
royalsocietypublishing.org/journal/rspa

Article submitted to journal

Keywords:

Pattern formation, Turing patterns,

Quorum sensing, Delayed

bifurcations, Critical slowing down

Author for correspondence:

Mohit P. Dalwadi and

Philip Pearce (equal contribution)

e-mail: m.dalwadi@ucl.ac.uk and

e-mail: philip.pearce@ucl.ac.uk

Universal dynamics of
biological pattern formation in
spatio-temporal morphogen
variations
Mohit P. Dalwadi1,2, Philip Pearce1,2

1Department of Mathematics, University College

London
2Institute for the Physics of Living Systems, University

College London

In biological systems, chemical signals termed
morphogens self-organise into patterns that are
vital for many physiological processes. As observed
by Turing in 1952, these patterns are in a state of
continual development, and are usually transitioning
from one pattern into another. How do cells robustly
decode these spatio-temporal patterns into signals
in the presence of confounding effects caused by
unpredictable or heterogeneous environments? Here,
we answer this question by developing a general
theory of pattern formation in spatio-temporal
variations of ‘pre-pattern’ morphogens, which
determine gene-regulatory network parameters.
Through mathematical analysis, we identify universal
dynamical regimes that apply to wide classes of
biological systems. We apply our theory to two
paradigmatic pattern-forming systems, and predict
that they are robust with respect to non-physiological
morphogen variations. More broadly, our theoretical
framework provides a general approach to
classify the emergent dynamics of pattern-
forming systems based on how the bifurcations
in their governing equations are traversed.

1. Introduction
In biological pattern formation, cells interpret morphogen
signals to make developmental decisions based on their
location in a tissue, organ, embryo or population. Such
systems have been found to be remarkably robust to a
wide range of sources of variation in morphogen signals
and system components [1–3]. For example, in recent
work, general principles of biological pattern-forming
systems have been identified that promote robustness
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with respect to variations in morphogen and protein production rates [2,4], in tissue or organism
size [5,6], and in gene-regulatory network architecture [7]. However, these studies have generally
focused on robustness with respect to variations from cell to cell or from tissue to tissue [2] – much
less is understood about how such systems respond to spatio-temporal variations in morphogen
concentrations within individual cells, populations or tissues, particularly over timescales faster
than or similar to growth.

Recent experimental and theoretical work has demonstrated how specific gene-regulatory
network architectures convert spatio-temporal morphogen signals into a required static or
dynamic response [8–16]. These morphogen signals, which have been called ‘pre-pattern’
morphogens, can arise as a necessary part of the developmental process [8,17,18]. However,
unpredictable pre-pattern morphogen fluctuations in a system may be caused by intrinsic
noise [19], growth [20], cell motility or rearrangement [21–24], biochemical reactions [25,26], or
external flows [13,27–29]. These studies raise the question of how to quantify the robustness of a
system’s gene-regulatory network output, i.e. emergent spatio-temporal patterning, with respect
to variations in its pre-pattern morphogen input over a certain timescale.

A typical approach to mathematical modelling of biological pattern formation is to use
reaction-diffusion equations that capture the essential dynamics of relevant morphogens [8].
In reaction-diffusion equations, gene-regulatory networks are represented using the reaction
terms, and pre-pattern morphogens can be taken into account through the associated reaction
parameters [18]. Such equations display self-organisation in space and time via bifurcations [30,
31], which often cause switch-like transitions in the solution that may correspond to biological
decisions [13] or cell-fate choices [32]. Mathematically, dynamics are typically observed to slow
down near bifurcations [33]. This effect is modified with additional slow timescales when the
bifurcation is crossed dynamically [34,35], and these ‘delayed bifurcation’ effects have previously
been considered in reaction-diffusion contexts [36–38], but the implications to biological pattern
formation and decision-making are not understood.

Here, we connect bifurcations in reaction-diffusion systems to robustness in biological pattern
formation. Although our approach is general, we consider two specific pattern-forming systems
with spatio-temporal variations in pre-pattern morphogens. Mathematically, the morphogen
variations correspond to variations in the parameters of the governing reaction-diffusion
equations. We use mathematical analysis to classify and quantify the dynamic response to
such variations in terms of universal solution regimes that we identify. The regimes emerge
as a consequence of bifurcations in the governing equations – in corresponding biological
systems, the type of bifurcation is determined by the system’s gene-regulatory network. Our
analysis predicts an emergent timescale associated with bifurcations; in the relevant solution regime,
this bifurcation timescale allows the system to filter out oscillatory variations in pre-pattern
morphogens that occur faster than a critical timescale. This emergent timescale is different
to the classic slowed timescale near a bifurcation; in systems with spatio-temporal variations
the position of the bifurcation moves around, effectively acting as a dynamic crossing of the
bifurcation (see Electronic Supplementary Material for an analysis detailing the emergence of
an intermediate timescale due to the dynamic crossing of a bifurcation). Surprisingly, in the
two biological examples that we study, we find that the critical timescale is a few hours shorter
than physiological timescales. Overall, our analysis and simulations suggest that gene-regulatory
networks in some biological systems may have been tuned for robustness: they are able to ignore
to variations or oscillations in morphogen concentrations that happen much faster than growth,
while responding appropriately to physiological morphogen variations.

The paper contains three main parts. In the first part, we derive (Section 2) and analyse
(Section 3 and Appendix B) generic canonical equations, or normal forms, that capture pattern-
formation dynamics for a class of continuous transitions, specifically, near supercritical pitchfork
and transcritical bifurcations. In the second part, we model and analyse two specific biological
systems so that they can be written in terms of the canonical results (Section 4 and Supplementary
Material). In the final part, we summarise our results and discuss their implications for biological
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pattern formation (Section 5 and Section 6). Therefore, the reader most interested in the biological
applications of this study can go directly to Section 5.

2. Derivation of normal forms
As a reaction-diffusion system undergoes a bifurcation, its dynamics can typically be
approximated by a (low-dimensional) canonical weakly nonlinear equation - a normal form -
whose specific functional form depends on the type of bifurcation [33]. To perform analysis
relevant to several classes of biological pattern formation that manifest via continuous transitions,
in this Section we focus on deriving the appropriate normal forms for (supercritical) pitchfork
and transcritical bifurcations in the presence of spatio-temporal variations. In the next Section,
we analyse and quantify the dynamics of these normal forms as system parameters are varied;
the dynamics depend on the type of bifurcation, and in which direction the system passes through
the bifurcation (either ‘on-to-off’ or ‘off-to-on’). As will be made clear in Section 5, pitchfork
bifurcations can be associated with activator-inhibitor systems and transcritical bifurcations with
autoinduction loops, and parameter variations can be linked to specific pre-pattern morphogens.

Under weakly nonlinear conditions, the effects of spatio-temporal variations in system
parameters are captured by a specific variation in the related normal form near the bifurcation.
We will show that variations that may appear quasi-steady away from the bifurcation can depend
on the dynamics of the crossing near the bifurcation. This dynamic effect can result in an effective
robustness in the system over non-standard timescales.

To understand this effect, we first demonstrate how the appropriate normal form can emerge
in general through a systematic asymptotic analysis in the ‘inner region’ near the bifurcation.
To this end, we first consider the effect of spatio-temporal variations in the parameters of the
dimensionless toy reaction-diffusion problem

ω
∂A

∂t
=D

∂2A

∂x2
+ a+ k(x, t)A− εAn, (2.1)

where we have non-dimensionalised time and space over their typical scales in the spatio-
temporal variation. We emphasize that while (2.1) takes a specific form, the normal forms it
exhibits typify supercritical pitchfork and transcritical bifurcations in pattern forming systems
generally. Moreover, the asymptotic analysis we use in this section is representative of the general
methodology that can be used to derive these normal forms for specific systems of interest (as we
show in Section 4 and Supplementary Material).

In Eq. (2.1), A(x, t) can be thought of as a measure of the morphogen concentration (in terms
of the deviation from the non-patterned state for the mode excited over the bifurcation1). The
parameter D> 0 represents a strength of diffusion. The parameter a≥ 0 represents a measure
of base production in terms of the excited mode. The imposed function k(x, t) represents
the net strength of self-activation in comparison to decay. When k > 0, the net effect is self-
activation, while when k < 0 the net effect is decay. The parameter ω > 0 represents a measure
of the frequency of k variation and ε > 0 represents the strength of nonlinear saturation effects.
The exponent n= 2 or 3, corresponds to the canonical weakly nonlinear form of an imperfect
transcritical or a (supercritical) pitchfork bifurcation, respectively, as we shall see from our
analysis below. Each of these characterises a minimal gene-regulatory motif (Fig. 1a). The case
with n= 2 (n= 3) can be thought of as a generalized version of the Fisher-KPP (Ginzburg-
Landau) equation, modified through the presence of a spatio-temporally varying coefficient
for the linear term. Generally, to obtain the significant ‘on-off’ type effects seen in biological
signalling, the saturation effect must be weak i.e. ε≪ 1. For ease of exposition, it is also convenient
to impose ω≪ 1 and D≪ 1, so that spatio-temporal variations in k appear to be locally quasi-
steady in (2.1). We will show that, contrary to its appearance, the system (2.1) is not generally
locally quasi-steady when crossing a bifurcation, and that this has significant implications for
1For example, for a Turing bifurcation activated through a pitchfork with n= 3, A typically represents the envelope
amplitude for the patterned state, as predicted by the fastest growing mode at the onset of instability.
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robustness over non-standard timescales. At this point, we make no further assumptions on the
relative sizes of the small parameters ε, ω, and D; we seek to understand all possible significant
changes in system behaviour as the relative sizes of these parameters vary within the constraint
of them being small.

Given the above, in the apparent locally quasi-steady system, k < 0 represents the unpatterned
region (where A∼ a/(−k) =O(1)) and k > 0 the patterned region (where An−1 ∼ k/ε≫ 1),
with k= 0 defining the position of the bifurcation in homogeneous conditions. These results
correspond to the ‘outer’ regions away from the bifurcation (in the language of matched
asymptotic expansions), where A=O(1) corresponds to ‘off’ and An−1 =O(1/ε) corresponds
to ‘on’. However, we can immediately see that these locally quasi-steady outer solutions will not
hold near k= 0, and this leads to the natural definition of the (moving) quasi-steady position of
the bifurcation x= s(t), defined through k(s(t), t) = 0. By examining the behaviour of the system
near the bifurcation at x= s(t), we will show that the system near the bifurcation is not generally
locally quasi-steady, and we will see how and when this causes robustness to be generated in the
system.

(a) Inner problem
To understand what happens near the moving bifurcation, we perform a local analysis. To do
this, we transform into a moving interior layer around the point x= s(t), which we recall is
defined through k(s(t), t) = 0. We are able to fully characterise these systems through a local
analysis, essentially neglecting finite-domain effects, because we are considering bifurcations
with continuous transitions.

The most straightforward type of motion to consider is a non-degenerate bifurcation moving
monotonically, essentially a travelling-gradient-like motion. In this scenario, we have η(t) :=

kx(s(t), t) ̸= 0 and ṡ(t) ̸= 0. We derive this scenario below, and analyse it in Section 3(a). This
analysis will elucidate the key types of possible behaviour near the moving bifurcation. The
general ideas that arise from this monotonic analysis will be important later, when we consider the
emergent robustness implications of our results for oscillating parameters. Since the bifurcation
turns around in this latter scenario, its motion will not be monotonic and must be treated
separately. We therefore analyse this latter scenario separately, in Section 3(b). Finally, for brevity
we focus largely on imperfect bifurcations in the main text below, but present the scalings and
differences in analysis for perfect bifurcations in Appendix A.

In scaling into the region near the moving bifurcation, we seek to derive a distinguished
asymptotic limit and retain as much information as possible. To this end, we start by balancing
the final three (reaction) terms in (2.1) to obtain the requisite scalings. This leads to the scaled
independent and dependent variables Z(x, t) =O(1) and Y (Z, t) =O(1), respectively, defined
through

x= s(t) +
(an−1ε)1/n

η(t)
Z, A(x, t) =

(a
ε

)1/n
Y (Z, t), (2.2)

emphasizing that ε≪ 1, so we are zooming into a region near x= s(t). The balance between the
final three (reaction) terms in (2.1) arise from the result

k(x, t)∼ (an−1ε)1/nZ, (2.3)

obtained by substituting (2.2) into k(x, t), noting that k(s(t), t) = 0, and Taylor expanding.
From the definition (2.2), derivatives are transformed as follows

∂

∂x
7→ η

(an−1ε)1/n
∂

∂Z
,

∂

∂t
7→ ∂

∂t
+

[
η̇Z

η
− ηṡ

(an−1ε)1/n

]
∂

∂Z
. (2.4)

Substituting (2.2)–(2.4) into (2.1), we obtain the transformed system

ω

(an−1ε)1/n

(
∂Y

∂t
+
η̇Z

η

∂Y

∂Z
− ηṡ

(an−1ε)1/n
∂Y

∂Z

)
=

η2D

(an−1ε)3/n
∂2Y

∂Z2
+ 1 + ZY − Y n. (2.5)
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Figure 1. General asymptotic framework for classifying dynamics of pattern-forming systems. a) Bifurcation diagrams and

related minimal gene-regulatory network motifs for two classes of pattern-forming system. Top: autoinduction loops are

associated with transcritical bifurcations. Bottom: activator-inhibitor systems are associated with pitchfork bifurcations. b)

Top: Examples of predicted dynamics in three different regions of parameter space (see panel c) for a travelling gradient,

the non-degenerate linearized form of more general spatio-temporal variations. Results were generated by solving

Eq. (2.1) numerically, with n= 3 and k(x, t) specified via k(x, t) = x− t. Results are similar for n= 2. The dashed line

shows reaction-dominated results obtained by solving the steady form of Eq. (2.1) without diffusion. Bottom: Examples of

predicted dynamics for a spatio-temporal oscillation in k(x, t) of the form k(x, t) =−0.475 + x (1 + 0.25 sin(2πt)),

shown at a fixed x (left). Results were generated as in the top row, and plotted at x= 0.5 in a domain of size x= 1 (right;

y axis log scale). In Region B, the system becomes locked in the patterned state despite large oscillations in k(x, t). c)

General parameter space that classifies the system dynamics in each region for a general spatio-temporal variation. The

boundary between Regions B and C occurs when Λ2/3/|χ|=O(1) and Λ, |χ| ≫ 1.

Given that ε≪ 1 and η, ṡ ̸= 0 for the non-degenerate moving bifurcation case we consider in this
Section, the first two terms in the brackets on the left-hand side are asymptotically sub-dominant
to the third. Since we have made no further assumptions on the relative sizes of ε, ω, and D

beyond them being intrinsically small, we may consistently retain all remaining terms in order
to capture as much information as possible, representing a distinguished asymptotic limit of the
system. This procedure yields the leading-order system

0 =Λ(t)
∂2Y

∂Z2
+ χ(t)

∂Y

∂Z
+ 1 + ZY − Y n, (2.6a)

where

Λ(t) :=
η2D

(an−1ε)3/n
, χ(t) :=

ηωṡ

(an−1ε)2/n
. (2.6b)

Broadly, Λ∈ (0,∞) quantifies the importance of diffusion and χ∈ (−∞,∞) quantifies the
importance of spatio-temporal changes in the parameters, both in comparison to base production.
The sign of χ relates to whether the bifurcation is moving into the patterned or unpatterned
region; the difference between these cases can be mathematically and biologically significant, as
we will discuss later. By comparison with the classic normal forms for bifurcations in uniform
conditions [33], the system (2.6a) corresponds to the (imperfect) normal form for a supercritical
pitchfork bifurcation when n= 3 and for a transcritical bifurcation when n= 2, now in the
presence of spatio-temporal variations.

Finally, we note that the appropriate far-field conditions can be obtained by matching into the
outer (positive) quasi-steady solutions. In terms of the canonical equation (2.6), the consistent
matching conditions are

Y ∼− 1

Z
as Z→−∞, Y ∼Z1/(n−1) as Z→+∞. (2.7)

3. Asymptotic analysis of canonical system
To fully characterize the possible behaviours of the transition across the bifurcation, we seek to
understand the possible behaviours of Y in terms of Λ and χ. One way to do this is to examine
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the distinguished asymptotic limits of the ODE system (2.6)–(2.7). This approach has the benefit of
enabling us to derive analytic leading-order solutions, which will allow us to explicitly quantify
the effect of crossing the bifurcation.

To provide some context to signpost the technical analysis we present shortly, we now briefly
summarise the asymptotic structure of the solution space we explore below. As outlined in Fig. 1c,
there are three sublimits in the system (in terms of asymptotic values of Λ and χ) labelled Regions
A-C, and each separated by distinguished limits of the system. Each sublimit corresponds to
the overall domination of one of the three physical drivers within the inner transition region:
positive feedback, diffusion, and spatio-temporal variations in the parameters. Given that we
are interested in understanding how the solution varies away from the quasi-steady solution
dominated by positive feedback, it is helpful to define the point Z =Z∗ at which Y (Z∗) = 1. We
refer to this as the dynamical position of the bifurcation. We will show below that Z∗ = 0 for
the straightforward quasi-steady solution, but that Z∗ ̸= 0 when diffusive and spatio-temporal
variations are important in the system.

For pitchfork bifurcations (n= 3), which can arise from e.g. activator-inhibitor Turing systems,
a key question is whether the patterned regions remain robust under spatio-temporal variations
involving incursions from the encroaching unpatterned state (‘on-to-off’). This corresponds to
the bifurcation moving from the unpatterned to the patterned state (χ> 0). For transcritical
bifurcations (n= 2), which can arisefrom e.g. self-activator systems, a key question is whether
unpatterned regions remain robust under spatio-temporal variations involving incursions from
the patterned state (‘off-to-on’). This corresponds to the bifurcation moving from the patterned to
the unpatterned state (χ< 0). While the specific details of the analysis will depend on whether the
bifurcation is moving towards the patterned or the unpatterned region, the appropriate scalings
for the distinguished limits and sublimits outlined in Fig. 1c hold in either case. In an effort to
balance breadth and brevity of analysis, we therefore limit ourselves here to considering the two
physically relevant cases mentioned above. We present the pitchfork case (n= 3) with χ> 0 in
the main text below, and the transcritical case (n= 2) with χ< 0 in Appendix B.

As justified at the start of Section 2(a), in the following we first analyse the three regimes that
arise from travelling-wave-like variation of the system parameters (i.e. monotonic, unidirectional
motion of the bifurcation), and then analyse the scenario with spatio-temporally oscillating
parameters (i.e. where the bifurcation turns around). Together, these encompass a significant class
of behaviours the moving bifurcation can exhibit.

(a) Travelling-wave-like parameter variations for on-to-off pitchfork
bifurcations

In this subsection we consider pitchfork bifurcations (n= 3), where the bifurcation moves
unidirectionally from the unpatterned to patterned state (χ> 0). This corresponds to ‘on-to-
off’ patterning. The pitchfork analysis involves the governing equation (2.6), taking n= 3, with
far-field conditions (2.7).

We re-emphasize that in this Section we are specifically interested in asymptotic solutions for
χ> 0, and the analytic results we obtain for Y and Z∗ are specific to this case. However, the
asymptotic scalings we derive here for each sublimit, and summarise later in Section iv, will be the
same for χ< 0. We proceed by analysing each parameter region in increasing order of complexity.

(i) Positive feedback dominates: Region A

The simplest region is Region A, where Λ,χ≪ 1. Hence, positive feedback dominates here, and
the solution remains quasi-steady through the bifurcation. In this case, the ODE (2.6) becomes
quasi-steady, and at leading-order Y is defined implicitly through the cubic equation

1 + ZY − Y 3 = 0. (3.1)
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We note that, if required, an explicit solution to (3.1) can be obtained straightforwardly by
invoking the cubic formula. In this quasi-steady limit, Y (0) = 1, and therefore Z∗ = 0. This is
also the regime for a stationary bifurcation when diffusive effects are not significant. Hence, in
Region A the bifurcation takes its equilibrium position as we would expect from a quasi-steady
analysis, and the patterning is spatially local and quasi-steady.

The solutions in the remainder of parameter space will be significantly different to Region A.
In particular, there will be sharp transitions between the unpatterned and patterned parts of the
transition region, and in general these transitions will not occur around Z = 0.

(ii) Spatio-temporal variations dominate: Region B

Region B occurs when χ≫ 1 and Λ/χ3/2 ≪ 1. In this region, spatio-temporal changes in the
parameters dominate and delaying effects become important, with implications for pattern
robustness. Importantly, in this region there are sharp transitions between the unpatterned and
patterned parts of the transition region, separated by Z =Zc (which we shall see is different but
related to Z∗).

To summarise the asymptotic structure of the solution before going into the specific
mathematical analysis - in Region B, the interesting behaviour occurs over the lengthscale
Z =O(

√
χ), so we scale into a new independent variable σ=Z/

√
χ. The asymptotic solution is

then split into two asymptotic regions separated by the point σ= σc :=Zc/
√
χ. The determination

of σc and Z∗ are key goals of our analysis. The unpatterned region corresponds to σ < σc and the
patterned region corresponds to σ > σc. The solution is smaller in the unpatterned region, with
the scaling Y = YL/

√
χ, and larger in the patterned region, with the scaling Y = χ1/4YR.

Here, information travels in the same direction as the pattern transition i.e. from the patterned
state to the unpatterned state (on-to-off). As such, our analysis starts in the patterned state, where
σ > σc. Using the scalings noted above, the leading-order scaled version of the ODE system (2.6),
(2.7) in the patterned state is

0 =
∂YR
∂σ

+ σYR − Y 3
R, YR ∼

√
σ as σ→∞. (3.2)

We can solve (3.2) explicitly by multiplying through by YR, and introducing the new dependent
variable W (σ) such that Y 2

R =−W ′/(2W ). The ODE (3.2) then transforms to

0 =W ′′ + 2σW ′, W ′/W ∼−2σ as σ→∞. (3.3)

The two linearly independent solutions to the ODE in (3.3) are erfc(σ) and 1, where erfc is the
complementary error function. Applying the far-field condition in (3.3) removes the possibility of
any contribution from the constant solution, leading to the solution W = α erfc(σ) for constant α,
and hence

YR =
e−σ2/2

π1/4
√
erfcσ

. (3.4)

For later matching purposes, we note the following far-field result from (3.4):

YR ∼ e−σ2/2

(4π)1/4
as σ→−∞. (3.5)

Given the relative scalings of Y in the patterned and unpatterned regions, we can determine
σc by calculating when YR =O(χ−3/4). From the far-field result (3.5), this occurs when σ= σc ∼
−
√

logχ3/2.
For completeness, we now also provide the solution in the unpatterned state, where σ < σc.

Using the scalings noted above for the unpatterned state, the leading-order scaled version of the
ODE system (2.6), (2.7) in the unpatterned state is

0 =
∂YL
∂σ

+ 1 + σYL, (3.6)
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with an additional condition that will arise from matching with the solution (3.4) in the patterned
state. Using the integrating factor method, the ODE (3.6) is solved by

YL = βe−σ2/2 + F
(
σ/

√
2
)
, (3.7)

where F (x) is Dawson’s integral [39, Eq. 7.2.5], defined as

F (x) := e−x2
∫x
0
es

2

ds, (3.8)

and β is a constant to be determined through matching with (3.4). Since Dawson’s integral (3.8)
is bounded along the entire real line, the matching procedure does not involve this term and
is therefore fairly straightforward. Using the far-field limit of the patterned solution (3.5), and
recalling that the intrinsic solution scalings are Y = YL/

√
χ and Y = χ1/4YR, we find that

β =
χ3/4

(4π)1/4
, (3.9)

completing the solution (3.7).
Finally, we calculate the dynamic position of the bifurcation Z∗ =

√
χσ∗, defined through

Y (Z∗) = 1 and hence through YR(σ∗) = χ−1/4. From (3.5), this occurs for σ∗ ∼−
√

logχ1/2.
Scaling back into Z∗, we obtain the following asymptotic result for the dynamic position of the
bifurcation:

Z∗ ∼−
√
χ logχ

2
for χ≫ 1 and Λ/χ3/2 ≪ 1 (Region B). (3.10)

(iii) Diffusion dominates: Region C

Region C occurs when Λ≫ 1 and Λ/χ3/2 ≫ 1. In this region, diffusive effects dominate. This
is also the regime for a stationary bifurcation when diffusive effects are significant. In a similar
manner as for Region B, there are sharp transitions between the unpatterned and patterned parts
of the transition region here, separated by Z =Zc (which again is different but related to Z∗).

To summarise the asymptotic structure of the solution - in Region C the interesting behaviour
occurs over the lengthscale Z =O(Λ1/3), so we scale into a new independent variable ζ =

Z/Λ1/3 =O(1). The solution is again split into two asymptotic regions, matched using an
intermediate transition region. This time, the two main asymptotic regions are separated by
the point ζ = ζc :=Zc/Λ

1/3. The determination of ζc and Z∗ are key goals of our analysis. The
unpatterned region corresponds to ζ < ζc and the patterned region corresponds to ζ > ζc. The
solution is smaller in the unpatterned region, with the scaling Y =WL/Λ

1/3, and larger in the
patterned region, with the scaling Y =Λ1/6WR.

Using the scalings noted above, the leading-order scaled version of the system (2.6), (2.7) in
the patterned state (ζ > ζc) is

∂2WR

∂ζ2
+ ζWR −W 3

R = 0, WR ∼
√
ζ as ζ→∞. (3.11)

Similarly, the leading-order scaled version of the system (2.6), (2.7) in the unpatterned state (ζ <
ζc) is

∂2WL

∂ζ2
+ ζWL + 1= 0, WL ∼−1

ζ
as ζ→−∞. (3.12)

Since the nonlinear ODE in (3.11) is second order, it is more difficult to obtain an analytic
solution within the patterned region than it was for Region B. However, we can solve (3.12)
straightforwardly using the variation of parameters method to obtain

WL = cL Ai(−ζ) + P (ζ), (3.13)
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where the constant cL can be obtained via matching with the solution in the patterned region,
and where the function P (ζ) is defined as

P (ζ) = π

[
Bi(−ζ)

∫ζ
−∞

Ai(−s) ds−Ai(−ζ)
∫ζ
0
Bi(−ζ) ds

]
, (3.14)

and is related to the Scorer functions [39, Sec. 9.12].
Given the relative scalings of Y in each asymptotic region, we can determine the position

ζ = ζc by calculating when WR =O(Λ−1/2). Similarly, the dynamic position of the bifurcation
Z∗ =Λ1/3ζ∗ can be inferred through the relationship Y (Z∗) = 1, and hence WR(ζ∗) =Λ−1/6.
Hence, we require knowledge of the decaying behaviour of the nonlinear ODE (3.11) as we move
towards the unpatterned far field ζ→−∞. Linearising (3.11) around the far-field trivial solution
and imposing decay results in the behaviour

WR ∼ cR Ai(−ζ), as ζ→−∞, (3.15)

where cR is an O(1) constant, which is straightforward to determine numerically if required.
(Matching with the unpatterned region gives the relationship cL =Λ1/2cR.)

Using the far-field behaviour of the Airy function, we find that WR =O(Λ−1/2) for ζc ∼
−(logΛ3/4)2/3 and that WR(ζ∗) =Λ−1/6 yields ζ∗ ∼−(logΛ1/4)2/3, resulting in the following
asymptotic result for the dynamic position of the bifurcation

Z∗ ∼−
(
Λ log2 Λ

16

)1/3

for Λ≫ 1 and Λ/χ3/2 ≫ 1 (Region C). (3.16)

(iv) Summary

Our results suggest that the emergent dynamics of pattern-forming systems are determined in
time and space by the regime in which the parameters lie (Fig. 1b-c). Furthermore, our results
quantify how the location of a dynamic bifurcation is determined in each regime - either purely by
a balance between the reaction terms for Region A, or otherwise for Regions B and C (Fig. 1b,c).
In Regions B and C, diffusion and temporal variations in the parameters promote shifts in the
location of the bifurcation that require an asymptotic analysis to quantify. While we give the
specific (quantitative) asymptotic results in each section, the scalings for both pitchfork and
transcritical bifurcations are similar and can be summarised as follows:

Region A. Reaction-dominated and quasi-steady patterning. In this case, Λ≪ 1 and |χ| ≪ 1,
and the reaction terms (iii)-(v) dominate in Eq. (2.6). This is also the regime for a stationary
bifurcation when diffusive effects are not significant. The dynamical position of the bifurcation
corresponds to its quasi-steady position, i.e. Z∗ = 0 (Fig. 1b,c).

Region B. Critical slowing down. In this case |χ| ≫ 1 and Λ2/3/|χ| ≪ 1, and terms (ii)-
(v) dominate in Eq. (2.6) – saturation, i.e. term (v), can be ignored in the unpatterned part
of the domain, and base production, i.e. term (iii), can be ignored in the patterned part. The
dynamical position of the bifurcation lags behind its quasi-steady position, and scales as |Z∗|=
O(
√

|χ| log |χ|) (Fig. 1b,c).
Region C. Diffusively enhanced, quasi-steady patterning. In this case Λ≫ 1 and Λ2/3/|χ| ≫ 1,

and terms (i), (iii)-(v) dominate in Eq. (2.6) – saturation can be ignored in the unpatterned part
of the domain, and base production can be ignored in the patterned part. This is also the regime
for a stationary bifurcation when diffusive effects are significant. The dynamical position of the
bifurcation is shifted via diffusion towards the unpatterned part of the domain, and scales as
|Z∗|=O((Λ log2 Λ)1/3) (Fig. 1b,c).

(b) Spatio-temporal parameter oscillations for pitchfork bifurcations
In the previous subsection, we calculate the dynamic location of the bifurcation, and hence
the effective delay caused by travelling-wave-like spatio-temporal variations (i.e. monotonically
moving bifurcations), identifying and analysing three distinct parameter regions in space
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that demonstrate different types of behaviour. However, there are also important questions
regarding robustness in biological systems involving oscillatory spatio-temporal variations i.e.
non-monotonically moving bifurcations. As a key example of this - consider the situation where
spatio-temporal variations in system coefficients would cause the system (at a fixed position in
space) to move back and forth between the patterned and unpatterned regions predicted by a
quasi-steady analysis (i.e. a local balance between reaction terms). How does the persistence or
decay of the patterning depend on the spatio-temporal variation in the system? And can the
delaying effects quantified in the previous section cause an effective robustness of the system to
spatio-temporal variations over non-standard intermediate timescales, as seen in subsection 3(a)?
Quantitative answers to such questions are not covered by the analysis in subsection 3(a), which
was restricted to monotonic bifurcation movement.

To determine whether non-monotonic moving bifurcations can have a significant effect on
pattern persistence, we perform a preliminary numerical investigation of the effect of oscillatory
variations in the system Eq. (2.1) (Fig. 1b). We find that there is an effective hysteresis associated
with oscillating over the bifurcation, and so each system may indeed become stuck in the
unpatterned or patterned state (Fig. 1b) for parameters oscillating quickly enough, even at large
amplitude oscillations. This suggests that the bifurcations in each system can act as low-pass
filters on parameter variations.

To understand why this happens and to quantify the phenomenon, we now investigate the
system around a fixed position in space, in cases where the moving bifurcation turns around.
Again, with the aim of balancing breadth and brevity, we consider the biologically relevant
cases of patterned-unpatterned-patterned for pitchfork bifurcations (n= 3) in the main text,
and unpatterned-patterned-unpatterned for transcritical bifurcations (n= 2) in Appendix B(b).
Moreover, since we are specifically concerned with robustness to spatio-temporal variations,
we restrict our analysis here to the ‘critical slowing down’ regime. This is the equivalent of
Region B from the previous subsection, in which dynamics are slowed by passage through the
bifurcation [34]. Specifically, this means we consider the scenario where diffusive effects are less
important. However, we will retain the generality of the spatio-temporal variations by preserving
their full nature and resisting the temptation to expand them locally in space and time.

(i) Deriving inner equation

Here, we consider (2.1) with n= 3, which produces a pitchfork bifurcation. Hence, we start with
the system

ω
∂A

∂t
=D

∂2A

∂x2
+ a+ k(x, t)A− εA3. (3.17)

We are specifically interested in spatio-temporal oscillations of k(x, t) (i.e. cases where the
bifurcation can turn around) and in understanding the intrinsic robustness of patterning due to
this non-monotonically moving bifurcation. As such, we zoom into a region near the generic
fixed point x= x∗, around the time t= t∗ at which the bifurcation reaches the fixed point, defined
through k(x∗, t∗) = 0. We consider the scenario where the point x= x∗ transitions from patterned-
unpatterned-patterned under a quasi-steady analysis (i.e. a local balance between reaction terms).
Mathematically, this corresponds to k(x∗, t) transitioning from positive-negative-positive. When
k < 0, there is a drive to de-pattern. Since we are specifically interested in understanding when the
system demonstrates intrinsic robustness, we are interested in understanding when the system
overcomes this forcing to de-pattern and patterning persists. Therefore, we investigate when the
critical slowing down effect of Region B presented in Section 3(a) can overcome this forcing
before k becomes positive again and the system returns to the locally patterned state. That is,
quantifying when the system is robust to temporary incursions into regimes that would appear
to be unpatterned from a quasi-steady analysis.

Since we are focusing on the critical slowing down scenario, diffusive effects can be neglected.
As such, we can effectively consider D= 0 in (3.17) and in what follows. However, we retain D
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for the time being in order to understand when we can formally neglect it. As before, we treat ω
and ε as small.

We are specifically interested in understanding when forcing transitions from patterned-
unpatterned-patterned resist de-patterning and remain patterned, so the key terms in (3.17) are
the left-hand side and the final two terms on the right-hand side. While we will formalize this
intuitive dominant balance for the specific scenarios in which we are interested below, it is helpful
to note that for this dominant balance all relevant asymptotic scalings will reduce (3.17) to an
equation of the form

∂Y

∂T
= k̄(X,T )Y − Y 3, Y (X,T )∼

√
k̄(X,T ) as T →−∞, (3.18)

at leading-order, for appropriately defined independent variables X,T , dependent variable
Y (X,T ), and function k̄(X,T ), noting that k̄ > 0 as T →−∞. It is straightforward to solve (3.18)
by introducingW (X,T ), defined through the transformation Y 2 = (∂W/∂T )/(2W ), to turn (3.18)
into

∂2W

∂T 2
− 2k̄(X,T )

∂W

∂T
= 0,

WT

2W
∼ k̄(X,T ) as T →−∞, (3.19)

which can be solved in terms of k̄(X,T ), and transformed back into a solution for Y as follows:

Y =
exp

(
K̄(X,T )

)(
2
∫T
−∞exp

(
2K̄(X, s)

)
ds
)1/2 where K̄(X,T ) :=

∫T
0
k̄(X, s) ds. (3.20)

(ii) Fixed away from the turning point

We first consider the case where kt(x∗, t∗) ̸= 0 i.e. the position at which the bifurcation turns
around is away from the fixed point x= x∗. In this case, the appropriate inner equation scalings
into the initially patterned region are

x= x∗ +
√
ωX, t= t∗ +

√
ωT, A=

ω1/4

ε1/2
Y. (3.21)

These scalings turn (3.17) into

∂Y

∂T
=

Λ̂

χ̂3/2
∂2Y

∂X2
+

1

χ̂3/4
+ k̄(X,T )Y − Y 3, (3.22)

where we introduce the parameter groupings

Λ̂ :=
D

a2ε
, χ̂=

ω

(a2ε)2/3
, (3.23)

keeping similar notation as in (2.6b), and the function

k̄(X,T ) :=
k(x∗ +

√
ωX, t∗ +

√
ωT )√

ω
. (3.24)

We note that k̄=O(1) since k(x∗, t∗) = 0. Moreover, while it is possible to replace the right-
hand side of (3.24) with its linearization for many differentiable functions k, we keep it in its
general form since we are specifically interested in oscillations in T . That is, we are specifically
interested in k̄ with turning points in T , and these will generally not be well-approximated by
their linearizations.

The formal neglect of the diffusive and base production terms in (3.22) correspond to the
limits χ̂= ω/(a2ε)2/3 ≫ 1 and Λ̂/χ̂3/2 =D/ω3/2 ≪ 1, directly analogous to the limits that take
us into Region B in the previous section. Moreover, this limit reduces (3.22) to the system (3.18),
which is solved by (3.20). We can calculate when Y reaches a critical minimal value (specified by
the particular problem being considered) via simple 1D root finding of the asymptotic solution
(3.20) (see Fig. S1). While there will be additional asymptotic regions (analogous to their Region
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B versions) as Y becomes smaller for both imperfect and perfect pitchforks, we expect practical
de-patterning to occur before these regions are reached so do not consider them further.

(iii) Fixed at the turning point

We now consider the case where kt(x∗, t∗) = 0 and ktt(x∗, t∗)> 0 i.e. the bifurcation turns around
at the fixed point x= x∗. In this case, the appropriate inner equation scalings into the initially
patterned region are

x= x∗ + ω2/3X, t= t∗ + ω1/3T, A=
ω1/3

ε1/2
Y. (3.25)

These scalings turn (3.17) into

∂Y

∂T
=

Λ̂

χ̃3/2
∂2Y

∂X2
+

1

χ̃3/4
+ k̃(X,T )Y − Y 3, (3.26)

where Λ̂ is defined in (3.23), and we introduce the parameter grouping

χ̃=
ω4/3

(a2ε)2/3
= ω1/3χ̂, (3.27)

where χ̂ is defined in (3.23), as well as the function

k̃(X,T ) :=
k(x∗ + ω2/3X, t∗ + ω1/3T )

ω2/3
. (3.28)

We note that k̃=O(1) since k(x∗, t∗) = kt(x
∗, t∗) = 0. Moreover, while it is possible to replace

(3.28) with k̃(X,T )∼ kxX + kttT
2/2 (with partial derivatives of k evaluated at (x∗, t∗)) for many

differentiable functions k, we keep it in the form (3.28) for generality.
The formal neglect of the diffusive and base production terms in (3.26) correspond to the limits

χ̃= ω4/3/(a2ε)2/3 ≫ 1 and Λ̂/χ̃3/2 =D/ω2 ≪ 1. We note that both these constraints represent
slightly stricter requirements on ω than their equivalents in the previous subsection, where we
investigated a fixed position away from the turning point. Broadly, these constraints both require
ω to be slightly larger than in the previous subsection for equivalent remaining parameters; this
is because the constraints generally require χ̃ (and hence ω) to be large enough, and χ̃ is a factor
of ω1/3 smaller than χ̂, so needs to compensate. If these constraints are satisfied, this limit again
reduces (3.26) to the system (3.18), which is solved by (3.20).

4. Biological example: Turing patterns during development
We apply our analytic results and perform simulations in the context of two paradigmatic
biological pattern-forming systems with variations in pre-pattern morphogens. In each case, the
morphogen variations affect parameters in the system gene-regulatory network [8]. In the main
text here we consider a model for digit formation via activator-inhibitor Turing patterns [18],
which is associated with a pitchfork bifurcation. In the Supplementary Material, we consider
a model for bacterial quorum sensing (QS) in Vibrio fischeri, which causes bioluminescence in
the Hawaiian bobtail squid [40]. The bacterial quorum sensing system is associated with a
transcritical bifurcation.

(a) Mathematical model
We consider digit formation in the embryo, which has been modelled as a Turing system [18].
This system is associated with a pitchfork bifurcation. The kinetic parameters of the system are
controlled by a spatio-temporally varying morphogen called fibroblast growth factor (Fgf) [18],
which affects the self activation of the activator (Fig. 2a). For a minimalistic representation, and
following a model in [18], we ignore the effects of other morphogens that are thought to affect the
system. The assumption of a hierarchical system in which a pre-pattern morphogen controls the
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dynamics of downstream morphogens is also in line with experimental results in other biological
systems [25]. We expect our results to extend to more complicated systems that account for more
morphogens and more complicated gene-regulatory networks [10,20].

The digit formation example we consider in this section is described by the equations

∂Ã

∂t̃
= ∇̃ ·

(
D̃A∇̃Ã

)
+ f̃A(x̃/L̃, t̃/τ̃)Ã− f̃I Ĩ − f̃cÃ

3, (4.1a)

∂Ĩ

∂t̃
= ∇̃ ·

(
D̃I∇̃Ĩ

)
+ g̃AÃ− g̃I Ĩ , (4.1b)

where the tildes denote dimensional quantities, and are supplemented with no-flux boundary
conditions on the exterior of the domain

n ·
(
D̃A∇̃Ã

)
= 0, n ·

(
D̃I∇̃Ĩ

)
= 0, (4.1c)

where Ã and Ĩ are the concentrations of the activator and inhibitor, respectively, D̃A and D̃I

are diffusion coefficients, and f̃A, f̃I , g̃A, g̃I and f̃c are kinetic parameters (Fig. 2a). To simulate
spatio-temporal variations in Fgf [18], we let f̃A(x̃/L̃, t̃/τ̃) vary in space and time:

f̃A(x̃/L̃, t̃/τ̃) = f̃bA + k̃Af(x̃/L̃, t̃/τ̃), (4.2)

where f̃bA is the base self-activation of the activator, k̃A is a typical increase in the self-activation,
and f(x̃/L̃, t̃/τ̃) is a non-dimensional concentration of Fgf. Here, L̃ and τ̃ are typical lengthscales
and timescales of the variation. For the numerical simulations we present in Fig. 2, we consider
the system (4.1) in two spatial dimensions, but we restrict our analysis of the system to one spatial
dimension.

We will generally use either

f(x̃/L̃, t̃/τ̃) = (1 +K sin(2πt̃/τ̃))x̃/L̃, (4.3)

or f(x̃/L̃, t̃/τ̃) = x̃/L̃− t̃/τ̃ , (4.4)

and we note that f = x̃/L̃ corresponds to the steady system studied in [18]. As an initial condition,
we use the steady-state patterned solution for K = 0, with stripes oriented parallel to x̃, to test
the effect of oscillations in Fgf on the patterns investigated in [18]. For simplicity, we use the same
parameters as [18] for all kinetic parameters (Table S1). For the oscillation case (4.3), we setK = 0.9

to represent an oscillation in chemical concentration of around 90% over a timescale τ̃ ; the aim is
to find the critical τ̃ for which the oscillation is observed in the pattern-forming reactants.

(b) Nondimensional problem
We nondimensionalise the 1D version of (4.1) using

t̃= τ̃ t, x̃= L̃x, Ã=
g̃
1/2
I ε1/2

f̃
1/2
c

A, Ĩ =
g̃Aε

1/2

g̃
1/2
I f̃

1/2
c

I, (4.5)

where the concentration scalings have been chosen to scale straightforwardly into the
forthcoming weakly nonlinear analysis. The scalings (4.5) transform (4.1) into

ω
∂A

∂t
= dε3

∂2A

∂x2
+ λ(1 + rf(x, t))A− γI − εA3, (4.6a)

ω
∂I

∂t
= ε3

∂2I

∂x2
+A− I, (4.6b)

with

∂A

∂x
= 0,

∂I

∂x
= 0, on x= 0, 1, (4.6c)



14

royalsocietypublishing.org/journal/rspa
P

roc
R

S
oc

A
0000000

..................................................................

where we have introduced the dimensionless parameters

ε=

(
D̃I

g̃I L̃2

)1/3

, d=
D̃A

D̃I

, ω=
1

g̃I τ̃
, λ=

f̃bA
g̃I
, r=

k̃A

f̃bA
, γ =

f̃I g̃A
g̃2I

. (4.7)

We will proceed by reducing this system to its inner normal form, via a systematic asymptotic
analysis in which we formally exploit the small parameters ε, ω≪ 1.

(c) Reduction to canonical form

(i) Travelling-wave-like parameter variations

The relevant inner scalings for this problem involve two spatial lengthscales. These consist of a
short scale X that characterises the small wavelength of patterns, and an intermediate scale σ
that characterises the (more) slowly varying amplitude of the patterns. Mathematically, these are
defined as

X =
x

ε3/2
, σ=

x− s(t)

ε
, (4.8)

where the O(ε3/2) scaling for X is determined by balancing the diffusive terms with the linear
reaction terms, and the O(ε) scaling for σ is determined by balancing the linear reaction terms
with the nonlinear saturation terms. The scalings (4.8) transform the governing equations (4.6)
into the system

ω
∂A

∂t
− ωṡ

ε

∂A

∂σ
= d

(
AXX + 2ε1/2AXσ + εAσσ

)
+ λ(1 + rf(s(t) + εσ, t))A− γI − εA3, (4.9a)

ω
∂I

∂t
− ωṡ

ε

∂I

∂σ
=
(
IXX + 2ε1/2IXσ + εIσσ

)
+A− I. (4.9b)

We proceed by considering an asymptotic expansion in powers of ε1/2

A∼A0 + ε1/2A1 + εA2 =

(
A0(X,σ, t)

I0(X,σ, t)

)
+ ε1/2

(
A1(X,σ, t)

I1(X,σ, t)

)
+ ε

(
A2(X,σ, t)

I2(X,σ, t)

)
, (4.10)

where the leading-order solution can be obtained through a straightforward linear analysis of the
system. The parameter ω≪ 1; it is convenient for our analysis to treat ω=O(ε2), which we shall
see represents an important distinguished limit of the system.

At O(1), we obtain the leading-order system

0 = dA0XX + λ(1 + rf(s(t), t))A0 − γI0, (4.11a)

0 = I0XX +A0 − I0. (4.11b)

Since we are analysing the system near the Turing bifurcation, we seek the degenerate solution
near x= s(t), the position of which is to be determined.

Since σ and t effectively act as parameters in (4.11), analysis of the linear system (4.11) proceeds
in a similar manner to a classic linear stability analysis for Turing patterning in a homogeneous
environment. To this end, the position of the moving bifurcation x= s(t) is defined implicitly
through the relationship

f(s(t), t) = Fc, (4.12)

for constant Fc to be determined as part of our analysis. The value that Fc takes at the onset
of bifurcation will be the same as the value it would take in the scenario of a homogeneous
environment (as recently shown more broadly in [11] for spatially varying environments).

Given (4.12), we write (4.11) as

DA0XX + JA0 = 0, (4.13a)
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where

D=

(
d 0

0 1

)
, J=

(
λ(1 + rFc) −γ

1 −1

)
. (4.13b)

The onset of the Turing bifurcation is then given by (see, for example, [41]) the criteria[
Tr
(
D−1J

)]2
= 4det

[
D−1J

]
, Tr

[
D−1J

]
> 0, (4.14)

which combine to yield the following result for Fc:

Fc :=
2
√
γd− d− λ

λr
. (4.15)

The result (4.15) allows us to write J in (4.13b) as

J=

(
2
√
γd− d −γ
1 −1

)
. (4.16)

The remaining task at this order is to solve the system (4.13). In the standard manner, we look
for a real solution proportional to eikcX , where kc is the (as-of-yet unknown) wavelength of the
patterned solution at the onset of bifurcation. Using this form of the solution, we see that k2c
corresponds to the repeated eigenvalues of D−1J at the onset of bifurcation, and hence that

k2c :=

√
γ

d
− 1, (4.17)

noting that k2c > 0 for Turing patterning to be possible. Hence, the system (4.13) is solved by

A0 =

(√
γ√
d

)
B(σ, t) cos (kcX + ψ) , (4.18)

where (
√
γ,

√
d)⊺ is the right eigenvector of D−1J, and the slowly varying amplitude B satisfies

some governing equation that must be derived at higher asymptotic orders via our weakly
nonlinear analysis. The derivation of this governing equation is the goal of our remaining
analysis. Finally, we note that ψ is some phase shift that would have to be obtained via matching
with a nonlinear outer solution. We note that knowledge of ψ is not required to capture the
emergent amplitude nor frequency of patterning, since it only represents a translational shift in
the patterning.

The O(ε1/2) terms in (4.9) yield

DA1XX + JA1 =−2DA0Xσ. (4.19)

Since the right-hand side of (4.19) is orthogonal to the left-eigenvector of the linear operator, we
do not have enough information to impose a meaningful solvability condition at this order. Hence
we must proceed to the next order to yield a governing equation for B. Nevertheless, we must
still solve (4.19) in terms of A0, since the solvability condition we will derive at O(ε) requires
information about A1.

Using the solution (4.18), we see that the particular integral of (4.19) will be proportional to
sin(kcX + ψ). Looking for a particular integral in this form, we find that

A1 =−2kcd√
γ
Bσ

(
0

1

)
sin (kcX + ψ) +B1(σ, t) cos (kcX + ψ1) , (4.20)

where the first term on the right-hand side is the particular integral of (4.19), and the second term
on the right-hand side is the complementary function. B1 is an undetermined function of σ and
t, and ψ1 is a constant that would be determined through matching at higher orders. We will not
calculate either of these, since neither are required for our overarching goal: to derive a governing
equation for B. This remains our objective, and to achieve this we proceed to the next asymptotic
order.
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The O(ε) terms in (4.9) yield

DA2XX + JA2 =−ωṡ
ε2

A0σ +

(
A3
0 − λrσfx(s(t), t)A0

0

)
− 2DA1Xσ −DA0σσ. (4.21)

We can obtain the governing equation we seek for B by imposing a solvability condition on
(4.21). To do this, we left-multiply the system (4.21) by its left-eigenvector (adjoint) solution
(1/

√
d,−√

γ) cos(kcX + ψ) and integrate over a single period in X e.g. from X = 0 to 2π/kc.
This procedure yields the following governing equation for B:

4d

(
1−

√
d

γ

)
Bσσ +

ωṡ(1− d)

ε2
Bσ + λrfx(s(t), t)σB − 3γ

4
B3 = 0. (4.22)

Finally, we note that we can rescale (4.22) into the normal form we give in (A.3) through the
scalings

B =
2 (λrfx(s(t), t))

1/3
(
4d(1−

√
d/γ)

)1/6
√
3γ

y, σ=

4d
(
1−

√
d/γ

)
λrfx(s(t), t)

1/3

z, (4.23a)

with

Γ (t) :=
ωṡ(1− d)

ε2 (λrfx(s(t), t))
1/3
[
4d(1−

√
d/γ)

]2/3 . (4.23b)

(ii) Spatio-temporal parameter oscillations

We now consider the case of spatio-temporal parameter oscillations i.e. where the moving
bifurcation can turn around. This is of particular interest in determining whether patterning
persists dynamically even when an equilibrium analysis might suggest the repeated emergence
and disappearance of a bifurcation at the edge of the domain. To analyse and quantify this effect,
we scale into the region close to a generic fixed point x= x∗, around the time t= t∗ at which the
bifurcation reaches this point. That is, t∗ is defined implicitly through f(x∗, t∗) = Fc. We will later
use this result to consider the potential persistence of a pattern-forming bifurcation at the edge of
the domain.

We are specifically interested in the critical slowing down region where delayed effects
dominate. We therefore use the new length, time, and concentration scalings

X̄ =
x− x∗

ε3/2
, σ̄=

x− x∗√
ω

, T̄ =
t− t∗√

ω
, (Ā, Ī) =

ω1/4

ε1/2
(A, I) (4.24)

motivated by the fast wavelength scaling for X in (4.8), and the time, space, and concentration
scalings in (3.21).

After applying the scalings (4.24), the resulting analysis is very similar to that in the previous
subsection, so we omit it for brevity. This analysis yields the general leading-order solution(

Ā

Ī

)
∼ 2(1− d)1/2√

3γ

(√
γ√
d

)
B̄(σ̄, T ) cos

(
kcX̄ + ψ̄

)
, (4.25)

where the constants premultiplying this solution are added for notional convenience in
presenting the following amplitude equation satisfied by the slowly varying amplitude B̄:

∂B̄

∂T̄
=

4dε3

ω3/2(1− d)

(
1−

√
d

γ

)
∂2B̄

∂σ̄2
+ f̄(σ̄, T̄ )B̄ − B̄3 = 0, (4.26a)

where

f̄(σ̄, T̄ ) :=
λr

1− d

f(x∗ +
√
ωσ̄, t∗ +

√
ωT̄ )− Fc√

ω
, (4.26b)
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Figure 2. Effect of spatio-temporal morphogen variations on Turing patterns. a) We model Turing patterns during digit

formation (top; reproduced from [18] with permission). The system’s pattern can be represented as an activator-inhibitor

system, with the self-activation parameter fA modulated by a morphogen called Fgf (bottom). b) The parameter fA
(min−1) at t= 0 (top) and throughout the spatio-temporal oscillations Eq. (4.3) (bottom; Movie S1). c) Top: Effect of time

period τ̃ of spatio-temporal oscillations in Fgf on the mean concentration of the activator morphogen (line), and the range

of concentration (grey area) during the oscillations. Bottom: Oscillations in the activator morphogen concentration for fast

(τ̃ = 1 min) and slow (τ̃ = 104 min) oscillations in Fgf (Movie S1). d) For oscillations that are filtered out, patterning

remains the same (top). For oscillations that are not filtered out, patterning completely disappears (bottom). Images

correspond to the black dots in panel c. Concentrations in the figure are non-dimensional and represent deviation from a

base state at x= 0 [20].

noting that Fc is defined in (4.15). Then, we see that if ε≪ ω1/2, the system (4.26) reduces to
(3.18), which has solution (3.20). Hence, for a specified function f , we can calculate the value of
B̄ through the general solution (3.20). Moreover, for finite domains x∈ (0, 1), if we apply this
analysis at the boundary x= 1,2 we can calculate the critical oscillation period for which patterns
persist (i.e. remain above a specified critical value) via simple 1D root finding (see Fig. S1).

5. Biological examples: Results and implications
So far, we have analytically studied two biological pattern-forming systems: digit formation in
the embryo (Section 4) and bacterial quorum sensing (Supplementary Material). Our modelling
assumptions and the governing equations for each system are given at the beginning of Section 4
(Turing patterns) and the Supplementary Material (quorum sensing); corresponding schematic
diagrams are given in Fig. 2a and Fig. 3a, respectively. In both systems, we have derived
results that quantify the dynamical and spatial effects of spatio-temporal pre-pattern morphogen
variations. In this section, we link the analytical results in Section 4 and the Supplementary
Material to the robustness of biological pattern formation in pre-pattern morphogen variations.
We also supplement the analytical results with the results of 2D simulations of the governing
equations of each system in the finite-element computational software COMSOL Multiphysics.

We begin by assuming for simplicity that pre-pattern morphogen variations act like a
‘travelling wave’ of the form Eq. (4.4). Our analysis in Section 4 and the Supplementary Material
shows that in this scenario, the governing equations of both biological systems reduce to the
weakly nonlinear normal forms Eq. (2.6a) or Eq. (A.3). The pre-pattern morphogen variations
are then encapsulated in two parameters, Λ(t) and χ(t), defined through the ratio Γ (t) :=

χ/Λ2/3 in (4.23b) for the digit formation application and in (S2.27) for the quorum sensing
application. Once Λ(t) and χ(t) are calculated, the dynamics of the system are classified through
the general parameter space shown in Fig. 1C. The parameter space contains three regions in
2Assuming that our analysis holds near a boundary, which should hold unless the amplitude varies rapidly i.e. unless the
system exhibits a boundary layer near x= 1.
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Figure 3. Effect of spatio-temporal morphogen variations on bacterial quorum sensing in a small biofilm or cell population.

a) We model quorum sensing in V. fischeri, which causes bioluminescence in the Hawaiian bobtail squid (top; images

adapted from [42], with permission). We model the LuxR system, in which an autoinducer, 3OC6HSL, promotes its

own synthesis by binding with a protein, LuxR, to form a transcription factor (bottom left). The binding parameter k+
is modulated by competitive binding with a second autoinducer, C8HSL. Bottom right: the parameter k+ (nM−1s−1)

throughout the spatio-temporal oscillations Eq. (S2.4) (see also Movie S2). b) Top: Effect of the time period τ̃ of the spatio-

temporal oscillations in C8HSL on the mean 3OC6HSL concentration (line), and the range of 3OC6HSL concentration

(grey area) during the oscillations. Bottom: Oscillations in 3OC6HSL concentration, for fast (τ̃ ≈ 30 min) and slow (τ̃ ≈ 3 ·
104 min) oscillations in C8HSL. For oscillations that are filtered out, the system remains at low 3OC6HSL concentration.

For oscillations that are not filtered out, the cell population fills with 3OC6HSL during the oscillation (see Movie S2).

Concentrations in the figure are scaled by the quorum sensing activation threshold of 5 nM [13].

which we predict qualitatively different solution behaviour (Section 3); we have named them
Region A (reaction-dominated; quasi-steady), Region B (critical slowing down), and Region C
(diffusively enhanced; quasi-steady). These results demonstrate that both of the paradigmatic
pattern-forming systems considered here are subject to universal regimes that we have identified,
which is a consequence of their bifurcation structures.

To understand the biological implications of the solution regimes in Fig. 1C, we now apply
our analytical results to identify which regimes are most relevant to each biological system, and
to quantify the dynamics of patterning in those regimes. First, we focus on the effects of pre-
pattern morphogen variations that occur over physiological timescales. We use physiologically
relevant values of the parameters in both systems (Tables S1, S2), with the timescale of variation τ̃
in the pre-pattern morphogen ‘travelling wave’ (Eq. 4.4) corresponding to the relevant growth
timescale; this is in line with experimental evidence that suggests physiological changes to
patterning in each system are induced by growth [18,20,43]. Our analysis predicts that for such
parameters, each system sits in Region C of parameter space (diffusively enhanced patterning;
see Fig. 1c). In Region C, dynamics are quasi-steady, so we would expect both systems to respond
promptly to temporal changes in morphogens that occur over physiological timescales. Also
in Region C, patterning is ‘enhanced’ through diffusion so that areas ahead of the pre-pattern
morphogen ‘travelling wave’ become patterned (a precise summary of this effect is given in
Section 3). We predict significant quantitative differences in the spatial extent of patterning
between the two systems because of this effect. In the Turing system, the diffusive enhancement to
patterning is less than 10% of the size of the domain (see Table S1) – patterning would be expected
to be controlled relatively locally by the concentration of the pre-pattern morphogen Fgf. This
prediction is in line with recent analyses of Turing systems in steady pre-pattern morphogen
gradients, in which patterning was found to be controlled relatively locally in space [11]. By
contrast, our analysis predicts that diffusive enhancement to patterning is much stronger in
the bacterial quorum sensing system. We find that diffusive enhancement causes the patterned
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(or QS-activated) region to be larger than the size of the population (Table S2) – any local
activation in QS caused by changes over a growth timescale would be expected to cause the entire
population to activate. This would benefit the population by ensuring all cells commit together to
a multicellular program of gene expression, as was recently found in fluid flows [13]. These results
suggest that biological pattern-forming systems can tune via diffusion the extent of patterning.

With the aim of understanding robustness, we next investigate the effect of spatio-temporal
morphogen variations that occur faster than growth. Interestingly, by reducing the timescale of
variation τ̃ in the pre-pattern morphogen ‘travelling wave’ (Eq. 4.4), we find that each system
transitions to Region B (critical slowing down) of parameter space at a critical value of τ̃ (Tables
S1, S2). In Region B, a bifurcation-associated emergent timescale slows the system dynamics (see
Section 3) – this suggests that both systems may be slow to respond to pre-pattern morphogen
variations that happen over timescales that are not physiological. To investigate this further, we
now consider oscillatory pre-pattern morphogen variations of the form Eq. (4.3) in each system
(see Movies S1, S2); in a quasi-steady system, we would expect to see period cycles in which
patterning switches on and off. However, our analytical results show that in this scenario, for
both pitchfork and transcritical bifurcations, there is a critical oscillation timescale – oscillations
that occur faster than this timescale are predicted to be ‘filtered out’ because of the critical slowing
down (see Section 4 and the Supplementary Material). Our simulations confirm this finding: for
pre-pattern morphogen oscillations that occur faster than a critical timescale, we find that both
biological systems remain stuck in the initial patterned or unpatterned state (Fig. 2c,d; Fig. 3b;
Movies S1, S2). We calculate the critical timescale to be around 3-10 hours, depending on the
kinetic parameters in each system (Fig. 2c; Fig. 3b; Fig. S1) – surprisingly, this is a few hours
faster than the timescale of growth in both systems (Tables S1, S2). Therefore, we expect changes
in the pre-pattern morphogen concentration to be ignored if they occur much faster than a
growth timescale, allowing the system to avoid repeated cycles of complete removal of patterning
(Fig. 2d, Fig. 3b; Movies S1, S2). Remarkably, this suggests that the gene-regulatory parameters in
each biological system are tuned such that each system is robust to non-physiological variations
in pre-pattern morphogens.

6. Discussion and conclusion
This study concerns biological pattern-forming systems with spatio-temporal variations in
pre-pattern morphogens; we assume that the pre-pattern morphogens affect the kinetics of
the underlying gene-regulatory network. Mathematically, this corresponds to variations in
the parameters of the governing reaction-diffusion equations; the onset (or offset) of pattern
formation is induced when variations cause the system to transition through a bifurcation. Our
analysis of such systems demonstrates how the dynamics of biological pattern formation in pre-
pattern morphogen variations can be classified and quantified in terms of universal solution
regimes that we have identified. Each solution regime displays qualitatively different dynamics –
the regime in which a biological system sits depends on the gene-regulatory kinetics, and on the
timescale of the pre-pattern morphogen variations.

This presents the intriguing possibility that, with the appropriate gene-regulatory kinetics,
a biological system could take advantage of different solution regimes in different situations.
Surprisingly, our results indeed suggest that in both of the biological systems that we have
studied, the system transitions into the ‘critical slowing down’ regime if variations in pre-pattern
morphogens become much faster than growth. In this ‘critical slowing down’ regime, the onset
(or offset) of pattern formation occurs over a new, longer, timescale that emerges because of the
presence of a bifurcation in the system. We predict that this allows the biological systems to
‘filter out’ non-physiological oscillations in pre-pattern morphogens. Overall, our results suggest
that dynamic delaying effects can manifest from supercritical bifurcations in reaction-diffusion
systems, which are associated with the onset of patterning, providing an effective hysteresis and
inherent robustness to biological systems, complementing recent work that highlights the benefit
of subcritical transitions for a similar purpose [44].
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In principle, any pattern-forming system that undergoes a transcritical or supercritical
pitchfork bifurcation can be analysed using our asymptotic framework and plotted on the
parameter space that our analysis has produced (Fig. 1c). We expect that our results can be readily
extended to wider classes of systems with continuous transitions, such as those with supercritical
Hopf bifurcations in their underlying governing equations. While the ‘early-time’ analogues of
our off-to-on results may be extended to the discontinuous transitions that typify subcritical
bifurcations (which are likely to arise in multistable systems), a comprehensive analysis of
subcritical bifurcations would pose additional technical challenges due to the global nature of the
solution structure. Nevertheless, the general principles that we have investigated here and their
implications for robustness would still hold for discontinuous transitions; the presence of any
bifurcation will impart additional intermediate timescales for pattern forming systems, and this
will act as a low-pass filter for spatio-temporal variations. Our general framework complements
recent work on pattern formation in various systems of equations with spatio-temporally varying
parameters (e.g. [11,45–53]) and on the effect of critical slowing down in a range of contexts [54,
55]. Furthermore, our classification of the dynamics of gene-regulatory network architectures
via their low-dimensional mathematical structure (i.e. bifurcations) complements recent work
on dimensionality reduction of systems without spatio-temporal heterogeneity [32,56,57] and
systems transitioning from a dynamic to a static regime [25].

We have applied our results to two specific biological pattern-forming systems. In modelling
these systems we have performed significant simplifications for clarity and generality. In
particular, we have not modelled the effect of stochastic noise in pre-pattern morphogen
concentrations, which we expect to have effects that are not captured by our analysis [58,59].
Furthermore, our models are effective macroscopic representations of microscopic processes, and
the process of coarse-graining the microscopic dynamics to obtain effective macroscopic dynamics
is often not trivial [60].

To conclude, we have presented a general framework that classifies and quantifies the dynamic
response of pattern-forming systems to spatio-temporal variations in their parameters. We have
applied our framework to simple models of two biological pattern-forming systems, each with
variations in a pre-pattern morphogen that affects kinetic parameters: digit formation via Turing
patterns, and bacterial quorum sensing. Our theory predicts that both systems filter out spatio-
temporal morphogen variations that occur much faster than growth. We demonstrate that
the type of bifurcation in the system, which is determined by the gene-regulatory network,
controls emergent patterning dynamics and structure. Predictions such as these are testable
in newly developed systems that allow spatio-temporal control over gene-expression and the
external environment, such as synthetic model organisms [61], organoids [62] and microfluidic
devices [27]. Owing to the generality of the canonical equations that we have analysed, our
theoretical framework is extendable to a wide class of pattern-forming systems.
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A. Perfect bifurcations
For a perfect bifurcation, a= 0 in (2.1). Although this case can be treated through appropriate
rescalings and limits of the imperfect case, the process is clearer if we simply rescale differently
from the outset. Hence, for a perfect bifurcation we introduce the scaled variables z(x, t) =O(1)

and y(z, t) =O(1) via

x= s(t) +

(
D

η

)1/3

z, A=

(
D1/3η2/3

ε

)1/(n−1)

y. (A.1)
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Under equivalent reasoning as for the imperfect case, noting that k(x, t)∼D1/3η2/3z, we obtain
the transformed system

ω

D1/3η2/3

(
∂y

∂t
+
η̇z

3η

∂y

∂z
− η1/3ṡ

D1/3

∂y

∂z

)
=
∂2y

∂z2
+ zy − yn. (A.2)

Similarly to before, but now exploiting D≪ 1, for non-degenerate cases the first two terms in
the brackets on the left-hand side are asymptotically sub-dominant to the third. Consistently
retaining all remaining terms represents a distinguished asymptotic limit of the leading-order
system, yielding

0 =
∂2y

∂z2
+ Γ (t)

∂y

∂z
+ zy − yn, where Γ (t) :=

χ

Λ2/3
=

ωṡ

D2/3η1/3
, (A.3)

noting that Λ and χ are defined in (2.6b), and Γ ∈ (−∞,∞) quantifies the importance of spatio-
temporal variations in comparison to diffusion. The sign of Γ relates to whether the bifurcation is
moving into the patterned or unpatterned region.

The appropriate far-field conditions can be obtained by matching into the outer quasi-steady
solutions. Although there is some subtlety involved in matching into the unpatterned region in
general for perfect bifurcations, in terms of what is required for our purposes we may close the
canonical equation (2.6) by writing our matching conditions as

y→ 0 as z→−∞, y∼ z1/(n−1) as z→+∞. (A.4)

The normal form for a perfect pitchfork is therefore defined by (A.3)–(A.4) with n= 3. We now
note the differences in the monotonic analysis for perfect bifurcations.

(a) Region A
Since positive feedback dominates and balances base production in Region A, this region is not
relevant in the case of a perfect bifurcation.

(b) Region B
The Region B sublimit is equivalent to Γ ≫ 1 in (A.3)–(A.4). In this case, the scalings z ∼ Γ 1/2

and y∼ Γ 1/4 lead to the ODE (3.2) at leading order, so the appropriate solution is the equivalent
of (3.4):

y= Γ 1/4
exp

(
−z2/2Γ

)
π1/4

√
erfc z/

√
Γ
. (A.5)

However, for a perfect bifurcation there is no base production to mediate the exponential decay
in the far-field as z→−∞. Hence, dependent on the actual far-field matching conditions (which
will depend on the specific system and its history), it is possible for diffusive effects to reassert
themselves in the far-field. That is, there is an additional feasible asymptotic region in this sublimit
when −z =O(Γ 2). In this region, y is exponentially small and the appropriate version of (A.3) is
its linearization, so that saturation effects can be ignored. A WKBJ analysis of the linearization of
(A.3) (matching appropriately with (A.5)) yields the solution

y∼ Γ 1/4
exp

[
Γ 3ϕ(z/Γ 2)

]
(4π(1− 4z/Γ 2))1/4

, ϕ(ζ) =− 1

12

(
6ζ − 1 + (1− 4ζ)3/2

)
. (A.6)

Hence, the position of the dynamic bifurcation (and the extent of the transition region) for the
perfect case will depend on how small one requires y to be when defining the position of the
dynamic bifurcation. Our results above allow for straightforward calculation of the extent once
this critical size is defined.
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(c) Region C
The Region C limit is equivalent to Γ ≪ 1 in (A.3)–(A.4). In this case, the leading-order version
of (A.3), (A.4) is exactly (3.11) with far-field decay as ζ→−∞. Since the leading-order system
in this limit is a regular sublimit of (A.3), we can use the scaling (A.1) to infer that the extent of
the transition region in this case will be x− s(t) =O((D/η)1/3), and that the behaviour of y as
z→−∞ will be y∼ cR Ai(−z) for some constant cR =O(1).

B. Asymptotic analysis of imperfect transcritical bifurcations

(a) Travelling-wave-like motion for off-to-on transcritical bifurcations
In this Appendix we consider imperfect transcritical pitchfork bifurcations, where the bifurcation
moves unidirectionally from the patterned to the unpatterned state (i.e. off-to-on). The
transcritical nature corresponds to the governing equation (2.6) with n= 2, and far-field
conditions (2.7). The ‘off-to-on’ nature corresponds to χ< 0. To fully characterize the possible
behaviours of the transition across the bifurcation, we seek to understand the possible behaviours
of Y in terms of Λ and χ. We do this by examining the distinguished asymptotic limits of the ODE
(2.6) with boundary conditions (2.7). This will allow us to derive analytic leading-order solutions,
and subsequently to quantify the effect of dynamically crossing the bifurcation.

While the analytic results we obtain for Y and Z∗ are specific to the case χ< 0, we note that
in the case where χ> 0 (i.e. on-to-off), the asymptotic order of scalings for Z∗ will be of the same
order that we derive here for χ< 0. We proceed by analysing each region in increasing order of
complexity.

(i) Positive feedback dominates: Region A

The simplest region is Region A, where Λ, |χ| ≪ 1 and hence positive feedback dominates. In this
case, the ODE (2.6) becomes quasi-steady:

1 + ZY − Y 2 = 0, (B.1)

and is solved by

Y =
Z +

√
Z2 + 4

2
. (B.2)

In this quasi-steady limit, Y (0) = 1, and thereforeZ∗ = 0. Hence, in Region A the bifurcation takes
its equilibrium position as we would expect from a quasi-steady analysis, and the patterning is
spatially local and quasi-steady.

The solutions in the remainder of parameter space will be significantly different to Region A.
In particular, there will be sharp transitions between the unpatterned and patterned parts of the
transition region, and in general these transitions will not occur around Z = 0.

(ii) Spatio-temporal variations dominate: Region B

Region B occurs when |χ| ≫ 1 and Λ/|χ|3/2 ≪ 1. In this region, spatio-temporal changes in
the parameters dominate and delaying effects become important, with implications for pattern
robustness. Importantly, in this region there are sharp transitions between the unpatterned and
patterned parts of the transition region, separated by Z =Zc (which we shall see is different but
related to Z∗).

To summarise the asymptotic structure of the solution before going into the specific
mathematical analysis - in Region B, the interesting behaviour occurs over the lengthscale
Z =O(

√
|χ|), so we scale into a new independent variable σ=Z/

√
|χ|. The asymptotic solution

is then split into two asymptotic regions separated by the point σ= σc :=Zc/
√

|χ|. The
determination of σc is a key goal of our analysis. The unpatterned region corresponds to σ < σc
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and the patterned region corresponds to σ > σc. The solution is smaller in the unpatterned region,
with the scaling Y = YL/

√
|χ|, and larger in the patterned region, with the scaling Y =

√
|χ|YR.

Here, information travels in the same direction as the pattern transition i.e. from the
unpatterned state to the patterned state (off-to-on). As such, our analysis starts in the unpatterned
state, where σ < σc. Using the scalings noted above, the leading-order scaled version of the ODE
system (2.6), (2.7) in the unpatterned state (σ < σc) is

∂YL
∂σ

= 1 + σYL, YL ∼− 1

σ
as σ→−∞, (B.3)

which is solved by

YL =

√
π

2

(
1 + erf

σ√
2

)
exp

(
σ2

2

)
. (B.4)

Given the relative scalings of Y in the unpatterned and patterned regions, we can determine
σc by calculating when YL =O(|χ|). Since (B.4) yields the far-field result

YL ∼
√
2πeσ

2/2 as σ→∞, (B.5)

it is straightforward to note that σc ∼
√

2 log |χ|.
For completeness, we also provide the solution in the patterned state, where σ > σc. Using the

scalings noted above for the patterned state, the leading-order scaled version of the ODE system
(2.6), (2.7) in the patterned state (σ > σc) is

∂YR
∂σ

= σYR − Y 2
R, (B.6)

together with an appropriate matching condition with (B.4). The patterned system (B.6) is solved
by

YR =

exp

(
σ2

2

)
kB +

∫σ
0
exp

(
u2

2

)
du

, kB =
|χ|√
2π
, (B.7)

where kB is a constant determined by matching with (B.4). The matching procedure involves
the straightforward tracking of the exponentially growing term (B.5) within a logarithmic
transition region where YL =O(|χ|). Specifically, an intermediate transition region where σ −
σc =O(1/σc).

Finally, we calculate the dynamic position of the bifurcationZ =Z∗ at which Y (Z∗) = 1. Given
the relative scalings of Y in each asymptotic region, we may infer Z∗ =

√
|χ|σ∗ by calculating σ∗

through the relationship YL(σ
∗) =

√
|χ|. From (B.4), this occurs when σ∗ ∼

√
log |χ|, and hence

we obtain the following asymptotic result for the dynamic position of the bifurcation:

Z∗ ∼
√

|χ| log |χ| for |χ| ≫ 1 and Λ/|χ|3/2 ≪ 1 (Region B). (B.8)

(iii) Diffusion dominates: Region C

Region C occurs when Λ≫ 1 and Λ/|χ|3/2 ≫ 1. In this region, diffusive effects dominate. In
a similar manner as for Region B, there are sharp transitions between the unpatterned and
patterned parts of the transition region here, separated by Z =Zc (which again is different but
related to Z∗).

To summarise the asymptotic structure of the solution - in Region C the interesting behaviour
occurs over the lengthscale Z =O(Λ1/3), so we scale into a new independent variable ζ =

Z/Λ1/3. The solution is again split into two asymptotic regions, matched using an intermediate
transition region. This time, the two main asymptotic regions are separated by the point ζ =
ζc :=Zc/Λ

1/3. The determination of ζc is a key goal of our analysis. The unpatterned region
corresponds to ζ < ζc and the patterned region corresponds to ζ > ζc. The solution is smaller in
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the unpatterned region, with the scaling Y =WL/Λ
1/3, and larger in the patterned region, with

the scaling Y =Λ1/3WR.
Using the scalings noted above, the leading-order scaled version of the system (2.6), (2.7) in

the unpatterned state (ζ < ζc) is

∂2WL

∂ζ2
+ 1 + ζWL = 0, WL ∼−1

ζ
as ζ→−∞, (B.9)

which is equivalent to the system (3.12), and hence solved by (3.13) for a different value of cL, to
be determined through matching with the patterned region.

In the patterned state, where ζ > ζc, the leading-order scaled version of the ODE (2.6), (2.7) is

∂2WR

∂ζ2
+ ζWR −W 2

R = 0, WR ∼ ζ as ζ→∞. (B.10)

Given the relative scalings of Y in each asymptotic region, the position ζ = ζc can be obtained by
calculating whenWR =O(Λ−2/3). Similarly, the dynamic position of the bifurcationZ∗ =Λ1/3ζ∗

can be inferred through the relationship Y (Z∗) = 1, and hence WR(ζ∗) =Λ−1/3. Hence, we
require knowledge of the decaying behaviour of the nonlinear ODE (B.10) as we move towards
the unpatterned far field ζ→−∞. Linearising (B.10) around the far-field trivial solution and
imposing decay results in the behaviour

WR ∼ cR Ai(−ζ), as ζ→−∞, (B.11)

where cR =O(1) is a constant that can be determined if required by solving (B.10) numerically
and imposing decaying behaviour as ζ→−∞. Using the far-field behaviour of the Airy
function, we find that WR =O(Λ−2/3) for ζc ∼−(logΛ)2/3 and that WR(ζ∗) =Λ−1/3 yields
ζ∗ ∼−(log

√
Λ)2/3, resulting in the following asymptotic result for the dynamic position of the

bifurcation

Z∗ ∼−
(
Λ log2 Λ

2

)1/3

for Λ≫ 1 and Λ/|χ|3/2 ≫ 1 (Region C). (B.12)

(b) Spatio-temporal oscillations for transcritical bifurcations
Here, we consider spatio-temporal oscillations for transcritical bifurcations going from
unpatterned-patterned-unpatterned. This is the transcritical equivalent of Section 3(b) in the main
text. Essentially, we consider (2.1) with n= 2 and a> 0, which produces an imperfect transcritical
bifurcation. As such, we start with the system

ω
∂A

∂t
=D

∂2A

∂x2
+ a+ k(x, t)A− εA2. (B.13)

We are specifically interested in spatio-temporal oscillations of k(x, t) (i.e. cases where the
bifurcation can turn around). As such, we follow the main text analysis here, and zoom into a
region near the generic fixed point x= x∗, around the time t= t∗ at which the bifurcation reaches
the fixed point, defined through k(x∗, t∗) = 0. We consider the scenario where the point x= x∗

transitions from unpatterned-patterned-unpatterned under a quasi-steady analysis (i.e. a local
balance between reaction terms). We are specifically interested in understanding when the system
overcomes the forcing to pattern and remains unpatterned in the dynamic case, demonstrating
intrinsic robustness. Therefore, we investigate when the critical slowing down effect of Region
B can overcome this forcing before the system returns to the locally patterned state. That is,
quantifying when the system is robust to temporary incursions into regimes that would appear
to be unpatterned from a quasi-steady analysis.

Since we are focusing on the critical slowing down scenario, diffusive effects can be neglected.
As such, we can effectively consider D= 0 in (B.13) and in what follows. However, we retain D
for the time being in order to understand when we can formally neglect it. As before, we treat ω
and ε as small.
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We are specifically interested in understanding when forcing transitions from unpatterned-
patterned-unpatterned resist patterning and remain unpatterned, so the key terms in (B.13) are
the left-hand side and the first two terms on the right-hand side. While we will formalize this
intuitive dominant balance for the specific scenarios in which we are interested below, it is helpful
to note that for this dominant balance all relevant asymptotic scalings will reduce (B.13) to an
equation of the form

∂Y

∂T
= 1 + k(X,T )Y, Y ∼− 1

k(X,T )
as T →−∞, (B.14)

at leading-order, for appropriately defined independent variables X , T , dependent variable
Y (X,T ), and function k(X,T ), noting that k < 0 as T →−∞. Using the integrating factor
method, it is straightforward to derive the following solution of the linear ODE (B.14) in terms of
k:

Y (X,T )∼ eK(X,T )
∫T
−∞

e−K(X,s)ds where K(X,T ) :=

∫T
0
k(X, s) ds. (B.15)

(c) Fixed away from the turning point
We first consider the case where kt(x∗, t∗) ̸= 0 i.e. the position at which the bifurcation turns
around is away from the fixed point x= x∗. In this case, the appropriate inner equation scalings
into the initially patterned region are

x= x∗ +
√
ωX, t= t∗ +

√
ωT, A=

a√
ω
Y. (B.16)

These scalings turn (B.13) into

∂Y

∂T
=

Λ̂

χ̂3/2
∂2Y

∂X2
+ 1 + k(X,T )Y − Y 2

χ̂
, (B.17)

where we introduce the parameter groupings

Λ̂=
D

(aε)3/2
, χ̂=

ω

aε
, (B.18)

keeping similar notation as in (2.6b), and the function

k(X,T ) :=
k(x∗ +

√
ωX, t∗ +

√
ωT )√

ω
. (B.19)

We note that k=O(1) since k(x∗, t∗) = 0. Moreover, while it is possible to replace the right-
hand side of (B.19) with its linearization for many differentiable functions k, we keep it in its
general form since we are specifically interested in oscillations in T . That is, we are specifically
interested in k with turning points in T , and these will generally not be well-approximated by
their linearisations.

The formal neglect of the diffusive and saturation terms in (B.17) correspond to the limits χ̂=

ω/(aε)≫ 1 and Λ̂/χ̂2/3 =D/ω3/2 ≪ 1, directly analogous to the limits that take us into Region
B in the previous subsection. Moreover, these limits reduce (B.17) to the system (B.14), which is
solved by (B.15).

For any specified oscillatory function k(x, t) (and hence k(X,T )), we can calculate when Y

reaches a critical minimal value (specified by the particular problem being considered) via 1D
root finding of the analytic solution (B.15).

(d) Fixed at the turning point
We now consider the case where kt(x∗, t∗) = 0 and ktt(x∗, t∗)< 0 i.e. the bifurcation turns around
at the fixed point x= x∗. In this case, the appropriate inner equation scalings into the initially
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unpatterned region are

x= x∗ + ω2/3X, t= t∗ + ω1/3T, A=
a

ω2/3
Y. (B.20)

These scalings turn (B.13) into

∂Y

∂T
=

Λ̂

χ̃3/2
∂2Y

∂X2
+ 1 + k̃(X,T )Y − Y 2

χ̃
, (B.21)

where Λ̂ is defined in (B.18), and we introduce the following parameter grouping χ̃ and function
k̃(X,T )

χ̃=
ω4/3

aε
= ω1/3χ̂, k̃(X,T ) :=

k(x∗ + ω2/3X, t∗ + ω1/3T )

ω2/3
, (B.22)

where χ̂ is defined in (B.18). The formal neglect of the diffusive and saturation terms in (B.21)
correspond to the limits χ̃= ω4/3/(aε)≫ 1 and Λ̂/χ̃3/2 =D/ω2 ≪ 1. If these constraints are
satisfied, this limit reduces (B.21) to the system (B.14), which is solved by (B.15).
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1. Detailed example of critical slowing down caused by a transcritical bifurcation
Consider the (dimensional) ODE system

dỹ

dt̃
= c̃(t̃− t̃0)ỹ + ã− b̃ỹ2, ỹ(0) = 0, (S1.1)

where c̃, t̃0, ã, and b̃ are positive constants. Here, ỹ represents the concentration of some chemical species whose reaction
rate is governed by a self-activation/self-repression term with time-varying strength c̃(t̃− t̃0), a base rate of production ã,
and a saturation (self-repressing) effect with strength b̃. We non-dimensionalize using

ỹ(t̃) =
ã

c̃t̃0
y(t), t̃=

1

c̃t̃0
t, (S1.2)

to obtain

dy

dt
= (ωt− 1)y + 1− εy2, y(0) = 0. (S1.3)

where

ω :=
1

c̃t̃20
, ε :=

ãb̃

c̃2t̃20
. (S1.4)

We are specifically interested in the asymptotic limit ω, ε≪ 1. This corresponds to a fast base production (over t=O(1))
with a weak saturation effect, and a fast self-repression (over t=O(1)) that slowly varies (over t=O(1/ω)) until it becomes
a self-activation. The point at which this switch between repression and activation occurs (t= tc := 1/ω) is an effective
imperfect transcritical bifurcation in the ODE. While the system (S1.3) may appear to straightforwardly yield quasi-steady
(local equilibrium) solutions, we will show that the crossing of the bifurcation can lead to delayed effects over perhaps
unexpected timescales.

As noted above, there are clear ‘fast’ and ‘slow’ timescales in this problem. The fast timescale is t=O(1), which
represents the fast transition from the initial condition to the quasi-steady solution. This is also the restorative timescale for
any perturbations to the problem e.g. due to a noisy environment. Over this timescale, the leading-order solution is given
by

y∼ 1− e−t. (S1.5)

The slow timescale is t=O(1/ω), which represents the slow variation in the time-dependent coefficient. Over this
timescale, it is helpful to explicitly introduce the slow timescale T = ωt=O(1), and to note that in this notation the fast
timescale corresponds to T =O(ω). Transforming to the slow timescale T , the ODE (S1.3) becomes

ω
dy

dT
= (T − 1)y + 1− εy2, (S1.6a)

with appropriate matching condition

lim
T→0+

y= 1, (S1.6b)

obtained through asymptotic matching with (S1.5). The system (S1.6) represents the apparent quasi-steady regime, and the
corresponding leading-order solution is

y∼ 1

1− T
=

1

1− ωt
for 0<T < 1. (S1.7)

The apparent singularity in this solution occurs at the effective bifurcation point of the system: T = Tc := ωtc = 1, where
the slowly varying coefficient crosses zero. The apparent singularity explicitly highlights that there may be additional
interesting behaviour as T → T−

c . We will show that this interesting behaviour can lead to delays in the solution that occur
over intermediate timescales in the problem of t− tc =O(1/

√
ω), which is slower than the fast timescale of t=O(1) but

faster than the slow timescale of t=O(1/ω).

*Joint corresponding authors: m.dalwadi@ucl.ac.uk and philip.pearce@ucl.ac.uk
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To justify the appropriate scaling for the intermediate slowing timescale, it is helpful to jump forward in time slightly
and understand the quasi-steady solution once y has become very large and saturation effects have kicked in to balance
self-activation. The appropriate balance for this is between the (T − 1)y and εy2 terms in the ODE in (S1.6a), which yields
a solution of

y∼ T − 1

ε
for T > 1. (S1.8)

To motivate the appropriate intermediate timescale, we identify when the solutions (S1.7) and (S1.8) are of the
same asymptotic order near the bifurcation point (T = Tc := 1). This occurs when |T − Tc|=O(

√
ε), and hence when

y=O(1/
√
ε). Therefore, we introduce new intermediate scalings, starting with an intermediate timescale τ =O(1) where

T = Tc +
√
ετ . Note that this is equivalent to t= tc +

√
ετ/ω. We also introduce the intermediate dependent variable Y (τ),

defined through y= Y/
√
ε. These scalings convert the ODE (S1.6a) into

λ
dY

dτ
= τY + 1− Y 2, (S1.9a)

where λ := ω/ε= c̃/(ãb̃), with appropriate matching condition

Y ∼− 1

τ
as τ →−∞. (S1.9b)

The system (S1.9) represents the full intermediate dynamics of the system, and its behaviour is completely controlled by
the single parameter grouping λ. Since we made no additional assumptions on the relative sizes of ω and ε, the parameter
grouping λ can be small or large. While we can write down the exact solution to (S1.9) in terms of hypergeometric functions,
its exact form is not particularly informative. It is more instructive to examine the cases of small and large λ asymptotically,
as this will allow us to understand the emergence of the delaying effect over unexpected timescales due to dynamic crossing
of the bifurcation. However, even before doing this systematically, we can note that the parameter λ encodes how important
the reaction rate λdY/dτ is directly from the form of the intermediate ODE (S1.9). As such, we would broadly expect
dynamic crossing effects to be important for large λ and unimportant for small λ.

Specifically, in the limit of λ≪ 1 (equivalently ω≪ ε), the system will remain quasi-steady throughout the intermediate
timescale. In this case we can explicitly write down the asymptotic solution

Y ∼ τ +
√
τ2 + 4

2
. (S1.10)

Hence, for small λ we see that the intermediate solution (S1.10) provides a smoothing between the two outer solutions
(S1.7) and (S1.8), but does not contribute any dynamic effects to the system. A helpful metric to gauge the level of delay
in the system due to the bifurcation crossing is the delay between the dynamic solution and what would be expected in
the quasi-steady system. Specifically, since we show in (S1.10) that Y = 1 at τ = 0 (equivalently T = Tc) in the quasi-steady
case, we introduce the delay times τ∗ and T ∗, defined through Y (τ∗) = 1 and T ∗ = Tc +

√
ετ∗, respectively. i.e. T = T ∗ is

the time at which Y = 1. We refer to T ∗ as the dynamical position of the bifurcation. As we would expect, we have T ∗ = Tc
for the quasi-steady case, which we identify above as ω≪ ε≪ 1 (from λ≪ 1).

However, if λ≫ 1 (equivalently ε≪ ω), the intermediate dynamics are emphatically not quasi-steady, and we show
below that T ∗ − Tc =O(

√
ω). Importantly, this delay time is faster than the slow timescale (T =O(1)) and slower than the

fast timescale (T =O(ω)), and arises because the bifurcation is crossed dynamically, even though this crossing timescale is
slower than the fast reaction timescale.

In this case, in order for the large reaction rate term λdY/dτ to balance the self-repression/self-activation term τY , the
appropriate intermediate timescale is actually τ =O(

√
λ), asymptotically larger than assumed for the generic intermediate

timescale. We therefore introduce the rescaled intermediate timescale σ= τ/
√
λ=O(1), which is equivalent to T =

Tc +
√
ωσ and t= tc + σ/

√
ω. We emphasize that this suggests an appropriate intermediate timescale of t− tc =O(1/

√
ω)

(equivalently T − Tc =O(
√
ω)) as the bifurcation is crossed, though we are able to be more precise below. Using this

intermediate timescale τ =O(
√
λ), we also require that Y =O(1/

√
λ) for consistency with the matching condition (S1.9b).

Hence, we also introduce YL =O(1) such that Y = YL/
√
λ. Using these τ and Y scalings in the system (S1.9), we obtain

the rescaled leading-order system

dYL
dσ

= σYL + 1− Y 2
L

λ
, (S1.11a)

with appropriate matching condition

YL ∼− 1

σ
as σ→−∞. (S1.11b)
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The leading-order version of (S1.11) is

dYL
dσ

= σYL + 1, YL ∼− 1

σ
as σ→−∞, (S1.12)

and is solved by

YL ∼
√

π

2

(
1 + erf

σ√
2

)
eσ

2/2. (S1.13)

The solution (S1.13) is only valid as long as the term neglected in going from (S1.11) to (S1.12) remains small. Therefore,
the solution (S1.13) is only valid for σ < σc, where σc is to be determined. The quantity σc can be found formally by
balancing the neglected Y 2

L/λ (saturation) term in (S1.11) with the growing σYL term. Noting that YL ∼
√
2πeσ

2/2 for
large σ, balancing these terms asymptotically yields σc ∼

√
2 log λ. At this value of σ, we find that YL =O(λ), and hence

that Y =O(
√
λ), so the next appropriate balance is obtained by introducing YR such that Y =

√
λYR. While it is relatively

straightforward to solve the resultant leading-order system for σ > σc using these scalings (see e.g. Appendix A1ii), the
important result we require to calculate the dynamical position of the bifurcation is the value of σ∗ such that Y (σ∗) = 1

(equivalently YL(σ
∗) =

√
λ). This will tell us the value of T ∗ via T ∗ = Tc +

√
ωσ∗. Given that (S1.13) is valid until YL =

O(λ), we may use (S1.13) to deduce that σ∗ =
√
log λ, and hence that T ∗ − Tc =

√
ω log λ=

√
ω log(ω/ε).

To summarize, we have illustrated how the presence of a bifurcation in the toy system (S1.6a) can lead to delayed
dynamics over timescales of T − Tc =O(

√
ω log(ω/ε)) when ε≪ ω≪ 1. Importantly, these delay timescales are generally

different to both fast (T =O(ω)) and slow (T =O(1)) timescales in the problem. This dynamic effect is sometimes referred
to as ‘critical slowing down’ or a ‘delayed bifurcation’, and is a universal feature of dynamical systems when bifurcations
are crossed dynamically [1–3].

2. Biological example: bacterial quorum sensing

2a Model
We consider bacterial quorum sensing (QS) in Vibrio fischeri, which causes bioluminescence in the Hawaiian bobtail
squid [4]. We model the LuxR quorum sensing system under the influence of two autoinducers, 3OC6HSL and C8HSL,
with cross-talk between them [5]. We model the concentration Ã of one of the autoinducers, 3OC6HSL, which is part of a
positive feedback loop: it forms a complex with a cognate protein LuxR that activates the expression of LuxI, a synthase
that catalyses the expression of 3OC6HSL. We refer to 3OC6HSL as AI here for brevity.

The dynamic dimensional governing equations inside the two-dimensional cell layer with length L̃ and height H̃ are

∂Ã

∂t̃
= ∇̃ ·

(
D̃∇̃Ã

)
+ ρf̃A(Ã, Ĩ, R̃, C̃; x̃, t̃)− κ̃Ã,

∂Ĩ

∂t̃
= f̃I(Ĩ , C̃),

∂R̃

∂t̃
= f̃R(Ã, R̃, C̃),

∂C̃

∂t̃
= f̃C(Ã, R̃, C̃), (S2.1)

for x̃= (x̃, z̃)∈ (0, L̃)× (0, H̃), where Ã, Ĩ , R̃, and C̃ are the concentrations of autoinducer, LuxI, LuxR, and autoinducer-
LuxR complex, respectively, within the cell layer. Here, D̃ is the diffusivity of autoinducer within the cell layer, ρ is the
volume fraction of cells-to-total-volume, κ̃ is the decay rate of autoinducer, and the reaction terms f̃i for i∈ {A, I,R,C}
(which occur within each bacterium) are defined as the following:

f̃A(Ã, Ĩ, R̃, C̃) = ã+ λ̃Ĩ + k̃−C̃ − k̃+(x̃, t̃)ÃR̃, (S2.2a)

f̃I(Ĩ , C̃) = µ̃C̃ − α̃Ĩ, (S2.2b)

f̃R(Ã, R̃, C̃) = r̃ − β̃R̃+ k̃−C̃ − k̃+(x̃, t̃)ÃR̃, (S2.2c)

f̃C(Ã, R̃, C̃) = k̃+(x̃, t̃)ÃR̃− k̃−C̃ − γ̃C̃. (S2.2d)

There is cross-talk with the second autoinducer, C8HSL, via competitive binding to the cognate protein LuxR. We
account for this effect though a space- and time-dependent AI-LuxR binding parameter k̃+(x̃, t̃). This models spatio-
temporal oscillations in C8HSL, which could be caused by growth or motility of a competing bacterial population, changes
in gene-expression, fluctuations in mass transport (which drive autoinducer concentration gradients [6]), or a spatio-
temporally fluctuating signal in a synthetic system. We note that our model assumes that the C8HSL-LuxR complex does
not promote the expression of LuxR, in line with experimental findings [5]. Specifically, we let

k̃+(x̃, t̃) = k̃R+F (x̃/L̃, t̃/τ̃). (S2.3)

We will generally use either

F (x̃/L̃, t̃/τ̃) = x̃/L̃(1 +K sin(2πt̃/τ̃)) (S2.4)

or F (x̃/L̃, t̃/τ̃) = x̃/L̃+ t̃/τ̃ , (S2.5)
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where we assume a linear spatial gradient in the binding strength for simplicity.
We apply no flux boundary conditions on the sides and bottom of the domain,

n · D̃∇̃Ã= 0. (S2.6)

and a mixed boundary condition on the upper boundary,

D̃
∂Ã

∂z̃
+ M̃Ã= 0 on z̃ = H̃, (S2.7)

where M̃ is a mass transfer coefficient that models mass transfer via a fluid flow or diffusion into an open space
surrounding the population, as is common in natural environments and microfluidic experiments [6]. As initial condition,
we use the steady solution of the system for k̃+(x̃, 0).

Typical orders of magnitude of the dimensional parameters in this problem are estimated in Table S2.

2b Dimensionless problem
We scale

Ã= Ã0A, Ĩ =
r̃

λ̃
I, R̃=

r̃

β̃
R, C̃ =

α̃r̃

µ̃λ̃
C, x̃= L̃x, z̃ = H̃z, t̃= τ̃ t, (S2.8)

where the metabolite concentrations have been scaled with the typical values they take in the unpatterned region, where

Ã0 =
α̃β̃(k̃− + γ̃)

µ̃λ̃k̃R+
, ε=

α̃γ̃

µ̃λ̃
, (S2.9)

and where time has been rescaled with the dynamic forcing mechanism in our system: the timescale of kinetic variation.
Inside the cell layer, (S2.1) becomes

ω
∂A

∂t
=

∂2A

∂z2
+ δ2

∂2A

∂x2
+ ρ

[
a+ rI +

εr

γ
(k−C − (k− + γ)F (x, t)AR)

]
− κA, (S2.10a)

ω

α

∂I

∂t
=C − I, (S2.10b)

ω

β

∂R

∂t
= 1−R+

ε

γ
(k−C − (k− + γ)F (x, t)AR) , (S2.10c)

ω

k− + γ

∂C

∂t
= F (x, t)AR− C, (S2.10d)

and we have introduced the dimensionless parameters

(a, r, λ, µ, k−, α, β, γ, κ) =
H̃2

D̃
(ã/Ã0, r̃/Ã0, λ̃, µ̃, k̃−, α̃, β̃, γ̃, κ̃), δ=

H̃

L̃
, ω=

H̃2

D̃τ̃
, M =

M̃H̃

D̃
. (S2.11)

The nondimensional versions of the boundary conditions remain no flux on the sides and bottom of the domain,

n · ∇A= 0. (S2.12)

and a mixed boundary condition on the upper boundary,

∂A

∂z
+MA= 0 on z = 1. (S2.13)

We proceed by exploiting the small parameters 0< ε, δ, ω≪ 1, treating all other dimensionless parameters as O(1).

2c Solution in unpatterned region
Taking the limits ε, δ, ω→ 0, in the unpatterned regime (whose extent will become clear shortly) where A, I, C,R=O(1),
the leading-order version of (S2.10) is linear, and its solution is

A∼ ρa

ν2

(
M cos νz

M cos ν − ν sin ν
− 1

)
, I, C ∼ F (x, t)A R∼ 1, (S2.14)

where ν = ν(x, t) is defined through

[ν(x, t)]2 := ρrF (x, t)− κ. (S2.15)
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The extent of the unpatterned region can be determined through defining the moving boundary s(t), defined implicitly
through

νc = ν(s(t), t), M = νc tan νc. (S2.16)

The unpatterned region is the set of (x, t) satisfying ν(x, t)< νc.

2d Derivation of inner problem
We define the inner transition region through the inner scalings

x= s(t) +
√
εX, A(x, z, t) =

B(X, t) cos νcz√
ε

, (S2.17)

noting that ν(x, t)∼ νc +
√
εη(t)X in the inner region, where

η(t) :=
ρrFx(s(t), t)

2νc
. (S2.18)

After some inner analysis involving the derivation of a solvability condition at next asymptotic order (similar to that in
[6]), we obtain the following governing equation for the scaled amplitude B:

δ2I2

ε3/2
∂2B

∂X2
+

ωṡI2
ε

(
1 + (ν2c + κ)

[
1

α
+

1

k− + γ

])
∂B

∂X
+ ρaI1 + 2νcI2η(t)XB − I3(ν

2
c + κ)2

ρr
B2 = 0, (S2.19)

with boundary conditions

B ∼− ρaI1
2νcI2ηX

as ηX →−∞, B ∼ 2ρrνcI2ηX

I3(ν
2
c + κ)2

as ηX →∞ (S2.20)

where In :=
∫1
0cos

n νcz dz, and hence

I1 =
sin νc
νc

, I2 =
1

2
+

sin 2νc
4νc

, I3 =
sin νc
νc

− sin3 νc
3νc

. (S2.21)

In deriving (S2.19), we have implicitly considered the distinguished asymptotic limit where δ=O(ε3) and ω=O(ε).
Subcases which do not satisfy these precise scalings can be distilled as sublimits of the distinguished limit we consider.

2e Reduction to canonical form
The governing equation (S2.19) takes the general form:

D(t)
∂2B

∂X2
+ u(t)ṡ(t)

∂B

∂X
+ q(t) +m(t)XB − b(t)B2 = 0, (S2.22a)

where D, q, b > 0, and with boundary conditions

B ∼− q

mX
as mX →−∞, B ∼ mX

b
as mX →∞. (S2.22b)

Broadly, (S2.22) is the general form we would expect for an imperfect transcritical bifurcation. Using the transformation
variables

B(X; t) =

√
q

b
Y (Z; t), X =

√
qb

m
Z, (S2.23)

the equation (S2.22) is transformed into

Λ(t)
∂2Y

∂Z2
+ χ(t)

∂Y

∂Z
+ 1 + ZY − Y 2 = 0, (S2.24a)

with boundary conditions

Y ∼− 1

Z
as Z →−∞, Y ∼Z as Z →∞, (S2.24b)

which is precisely the general form we derive in (2.6a), (2.7). This time, however, the coefficients Λ(t) and χ(t) are given as

Λ(t) =
m2D

(qb)3/2
, χ(t) =

muṡ

qb
. (S2.25)
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In terms of the quorum sensing system presented in (S2.19), we have:

D :=
δ2I2

ε3/2
, u :=

ωI2
ε

(
1 + (ν2c + κ)

[
1

α
+

1

k− + γ

])
, q := ρaI1, m := 2νcI2η, b :=

I3(ν
2
c + κ)2

ρr
, (S2.26)

and so

Λ(t) =
(2νcηI2)

2r3/2δ2I2

(εaI1I3)3/2(ν
2
c + κ)3

, χ(t) =
2νcrηωI

2
2 ṡ

εaI1I3(ν
2
c + κ)2

(
1 + (ν2c + κ)

[
1

α
+

1

k− + γ

])
. (S2.27)

2f Oscillating parameters
We now consider the case when the bifurcation motion can turn around. To analyse and quantify this effect, we scale into
the region close to a generic fixed point x= x∗, around the time t= t∗ at which the bifurcation reaches this point. That is,
t∗ is defined implicitly through ν(x∗, t∗) = νc.

We are specifically interested in the critical slowing down region where delayed effects dominate. We therefore use the
new length, time, and concentration scalings:

X̄ =
x− x∗√

εu
, T̄ =

t− t∗√
εu

, A(x, t) =
qB(X̄, T̄ ) cos νcz√

εu
, (S2.28)

A similar inner analysis to before yields the general leading-order amplitude equation

∂B

∂T̄
=

D

u3/2
∂2B

∂X̄2
+ 1 + m̄(X̄, T̄ )B − bq

u
B2, (S2.29)

where the parameters take the same values as in (S2.26), except now with

m̄(X̄, T̄ ) = 2νcI2
ν(x∗ +

√
εuX̄, t∗ +

√
εuT̄ )− νc√

εu
, (S2.30)

where νc is defined in (S2.16). Then we see that if u3/2 ≫D (formally ω≫ δ4/3) and u≫ 1 (formally ω≫ ε), the system
(S2.29) reduces to an equation of the form (A.14), which is solved by (A.15).

Hence, for a specified function F (x, t) (and hence ν(x, t), and hence m̄ in (S2.30)), we can calculate the value of B

through the general solution (A.15). Moreover, for finite domains x∈ (0, 1), if we apply this analysis at the boundary
x= 1,† we can calculate the critical oscillation period for which patterns are suppressed (i.e. remain below a specified
critical value) via simple 1D root finding (see Fig. S1).

3. Numerical procedure
Numerical simulations were performed in Comsol Multiphysics 5.5 using an approach similar to the one described in [6].
The governing equations and boundary conditions are given in Eqs. (4.1) in the main text for the Turing example, and in
(S2.1), (S2.2), (S2.6) and (S2.7) for the quorum sensing example; the initial conditions are also given in the text where these
equations are introduced. The equations were solved in a two-dimensional domain with size given in Tables S1 and S2,
where the parameters in each case are also specified. The procedure for calculating critical oscillation times is described
in Fig. S1. The code that was used to perform these simulations is available at: http://github.com/philip-pearce/
quorum-flow/
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Symbol Definition Value and units Reference

Inputs

L̃ Length of domain in both
dimensions

717 µm [7]

f̃bA Base self-activation of activator 0.28 min−1 [7]
f̃I Inhibition of activator by inhibitor 0.5 min−1 [7]
f̃c Nonlinear saturation 1 min−1 nM−2 Defined to be consistent with [7]
g̃A Activation of inhibitor by activator 0.75 min−1 [7]
g̃I Self-inhibition of inhibitor 0.5 min−1 [7]
D̃A Diffusion coefficient of activator 70 µm2 min−1 [7]
D̃I Diffusion coefficient of inhibitor 875 µm2 min−1 [7]
k̃A Average activation by Fgf at x= L̃ 0.15 min−1 Chosen from [7], so that the system

is patterned at t= 0

K Size of oscillation in FgF
concentration

0.9 Chosen to test the effect of large
oscillations in Fgf

τ̃ Time period of spatio-temporal
variations

1 day (this parameter
also varied to find
critical T)

[8]

Outputs

L̃d Predicted extent of diffusive
enhancement in comparison to
L̃

7.2 %

T̃c,t Predicted critical timescale of
variation of travelling gradient
to switch between Region B and
Region C

5 hours 9 minutes

Table S1. Inputs to model and outputs of the analysis of the Turing system.

7R. Sheth, L. Marcon, M. F. Bastida, M. Junco, L. Quintana, R. Dahn, M. Kmita, J. Sharpe, and M. A. Ros, “Hox Genes
Regulate Digit Patterning by Controlling the Wavelength of a Turing-Type Mechanism”, Science 338, 1476–1480 (2012).

8J. Raspopovic, L. Marcon, L. Russo, and J. Sharpe, “Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network
modulated by morphogen gradients”, Science 345, 566–570 (2014).

9M. K. Kim, F. Ingremeau, A. Zhao, B. L. Bassler, and H. A. Stone, “Local and global consequences of flow on bacterial
quorum sensing”, Nature Microbiology 1, 15005 (2016).

10P. K. Singh, S. Bartalomej, R. Hartmann, H. Jeckel, L. Vidakovic, C. D. Nadell, and K. Drescher, “Vibrio cholerae Combines
Individual and Collective Sensing to Trigger Biofilm Dispersal”, Current Biology 27, 3359–3366 (2017).

https://doi.org/10.1126/science.1226804
https://doi.org/10.1126/science.1252960
https://doi.org/10.1038/nmicrobiol.2015.5
https://doi.org/10.1016/j.cub.2017.09.041
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Symbol Definition Value and units Reference

Inputs

H̃ Height of cell layer 10 µm [6]
L̃ Length of cell population 20 µm (Fig. 3) or 1 mm

(Fig. S1)
Length of either small bacterial
population or biofilm [6] (Fig. 3),
or long, thin bacterial cell layer [9]
for comparison with thin-film
asymptotic result (Fig. S1)

D̃ Diffusion coefficient of AI in cell
layer

500 µm2/s [6]

ã Basal production of AI 1 nM/s [6]
r̃ Production of LuxR 0.01 nM/s [6]
µ̃ Coefficient of activation of LuxI by C 1000 /s [6]
λ̃ Coefficient of catalysis of AI by LuxI 0.01 /s [6]
k̃− Unbinding of AI and LuxR 0.01 /s [6]
β̃ Decay of LuxR 0.01 /s [6]
γ̃ Decay of C 0.001 /s [6]
α̃ Decay of LuxI 0.001 /s [6]
κ̃ Decay of AI 0.0001 /s [6]
ρ Volume fraction of cells in

population
0.1 [6]

M̃ Mass transfer coefficient 50 µm/s Chosen for simplicity so that the
non-dimensional mass transfer
coefficient, M = H̃M̃/D̃= 1 (see [6]
for a detailed analysis of the effect of
this parameter)

k̃R+ Average forward binding of AI and
LuxR at x̃= L̃ during one oscillation

0.00005 /nM/s Chosen to be 50% of the typical
value calculated in [6], so that the
system is unpatterned at t= 0

K Size of oscillation in AI-LuxR
binding parameter

0.9 Chosen to test the effect of large
oscillations in binding

τ̃ Time period of spatio-temporal
variations

10 hours (this parameter
also varied to find
critical T )

[10]

Outputs

Ld Predicted extent of diffusive
enhancement in comparison to
L

266 %

Tc,t Predicted critical timescale of
variation of travelling gradient
to switch between Region B and
Region C

35 minutes

Table S2. Inputs to the model and outputs of the analysis of the quorum sensing system.
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Fig. S1. (a) Comparison of asymptotic and numerical values of critical time period for spatio-temporal oscillations. In the Turing system, we use the

patterned state as the initial condition, to test how robust patterning is to spatio-temporal variations in the pre-pattern morphogen. We calculate a critical

oscillation time from the simulations by finding the smallest oscillation period such that the concentration A falls below a critical value, equal to the

wavelength of the predicted fastest growing mode at the onset of instability. This provides a natural criterion for the switch on or off of patterning that is

independent of initial conditions. We compare to the corresponding asymptotic critical timescale with the same critical value, calculated via root finding

of the asymptotic solution Eq. (3.22), which solves the ODE (3.20) to which (4.26) reduces in the limit ε≪ ω1/2. In this figure, k̃A takes values between

0.15 /min and 0.8 /min. In the bacterial quorum sensing system, we use the unpatterned state as the initial condition, to test the robustness of the decision

to implement a gene expression program in response to quorum sensing activation. In this system, diffusion is more important, so Eq. (3.20), which was

essentially derived in the thin-film limit, requires a long, thin population to be quantitatively accurate. To illustrate its accuracy, we perform simulations for

L= 1 mm. We also perform thin-film simulations in which k̃R+ depends only on t, by setting a spatially uniform sinusoidal oscillation in Eq. (S2.3). In this

figure k̃R+ has values between 3 · 10−5 /nM/s and 4 · 10−5 /nM/s, so that the system remains in the unpatterned regime at t= 0 in the thin-film limit.

We calculate a critical oscillation time from the simulations by finding the smallest oscillation period such that the concentration A rises above its critical

value given in Table S2. We compare to the corresponding critical timescale (with the same critical value) calculated via root finding of Eq. (A.15), which

solves (A.14), to which (S2.29) reduces in the limits ω≫ δ4/3 and ω≫ ε. (b) The simulations of the bacterial quorum sensing system collapse onto the

results of the thin-film simulations as L is increased to around 1 mm. For longer populations, the critical oscillation times shown for the quorum sensing

system in panel a (crosses) is expected to be a quantitatively accurate approximation to the critical oscillation time. In all simulations in both panels, we

allow the system to settle into periodic temporal oscillations before extracting results.
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