,c2,c3](

c4
1 = 3c2

1c2−2c1c3− c2
2, c3

1c2 = 2c2c2
2−2c2c3 + c2

1c3, c3
1c3 = 2c1c2c3− c2

3

) ,
where the ci’s are the Chern classes of the tautological bundle. From this, we see that the coho-

mology of GrC(3,6) vanishes in odd degrees and H8(GrC(3,6);Z) is a free Z-module, generated

by c2
1c2, c1c3 and c2

2. Therefore H9(GrC(3,6);F2) = 0, while H8(GrC(3,6);F2)∼= (F2)
3 and so the

dimensions of these groups satisfy inequality (5.32).
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Next, consider X15 ∼= SO(12)/U(6). By [MT91, Chapter III, Theorem 6.11] we know that there

exist elements e2i ∈ H2i(SO(12)/U(6);Z) for i ∈ {1,2,3,4,5} such that

H∗(SO(12)/U(6);Z)∼= ∆(e2,e4,e6,e8,e10).

Here ∆(e2,e4,e6,e8,e10) denotes the free Z-module, generated by all simple monomials in the el-

ements {e2,e4,e6,e8,e10}, that is, the monomials without a repeated factor. The above notation

encodes some of the algebra structure as well: it tells us that, if the juxtaposition (followed by

rearranging the factors) of two simple monomials is again a simple monomial, then the resulting

formal identity is true in the ring itself (e.g. (e2e6)(e4e10) = e2e4e6e10; see [MT91, Volume I,

p.121]). It also tells us that non-simple monomials can be expressed as a linear combination of

simple ones but it does not tell us what these relations are. This is not a problem for us, since at

this point we are only interested in counting dimensions. In particular, we see that the cohomology

of SO(12)/U(6) vanishes in odd degrees and H14(SO(12)/U(6);Z) is a free Z-module, generated

by {e2e4e8,e4e10,e6e8}. Hence H15(SO(12)/U(6);F2) = 0, H14(SO(12)/U(6);F2)∼= (F2)
3 and so

inequality (5.32) is satisfied.

Finally, consider X27 ∼= E7/(E6 ·T 1). In this case, inequality (5.32) translates into

dim
(
H27(X27;F2)

)
+dim

(
H26(X27;F2)

)
≥ 3.

We will show that dim
(
H26(X27;F2)

)
= 3. By [MT91, Chapter VII, Lemma 6.13(2)], we know that

Hk(E7/E6;F2) =

F2, k ∈ {0,10,18,27,28,37,45,55}

0, otherwise.

Plugging this into the mod 2 Gysin sequence for the circle bundle S1→E7/E6→E7/(E6 ·T 1)∼=X27,

one finds that there are isomorphisms Hk(X27;F2)
∼=−→Hk+2(X27;F2) for 0≤ k≤ 7, 10≤ k≤ 15 and

18 ≤ k ≤ 24. Combining these with the fact that H1(X27;F2) = 0, one further finds short exact

sequences

0−→ H8(X27;F2)−→ H10(X27;F2)−→ H10(E7/E6;F2)−→ 0

0−→ H16(X27;F2)−→ H18(X27;F2)−→ H18(E7/E6;F2)−→ 0,

whose penultimate terms are 1-dimensional. Starting with H0(X27;F2) ∼= F2 and chasing through

these isomorphisms and exact sequences yields that indeed H26(X27;F2)∼= (F2)
3.

Corollary 5.2.3. Let Z denote any of the subadjoint Lagrangians Z(1,2k), Z9, Z15, Z27 and let dZ

denote the dimension of Z. Then Z cannot be displaced from RPdZ or T dZ
Cl by a Hamiltonian dif-

feomorphism of CPdZ . Moreover, Z15 split-generates the Fukaya category F(CP31;F2), where F2

denotes the algebraic closure of F2.
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Proof. By Proposition 5.2.2, the Lagrangian Z defines an essential object of the monotone Fukaya

categoryF(CPdZ ;F2). By Tonkonog’s theorem [Ton18, Proposition 1.1], F(CPdZ ;F2) is split-

generated by RPdZ and hence HF∗(Z ;RPdZ ;F2) 6= 0. As for the Clifford torus, it is a well-known

result of Cho ([Cho04] but see also [Smi17, Example 3.1.4]) that T m
Cl is wide over F2 in any dimen-

sion m ∈ N (in fact, T m
Cl is wide over any field of any characteristic). It then follows from [BC09a,

Corollary 8.1.2] that Z and T dZ
Cl are not Hamiltonianly displaceable.

In fact, something more general is true. For any m ∈ N, the quantum cohomology

QH∗(CPm;F2) splits into a direct product of local rings (see e.g. [EL19, Example 1.3.2 and

Section 4.1]) and the Fukaya category splits accordingly into orthogonal summands. The local rings

in question are in one-to-one correspondence with the (m+1)-th roots of unity in F2 and so when m

is odd and m+1 is not a power of 2, this is a strictly finer decomposition than the one corresponding

to eigenvalues of the first Chern class which we described in section 2.3.4. Now, [EL19, Corollary

1.3.1] tells us that by equipping T dZ
Cl with different rank one F2-local systems, one obtains objects

of F(CPdZ ;F2) which split-generate the different summands. Hence, the direct sum T dZ
Cl of these

objects split-generates Tw(F(CPdZ ;F2)) and since L defines an essential object of this category, it

must have non-zero Floer cohomology with at least one of the summands in T dZ
Cl . This again shows

that Z and T dZ
Cl are not Hamiltonianly displaceable.

Finally, when Z = Z15, we have that dZ +1 = 32 is a power of 2 and so QH∗(CP31;F2) does not

decompose. It then follows by [EL19, Corollary 7.2.1] that Z15 split-generates F(CP31;F2).
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Vertical gradient equation on Λ2
+S4

Let S4 = S4(1/2) denote the sphere of radius 1/2 in R5, equipped with the round metric and a fixed

orientation and let Λ2
+S4 denote the corresponding bundle of self-dual 2-forms. In this appendix we

derive equation (4.64) which expresses in coordinates the condition that the differential of a function

f : Λ2
+S4→ R annihilates the horizontal distribution.

We pick stereographic coordinates x = (x1,x2,x3,x4) on S4 such that dx1∧dx2∧dx3∧dx4 is a

positive orientation form. In these coordinates the round metric is gi j =
1

(1+‖x‖2)2 δi j and the Hodge

star satisfies ∗(dx1 ∧ dx2) = dx3 ∧ dx4, ∗(dx1 ∧ dx3) = −dx2 ∧ dx4, ∗(dx1 ∧ dx4) = dx2 ∧ dx3. We

trivialise the bundle of self-dual 2-forms over this chart using the basis

{α1 := dx1∧dx2 +dx3∧dx4,α2 := dx1∧dx3−dx2∧dx4,α3 := dx1∧dx4 +dx2∧dx3}

and let y := (y1,y2,y3) be fibre coordinates on Λ2
+S4 with respect to this basis.

Now let {Γk
i j : 1 ≤ i, j,k ≤ 4} be the Christoffel symbols for the Levi-Civita connection on

S4, i.e. ∇ ∂

∂xi

∂

∂x j = Γk
i j

∂

∂xk and let
{

Γ̃k
i j : 1≤ i≤ 4, 1≤ j,k ≤ 3

}
be the Christoffel symbols for the

induced connection on Λ2
+S4, i.e. ∇ ∂

∂xi
α j = Γ̃k

i jαk. Note that, since the vectors
{

∂

∂xi
: 1≤ 1≤ 4

}
all have the same norm and are mutually orthogonal, one has Γk

i j = −Γ
j
ik for j 6= k and Γ1

i1 = Γ2
i2 =

Γ3
i3 = Γ4

i4. Similarly, since 〈dxi,dx j〉= δ i j(1+‖x‖2)2, one has 〈αi,α j〉= 2δi j(1+‖x‖2)4 and hence

Γ̃k
i j =−Γ̃

j
ik for j 6= k and Γ̃1

i1 = Γ̃2
i2 = Γ̃3

i3.

Using these facts, together with the identity ∇ ∂

∂xi
dx j =−Γ

j
ikdxk, one computes

∇ ∂

∂xi
α1 = ∇ ∂

∂xi
(dx1∧dx2 +dx3∧dx4)

= ∇ ∂

∂xi
dx1∧dx2 +dx1∧∇ ∂

∂xi
dx2 +∇ ∂

∂xi
dx3∧dx4 +dx3∧∇ ∂

∂xi
dx4

= −Γ
1
ikdxk ∧dx2−dx1∧Γ

2
ikdxk−Γ

3
ikdxk ∧dx4−dx3∧Γ

4
ikdxk

= −(Γ1
i1 +Γ

2
i2)dx1∧dx2 +(Γ4

i1−Γ
2
i3)dx1∧dx3− (Γ2

i4 +Γ
3
i1)dx1∧dx4 +

(Γ1
i3 +Γ

4
i2)dx2∧dx3 +(Γ1

i4−Γ
3
i2)dx2∧dx4− (Γ3

i3 +Γ
4
i4)dx3∧dx4

= −2Γ
1
i1α1 +(Γ4

i1 +Γ
3
i2)α2 +(Γ4

i2−Γ
3
i1)α3
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This way one obtains

Γ̃
1
i1 = Γ̃

2
i2 = Γ̃

3
i3 = −2Γ

1
i1

Γ̃
2
i1 =−Γ̃

1
i2 = Γ

4
i1 +Γ

3
i2

Γ̃
3
i1 =−Γ̃

1
i3 = Γ

4
i2−Γ

3
i1

Γ̃
3
i2 =−Γ̃

2
i3 = Γ

2
i1 +Γ

4
i3. (A.1)

For the Chritsoffel symbols of the round sphere we have

Γ
k
i j =

1
2

gkl(gil, j +gl j,i−gi j,l)

=
1
2

gkk(gik, j +gk j,i−gi j,k)

=
1
2
(1+‖x‖2)2 −4

(1+‖x‖2)3 (δikx j +δk jxi−δi jxk)

=
−2

1+‖x‖2 (δikx j +δk jxi−δi jxk).

Thus the non-zero symbols are

Γ
j
i j =

−2
1+‖x‖2 xi ∀i, j and Γ

k
ii =−Γ

i
ik =

2
1+‖x‖2 xk ∀ i 6= k. (A.2)

Plugging (A.2) into (A.1) we obtain the formulae

Γ̃
1
i1 = Γ̃

2
i2 = Γ̃

3
i3 =

2
1+‖x‖2 2xi

Γ̃
2
i1 =−Γ̃

1
i2 =

2
1+‖x‖2 (δi1x4 +δi2x3 +δi3(−x2)+δi4(−x1))

Γ̃
3
i1 =−Γ̃

1
i3 =

2
1+‖x‖2 (δi1(−x3)+δi2x4 +δi3x1 +δi4(−x2))

Γ̃
3
i2 =−Γ̃

2
i3 =

2
1+‖x‖2 (δi1x2 +δi2(−x1)+δi3x4 +δi4(−x3)). (A.3)

Now let f : Λ2
+S4 → R be a smooth function. Using the coordinates (x1,x2,x3,x4,y1,y2,y3),

the condition that d f annihilates the horizontal distribution (that is, f has vertical gradient

with respect to the Sasaki metric) translates into the requirement that at each point d f lies in

Span
(
〈 ∂

∂y1 , · 〉,〈 ∂

∂y2 , · 〉,〈 ∂

∂y3 , · 〉
)

. We know that the horizontal distribution is spanned by

v1 :=
∂

∂x1 − Γ̃
k
1 jy

j ∂

∂yk , v2 :=
∂

∂x2 − Γ̃
k
2 jy

j ∂

∂yk , v3 :=
∂

∂x3 − Γ̃
k
3 jy

j ∂

∂yk v4 :=
∂

∂x4 − Γ̃
k
4 jy

j ∂

∂yk

and so 〈
∂

∂yi , ·
〉

=

〈
∂

∂yi ,
∂

∂y j

〉
dy j +

〈
∂

∂yi ,
∂

∂xk

〉
dxk

= δi j2(1+‖x‖2)4dy j +

(〈
∂

∂yi ,vk

〉
+

〈
∂

∂yi , Γ̃
l
k jy

j ∂

∂yl

〉)
= 2(1+‖x‖2)4(dyi + Γ̃

i
k jy

jdxk).

Hence, f has vertical gradient if and only if there exist smooth functions λ1,λ2,λ3 such that

d f = λ1(dy1 + Γ̃
1
k jy

jdxk)+λ2(dy2 + Γ̃
2
k jy

jdxk)+λ3(dy3 + Γ̃
3
k jy

jdxk). (A.4)
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Comparing coefficients in front of dyi, we see that λi =
∂ f
∂yi . Now substituting the formulae (A.3)

into (A.4) and comparing coefficients on front of dx j for each 1≤ j ≤ 4 one obtains that the vertical

gradient condition is equivalent to the following system of PDEs (we change notation from upper to

lower indices for better legibility):

1+‖x‖2

2


∂ f
∂x1
∂ f
∂x2
∂ f
∂x3
∂ f
∂x4

=


(2x1y1− x4y2 + x3y3) (x4y1 +2x1y2− x2y3) (−x3y1 + x2y2 +2x1y3)
(2x2y1− x3y2− x4y3) (x3y1 +2x2y2 + x1y3) (x4y1− x1y2 +2x2y3)
(2x3y1 + x2y2− x1y3) (−x2y1 +2x3y2− x4y3) (x1y1 + x4y2 +2x3y3)
(2x4y1 + x1y2 + x2y3) (−x1y1 +2x4y2 + x3y3) (−x2y1− x3y2 +2x4y3)




∂ f
∂y1
∂ f
∂y2
∂ f
∂y3


(A.5)

To simplify this we introduce the quaternionic notation x := x1+x2i+x3j+x4k, y := y1i+y2j+y3k,

∇x f := ∂ f
∂x1

+ ∂ f
∂x2

i+ ∂ f
∂x3

j+ ∂ f
∂x4

k and ∇y f := ∂ f
∂y1

i+ ∂ f
∂y2

j+ ∂ f
∂y3

k. One can rewrite the right-hand side

of (A.5) as

2∇y f · y det

(
y2 y3
∂ f
∂y2

∂ f
∂y3

)
−det

(
y1 y3
∂ f
∂y1

∂ f
∂y3

)
det

(
y1 y2
∂ f
∂y1

∂ f
∂y2

)

−det

(
y2 y3
∂ f
∂y2

∂ f
∂y3

)
2∇y f · y det

(
y1 y2
∂ f
∂y1

∂ f
∂y2

)
det

(
y1 y3
∂ f
∂y1

∂ f
∂y3

)

det

(
y1 y3
∂ f
∂y1

∂ f
∂y3

)
−det

(
y1 y2
∂ f
∂y1

∂ f
∂y2

)
2∇y f · y det

(
y2 y3
∂ f
∂y2

∂ f
∂y3

)

−det

(
y1 y2
∂ f
∂y1

∂ f
∂y2

)
−det

(
y1 y3
∂ f
∂y1

∂ f
∂y3

)
−det

(
y2 y3
∂ f
∂y2

∂ f
∂y3

)
2∇y f · y




x1
x2
x3
x4



and it is not hard to see that this equals (2y ·∇y f − y×∇y f )x, where juxtaposition of vectors denotes

quaternion multiplication. Thus the final form of the vertical gradient equation is

1+‖x‖2

2
∇x f = (2∇y f · y + ∇y f × y)x.



Appendix B

Indecomposable representations over F2 of

the binary dihedral group of order 12

In this appendix we describe all indecomposable F2-representations of the binary dihedral group of

order twelve. Such a classification is, of course, not new and much more general results are proved

for example in [Jan69]. Here we give a rather direct and pedestrian argument for the classification

in order to make the arguments in section 5.1.5 complete and the thesis more self-contained.

We start by making the following observations. First note that by setting c := a2 (giving a =

c2b2) one can view the binary dihedral group

Γ∆ =
〈

a,b | a6 = 1,b2 = a3,ab = ba5
〉

as the semi-direct product

C3oC4 =
〈
c,b | c3 = 1,b4 = 1,cb = bc2〉 .

This point of view will be particularly convenient for us since we will classify representations of Γ∆

by viewing them simultaneously as C3-representations and C4-representations. To that end, let us

introduce some notation. We put

R3 := F2[C3] =
F2[c]

(c3−1)

R4 := F2[C4] =
F2[b]

(b4−1)
=

F2[b]
(b+1)4 .

If V is a Γ∆-representation, we shall write OC3(V ) for the set of orbits of the C3-action on V \ {0}.

Note that since C3 is a normal subgroup of Γ∆, we have a C4-action on OC3(V ). We denote the set

of orbits of this action by OC4(OC3(V )). For an element A∈OC4(OC3(V )) we shall write SpanA :=

∑A∈A SpanA ≤ V . Note that SpanA is always a Γ∆-subrepresentation of V . Further, given a Γ∆-

representation V and a Ck-representation W for some k ∈ {3,4}, we will write V ∼=k W to mean that

V and W are isomorphic as representations of Ck.

Note now that the ring R3 is semisimple with

R3 ∼= F2⊕
F2[c]

(1+ c+ c2)
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and hence any finite-dimensional R3-module V̂ can be written as

V̂ ∼= V̂⊕k1
1 ⊕ D̂⊕k2 ,

where V̂1 is the trivial one-dimensional R3-module and D̂ := F2[c]/(1+ c+ c2).

On the other hand, the ring R4 is not semisimple but from the structure theorem for finitely-

generated modules over a principal ideal domain, we know that the only indecomposable finite-

dimensional R4-modules are

V 1 :=
F2[b]
b+1

, V 2 :=
F2[b]

(b+1)2 , V 3 :=
F2[b]

(b+1)3 , V 4 := R4 =
F2[b]

(b+1)4 .

Observe that since we have the short exact sequence 1→ C3 → Γ∆ → C4 → 1, the above vector

spaces are also indecomposable Γ∆-representations with trivial C3-action. When we view them as

such, we will lose the bar on top and denote them as V1,V2,V3,V4. In the basis {1,b, . . . ,b j−1} for

V4, these are given by (5.24).

Further, since we have the short exact sequence

1−→C2 = {1,b2} −→ Γ∆ −→ D6 =
〈
c, b̂ | c3 = 1, b̂2 = 1,cb̂ = b̂c2〉−→ 1

and D6 acts naturally on D̂ = F2[c]/(1+ c+ c2) by b̂ ·1 = 1, b̂ · c = c2, b̂ · c2 = c, we see that D̂ has

naturally the structure of a non-faithful irreducible Γ∆-representation. We denote this representation

by D. In the basis {1,c} for F2[c]/(1+ c+ c2), it is precisely given as in (5.23).

Finally, we define the following faithful representation of Γ∆. Let

U4 :=
F2[c]

(1+ c+ c2)
⊕ F2[c]

(1+ c+ c2)
x (B.1)

and set b ·1 = 1, b · x = 1+ cx. Using linearity and the relation bc = c2b this extends uniquely to an

action of C4 on U4, thus making U4 into a well-defined Γ∆-representation. In the basis {1,c,x,cx} it

is given by (5.25). It is important to note that U4 ∼=4 V 4, for example via the map

U4 −→ F2[b]
(b+1)4

1 7→ 1+b+b2 +b3

c 7→ 1+b2

x 7→ 1

cx 7→ 1+b2 +b3.

We are now ready to state the classification.

Proposition B.0.4. The only finite-dimensional indecomposable representations of Γ∆ over F2 are

V1,V2,V3,V4,D and U4.

We will prove this statement in several steps and in the course of the proof it will become

apparent that all these representations are indeed indecomposable. Note that V1 and D are the only
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irreducible representations since U4 contains a copy of D (C4 preserves the first summand in (B.1))

while Vi ∼= (b+1)4−i ·Vj ≤Vj whenever i≤ j.

It will be useful for us to also consider the following representation. Let

U8 :=
F2[c]

(1+ c+ c2)
⊕ F2[c]

(1+ c+ c2)
x⊕ F2[c]

(1+ c+ c2)
x2⊕ F2[c]

(1+ c+ c2)
x3

and let b ∈C4 act as the cyclic permutation (1,x,x2,x3). Again, the relation bc = c2b allows us to

extend this action making U8 into a Γ∆-representation. In fact, we have U8 ∼=U4⊕U4 via the map

U8 −→ U4⊕U4

1 7→ (x,cx).

To begin the classification, we first observe that we can restrict attention only to representations

on which C3 acts non-trivially.

Lemma B.0.5. Let V be a Γ∆-representation over F2. Define

VC3 := {v ∈V : c · v = v}

W := {v ∈V : v+ c · v+ c2 · v = 0}.

Then VC3 and W are Γ∆-representations and we have a decomposition V =VC3 ⊕W.

Proof. The fact that V ∼=3 VC3⊕W is just a restatement of the fact that R3 is semisimple. To see that

VC3 and W are preserved by the C4-action note that if v ∈VC3 then c · (b · v) = b · (c2 · v) = b · v, i.e.

b · v ∈VC3 and if v ∈W then (1+ c+ c2) · (b · v) = b · ((1+ c2 + c) · v) = 0, i.e. b · v ∈W .

We thus have that V ∼=V⊕k1
1 ⊕V⊕k2

2 ⊕V⊕k3
3 ⊕V⊕k4

4 ⊕W , where WC3 = 0. To prove Proposition

B.0.4 it then suffices to show that the only indecomposable representations V with VC3 = 0 are D and

U4. We do this in two steps: first, we show that these are the only indecomposable Γ∆-representations

of dimension at most 8 and then we prove that any Γ∆-representation V with VC3 = 0 and dimV > 8

cannot be indecomposable.

Classifying the two-dimensional representations is easy. Indeed, if V is such, then we have

V ∼=3 D̂ = F2[c]/(1+ c+ c2) and V contains exactly 3 non-zero vectors {1,c,c2}. Since C4 acts on

this set, we must have that either this action is trivial, or that b fixes one of the three vectors and

swaps the other two. But C4 cannot act trivially since then we would have

c2 = c2 · (b ·1) = b · (c ·1) = c,

a contradiction. Hence b fixes exactly one non-zero vector and without loss of generality b · 1 = 1

and b · c = c2, b · c2 = c. Thus V ∼= D as Γ∆-representations.

In fact, the only indecomposable representations of the dihedral group D6 over F2 are the trivial

representation, the regular representation of C2 and D. This is an easy special case of [Bon75,
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Theorem 2] and can also be proved directly by writing D6 = C3oC2 and using the same methods

we employ here (see Remark B.0.7 below). On the other hand, it is not hard to see that the only

non-trivial proper normal subgroups of Γ∆ are C3 = 〈c〉, C2 = 〈b2〉 and C6 = 〈c,b2〉 (using that, if

K EC3oC4 and cmbn ∈ K, then cm = (b(cmbn)b−1)(cmbn)−1 ∈ K) and we have already found all

the indecomposable representations of the corresponding quotients. Thus, we can restrict ourselves

to finding the faithful indecomposable Γ∆-representations.

So, let V be a faithful Γ∆-representation with VC3 = 0 and dimV = 4. Then we have

V ∼=3
F2[c]

(1+ c+ c2)
⊕ F2[c]

(1+ c+ c2)
x.

and

OC3(V ) =
{{

1,c,c2} ,{x,cx,c2x
}
,
{

1+ x,c+ cx,c2 + c2x
}
,{

1+ cx,c+ c2x,c2 + x
}
,
{

1+ c2x,c+ x,c2 + cx
}}

.

Since the size of each orbit of the C4-action on OC3(V ) must divide |C4| = 4 and |OC3(V )| = 5 we

see that C4 must preserve at least one C3-orbit. Up to a C3-equivariant change of basis for V , we may

assume that b ·{1,c,c2}= {1,c,c2} and further b ·1 = 1, b ·c = c2, b ·c2 = c. Since we are assuming

that V is a faithful representation, the action of C4 on OC3(V ) must also be faithful (otherwise b2

must fix all elements of OC3(V ) and, since it commutes with c, it will then have to act trivially on

V ). Hence, the set

A := {{x,cx,c2x},{1+ x,c+ cx,c2 + c2x},{1+ cx,c+ c2x,c2 + x},{1+ c2x,c+ x,c2 + cx}}

forms a single orbit of the C4-action on OC3(V ). By linearity and the relation bc = c2b, the action of

b on A is uniquely determined by which element b · x is. We now have the following cases:

1. Suppose that b · x ∈ {x,1+ x,1+ cx,1+ c2x}. Then:

(a) if b · x = x then V = Span{1,c}⊕Span{x,cx} ∼= D⊕D which contradicts faithfulness.

(b) if b · x = 1+ x then b · (c2 + x) = c+1+ x = c2 + x and so

V = Span{1,c}⊕Span{c2 + x,1+ cx} ∼= D⊕D

which again contradicts faithfulness.

(c) if b · x = 1+ cx we obtain precisely the representation U4. It is clearly indecomposable

since it is not isomorphic to D⊕D.

(d) if b · x = 1+ c2x then consider the C3-equivariant change of basis for V given by the

substitution x̃ = 1+ c2x. Then we have x = c · (1+ x̃) and

b · x̃ = b · (1+ c2x) = 1+ c · (b · x) = 1+ c · (1+ c2x)

= 1+ c+ x = 1+ c+ c+ cx̃ = 1+ cx̃

and thus V ∼=U4.
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2. Suppose that b /∈ {x,1+ x,1+ cx,1+ c2x}:

(a) if b · x = c · (1+αx) for some α ∈ {1,c,c2}, then consider the substitution x̃ = cx. Then

x = c2x̃ and b · x̃ = b · cx = c2b · x = c2c(1+αx) = 1+αx = 1+αc2x̃ and we are back

in case 1.

(b) if b · x = c2 · (1+αx) then, putting x̃ = c2x we obtain b · x̃ = 1+αcx̃ and again we can

apply case 1.

We have thus seen that the only faithful indecomposable Γ∆-representation of dimension 4 is U4.

Recall that U4 ∼=4 V 4. In order to extend the classification to higher-dimensional representations

we will repeatedly use this fact, together with the following lemma.

Lemma B.0.6. Let V be a finite-dimensional representation of Γ∆ over F2 and let U ≤ V be a

subrepresentation. Suppose that U ∼=4 V⊕k
4 for some k ≥ 1. Then there exists a subrepresentation

W ≤V such that V =U⊕W as representations of Γ∆.

Remark B.0.7. We note here that a similar statement holds also for F2-representations of the dihedral

group D6 = C3oC2. That is, if U ≤ V is a pair of representations of D6 and U is isomorphic to a

direct sum of copies of the regular representation of C2, then U is actually a direct summand of V .

The proof is an easier version of the proof we present below. //

The proof of Lemma B.0.6 requires a short detour. We first note the following standard fact

whose proof is straightforward.

Lemma B.0.8. Let R be a ring (not necessarily commutative) and let X be an R-module. Let M,N ≤

X be submodules such that X = M⊕N and let π : X →M be the projection along N. Let M′ ≤ X be

another R-submodule. Then X = M′⊕N if and only if π|M′ : M′→M is an isomorphism.

Using this fact, we can now make a step towards Lemma B.0.6 by first showing that copies of

V 4 are always direct summands of C4-representations.

Lemma B.0.9. Let V be an R4-module which is finite-dimensional over F2. Suppose U ≤ V is a

submodule with U ∼=V 4. Then there exists an R4-submodule W ≤V such that V =U⊕W.

Proof. Since V is an R4-module, there exist non-negative integers n1,n2,n3,n4 such that

V ∼=V⊕n1
1 ⊕V⊕n2

2 ⊕V⊕n3
3 ⊕V⊕n4

4 . (B.2)

Let

φ :
F2[b]

(b+1)4 −→ V⊕n1
1 ⊕V⊕n2

2 ⊕V⊕n3
3 ⊕V⊕n4

4

1 7→ ~v1 +~v2 +~v3 +~v4

denote the inclusion of R4-modules obtained by restricting the isomorphism (B.2) to the submodule

U ∼= F2[b]/(b+ 1)4. Then φ((b+ 1)3) = (b+ 1)3 · (~v1 +~v2 +~v3 +~v4) = (b+ 1)3 ·~v4. Since this
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must be non-zero, there must exist an index 1 ≤ j ≤ n4 such that (b + 1)3 · v4 j 6= 0, where we

write~v4 = (v41,v42, . . . ,v4n4) ∈ V⊕n4
4 . Then v4 j generates its copy of V 4 as an R4-module. Now, let

π : V → V 4 denote the projection to the jth V 4-factor along the other factors in the decomposition

(B.2). Then π(φ(1)) = v4 j, i.e. π ◦ φ is a map of cyclic R4-modules sending a generator to a

generator and hence, it is an isomorphism.

The existence of a complement for U ≤V now follows from Lemma B.0.8.

To finish the proof of Lemma B.0.6 we also need the following general lemma.

Lemma B.0.10. Let G be a group with subgroups HEG, K ≤ G such that G = HoK. Suppose

that H is finite and that F is a field such that char(F) does not divide |H|. Let V be a representation

of G over F and assume that there is a splitting V =U ⊕W as K-representations. Further, suppose

that U is actually a G-subrepresentation of V . Then there exists a G-representation W ≤V such that

V =U⊕W as G-representations.

Proof. The proof is based on the standard technique of “averaging the projection”. Namely, let

π : V →V denote the projection to U along W , followed by the inclusion ι : U ↪→V . Since char(F)

does not divide |H| we can define

π : V −→ V

v 7−→ 1
|H| ∑

h∈H
(h−1,1) ·π((h,1) · v). (B.3)

We claim that π is G-equivariant and π|U = ι . For the second claim note that since H preserves U

and π|U = ι then for all h ∈ H and u ∈U we have π((h,1) ·u) = (h,1) ·u. Plugging this into (B.3),

we see that π(u) = 1
|H| |H|u = u for all u ∈U . Now, to see that that π is G-equivariant we let v ∈V ,

(h0,k0) ∈ HoK = G and compute

π((h0,k0) · v) =
1
|H| ∑

h∈H
(h−1,1) ·π((h,1)(h0,k0) · v)

=
1
|H| ∑

h∈H
(h−1,1) ·π((hh0,1)(1,k0) · v)

=
1
|H|

(h0,1) · ∑
h∈H

(hh0,1)−1 ·π((hh0,1)(1,k0) · v)

=
1
|H|

(h0,1) · ∑
h∈H

(h−1,1) ·π((h,1)(1,k0) · v)

=
1
|H|

(h0,1) · ∑
h∈H

(h−1,1) ·π((1,k0)(k−1
0 hk0,1) · v)

=
1
|H|

(h0,1) · ∑
h∈H

(h−1,1)(1,k0) ·π((k−1
0 hk0,1) · v) [since π is K-equivariant]

=
1
|H|

(h0,1)(1,k0) · ∑
h∈H

(k−1
0 hk0,1)−1 ·π((k−1

0 hk0,1) · v)

= (h0,k0) ·π(u).

Putting W := kerπ we now obtain the desired splitting V =U⊕W .
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We are now in a position to prove Lemma B.0.6.

Proof of Lemma B.0.6. We are assuming that we have a pair of Γ∆-representations U ≤ V and that

U ∼=4 V⊕k
4 for some k≥ 1. By applying Lemma B.0.9 k times, we find a C4-subrepresentation W ≤V

such that V ∼=4 U ⊕W . Now, since C3 preserves U and Γ∆ =C3oC4, we can apply Lemma B.0.10

to find a Γ∆-subrepresentation W ≤V such that V =U⊕W .

Armed with Lemma B.0.6, we are now ready to extend our classification of indecomposable Γ∆-

representations to higher dimensions. So let V be a Γ∆-representation with VC3 = 0 and dimV = 6.

We will show that V cannot be indecomposable. We observe that since |OC3(V )|= 21 is odd, there

must exist an orbit A ∈ OC3(V ) which is fixed by the C4-action on OC3(V ). Then D0 := SpanA is a

two-dimensional Γ∆-subrepresentation of V and so D0 ∼= D and we have a short exact sequence

0 // D0 // V π // V/D0 // 0. (B.4)

By the semisimplicity of R3, this is a split sequence of C3-representations and in particular

(V/D0)
C3 = 0. Then |OC3(V/D0)| = 5 and again there must be an orbit B ∈ OC3(V/D0) which

is fixed by the C4-action. Put D1 := SpanB ≤ V/D0 and U := π−1(D1) ≤ V . We thus obtain a

composition series

0� D0 �U �V

with U/D0 =D1∼=D and V/U ∼=D. From our classification of the four-dimensional representations,

we now have the following two possibilities.

1. Suppose that U ∼=U4 or V/D0 ∼=U4. Then

(a) if U ∼= U4 we know by Lemma B.0.6 that V is not indecomposable and in fact V ∼=

U4⊕D;

(b) if V/D0 ∼=U4 then in particular V/D0 ∼=4 V 4 is a free R4-module and hence (B.4) splits

as a sequence of C4-representations. However, Lemma B.0.10 then implies that (B.4) is

also a split sequence of Γ∆-representations, i.e. again V ∼= D⊕U4.

2. Suppose that U ∼= D⊕D and V/D0 ∼= D⊕D. It follows (see Remark B.0.7) that there exist

Γ∆-equivariant sections r : D1 = U/D0 −→ U and s : V/U = (V/D0)/D1 −→ V/D0 of the

respective quotient maps. Now let t : V/D0 −→V be any F2-linear section of π : V →V/D0,

satisfying t|D1
= r. These maps fit into the following diagram of Γ∆-representations, whose
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rows and columns are exact:

0

��

0

��
0 //D0 //U

��

//U/D0 = D1

r
tt

��

//0

0 //D0 //V

��

π
//V/D0

t
tt

��

//0

V/U

��

(V/D0)/D1

s

VV

��
0 0

Observe that since π and s are C4-equivariant, we have

π(b · ts(x)) = b ·π(ts(x)) = b · s(x) = s(b · x). (B.5)

Consider now the F2-linear splitting

V = D0⊕ t(V/D0) = D0⊕ t(D1⊕ s(V/U)) = D0⊕ r(D1)⊕ ts(V/U). (B.6)

We claim that C4 preserves the summand W := D0⊕ ts(V/U). Indeed, if v0 ∈ D0, x ∈ V/U ,

then

b · (v0 + ts(x)) =
[
b · v0 +b · ts(x)− ts(b · x)

]
+ ts(b · x)

and by (B.5) we see that the term in the square brackets lies in kerπ = D0. Now, since the

section r is C4-equivariant we see that (B.6) gives rise to the splitting V = r(D1)⊕W of C4-

representations. On the other hand, since r is also C3-equivariant, we have that r(D1) is a Γ∆-

subrepresentation of V and then it follows from Lemma B.0.10 that V is not indecomposable.

We have seen that, if V is a six-dimensional Γ∆-representation with VC3 = 0, then we must

have V ∼= D⊕3 or V ∼= D⊕U4. In particular, the only faithful six-dimensional Γ∆-representation with

VC3 = 0 is D⊕U4.

Now let V be a faithful Γ∆-representation with VC3 = 0 and dimV = 8. Since the representation

is faithful, there exists A ∈ OC4(OC3(V )) with |A|= 4. Then SpanA is a faithful subrepresentation

of V and so dim(SpanA) ∈ {4,6,8}. If dim(SpanA) = 4 we know that SpanA ∼= U4. By Lemma

B.0.6 we have that V is not indecomposable. If dim(SpanA) = 6, then must have SpanA∼= D⊕U4;

in particular U4 ≤ V and again Lemma B.0.6 shows that V cannot be indecomposable. We are left

with the case dim(SpanA) = 8, i.e. SpanA=V . We can then write

A= {{1,c,c2},{x,cx,c2x},{x2,cx2,c2x2},{x3,cx3,c2x3}}

and {1,c,x,cx,x2,cx2,x3,cx3} forms a basis for V . Hence

V ∼=3
F2[c]

(1+ c+ c2)
⊕ F2[c]

(1+ c+ c2)
x⊕ F2[c]

(1+ c+ c2)
x2⊕ F2[c]

(1+ c+ c2)
x3
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and b ∈C4 acts as the cyclic permutation (1,x,x2,x3). That is, V ∼= U8 ∼= U4⊕U4 is not indecom-

posable.

Finally, we are ready to finish the proof of Proposition B.0.4, by showing that if V is a faith-

ful representation of Γ∆ with VC3 = 0 and dimV > 8, then V cannot be indecomposable. Indeed,

by faithfulness, there must exist A ∈ OC4(OC3(V )) with |A| = 4. Then SpanA is a faithful sub-

representation of V . In particular, we have that (SpanA)C3 = 0 and hence V ∼=3 D̂⊕k. It follows

that dim(SpanA) must be even and for each A = {v,c · v,c2 · v} ∈ A we have v+ c · v+ c2 · v = 0.

Then dim(SpanA) ≤ 2|A| ≤ 8. But we have seen that any faithful Γ∆-representation of dimension

at most 8 contains a copy of U4. Hence U4 ≤ SpanA≤V and Lemma B.0.6 shows that V cannot be

indecomposable.

Proposition B.0.4 is now proved.

We end this appendix with two quick observations. First, we note that the regular representation

of Γ∆ over F2 is isomorphic to V4⊕U⊕2
4 . Indeed

F2[Γ∆] = Span{1,c,c2}⊕Span{b,cb,c2b}⊕Span{b2,cb2,c2b2}⊕Span{b3,cb3,c2b3} (B.7)

and it contains a copy of V4, namely the ideal

(1+ c+ c2) = Span{1+ c+ c2,b+ cb+ c2b,b2 + cb2 + c2b2,b3 + cb3 + c2b3}.

Now, by Lemma B.0.6, V splits off as a direct summand and the quotient F2[Γ∆]/V is manifestly

isomorphic to U8 ∼=U4⊕U4.

Second, we note that the representation U4 dominates D in the sense of Definition 2.2.24. In-

deed, it is not hard to see, that the kernel of the ring map F2[Γ∆]→ End
(
(F2)

4
)

corresponding

to the representation U4 is precisely the ideal (1+ c+ c2), while the kernel of the homomorphism

F2[Γ∆]→ End
(
(F2)

2
)

corresponding to D is the ideal (1+ c+ c2,1+b2).
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