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ABSTRACT2

Organoids are three-dimensional multicellular tissue constructs. When cultured in vitro, they3
recapitulate the structure, heterogeneity, and function of their in vivo counterparts. As awareness4
of the multiple uses of organoids has grown, e.g. in drug discovery and personalised medicine,5
demand has increased for low–cost and efficient methods of producing them in a reproducible6
manner and at scale. Here we focus on a bioreactor technology for organoid production, which7
exploits fluid flow to enhance mass transport to and from the organoids. To ensure large numbers8
of organoids can be grown within the bioreactor in a reproducible manner, nutrient delivery to,9
and waste product removal from, the organoids must be carefully controlled.10

We develop a continuum mathematical model to investigate how mass transport within the11
bioreactor depends on the inlet flow rate and cell seeding density, focusing on the transport12
of two key metabolites: glucose and lactate. We exploit the thin geometry of the bioreactor to13
systematically simplify our model. This significantly reduces the computational cost of generating14
model solutions, and provides insight into the dominant mass transport mechanisms. We test15
the validity of the reduced models by comparison with simulations of the full model. We then16
exploit our reduced mathematical model to determine, for a given inlet flow rate and cell seeding17
density, the evolution of the spatial metabolite distributions throughout the bioreactor. To assess18
the bioreactor transport characteristics, we introduce metrics quantifying glucose conversion19
(the ratio between the total amounts of consumed and supplied glucose), the maximum lactate20
concentration, the proportion of the bioreactor with intolerable lactate concentrations, and the time21
when intolerable lactate concentrations are first experienced within the bioreactor. We determine22
the dependence of these metrics on organoid–line characteristics such as proliferation rate and23
rate of glucose consumption per cell. Finally, for a given organoid line, we determine how the24
distribution of metabolites and the associated metrics depend on the inlet flow rate. Insights from25
this study can be used to inform bioreactor operating conditions, ultimately improving the quality26
and number of bioreactor–expanded organoids.27
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1 INTRODUCTION
Organoid technology is becoming increasingly prominent as a biomedical tool, with applications in drug32
discovery and personalised medicine. In biomedical research, brain, kidney, and liver organoids are used33
to understand the underlying biological mechanisms in tissue development and tissue–drug interactions34
(Bock et al., 2020; Eisenstein, 2018; Kondo and Inoue, 2019; Tuveson and Clevers, 2019).35

Organoids are three–dimensional, multicellular structures which, when grown in vitro, recapitulate36
the structure, function, and heterogeneous cellular composition of in vivo tissues (Drost and Clevers,37
2018). Their three-dimensional geometry means they are more representative of in vivo tissues than 2D38
cell cultures (Young and Reed, 2016). “Organoid expansion” refers to the growth of multiple organoids39
from pluripotent stem cells, which are typically derived from patient biopsies or from other organoids40
(de Souza, 2018). The stem cells are embedded in a supporting extra-cellular matrix (ECM) and cultured in41
carefully-controlled conditions designed to promote organoid growth. The surrounding ECM provides the42
biochemical and biomechanical cues needed for the cells to proliferate and differentiate into specialised43
cells, as happens in vivo (Eisenstein, 2018; Huang et al., 2012).44

Current methods for organoid expansion are labour intensive, with organoids typically being produced45
in small numbers at specialist research laboratories. New technologies are required to manufacture large46
numbers of organoids with uniform and reproducible characteristics, to meet the demands of applications47
such as high-throughput screening in drug development. One such technology exploits bioreactors,48
which aim to deliver sufficient nutrients and growth factors to the cells to promote cell proliferation49
and differentiation, and to prevent the accumulation of toxins, which can lead to cell death. For a more50
detailed overview of bioreactor technologies used for 3D cell culture see, for example, Martin et al. (2004),51
Pörtner and Giese (2006) and Wendt et al. (2009).52

This study is motivated by proprietary organoid expansion bioreactor technology developed by Cellesce53
(Ellis et al., 2019). The ‘Cellesce Expansion 1 (CXP1)’ bioreactor is currently used to expand colorectal54
cancer organoids, see Figure 1. Flow of media through the system enhances the delivery of nutrients to,55
and the removal of waste products from, organoids seeded in a hydrogel layer. In this application, oxygen56
is present at high concentrations, and is not a limiting factor for organoid growth. The key metabolites of57
interest here are glucose, essential for colorectal cancer organoid growth, and lactate. Lactate can have a58
detrimental effect on cell behaviour, such as metabolism (Romero-Garcia et al., 2016), and sufficiently59
high levels can lead to cell death. Lactate can be produced via anaerobic respiration and aerobic glycolysis60
(Liberti and Locasale, 2016). We do not focus on the precise mechanisms of lactate production here, but61
instead determine how the media flow promotes lactate removal. We note that while colorectal cancer62
organoids tolerate high lactate concentrations, the intention is to use CXP1 to expand a range of normal63
(healthy) and pathological organoids. Since different organoid types have distinct requirements (e.g. nutrient64
levels required for cell proliferation and lactate tolerances), understanding the mass transport of glucose65
and lactate within the bioreactor is important. While we acknowledge the biological complexity of organoid66
culture, spatiotemporal knowledge of these two metabolites provide useful and practical information on the67
operation of CXP1, and provides the framework for more complex models in the future.68

Key priorities in the CXP1 bioreactor design and operation are uniformity of organoid size and system69
reproducibility, to ensure there is minimal variation in organoid characteristics between and within batches70
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grown under the same operating conditions. The main control parameters for the CXP1 bioreactor are the71
inlet flow rate (controlled via a peristaltic pump) and the initial cell seeding density (the organoids are72
grown from single cells). Optimisation of these control parameters requires spatiotemporal information73
about the flow and metabolite (here glucose and lactate) concentrations throughout the bioreactor (Galban74
and Locke, 1999a). Such data are impractical, inefficient, and expensive to collect through experimental75
means alone.76

To complement experimental studies, mathematical models of bioreactor systems can be used to predict77
media flow profiles and the associated metabolite concentrations that cannot easily be measured in vitro,78
thus providing useful insights to ensure CXP1 operation is maintained within tolerable operating regions79
of these metabolites. Here, we adopt a continuum modelling approach, in which the dependent variables80
(cell density, fluid velocity, metabolite concentrations) are assumed to vary continuously in space and81
time. Our resulting model comprises a system of partial differential equations (PDEs). A key advantage of82
such a mathematical modelling approach is the ability to quickly, efficiently and accurately analyse the83
system as control parameters are varied. A continuum, rather than discrete, cell–based approach is often84
used to model bioreactor systems, which is justified due to the typical cell numbers (O(106) cells) and85
metabolite concentrations (CXP1: 16mM in 15mL of culture media) present. We model the organoids (cell86
aggregates) as effective (bulk) reaction terms over the hydrogel, which can be formally obtained through an87
asymptotic homogenisation procedure (see, for example, Dalwadi et al. (2018); Dalwadi and King (2020)).88

Here we review existing mathematical models for metabolite transport in bioreactor systems. A variety of89
different mathematical modelling approaches have been applied to related problems in tissue engineering,90
including: ordinary differential equation (ODE) models (Sachs et al., 2001); PDE models (Galban and91
Locke, 1999b,a; Shipley et al., 2009, 2011; Shipley and Waters, 2012; Chapman et al., 2014, 2017; Pearson92
et al., 2014); computational approaches (Mehrian et al., 2020b; Nguyen et al., 2018); and agent-based93
models (Drasdo and Höhme, 2005; Byrne et al., 2007; Byrne and Drasdo, 2009). For a more comprehensive94
review of continuum modelling approaches for tissue engineering, see O’Dea et al. (2012). As noted above,95
in this work we use a continuum modelling approach to develop a PDE model for metabolite transport96
within a specific bioreactor set–up. We focus on a systematic model reduction of this model, taking an97
approach similar to that used in Shipley et al. (2011); Shipley and Waters (2012); Chapman et al. (2017). In98
so doing, we highlight two key advantages of model reduction. First, we identify the physical mechanisms99
that dominate the system behaviour on the timescale of interest. Secondly, reduced models are more100
tractable than their full model counterpart and, as such, can be solved more rapidly numerically or, in some101
cases, analytically. This facilitates more detailed exploration of parameter space, which is important for102
subsequent optimisation of bioreactor operating conditions, and allows more detailed biological models to103
be incorporated.104

We develop a mathematical model of the CXP1 system, with the goal of determining how glucose and105
lactate levels within the CXP1 bioreactor change as the operating conditions (e.g. media inlet flow rate106
and cell seeding density), and organoid growth characteristics, vary. We introduce a reaction–advection–107
diffusion system for glucose and lactate transport in the CXP1 bioreactor. The hydrogel and media are108
viewed as two distinct regions, coupled by interfacial conditions. We restrict attention to a two-dimensional109
slice through the bioreactor, and obtain numerical solutions to the governing equations. Motivated by110
typical parameter values of the bioreactor, we perform an asymptotic analysis to systematically reduce111
the model from a two–dimensional geometry to a one–dimensional model, in which vertically–averaged112
concentration profiles vary with horizontal position along the length of the bioreactor. We validate this113
reduced model through successful comparisons with numerical solutions of the full system. We exploit the114
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reduced models to explore the parameter space of cell characteristics and bioreactor operating regimes.115
To assess glucose and lactate levels, we introduce the following quantitative, time–dependent metrics:116
glucose conversion (the ratio between the total amounts of consumed and supplied glucose); maximum117
lactate concentration within the bioreactor; proportion of domain with intolerable lactate levels (i.e. lactate118
levels above a tolerated concentration); and time when intolerable lactate levels are first experienced.119
For a given organoid type, we determine how these metrics change as the inlet flow rate varies. In this120
way, we aim to show how quantitative insights gained from this modelling approach can inform the121
selection of experimental bioreactor operating conditions, and ultimately improve the quality and quantity122
of bioreactor-expanded organoids.123

The structure of the paper is as follows. In the Methods section, we introduce the full mathematical124
model, and then systematically derive two reduced models (referred to as the longwave approximation and125
the sublimit approximation) for glucose and lactate transport within the bioreactor. In the Results section,126
we verify that simulations of the reduced models are in good agreement with solutions of the full model127
for physiologically relevant parameter regimes. We demonstrate the advantages of the model reductions,128
highlighting, in particular, the physical insights obtained from systematic derivation of the reduced models129
from the full system. We then use the longwave approximation model to investigate how the glucose and130
lactate concentrations within the bioreactor change for different organoid lines. We examine the evolution131
of the concentration profiles and demonstrate how our quantitative metrics to assess metabolite behaviour132
are heavily dependent on organoid line characteristics, such as proliferation and nutrient consumption133
rates. We then investigate, for a specific organoid line, how the media inlet flow rate affects the metabolite134
concentrations, and explain how this information can be used to optimise the bioreactor control parameters.135
The paper concludes with a Discussion where we summarise our results and outline future directions for136
our modelling approach.137

2 METHODS
We derive an unsteady two–dimensional model for glucose and lactate transport within the CXP1 bioreactor.138
Schematics of the CXP1 bioreactor and our model geometry are presented in Figure 1. We use COMSOL139
Multiphysics® to solve the full mathematical model numerically and use the insights provided by the140
numerical simulations to motivate systematic reductions of the full model. The resulting reduced models141
are solved using a combination of analytical (method of characteristics) and numerical (Chebfun toolbox142
and ode45 in MATLAB) techniques.143

2.1 Bioreactor set-up144

We consider organoids grown from single cells seeded in a homogeneous thin layer of hydrogel in the145
bioreactor (lower yellow layer in Figure 1). A typical initial seeding density for the CXP1 bioreactor is146
4× 105cell mL−1 − 6× 105cell mL−1. We assume that all cells seeded within the hydrogel are viable and147
become organoids, and that there is negligible settling (which is a fair assumption given the relative time148
of the gelation of the well–mixed solution, compared to the settling time of the cells). The hydrogel acts149
as a porous scaffold for the seeded cells, providing the anchorage for cells and the biomechanical and150
biochemical cues required for cell growth (Huang et al., 2012). The bioreactor is placed within an incubator151
which maintains constant temperature, O2 (atmospheric levels) and CO2 concentration. Nutrient–rich152
culture media, with typical glucose concentration of 16mM, is stored in an upstream reservoir and is fed153
into the system through an inlet pipe, and slowly flows across the bioreactor (upper blue layer in Figure 1),154
with typical flow velocity of 10−6m s−1. The media is then removed from the bioreactor through an outlet155
pipe. The top of the culture media layer is a free surface. We assume there is no flow within the hydrogel.156
We consider colorectal cancer organoids, which are expanded in the bioreactor for 7 days. The organoids157
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are grown from single stem cells (roughly 10µm in diameter) until they are approximately 40− 80µm in158
diameter and comprise approximately 50 cells. The organoids are then extracted from the hydrogel and159
tested for size, viability, and number of cells per organoid. The total number of organoids per bioreactor160
is also recorded. Finally, the extracted organoids are frozen and stored for future use (for example, drug161
assays).162

We consider the bioreactor design, e.g. the hydrogel and media depths, to be fixed (though modelling163
can provide insights into the role of system geometry on the resulting metabolite concentrations). The164
glucose concentration in the upstream reservoir is also fixed. The bioreactor operating parameters that can165
be varied are the media inlet flow rate and the cell seeding density in the hydrogel. The key biological166
question we seek to answer using mathematical modelling is “how do the bioreactor operating conditions167
and cell characteristics influence the glucose and lactate concentrations within the CXP1 bioreactor”.168

2.1.1 Parameter values169

The CXP1 geometry and relevant parameter values (e.g. bioreactor length, hydrogel and culture media170
layer depths, maximum culture media flow velocity, and initial cell seeding density) are outlined in Ellis171
et al. (2019) and stated in Table 1. The hydrogel used in the CXP1 protocol is Corning Matrigel Matrix and172
the culture media is a modified form of Dulbecco’s modified Eagle medium (DMEM), both of which are173
described in Ellis et al. (2019).174

The diffusivities of glucose and lactate in hydrogel and media used in our model are taken from the175
literature (see Table 1). Our model can be specialised for different cell lines, via characterisation of176
their rates of proliferation and glucose consumption. In Table 1, we state typical values for rates of cell177
proliferation and glucose consumption, estimated from CXP1 experimental data of several colorectal178
cancer organoid cell lines. We were also able to obtain averaged values for lactate concentration in the179
culture media layer at the end of the experiment empirically, which are similar to the values predicted by180
the model. Estimating model parameter values from experimental data can be challenging, although there181
have been advances in predicting cellular proliferation rates, e.g. via machine learning methods (Mehrian182
et al., 2020a).183

While the current CXP1 operating conditions have been empirically chosen to be specialised for colorectal184
cancer organoids, a key advantage of mathematical modelling is that it facilitates consideration of metabolite185
transport within CXP1 for other cell lines (which is the intent of Cellesce). This knowledge will streamline186
the adaptation of the CXP1 bioreactor to expanding organoids with significantly different behaviour, e.g.187
non-cancerous organoids.188

2.2 Mathematical model189

2.2.1 Governing equations190

Motivated by the specific bioreactor set–up, parameter values, cell densities, and metabolite191
concentrations, discussed in Section 2.1, we neglect stochastic effects and adopt a continuum modelling192
approach. We consider a two–dimensional slice of the bioreactor, and adopt a Cartesian coordinate system193
x = (x, z) with origin at the bottom–left corner of the domain (see Figure 1). We denote time by t. The194
hydrogel region of the bioreactor is (x, z) ∈ [0, L]× [0, hH ] (yellow region in Figure 1) and the media195
region is (x, z) ∈ [0, L] × [hH , hM ] (blue region in Figure 1). We denote the glucose concentration196
by c = c(x, z, t) and the lactate concentration by w = w(x, z, t), with subscripts M and H to denote197
concentrations in the media and hydrogel, respectively. We define the model parameters introduced below,198
together with their typical values, in Table 1.199
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In the hydrogel, the glucose and lactate are transported via diffusion and glucose is consumed by200
organoids, which subsequently produce lactate. For the organoids (cell aggregates), we model the reaction201
terms through effective (bulk) sink/source terms over the hydrogel. Such an approach can be mathematically202
justified through a formal averaging procedure, such as the asymptotic homogenisation carried out for203
related systems in Dalwadi et al. (2018); Dalwadi and King (2020). The equations governing metabolite204
transport within the hydrogel, (x, z) ∈ [0, L]× [0, hH ], are then:205

∂cH
∂t

= DCH∇2cH − r(t,x, cH , wH)n(t), (2.1)

∂wH
∂t

= DWH∇2wH + s(t,x, cH , wH)n(t), (2.2)

where r and s denote the rates of glucose consumption and lactate production per cell, respectively (units206
mol cell−1 s−1) and n(t) is the cell density at time t (units cell m−2). We assume the cells proliferate at207
rate p, so that the cell density is208

n(t) = N0e
pt, (2.3)

where N0 is the spatially uniform initial cell-seeding density. While cell growth is likely to have some209
dependence on the glucose consumption and local lactate concentration, we assume, as a first approximation,210
that glucose and lactate concentrations are not growth–rate limiting. Thus, due to the spatially uniform211
initial cell density, the cell density does not vary in space.212

During glycolysis, one glucose molecule produces energy and two lactate molecules (Liberti and Locasale,213
2016). Motivated by this, we impose214

s = 2r. (2.4)

In general, we expect the glucose consumption to be a monotonically increasing function of glucose215
concentration. For simplicity, we assume that216

r = νCcH , (2.5)

where νC is a constant (units m2 cell−1 s−1) representing the rate of glucose consumption per unit cell217
density.218

In the media, (x, z) ∈ [0, L]× [hH , hM ], the advection–diffusion equations for metabolite transport are:

∂cM
∂t

+ u(z)
∂cM
∂x

= DCM∇2cM , (2.6)

∂wM
∂t

+ u(z)
∂wM
∂x

= DWM∇2wM , (2.7)

where u(z) is the horizontal media flow. Given the slow nature of the flow and geometry of the flow domain,219
the flow is well–approximated by pressure–driven lubrication flow with a free surface, so that u(z) is the220
half–Poiseuille flow:221

u(z) = [u]
(z − hH)2

(hM − hH)2
, (2.8)

where [u] is the maximum flow velocity.222
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Governing equations Eqs. (2.1)–(2.8) require appropriate boundary, initial, and interfacial conditions.
The boundaries in the hydrogel are solid walls and we impose zero flux of glucose and lactate at x = 0, L:

−DCH
∂cH
∂x

= −DWH
∂wH
∂x

= 0. (2.9)

We assume the concentrations of glucose and lactate in the inlet pipe are maintained at the constant values
c−∞ and 0, respectively. We assume pointwise continuity of metabolite flux at the inlet, x = 0:

u(z)cM −DCM
∂cM
∂x

= u(z)c−∞, u(z)wM −DWM
∂wM
∂x

= 0; (2.10)

and we impose no diffusive flux of metabolites at the outlet, x = L:

−DCM
∂cM
∂x

= −DWM
∂wM
∂x

= 0, (2.11)

noting that the metabolites can leave the bioreactor via advection. We impose no-flux conditions for the
metabolites at the base of the hydrogel, z = 0, and at the top of the media layer, z = hM :

−DCH
∂cH
∂z

= −DWH
∂wH
∂z

= 0 at z = 0 and −DCM
∂cM
∂z

= −DWM
∂wM
∂z

= 0 at z = hM . (2.12)

At the media–hydrogel interface, z = hH , we impose continuity of metabolite concentration and flux:223

cM = cH , wM = wH , and DCM
∂cM
∂z

= DCH
∂cH
∂z

, DWM
∂wM
∂z

= DWH
∂wH
∂z

. (2.13)

A schematic of these boundary conditions on the domain geometry is given in Figure 2.224

As initial conditions, we assume that the glucose concentration in the media equals the glucose225
concentration in the upstream reservoir, c = c−∞, the glucose concentration in the hydrogel is zero,226
and that there is no lactate throughout the bioreactor:227

cH = 0, cM = c−∞, wH = wM = 0 at t = 0. (2.14)

2.2.2 Typical timescales228

The typical parameter values, given in Table 1, reveal that the physical processes included in our model229
act over three different timescales: hours, days, and months, as shown in Table 2. Diffusion in the z–230
direction occurs over the timescale of hours; media flow, glucose consumption, lactate production, and231
cell proliferation occur over the timescale of a day; and x–diffusion occurs over the timescale of months.232
This scaling analysis reveals that flow markedly enhances metabolite transport in the x–direction and233
that, within the media, advection dominates diffusive transport of metabolites in the horizontal direction.234
The separation of timescales renders the system stiff and, as such, care is needed when implementing235
numerical methods for its solution. At the same time, it leads naturally to the identification of large and236
small dimensionless parameters which can be exploited for model reduction (see Section 2.3).237
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2.2.3 Non-dimensionalisation238

We non–dimensionalise the problem to identify the relative importance of each transport mechanism. We239
introduce the following non-dimensional variables, for i ∈ {H,M}:240

X =
x

L
, Z =

z

εL
, T =

t

[t]
, U(Z) =

u

[u]
, Ci =

ci
c−∞

, Wi =
wi
c−∞

, (2.15)

where X = (X,Z), ε = hM/L � 1 is the ratio between vertical and horizontal lengthscales, [t] is the241
timescale, and [u] is the maximum flow velocity. The bioreactor domain is then (X,Z) ∈ [0, 1]× [0, 1] and242
the media–hydrogel interface is at dimensionless position Z = HH =: hH/(εL). Metabolite concentrations243
are non–dimensionalised with the upstream reservoir glucose concentration, c−∞. We fix the timescale of244
interest to be 1 day, so that we consider the transport on the same timescale as cell growth.245

Using the scalings Eq. (2.15), the governing equations Eqs. (2.1)–(2.7) become, for X ∈ [0, 1],

ε2
∂CH
∂T

= dCH

(
ε2
∂2CH
∂X2

+
∂2CH
∂Z2

)
− ε2ρCHePT for Z ∈ [0, HH ], (2.16)

ε2
∂WH

∂T
= dWH

(
ε2
∂2WH

∂X2
+
∂2WH

∂Z2

)
+ 2ε2ρCHe

PT for Z ∈ [0, HH ], (2.17)

ε2
∂CM
∂T

+ ε2µU(Z)
∂CM
∂X

= dCM

(
ε2
∂2CM
∂X2

+
∂2CM
∂Z2

)
for Z ∈ [HH , 1], (2.18)

ε2
∂WM

∂T
+ ε2µU(Z)

∂WM

∂X
= dWM

(
ε2
∂2WM

∂X2
+
∂2WM

∂Z2

)
for Z ∈ [HH , 1], (2.19)

with246

U(Z) =
(Z −HH)2

(1−HH)2
. (2.20)

The dimensionless parameters in Eqs. (2.16)–(2.20) are:247

µ =
[u][t]

L
, ρ = [t]νCN0, P = p[t],

(dCH , dCM , dWH , dWM ) =
[t]

L2
(DCH , DCM , DWH , DWM ).

(2.21)

We provide a physical interpretation of these dimensionless parameters and their typical values in Table 3.
The boundary and initial conditions, Eqs. (2.9)–(2.14), become:

− dCH
∂CH
∂X

= 0, − dWH
∂WH

∂X
= 0 at X = 0, 1, (2.22)

µUCM − dCM
∂CM
∂X

= µU, µUWM − dWM
∂WM

∂X
= 0 at X = 0, (2.23)

− dCM
∂CM
∂X

= 0, − dWM
∂WM

∂X
= 0 at X = 1, (2.24)

∂CH
∂Z

=
∂WH

∂Z
= 0 at Z = 0, (2.25)

∂CM
∂Z

=
∂WM

∂Z
= 0 at Z = 1, (2.26)

This is a provisional file, not the final typeset article 8



Ellis et al. A reduced-order model for organoid expansion

CM = CH , WM = WH at Z = HH , (2.27)

dCH
∂CH
∂Z

= dCM
∂CH
∂Z

, dWH
∂WH

∂Z
= dWM

∂WM

∂Z
at Z = HH , (2.28)

CH = 0, CM = 1, WH = WM = 0 at T = 0. (2.29)

248

2.2.4 Numerical solution of full model249

We solve the full two-dimensional system, Eqs. (2.16)–(2.19) and (2.22)–(2.29), using the parameter250
values given in Table 3, via a finite-element method, using COMSOL Multiphysics® software. The results251
are checked to be independent of mesh size (results not shown). We plot the metabolite concentration252
profiles at dimensionless times T = 1, 3, 7, corresponding to one, three and seven days, in Figure 3. Note253
that we observe little variation in metabolite concentration in the vertical direction for the parameter values254
given in Table 3.255

2.3 Model reduction256

As discussed in Section 2.2.2, the different transport mechanisms in the system have associated timescales257
that can be grouped into either hours, days, or months. This is made explicit in the dimensionless system258
through the presence of the small parameter ε. We propose a systematic model reduction, with the key259
advantage of reducing the complexity of the model while retaining the physical processes which dominate260
over the timescale of interest.261

2.3.1 Longwave approximation262

Motivated by the long, thin geometry of the bioreactor, characterised by ε� 1, and the lack of variation in263
Z compared to X revealed in Figure 3, we now systematically average Eqs. (2.16)–(2.19) and (2.22)–(2.29)264
in Z to derive the appropriate reduced lubrication model, referred to as the longwave approximation.265

In the asymptotic analysis that follows, we consider the limit ε→ 0, and assume all other dimensionless266
parameters remain O(1) as ε→ 0. This distinguished limit is consistent with the values of dimensionless267
parameters given in Table 3, and assumes that diffusion in the vertical direction is the dominant transport268
mechanism for the bioreactor geometry. We note that our choice of time scaling, [t] = 1 day, means that we269
are investigating this system over the timescale of days. We could study the behaviour of this system over270
shorter timescales, and its transition to the timescale of days, if we systematically considered the timescale271
T = O(ε2). However, this will not be of fundamental importance to the problem we study here, and we do272
not pursue this further.273

We consider the following asymptotic expansions for the dependent variables:274

f ∼ f0 + ε2f1 + · · · , as ε→ 0, where f ∈ {CM , CH ,WM ,WH}. (2.30)

We note that the O(ε2) size of the first–correction term is standard in lubrication–type models, and arises275
due to the size of the terms neglected in the leading-order problem. In the standard manner, we substitute276
Eq. (2.30) into the governing equations, Eqs. (2.16)–(2.19) and (2.22)–(2.29), and equate coefficients of277
O(εn).278

At leading order, the metabolite transport is given by

0 =
∂2fj0
∂Z2

where f ∈ {C,W} and j ∈ {H,M}. (2.31)
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Hence, we see that the leading-order mass transport is driven entirely by vertical diffusion, consistent with279
our discussion of timescales above.280

Integrating Eq. (2.31) subject to the leading-order versions of the appropriate boundary conditions,281
Eqs. (2.25)–(2.28), we deduce that CH0, CM0,WH0,WM0 are independent of vertical position, Z. This is282
consistent with the numerical solutions seen in Figure 3. Given the continuity of concentration condition,283
Eq. (2.27), we deduce that284

CH0(T,X) = CM0(T,X), WH0(T,X) = WM0(T,X) for all Z. (2.32)

However, the correct dependence of the metabolite profiles on T and X is currently undetermined.285

To calculate this dependence, we proceed to O(ε2) and derive an appropriate solvability condition. At
O(ε2), the governing equations are

dCH
∂2CH1

∂Z2
=
∂CH0

∂T
− dCH

∂2CH0

∂X2
+ ρCH0e

pT for Z ∈ [0, HH), (2.33)

dWH
∂2WH1

∂Z2
=
∂WH0

∂T
− dWH

∂2WH0

∂X2
− 2ρCH0e

pT for Z ∈ [0, HH), (2.34)

dCM
∂2CH1

∂Z2
=
∂CM0

∂T
+ µU(Z)

∂CM0

∂X
− dCM

∂2CM0

∂X2
for Z ∈ (HH , 1], (2.35)

dWM
∂2WH1

∂Z2
=
∂WM0

∂T
+ µU(Z)

∂WM0

∂X
− dWM

∂2WM0

∂X2
for Z ∈ (HH , 1]. (2.36)

Integrating each equation over the vertical coordinate and applying the no flux conditions, Eqs. (2.25)
and (2.26), at O(ε2) yields:

dCH
∂CH1

∂Z

∣∣∣∣
Z=HH

=HH

(
∂CH0

∂T
− dCH

∂2CH0

∂X2
+ ρCH0e

PT

)
, (2.37)

dWH
∂WH1

∂Z

∣∣∣∣
Z=HH

=HH

(
∂WH0

∂T
− dWH

∂2WH0

∂X2
− 2ρCH0e

PT

)
, (2.38)

− dCM
∂CM1

∂Z

∣∣∣∣
Z=HH

= (1−HH)

(
∂CM0

∂T
+ µŪ

∂CM0

∂X
− dCM

∂2CM0

∂X2

)
, (2.39)

− dWM
∂WM1

∂Z

∣∣∣∣
Z=HH

= (1−HH)

(
∂WM0

∂T
+ µŪ

∂WM0

∂X
− dWM

∂2WM0

∂X2

)
, (2.40)

where the depth-averaged flow velocity, Ū is given by:286

Ū =
1

1−HH

∫ 1

HH

U(Z) dZ =
1

3
. (2.41)

Recalling the continuity of flux condition, Eq. (2.28), and that CH0 = CM0 and WH0 = WM0, we combine
the above expressions for the glucose and lactate concentrations in the media and hydrogel to derive the
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longwave approximation:

α
∂CM0

∂T
+ β

∂CM0

∂X
= δC

∂2CM0

∂X2
− γCM0e

PT , (2.42)

α
∂WM0

∂T
+ β

∂WM0

∂X
= δW

∂2WM0

∂X2
+ 2γCM0e

PT , (2.43)

where we have introduced the following parameters for ease of notation:287

θ =
HH

1−HH
, α = 1 + θ, β = µŪ, γ = θρ, δC = dCM + θdCH , δW = dWM + θdWH . (2.44)

We derive the appropriate boundary and ‘initial’ conditions for Eqs. (2.42) and (2.43) in a similar manner,
by integrating the leading over terms of Eqs. (2.22)–(2.24) and (2.29) over Z between 0 and 1. We solve
Eqs. (2.42) and (2.43) subject to the following boundary and ‘initial’ conditions:

βCM0 − δC
∂CM0

∂X
= β at X = 0, (2.45)

βWM0 − δW
∂WM0

∂X
= 0 at X = 0, (2.46)

∂CM0

∂X
=
∂WM0

∂X
= 0 at X = 1, (2.47)

CM0 =
1

α
and WM0 = 0 at T = 0 for 0 ≤ X ≤ 1. (2.48)

The reason we refer to Eq. (2.48) as ‘initial’ conditions is because they actually represent asymptotic288
matching conditions with the earlier timescale problem we mentioned previously. This is the reason why289
there is a discontinuity in the boundary and ‘initial’ conditions as X,T → 0. If it were of interest to290
understand this limit further, one could investigate this region using the scalings X = O(ε), T = O(ε2).291
Given that this asymptotic region does not affect any of our subsequent analysis, for brevity we do not292
pursue it further here.293

Eqs. (2.42), (2.43) and (2.45)–(2.48) define the longwave approximation model. We will analyse294
this reduced system in more detail in Section 3. First, we derive a further reduction of the longwave295
approximation, by exploiting the separation in scales between horizontal diffusion and the remaining296
transport mechanisms, namely advection with the media flow, glucose consumption, and lactate production.297

2.3.2 Sublimit of longwave approximation298

From the typical parameter values given in Table 3, we note that the timescale of horizontal diffusion
is significantly longer than the remaining transport mechanisms. Given that the longwave approximation
derived in Section 2.3.1 is a distinguished asymptotic limit, we can include the separation of scales involved
in horizontal diffusion by directly considering the sub-limit dCH , dCM , dWH , dWM → 0, corresponding
to δC , δW → 0 in Eqs. (2.42), (2.43) and (2.45)–(2.48). We refer to this as the sublimit approximation. This
procedure results in the following governing equations for advection–dominated transport:

α
∂CM0

∂T
+ β

∂CM0

∂X
= −γCM0 exp(PT ), (2.49)

α
∂WM0

∂T
+ β

∂WM0

∂X
= 2γCM0 exp(PT ), (2.50)
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with boundary and initial conditions

CM0 = 1, WM0 = 0 at X = 0, (2.51)

CM0 =
1

α
, WM0 = 0 at T = 0. (2.52)

We note that the limit we have taken is singular in that the small parameters (diffusivities) pre-multiply299
the second-order spatial derivatives. As such, we have lost the ability to prescribe the outlet boundary300
conditions at X = 1, though we note that this boundary condition could be imposed through the analysis301
of an appropriate (weak) boundary layer near X = 1.302

A benefit of this sublimit reduction is that we are able to construct analytic solutions for the glucose
concentration, using the method of characteristics. The solution is split into two distinct regions: Region 1,
given by 0 < βT < αX; and Region 2, given by 0 < αX < βT :

CM0 =


1

α
exp

( γ

αP

(
1− ePT

))
for 0 < βT < αX,

exp

(
γ

αP

(
e
−P

(
α
βX−T

)
− ePT

))
for 0 < αX < βT,

(2.53)

(2.54)

The solution (2.58)–(2.59) is discontinuous across the boundary separating the two regions, X = βT/α,303
which we refer to as the dividing characteristic. The reason for this is that Region 1 is forced by the initial304
conditions whereas Region 2 is forced by the boundary conditions, and there is a discontinuity in these305
conditions near T = 0, X = 0 (which could be smoothed through an appropriate asymptotic analysis of306
the earlier timescale, as mentioned previously). As no information from the boundary condition propagates307
into Region 1, cells in Region 1 do not feel the effect of any replenishment by the flow. As such, we refer308
to Region 1 as the unreplenished region and Region 2 as the replenished region.309

Using the method of characteristics, we can write the lactate concentration as a single integral of known310
functions:311

WM0(S, τ) =

∫ τ

0
2γCM0(T (S, τ), X(S, τ))ePT (S,τ) dτ with WM0 = 0 at τ = 0, (2.55)

where we define the characteristic variables (S, τ) as

S = αX − βT and τ =


T

α
for βT < αX , (2.56)

X

β
for αX < βT . (2.57)

As outlined in the Supplementary Material, we can evaluate the integral in Eq. (2.55) to obtain the solution

WM0 =


2

α

(
1− exp

( γ

Pα

(
1− ePT

)))
for 0 < βT < αX,

2

(
1− exp

(
γ

Pα

(
e
−P

(
α
βX−T

)
− ePT

)))
for 0 < αX < βT.

(2.58)

(2.59)
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We note that the quantity 2CM0 +WM0 is conserved along the characteristics defined by dX/dT = α/β
(i.e. in the advective frame of reference). This means that the following relationships are satisfied between
glucose and lactate concentrations:

2CM0 +WM0 =
2

α
for 0 < βT < αX, (2.60)

2CM0 +WM0 = 2 for 0 < αX < βT, (2.61)

where the differing constants are due to the ‘initial’ information on the characteristics arising from the312
actual initial conditions for 0 < βT < αX (Region 1) and the replenishment boundary conditions for313
0 < αX < βT (Region 2).314

3 RESULTS
3.1 Model behaviour and comparison315

We now discuss and compare results obtained from our reduced models and the full system. This will316
allow us to understand when each reduced model is a useful systematic reduction.317

The longwave approximation model, Eqs. (2.42), (2.43) and (2.45)–(2.48), is solved numerically using318
the Chebfun toolbox in MATLAB. For the sublimit approaximation model, Eqs. (2.49)–(2.52), we obtain an319
analytical expression for the glucose concentration, and the lactate concentration is numerically computed320
from Eq. (2.50) subject to Eq. (2.51) with a Runge-Kutta method using the in-built ODE solver ode45 in321
MATLAB. For each numerical approach, we perform convergence tests to ensure the results are independent322
of mesh size (results not shown).323

Computationally, there is a significant difference between the models: on a standard desktop, the full324
problem is solved in O(180s); the longwave approximation in O(20s); and the sublimit approximation in325
O(4s). That is, there is a nearly ten-fold speed-up in solving the longwave approximation compared to the326
full model, and the sublimit is five times quicker to solve than the longwave approximation. As we see327
later, rapid computation of solutions will allow us to perform parameter sensitivity analyses efficiently.328

To present the model solutions over space and time, we average solutions of the full 2D model over329
Z, to facilitate comparison with solutions of the reduced models (Figure 4). We see that the glucose330
concentration behaviour appears to be split into two approximate regions, divided by a straight line in331
(X,T )–space that goes through the origin and reaches the end of the X–domain (X = 1) at T ≈ 4 (Figure332
4A). In the lower–right region, the glucose concentration appears to be approximately constant in space,333
and to decrease over time. However, in the upper–left region, there is a clear spatial dependence in the334
glucose concentration, which appears to decrease in X until it reaches the lower–right region. The lactate335
concentration behaviour appears to be split into the same two approximate regions (Figure 4B), though336
the demarcation is less defined than for glucose. In the lower–right region, the lactate concentration also337
appears to be approximately constant in space, but now increases over time. In the upper–left region, the338
lactate concentration appears to approximately increase in X until it reaches the lower–right region. To339
compare these results with the reduced models, we also present solutions for the longwave approximation340
(Figures 4C, 4D) and sublimit approximation (Figures 4E, 4F). We see that the longwave approximation341
is an excellent approximation of the full system through the entire domain. The sublimit is also a good342
approximation of the full model except in a small neighbourhood of the dividing characteristic, αX = βT .343
The sublimit solution is discontinuous across the dividing characteristic because it neglects horizontal344
diffusion. Appropriate smoothing could be included in the sublimit by investigating a thin boundary layer345
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in the neighbourhood of this discontinuity in which diffusive effects are once again important. We also346
note that the dividing characteristic is in approximately the same place as the boundary between regions347
noted in the full model in Figures 4A and 4B. We investigate and interpret this observation below.348

At this stage, we conclude that when information close to the dividing characteristic is of interest, the349
longwave approximation should be used instead of the sublimit approximation. If this information is not350
important, the sublimit approximation should be used since it is faster to solve than the full model and the351
longwave approximation, and it admits analytic solutions for glucose concentration.352

We emphasize that our analytic solutions in the sublimit approximation allow us to understand353
observations from the full numerical solutions. That is, we can use our analytic solutions from the354
sublimit model to physically interpret our results and provide insight into the underlying physical system.355
For example, the dividing characteristic (αX = βT ) in the sublimit model represents the division between356
information propagated from the initial and the boundary conditions. Physically, this means that the effect357
of fresh media is only experienced at position X at time T = αX/β. At earlier times, glucose delivery to358
organoids at position X is due to the glucose initially present in the system. This allows us to determine359
the metabolite transit time. That is, the average time taken for metabolite within the fresh media to traverse360
the entire bioreactor361

T ∗ =
α

β
=

1 + HH
1−HH
µŪ

≈ 4.7 days. (3.1)

The above estimate is in good agreement with our observations of the full solution – that different model362
solutions arise in the two regions on either side of the straight line through the origin that reaches X = 1 at363
T ≈ 4. Hence, we now interpret this observation physically; the regions are separate according to whether364
or not they have experienced fresh media. Since the media does not traverse the bioreactor with a constant365
velocity, the metabolite transit time is not the same as the timescale associated with the maximum flow366
velocity of the system, [t] = 25 hours. The relevant timescale is, therefore, not the one associated with the367
experimentally imposed flow rate, but rather the metabolite transit timescale, which is associated with the368
averaged velocity distribution of metabolite across the bioreactor.369

Additionally, the analytic solution of our sublimit approximation provides insight into why the glucose370
and lactate concentration appear to be spatially-independent in the lower–right regions (Figure 4). In371
Region 1 (where 0 < βT < αX), the analytical solutions for metabolite concentrations from the sublimit372
model are independent of the spatial coordinate. Region 1 is the non–replenished region, i.e. it is not373
replenished from the inlet and subsists on its initial conditions. Given spatially–uniform initial conditions,374
spatial effects are not seen in the concentration profiles until the wave of replenishment is experienced; this375
marks the onset of Region 2.376

To quantitatively compare the model predictions, we consider the following time–dependent variables:377
minimum glucose concentration, Cmin(T ) = min

X
(C(X,T )); maximum lactate concentration, Wmax(T ) =378

max
X

(W (X,T )); spatial position of maximum lactate concentration, Xmax(T ), where W (Xmax, T ) =379

Wmax(T ); and the lactate concentration at outlet, W (X = 1, T ). We emphasize that Eq. (2.32) allows us380
to denote the metabolite concentrations CM0 = CH0 = C and WM0 = WH0 = W for ease of notation.381

In Figure 5A, we plot the minimum glucose concentration, Cmin(T ), against time for our two reduced one–382
dimensional models and the Z-averaged full model and compare these values to the predicted minimum383
glucose concentration in hydrogel, which is found using the full two–dimensional model. We see that the384
predicted minimum glucose from each model reduction generally agrees well with the minimum glucose385
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within the hydrogel from the full model. The only exceptions to this are around 4–5 days, where the386
sublimit model disagrees slightly with the other models, and for early times (< 1 day). The first of these387
is due to the dividing characteristic being important for this metric around 4.7 days, as discussed above.388
The second is due to our choice of timescale in deriving the reduced model. That is, our reduced models389
focus over the timescale of days and neglect the initial transient behaviour in the system, as mentioned390
previously.391

Similar plots showing how the maximum lactate concentration,Wmax(T ), changes over time are presented392
in Figure 5B. Again, the Z-averaged full model and the longwave approximation are in good agreement393
with the predicted value within the hydrogel. Given that there is initially no lactate in the system, this metric394
avoids the issue with the early time transient behaviour that occurs for the minimum glucose concentration395
metric. The sublimit approximation systematically overestimates the lactate concentration, though we note396
that this is preferable to underestimation, given the detrimental effects of high lactate concentrations. The397
overestimation arises because the sublimit approximation neglects the removal effect of lactate transport398
through horizontal diffusion over the dividing characteristic.399

We compare the position at which the maximum lactate concentration occurs, Xmax(T ), in Figure 5C.400
We see that Xmax is increasing in time, which is consistent with advection being the dominant transport401
mechanism over the timescale of days (Table 2), as the lactate produced is advected towards the outlet by402
the media. As seen in Figures 5A and 5B, the sublimit approximation agrees less well with the full model403
than the longwave approximation, which has excellent agreement.404

It is infeasible to obtain experimental data for maximum lactate concentrations, which we would need to405
validate our model. Therefore, we consider the lactate concentration at the media outlet, W (X = 1, T ),406
which is measurable empirically, in Figure 5D. We compare the reduced models to the Z–averaged full407
solution, the average concentration within the hydrogel at the outlet, and the maximum value in the408
hydrogel (which are all obtained from numerical solutions to the full 2D system). We find that the lactate409
concentration at the media outlet is very similar to the maximum lactate concentration within the hydrogel410
and can, therefore, be used as a proxy for it. The sublimit is a good prediction of the outlet and maximum411
lactate concentrations at 4 days and earlier, but overestimates the maximum concentration within the412
hydrogel at 5 days and later. This is again due to the dividing characteristic, and its exit from the domain at413
4.7 days.414

3.2 Bioreactor characterisation415

In this section, we start by exploiting our reduced modelling approach to characterise the conditions416
within the bioreactor. We show how the metabolite concentrations depend on the bioreactor operating417
parameters such as the inlet flow rate and cell seeding density, and the characteristics of the cells, such as418
the rates of cell proliferation and glucose consumption. Armed with this insight, we then show how the419
operating parameters can be selected to ensure the biochemical environment within the bioreactor promotes420
cell growth.421

We investigate and quantify the metabolite behaviour by introducing the following time-dependent
metrics. We previously defined the maximum lactate concentration, Wmax(T ), as

Wmax(T ) = max
X

(W (X,T )) . (3.2)

Frontiers 15



Ellis et al. A reduced-order model for organoid expansion

We now introduce the cumulative glucose conversion, Q(T ), as

Q(T ) =
glucose consumed
glucose supplied

=

∫ T
0

∫ 1
0 γC exp(PT ) dXdT∫ T
0 (1−HH)µŪ dT

. (3.3)

In general, it is desirable to choose operating parameters that ensure high glucose conversion, so the422
maximum amount of glucose supplied to the bioreactor is utilised by the cells, and resource wastage is423
minimised. However, high glucose conversion will also cause high lactate levels, and lactate concentrations424
above a critical tolerance, Wtol, can adversely affect organoid growth. To assess this, we define a point X425
to be uninhabitable if W (T,X) > Wtol. We use the metric proportion of domain which is uninhabitable,426
PU (T ), defined as427

PU (T ) =

∫ 1

0
H [W (T,X)−Wtol] dX, (3.4)

where H is the Heaviside function. In general, it is desirable to choose operating parameters such that PU428
is minimised for the duration of the bioreactor run. In addition to the time-dependent metrics, it is also429
helpful to quantify the time at which intolerable lactate levels are first experienced, which we refer to as430
the turn–off time, and define as431

Toff = min(T ) for T ∈ {T : W (X,T ) ≥ Wtol} . (3.5)

In general, it is desirable to choose operating parameters such that Toff is larger than the duration of the432
bioreactor run.433

There is a trade–off between high glucose conversion and minimising the fraction of the domain which is434
uninhabitable. We show how the mathematical model can be used to identify parameter regimes which435
strike a balance between promoting glucose conversion and facilitating waste removal in Section 3.2.2.436

In addition to the metrics we have introduced to assess metabolite distribution, an important cell–specific437
metric is the glucose consumption rate per cell. In our model, the glucose consumption rate per cell is438
proportional to the glucose concentration and, thus, we can use results such as Figure 4C to understand the439
spatial variation in glucose consumption rate per cell. We see that cells nearer the inlet have higher rates of440
glucose uptake than those closer to the media outlet, and this spatial heterogeneity could lead to spatial441
variation in cell growth within the physical system.442

3.2.1 Characterising model behaviour for different organoid lines443

Organoid lines differ in many ways including, but not limited to, proliferation rate, glucose consumption444
rate, the maximum lactate concentration cells can tolerate without affecting cell properties, and minimum445
glucose level needed for cellular proliferation. To understand the metabolic environment experienced by446
different organoid lines within the bioreactor, we perform a discrete parameter sensitivity analysis in which447
we vary the rates of proliferation, P , and glucose consumption per cell, ρ, for the bioreactor operating448
regime specified in Table 3. We consider organoid lines whose proliferation rates take the values P = 1/6449
and P = 1, which we refer to as low and high proliferation, respectively, and whose glucose consumption450
rates take values ρ = 0.027 and ρ = 2.7, referred to as low and high consumption, respectively. We451
consider five different organoid lines: (i) with P = 1/6 and ρ = 0.027; (ii) with P = 1/6 and ρ = 2.7;452
(iii) with P = 1 and ρ = 0.027; (iv) with P = 1 and ρ = 2.7; and the typical organoid line considered in453
Figure 4 (v) with P = 1/3 and ρ = 0.27. In Figure 6, we plot the metabolite concentration profiles C and454
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W for these four organoid lines, (i–iv), expanded under an operating regime which does not otherwise455
differ. The same results for organoid line (v) are shown in Figures 4C and 4D.456

In Figures 6A and 6E, we show organoid line (i), cells with low proliferation and low glucose uptake457
rates. The lactate levels are very low throughout the bioreactor domain and the domain remains within458
tolerable lactate concentrations for the entire experiment. The glucose concentration in the replenished459
region is high and remains close to its inlet value, C = 1, so the media flow supplies significantly more460
glucose into the system than is consumed by the cells. The glucose concentration becomes increasingly461
homogeneous as time evolves, and consequently the rate of glucose consumption per cell becomes more462
spatially homogeneous across the bioreactor as time evolves.463

We consider organoid line (ii), with low proliferation and high glucose uptake rates, in Figures 6B and 6F.464
We see that this larger uptake rate means that the lactate concentration quickly increases and the majority465
of the region becomes intolerable, even for slowly proliferating cells. While cells close to the inlet still466
have reasonably high glucose and low lactate levels, resulting in the rate of glucose uptake per cell being467
high at the inlet, this quickly decreases as one moves into the bioreactor.468

For rapidly proliferating cells with a low rate of glucose uptake (organoid line (iii)) Figures 6C and469
6G, we see the environment is tolerable until around day 4 of the experiment. At this point, there are470
approximately 55 times more cells within the hydrogel than at the start of the experiment. This suggests471
that the selected operating conditions provide tolerable conditions and allow reasonable rate of glucose472
consumption per cell up to a critical number of cells, but beyond this critical number, the low glucose473
concentration means the cells have a very low rate of glucose consumption. The lactate concentration474
is reasonably spatially homogeneous, which suggests that all cells will be subject to a similar metabolic475
environment and therefore be affected by lactate to a similar degree.476

Finally, we consider cells with high proliferation and high uptake (organoid line (iv)), in Figures 6D477
and 6H. The glucose concentration within the bioreactor decays very quickly over the course of a day,478
and it is never replenished sufficiently by the media flow. As such, the glucose consumption per cell is479
consistently small away from the inlet region. In the same vein, the lactate concentration quickly increases480
to above the tolerable level over the course of a day. In contrast to the low proliferation organoid line (ii))481
(Figures 6B and 6F), the maximum lactate concentration for organoid line (iv) occurs close to the inlet482
rather than in the middle of the bioreactor. This is because the rapid expansion of cells means that lactate is483
produced very quickly throughout the bioreactor, and so is maximised in the location where glucose is484
mainly consumed. This indicates that the media flow is too slow to facilitate significant waste removal for485
this organoid line. We note that our cell growth model is not dependent on metabolite concentration, so486
the cell proliferation rate is unaffected when the metabolic environment is harsh. This limitation is most487
prominent for the high proliferation and high uptake organoid line, where the cells continue to proliferate488
exponentially in the presence of no glucose and high lactate levels.489

Using the metrics we introduced above, we now quantify the behaviour of the bioreactor environment490
during cell culture for each of the five organoid lines. In Figure 7, we plot the total glucose conversion,491
Q(T ) (Eq. (3.3)), maximum lactate concentration, Wmax(T ) (Eq. (3.2)), and proportion of uninhabitable492
domain, PU (T ) (Eq. (3.4)) (strongly related to the turn–off time), for each of the five organoid lines.493

The glucose conversion generically increases over time, as the cells grow. However, the shape of this494
increase over time varies significantly between the different organoid lines. While solely considering the495
standard case (organoid line (v), given by parameters in Table 3) would suggest that the glucose conversion496
is approximately linear in time, the additional organoid lines show that this behaviour is not universal.497
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Cells with high rates of glucose consumption (organoid lines (ii) and (iv)) have a sharp increase in glucose498
conversion over the first two days before plateauing. For low rates of glucose consumption, the shape of the499
glucose conversion curve strongly depends on the cell proliferation rate. For low proliferation (organoid500
line i), the conversion is low throughout and appears linear. However, for high proliferation (organoid501
line (iii)), the curve has an S-shape. That is, the conversion starts off low, then rapidly increases before502
plateauing. This rapid increase is linked to the increase in the number of cells in the bioreactor for organoid503
line (iii), and so we would expect organoid line (i) to exhibit a similar S-shape if the experiment went on504
for longer.505

We show the maximum lactate concentration in Figure 7B, where the red line represents W = Wtol, to506
understand which of these organoid lines are growing in tolerable environments. This graph is qualitatively507
very similar to that of the glucose conversion, Figure 7A. For the value of Wtol we use, we see that the508
maximum lactate concentration reaches the tolerated level within 1 day for high uptake cells (organoid lines509
(ii) and (iv)). In comparison, the standard case (organoid line (v)) reaches the maximum tolerated level510
approximately halfway through the experiment. For the low uptake organoid lines, the proliferation rate511
again makes a significant difference. For high proliferation (organoid line (iii)), the maximum tolerated512
level is again reached approximately halfway through the experiment, whereas for low proliferation (cell513
line (i)) the lactate never reaches harmful levels.514

We examine the time at which the lactate concentration equals the tolerated lactate concentration in515
Figure 7C, a graph showing the time–dependent proportion of the domain which is uninhabitable, PU (T ),516
for each organoid line. Notably, we see that as soon as some of the domain becomes uninhabitable, the rest517
of the domain follows over a short timescale. This can be explained through the insight gained from our518
sublimit approximation. That is, as Region 1 (αX > βT > 0) has yet to experience replenishment from519
the inlet, the lactate concentration in this region is approximately spatially homogeneous, and an increase520
above the tolerable level will quickly be experienced in a large part of the domain. The turn–off time Toff521
(Eq. (3.5)) can also be determined from Figure 7C – it is the first time at which PU (T ) is non-zero. We see522
that the high glucose consumption organoid lines ((ii) and (iv)) have much smaller turn–off times than523
the other organoid lines. The lactate concentration for organoid line (i) does not reach Wtol during the524
experiment, so the turn–off time is larger than the run time of the experiment.525

There is a trade–off between promoting: (1) high glucose conversion, to ensure resources are not wasted;526
(2) high glucose consumption rate per cell, to ensure cells absorb sufficient glucose to proliferate; and (3)527
increasing the turn–off time, to ensure the lactate concentrations within the bioreactor remain tolerable528
everywhere throughout the experiment. Our model framework allows for efficient quantification of all these529
metrics. By determining how these metrics vary with bioreactor operating parameters, we can then identify530
operating conditions that enhance cell growth. We illustrate this in the next section.531

3.2.2 Determining operating conditions for a given organoid line532

In this subsection, we focus on the standard organoid line (v), with proliferation rate and glucose533
consumption rate given in Table 3. This is the organoid line with a “medium” rate of glucose consumption534
per cell, and a doubling time of three days. The current operating conditions lead to lactate concentrations535
above the tolerated level for half of the experimental run time, suggesting that these operating conditions536
are sub–optimal.537

We now determine how the metrics depend on the inlet flow rate for this organoid line, and show how538
this leads to the identification of flow rates that enhance cell growth. We focus on flow rate as this is539
an experimental parameter that is easily varied. We investigate flow rates over two order of magnitudes,540
[u] ∈

[
1× 10−7, 1× 10−5

]
m s−1, all within the range of the peristaltic pump used in the CXP1 protocol.541
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In Figure 8, we show how the metrics vary with inlet flow rate. To illustrate the dependence of the metrics542
on flow rate, we first present time–dependent results for five different flow rates. The glucose conversion543
monotonically increases in time (Figure 8A), due to the increasing number of cells causing an increased544
glucose consumption. The effect of increasing flow rate is to decrease the glucose conversion. This is545
because stronger flows correspond to feeding more glucose into the system over a given time period as well546
as the media spending less time within the bioreactor, so there is less time for the glucose to be consumed547
by the cells. However, we also note that the conversion is relatively insensitive to flow rate: increasing the548
flow by two orders of magnitude only decreases the conversion by a factor of around six.549

While the time–dependent maximum lactate concentration within the domain monotonically increases550
for a given flow rate, the effect of varying the flow rate is non-monotonic (Figure 8B). For a given551
run time of the experiment, there is a flow rate that maximises the maximal lactate concentration. We552
emphasize that this flow rate will depend on the experimental run time. The reason for there being a flow553
rate which maximises the maximal lactate concentration (the ‘worst’ flow rate, in some sense) is due to554
two competing factors. Firstly, the rate of glucose consumption per cell, and therefore the rate of lactate555
production, increases with increasing flow rate. Secondly, for slower flow rates the media is not able to556
advect sufficient quantities of lactate out of the bioreactor to maintain a tolerable lactate level. These two557
factors combine to produce a worst possible flow rate for a given experimental run time. We also note that558
up until approximately one day (T = 1), the maximum lactate concentration is the same for all the flow559
rates considered. This reflects the fact that there is a lag in the production of lactate, and that the lactate560
production is initially set by the initial conditions rather than the operating regime of the bioreactor.561

In Figure 8C, we plot the proportion of the domain which is uninhabitable against time, for the five562
different flow rates considered. In general, a lower flow rate corresponds to a sharper increase in the563
uninhabitable proportion once initially triggered. This is because more of the domain is in the non–564
replenished Region 1 for lower flow rates, and the metabolite concentrations are approximately spatially565
independent in Region 1, for reasons discussed above. In addition, we note that a large enough flow rate566
can ensure that none of the domain becomes uninhabitable for the duration of the experimental run, as567
we see for a flow rate of 1 × 10−5m s−1. However, we also note that increasing the flow rate can have568
an unwanted effect on the turn–off time. From Figure 8C, we see that increasing the flow rate slightly569
decreases the turn–off time, up to a point. As noted above, for large enough flow rates the system never570
exhibits intolerable lactate concentrations.571

We now consider a more finely refined investigation of the effect of flow rate of the system metrics. In572
Figure 9, we consider the effect of flow rate both on the glucose conversion at day 7 (Figure 9A) and on the573
turn–off time (Figure 9B).574

We see that the relationship between glucose conversion at 7 days and media flow velocity is575
monotonically decreasing, and the rate of decrease is larger for flows faster than [u] = 10−6m s−1576
(Figure 9A). However, as noted above, the turn–off time is not monotonic in the flow rate (see also577
Figure 8C). We see that there is a minimal turn–off time when the flow is approximately 2× 10−6m s−1.578
This is the worst possible flow rate from the point of view of ensuring the domain remains tolerable for579
as long as possible. For flow rates below this, the bioreactor is transport–limited, either by insufficient580
glucose delivery to cells or by insufficient waste removal from the bioreactor. For flow rates above this,581
the turn–off time is proliferation–limited, where the rate at which the cell population is growing sets the582
timescale at which lactate is produced.583
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An advantage of our mathematical modelling framework is that we have been able to easily explore a584
wide range of parameter values, in this case the flow rate, and explore the nonlinear effects of varying585
experimental parameters. For example, an experimentalist may start with a slow flow rate of 10−7m s−1 and586
conduct a set of experiments over which they increased the flow. Over an order of magnitude increase in587
flow, they would see no improvement in turn–off time, and therefore might be discouraged from increasing588
the flow any further. In such a scenario, they would miss finding the flow rate values required for turn–off589
times greater than 4 days.590

The “optimal” operating conditions for the bioreactor will determine glucose and lactate concentrations591
which (1) yield a specified value for glucose conversion; (2) maintain a glucose consumption rate per cell592
which is sufficient for cellular proliferation; and (3) predict a turn–off time which is greater than the run593
time of the experiment. The specific values and relative importance of each of these requirements will594
depend on the user. Our model reduction facilitates rapid calculation of each metric. Hence, our work could595
be combined with an optimisation algorithm, with user–specified cost functions, to produce an efficient596
framework that can identify the bioreactor operating conditions that optimise for growth of organoids.597

4 DISCUSSION
We have presented an unsteady, two–dimensional model of metabolite transport that predicts metabolite598
concentrations within the CXP1 bioreactor system. We used an asymptotic analysis to systematically599
derive two reduced models which exploit the extreme spatial and temporal parameter ratios in the system.600
Our model predicts the spatiotemporal distribution of the metabolic environment within the bioreactor,601
information which is challenging to obtain experimentally. Both reduced models are one-dimensional602
in space; the longwave approximation comprises two coupled reaction–advection–diffusion equations,603
whereas the sublimit approximation comprises two coupled reaction–advection equations. Our systematic604
analysis allows us to relate parameters in the reduced models to geometric and operating parameters of the605
CXP1 system, such as the ratio between the depth of the hydrogel and media layers, and the fluid flux over606
the hydrogel. We have shown that both reduced models provide good approximations of the full model for607
most physically relevant parameter regimes. The longwave approximation is an excellent representation608
throughout the entire domain, whereas the sublimit approximation is a good representation everywhere609
apart from one specific line in space–time that we are able to calculate.610

Although the above may appear to suggest that the sublimit approximation is not useful, it does have611
additional benefits over the longwave approximation. A notable benefit is that it admits analytic solutions612
in the entire domain. Interpreting these analytic results, and understanding why they are discontinuous613
across the specific line in space–time, provides insight into the underlying physical system. We find that614
the specific line in space-time is a dividing characteristic in the (hyperbolic) sublimit approximation we615
derive. We are able to infer that this line divides the domain into two regions, depending on whether or not616
the effect of replenishment from the inlet has been experienced.617

The flow of media through the bioreactor has the dual function of delivering nutrients to, and removing618
waste from, the growing organoids. As such, the inlet flow rate needs to be chosen carefully. The systematic619
reduction we have performed yields models that are easier to solve numerically than the full model. More620
importantly, they provide insight into the behaviour of the full model, particularly the dominant transport621
mechanisms. This systematic reduction has enabled us to efficiently characterise the experimental parameter622
space for given cell characteristics. One key outcome from this analysis is our prediction of a ‘worst–case’623
flow rate that minimises the turn–off time (the time when intolerable lactate concentrations first occur),624
Eq. (3.5). Our model reduction has allowed us to understand why this minimum arises: for higher flow625
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rates, the lactate is washed away more quickly (the bioreactor is in a proliferation–limited regime), for626
lower flow rates the lactate is produced more slowly since glucose is not delivered quickly enough (the627
bioreactor is in a transport–limited regime).628

To understand how outcomes change as the control parameters are varied, we introduced the following629
time–dependent metrics which characterise bioreactor performance:630

• Glucose conversion is the ratio between the total amounts of consumed and supplied glucose. It is631
desirable to minimise the amount of resources, e.g. glucose, required for bioreactor operation, which632
corresponds to maximising glucose consumption.633

• Maximum lactate concentration within the bioreactor represents the worst metabolic environment634
experienced by the cells. High lactate concentrations have a detrimental effect on cells (Romero-Garcia635
et al., 2016), and therefore an ideal bioreactor operating regime would have low maximum lactate636
concentrations.637

• Proportion of uninhabitable domain is the fraction of the domain where the lactate concentrations638
exceeds the maximum tolerated level for the specific organoid line. An operating regime is improved if639
the proportion of the domain which is uninhabitable decreases, and an ‘ideal’ operating regime would640
maintain lactate levels below the maximum tolerable level for the entire experiment.641

• Turn–off time is the time at which lactate concentration first reaches levels which are intolerable for642
the cells. To optimise operating conditions, the turn–off time should be increased. Ideally, the turn–off643
time should exceed the run time of the experiment.644

Different bioreactor operating conditions will yield different values of these metrics. The relative importance645
of each metric will depend on the particular organoid line being investigated and the specific user646
requirements. Our work provides a framework for efficiently determining desirable bioreactor operating647
conditions for given cell properties.648

In this study, we performed a systematic model reduction to study metabolite transport within the CXP1649
bioreactor, whose geometry differs significantly from other bioreactors, such as hollow fibre or perfusion650
bioreactors. An important insight gained from our model reduction is the identification of the transport651
mechanisms that are dominant on our timescale of interest. We performed model reductions in two ways:652
(1) we exploited the slender geometry of the system, to obtain the longwave approximation; and then (2) we653
exploited the separation of timescales of the physical processes in play, to derive the sublimit approximation.654
By systematically reducing our original model (Eqs. (2.16)–(2.19) and (2.22)–(2.29)), we have simplified a655
two–dimensional parabolic PDE system first to a one–dimensional parabolic PDE system (the longwave656
approximation), and then to a one–dimensional hyperbolic PDE system (the sublimit approximation). A657
significant advantage of this approach is the analytical tractability of the sublimit approximation. As a658
result, we can construct explicit expressions for the metabolite concentrations across the entire bioreactor659
that reveal both the spatiotemporal–dependence and the dependence on the control parameters, e.g. flow660
rate, of the metabolite concentrations in the bioreactor. We have shown that the reduced models serve661
as excellent approximations of the full system and are much easier to solve numerically. We have also662
identified the small region of space–time where the assumptions required for the validity of sublimit model663
break down.664

There are a number of interesting possible extensions to this work. For example, the optimal operating665
conditions are likely to change during the course of organoid growth. Future modelling work could666
predict how, and when, operating conditions should change to account for this growth. While we have667
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considered steady flows, it would be straightforward to extend our framework to examine more complex668
flow behaviours, such as oscillating flows, or three-dimensional effects. The potential use of unsteady669
flows will be of particular interest when minimisation of spatial variation in metabolite concentrations670
across the bioreactor is important, as we have seen that steady flows with little spatial variation in671
metabolite concentration also have very low conversion (see Figures 6A, 6E, 7A). The ability to change the672
mathematical flow model when predicting the metabolite concentrations is particularly useful because it673
can be done in advance of engineering the prototype bioreactors needed to test the system experimentally.674

In this work, we considered a spatially constant cell density, with growth rates independent of the local675
biochemical environment. Future modelling work will represent individual organoids as small, localised676
regions within the hydrogel where glucose consumption and lactate production occur, and regulate organoid677
growth. We will use a mathematical homogenisation approach (see e.g. Dalwadi et al. (2018); Dalwadi and678
King (2020); Sanz-Herrera et al. (2008); Shipley et al. (2009)) to systematically average the behaviour over679
the microscale to obtain a macroscale governing equation for the hydrogel layer with effective glucose680
consumption, lactate production and organoid growth terms. This in turn will increase our understanding681
of the relationship between the bioreactor operating parameters and the mean and variation in organoid682
size, ultimately facilitating optimisation of the bioreactor operating conditions to minimise organoid size683
variation.684

The mathematical modelling approach developed in this paper provides a framework for establishing685
how organoid viability can be improved by varying bioreactor operating conditions. The framework has686
the flexibility to consider different organoid lines, via characterisation of their proliferation and nutrient687
consumption rates and their tolerance to the presence of waste metabolite. Our work has the potential to688
improve the quality and reproducibility of bioreactor–expanded organoid output. We intend our theoretical689
framework to be used to scale–up the production of viable organoids, contributing to overall organoid690
technology development, and enabling organoids to be exploited as a powerful tool for accelerating drug691
discovery and testing.692
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TABLES

Table 1. Definitions of dimensional model parameters, together with typical values. Where no citation is
given, parameters are taken from the CPX1 set–up.

parameter definition typical value
DCH diffusivity of glucose in hydrogel 6.0× 10−10m2 s−1 (Suhaimi et al., 2015)
DCM diffusivity of glucose in media 6.0× 10−10m2 s−1 (Suhaimi and Das, 2016)
DWH diffusivity of lactate in hydrogel 1.2× 10−9m2 s−1 (Zhou et al., 2008)
DWM diffusivity of lactate in media 1.4× 10−9m2 s−1 (Shipley et al., 2011)
c−∞ glucose concentration in upstream reservoir 0.36 mol m−2

[u] maximum velocity of media flow 1× 10−6m s−1

L length of bioreactor 9× 10−2m
hH height of hydrogel layer 1× 10−3m
hM combined height of hydrogel and media 3× 10−3m
N0 initial cell seeding density 2.7× 1010cell m−2 to 4× 1010cell m−2

p proliferation rate 3.9× 10−6s−1

νC rate of glucose consumption per unit cell density 9.4× 10−17m2 cell−1 s−1
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Table 2. Timescale groupings of the various physical processes present in the CXP1 bioreactor. We use
“x” and “z” to denote “vertical” and “horizontal”, respectively. The timescale for each process is the value
such that the each dimensionless parameter grouping, defined in Eq. (2.21) as the ratio of the timescale of
interest to the timescale of the physical process, is equal to one.

physical process timescale

O
(h

ou
r)

z diffusion glucose in hydrogel
ε2L2

DCH
= 1.5× 104s = 4.2h

z diffusion glucose in media
ε2L2

DCM
= 1.5× 104s = 4.2h

z diffusion lactate in hydrogel
ε2L2

DWH
= 7500s = 2.1h

z diffusion lactate in media
ε2L2

DWM
= 6400s = 1.8h

O
(d

ay
)

flow
L

[u]
= 9× 104s = 25h

glucose consumption
1

νCN0
= 2.7× 105 − 4× 105s = 74− 110h

lactate production
1

2νCN0
= 1.3× 105 − 2.0× 105s = 37− 55h

cell proliferation
1

p
= 2.6× 105s = 72h

O
(m

on
th

)

x diffusion glucose in hydrogel
L2

DCH
= 1.4× 107s = 3800h

x diffusion glucose in media
L2

DCM
= 1.4× 107s = 3800h

x diffusion lactate in hydrogel
L2

DWH
= 6.8× 106s = 1900h

x diffusion lactate in media
L2

DWM
= 5.8× 106s = 1600h
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Table 3. Definitions of non–dimensionalised model parameters with their typical values. For the
simulations in this paper, we take ρ = 0.27 unless otherwise stated.

parameter definition typical value
ε ratio of vertical to horizontal lengthscales 1/30

dCH ratio of timescale of interest to timescale of diffusion of glucose in hydrogel 6.4× 10−3

dCM ratio of timescale of interest to timescale of diffusion of glucose in media 6.4× 10−3

dWH ratio of timescale of interest to timescale of diffusion of lactate in hydrogel 1.28× 10−2

dWM ratio of timescale of interest to timescale of diffusion of lactate in media 1.49× 10−2

µ ratio of timescale of interest to timescale of flow 0.96
ρ ratio of timescale of interest to that of glucose consumption per cell 0.22–0.32
P ratio of timescale of interest to timescale of cellular proliferation 1/3
HH ratio of hydrogel height to the combined height of hydrogel and media layers 1/3
Wtol dimensionless maximum tolerated lactate concentration 0.7
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<latexit sha1_base64="nBZkQiM5TEeof29ogKrvNUmXkMo=">AAAB63icbZDLSgMxFIbP1Futt6pLN8EquCoz3eiyIIgLwQr2Au1QMmmmDU0yQ5IRytBXcONCEbe+kDvfxsx0Ftr6Q+DjP+eQc/4g5kwb1/12SmvrG5tb5e3Kzu7e/kH18Kijo0QR2iYRj1QvwJpyJmnbMMNpL1YUi4DTbjC9zurdJ6o0i+SjmcXUF3gsWcgINpl1c3ffHVZrbt3NhVbBK6AGhVrD6tdgFJFEUGkIx1r3PTc2foqVYYTTeWWQaBpjMsVj2rcosaDaT/Nd5+jcOiMURso+aVDu/p5IsdB6JgLbKbCZ6OVaZv5X6ycmvPJTJuPEUEkWH4UJRyZC2eFoxBQlhs8sYKKY3RWRCVaYGBtPxYbgLZ+8Cp1G3bP80Kg1z4o4ynACp3ABHlxCE26hBW0gMIFneIU3RzgvzrvzsWgtOcXMMfyR8/kDcB6Nug==</latexit><latexit sha1_base64="nBZkQiM5TEeof29ogKrvNUmXkMo=">AAAB63icbZDLSgMxFIbP1Futt6pLN8EquCoz3eiyIIgLwQr2Au1QMmmmDU0yQ5IRytBXcONCEbe+kDvfxsx0Ftr6Q+DjP+eQc/4g5kwb1/12SmvrG5tb5e3Kzu7e/kH18Kijo0QR2iYRj1QvwJpyJmnbMMNpL1YUi4DTbjC9zurdJ6o0i+SjmcXUF3gsWcgINpl1c3ffHVZrbt3NhVbBK6AGhVrD6tdgFJFEUGkIx1r3PTc2foqVYYTTeWWQaBpjMsVj2rcosaDaT/Nd5+jcOiMURso+aVDu/p5IsdB6JgLbKbCZ6OVaZv5X6ycmvPJTJuPEUEkWH4UJRyZC2eFoxBQlhs8sYKKY3RWRCVaYGBtPxYbgLZ+8Cp1G3bP80Kg1z4o4ynACp3ABHlxCE26hBW0gMIFneIU3RzgvzrvzsWgtOcXMMfyR8/kDcB6Nug==</latexit><latexit sha1_base64="nBZkQiM5TEeof29ogKrvNUmXkMo=">AAAB63icbZDLSgMxFIbP1Futt6pLN8EquCoz3eiyIIgLwQr2Au1QMmmmDU0yQ5IRytBXcONCEbe+kDvfxsx0Ftr6Q+DjP+eQc/4g5kwb1/12SmvrG5tb5e3Kzu7e/kH18Kijo0QR2iYRj1QvwJpyJmnbMMNpL1YUi4DTbjC9zurdJ6o0i+SjmcXUF3gsWcgINpl1c3ffHVZrbt3NhVbBK6AGhVrD6tdgFJFEUGkIx1r3PTc2foqVYYTTeWWQaBpjMsVj2rcosaDaT/Nd5+jcOiMURso+aVDu/p5IsdB6JgLbKbCZ6OVaZv5X6ycmvPJTJuPEUEkWH4UJRyZC2eFoxBQlhs8sYKKY3RWRCVaYGBtPxYbgLZ+8Cp1G3bP80Kg1z4o4ynACp3ABHlxCE26hBW0gMIFneIU3RzgvzrvzsWgtOcXMMfyR8/kDcB6Nug==</latexit><latexit sha1_base64="nBZkQiM5TEeof29ogKrvNUmXkMo=">AAAB63icbZDLSgMxFIbP1Futt6pLN8EquCoz3eiyIIgLwQr2Au1QMmmmDU0yQ5IRytBXcONCEbe+kDvfxsx0Ftr6Q+DjP+eQc/4g5kwb1/12SmvrG5tb5e3Kzu7e/kH18Kijo0QR2iYRj1QvwJpyJmnbMMNpL1YUi4DTbjC9zurdJ6o0i+SjmcXUF3gsWcgINpl1c3ffHVZrbt3NhVbBK6AGhVrD6tdgFJFEUGkIx1r3PTc2foqVYYTTeWWQaBpjMsVj2rcosaDaT/Nd5+jcOiMURso+aVDu/p5IsdB6JgLbKbCZ6OVaZv5X6ycmvPJTJuPEUEkWH4UJRyZC2eFoxBQlhs8sYKKY3RWRCVaYGBtPxYbgLZ+8Cp1G3bP80Kg1z4o4ynACp3ABHlxCE26hBW0gMIFneIU3RzgvzrvzsWgtOcXMMfyR8/kDcB6Nug==</latexit>

MEDIA
<latexit sha1_base64="JGvRUojLnI7nSYC++nLJ0oHlZr0=">AAAB7HicbZBNSwMxEIZn/az1q+rRS7AInspuL3qsqKAHoYLbFtqlZNNsG5rNLsmsUEp/gxcPinj1B3nz35i2e9DWFwIP78yQmTdMpTDout/Oyura+sZmYau4vbO7t186OGyYJNOM+yyRiW6F1HApFPdRoOStVHMah5I3w+HVtN584tqIRD3iKOVBTPtKRIJRtJZ/f3N9d9ktld2KOxNZBi+HMuSqd0tfnV7CspgrZJIa0/bcFIMx1SiY5JNiJzM8pWxI+7xtUdGYm2A8W3ZCTq3TI1Gi7VNIZu7viTGNjRnFoe2MKQ7MYm1q/ldrZxhdBGOh0gy5YvOPokwSTMj0ctITmjOUIwuUaWF3JWxANWVo8ynaELzFk5ehUa14lh+q5Volj6MAx3ACZ+DBOdTgFurgAwMBz/AKb45yXpx352PeuuLkM0fwR87nD9XFjfY=</latexit><latexit sha1_base64="JGvRUojLnI7nSYC++nLJ0oHlZr0=">AAAB7HicbZBNSwMxEIZn/az1q+rRS7AInspuL3qsqKAHoYLbFtqlZNNsG5rNLsmsUEp/gxcPinj1B3nz35i2e9DWFwIP78yQmTdMpTDout/Oyura+sZmYau4vbO7t186OGyYJNOM+yyRiW6F1HApFPdRoOStVHMah5I3w+HVtN584tqIRD3iKOVBTPtKRIJRtJZ/f3N9d9ktld2KOxNZBi+HMuSqd0tfnV7CspgrZJIa0/bcFIMx1SiY5JNiJzM8pWxI+7xtUdGYm2A8W3ZCTq3TI1Gi7VNIZu7viTGNjRnFoe2MKQ7MYm1q/ldrZxhdBGOh0gy5YvOPokwSTMj0ctITmjOUIwuUaWF3JWxANWVo8ynaELzFk5ehUa14lh+q5Volj6MAx3ACZ+DBOdTgFurgAwMBz/AKb45yXpx352PeuuLkM0fwR87nD9XFjfY=</latexit><latexit sha1_base64="JGvRUojLnI7nSYC++nLJ0oHlZr0=">AAAB7HicbZBNSwMxEIZn/az1q+rRS7AInspuL3qsqKAHoYLbFtqlZNNsG5rNLsmsUEp/gxcPinj1B3nz35i2e9DWFwIP78yQmTdMpTDout/Oyura+sZmYau4vbO7t186OGyYJNOM+yyRiW6F1HApFPdRoOStVHMah5I3w+HVtN584tqIRD3iKOVBTPtKRIJRtJZ/f3N9d9ktld2KOxNZBi+HMuSqd0tfnV7CspgrZJIa0/bcFIMx1SiY5JNiJzM8pWxI+7xtUdGYm2A8W3ZCTq3TI1Gi7VNIZu7viTGNjRnFoe2MKQ7MYm1q/ldrZxhdBGOh0gy5YvOPokwSTMj0ctITmjOUIwuUaWF3JWxANWVo8ynaELzFk5ehUa14lh+q5Volj6MAx3ACZ+DBOdTgFurgAwMBz/AKb45yXpx352PeuuLkM0fwR87nD9XFjfY=</latexit><latexit sha1_base64="ck8pdC+ekZH4nUmSP+ZG7r8lEyk=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odOn4MoA7ncAFXEMIN3MEDdKALAhJ4hXdv4r15H6uuat66tDP4I+/zBzjGijg=</latexit><latexit sha1_base64="qjOsV3Z7l+cx3kFvWkgSrniO3N0=">AAAB4XicbZDNSgMxFIXv1L9aq1a3boJFcFVm3OhSUUEXQgWnLbRDyaSZNjSTGZI7Qhn6DG5cKOJLufNtzLRdaOuBwMc5Cbn3hKkUBl332ymtrW9sbpW3KzvV3b392kG1ZZJMM+6zRCa6E1LDpVDcR4GSd1LNaRxK3g7H10XefubaiEQ94STlQUyHSkSCUbSW/3B7c3/Vr9XdhjsTWQVvAXVYqNmvffUGCctirpBJakzXc1MMcqpRMMmnlV5meErZmA5516KiMTdBPht2Sk6sMyBRou1RSGbu7xc5jY2ZxKG9GVMcmeWsMP/LuhlGF0EuVJohV2z+UZRJggkpNicDoTlDObFAmRZ2VsJGVFOGtp+KLcFbXnkVWmcNz/KjC2U4gmM4BQ/O4RLuoAk+MBDwAm/w7ijn1fmY11VyFr0dwh85nz+8y4y1</latexit><latexit sha1_base64="qjOsV3Z7l+cx3kFvWkgSrniO3N0=">AAAB4XicbZDNSgMxFIXv1L9aq1a3boJFcFVm3OhSUUEXQgWnLbRDyaSZNjSTGZI7Qhn6DG5cKOJLufNtzLRdaOuBwMc5Cbn3hKkUBl332ymtrW9sbpW3KzvV3b392kG1ZZJMM+6zRCa6E1LDpVDcR4GSd1LNaRxK3g7H10XefubaiEQ94STlQUyHSkSCUbSW/3B7c3/Vr9XdhjsTWQVvAXVYqNmvffUGCctirpBJakzXc1MMcqpRMMmnlV5meErZmA5516KiMTdBPht2Sk6sMyBRou1RSGbu7xc5jY2ZxKG9GVMcmeWsMP/LuhlGF0EuVJohV2z+UZRJggkpNicDoTlDObFAmRZ2VsJGVFOGtp+KLcFbXnkVWmcNz/KjC2U4gmM4BQ/O4RLuoAk+MBDwAm/w7ijn1fmY11VyFr0dwh85nz+8y4y1</latexit><latexit sha1_base64="fFQe19jk6AnGZ1h+srYNbA1uZzA=">AAAB7HicbZBNSwMxEIZn61etX1WPXoJF8FR2veixooIehApuW2iXkk2nbWg2uyRZoSz9DV48KOLVH+TNf2Pa7kFbXwg8vDNDZt4wEVwb1/12Ciura+sbxc3S1vbO7l55/6Ch41Qx9FksYtUKqUbBJfqGG4GtRCGNQoHNcHQ1rTefUGkey0czTjCI6EDyPmfUWMu/v7m+u+yWK27VnYksg5dDBXLVu+WvTi9maYTSMEG1bntuYoKMKsOZwEmpk2pMKBvRAbYtShqhDrLZshNyYp0e6cfKPmnIzP09kdFI63EU2s6ImqFerE3N/2rt1PQvgozLJDUo2fyjfiqIicn0ctLjCpkRYwuUKW53JWxIFWXG5lOyIXiLJy9D46zqWX5wK7VqHkcRjuAYTsGDc6jBLdTBBwYcnuEV3hzpvDjvzse8teDkM4fwR87nD9UljfQ=</latexit><latexit sha1_base64="JGvRUojLnI7nSYC++nLJ0oHlZr0=">AAAB7HicbZBNSwMxEIZn/az1q+rRS7AInspuL3qsqKAHoYLbFtqlZNNsG5rNLsmsUEp/gxcPinj1B3nz35i2e9DWFwIP78yQmTdMpTDout/Oyura+sZmYau4vbO7t186OGyYJNOM+yyRiW6F1HApFPdRoOStVHMah5I3w+HVtN584tqIRD3iKOVBTPtKRIJRtJZ/f3N9d9ktld2KOxNZBi+HMuSqd0tfnV7CspgrZJIa0/bcFIMx1SiY5JNiJzM8pWxI+7xtUdGYm2A8W3ZCTq3TI1Gi7VNIZu7viTGNjRnFoe2MKQ7MYm1q/ldrZxhdBGOh0gy5YvOPokwSTMj0ctITmjOUIwuUaWF3JWxANWVo8ynaELzFk5ehUa14lh+q5Volj6MAx3ACZ+DBOdTgFurgAwMBz/AKb45yXpx352PeuuLkM0fwR87nD9XFjfY=</latexit><latexit sha1_base64="JGvRUojLnI7nSYC++nLJ0oHlZr0=">AAAB7HicbZBNSwMxEIZn/az1q+rRS7AInspuL3qsqKAHoYLbFtqlZNNsG5rNLsmsUEp/gxcPinj1B3nz35i2e9DWFwIP78yQmTdMpTDout/Oyura+sZmYau4vbO7t186OGyYJNOM+yyRiW6F1HApFPdRoOStVHMah5I3w+HVtN584tqIRD3iKOVBTPtKRIJRtJZ/f3N9d9ktld2KOxNZBi+HMuSqd0tfnV7CspgrZJIa0/bcFIMx1SiY5JNiJzM8pWxI+7xtUdGYm2A8W3ZCTq3TI1Gi7VNIZu7viTGNjRnFoe2MKQ7MYm1q/ldrZxhdBGOh0gy5YvOPokwSTMj0ctITmjOUIwuUaWF3JWxANWVo8ynaELzFk5ehUa14lh+q5Volj6MAx3ACZ+DBOdTgFurgAwMBz/AKb45yXpx352PeuuLkM0fwR87nD9XFjfY=</latexit><latexit sha1_base64="JGvRUojLnI7nSYC++nLJ0oHlZr0=">AAAB7HicbZBNSwMxEIZn/az1q+rRS7AInspuL3qsqKAHoYLbFtqlZNNsG5rNLsmsUEp/gxcPinj1B3nz35i2e9DWFwIP78yQmTdMpTDout/Oyura+sZmYau4vbO7t186OGyYJNOM+yyRiW6F1HApFPdRoOStVHMah5I3w+HVtN584tqIRD3iKOVBTPtKRIJRtJZ/f3N9d9ktld2KOxNZBi+HMuSqd0tfnV7CspgrZJIa0/bcFIMx1SiY5JNiJzM8pWxI+7xtUdGYm2A8W3ZCTq3TI1Gi7VNIZu7viTGNjRnFoe2MKQ7MYm1q/ldrZxhdBGOh0gy5YvOPokwSTMj0ctITmjOUIwuUaWF3JWxANWVo8ynaELzFk5ehUa14lh+q5Volj6MAx3ACZ+DBOdTgFurgAwMBz/AKb45yXpx352PeuuLkM0fwR87nD9XFjfY=</latexit><latexit sha1_base64="JGvRUojLnI7nSYC++nLJ0oHlZr0=">AAAB7HicbZBNSwMxEIZn/az1q+rRS7AInspuL3qsqKAHoYLbFtqlZNNsG5rNLsmsUEp/gxcPinj1B3nz35i2e9DWFwIP78yQmTdMpTDout/Oyura+sZmYau4vbO7t186OGyYJNOM+yyRiW6F1HApFPdRoOStVHMah5I3w+HVtN584tqIRD3iKOVBTPtKRIJRtJZ/f3N9d9ktld2KOxNZBi+HMuSqd0tfnV7CspgrZJIa0/bcFIMx1SiY5JNiJzM8pWxI+7xtUdGYm2A8W3ZCTq3TI1Gi7VNIZu7viTGNjRnFoe2MKQ7MYm1q/ldrZxhdBGOh0gy5YvOPokwSTMj0ctITmjOUIwuUaWF3JWxANWVo8ynaELzFk5ehUa14lh+q5Volj6MAx3ACZ+DBOdTgFurgAwMBz/AKb45yXpx352PeuuLkM0fwR87nD9XFjfY=</latexit><latexit sha1_base64="JGvRUojLnI7nSYC++nLJ0oHlZr0=">AAAB7HicbZBNSwMxEIZn/az1q+rRS7AInspuL3qsqKAHoYLbFtqlZNNsG5rNLsmsUEp/gxcPinj1B3nz35i2e9DWFwIP78yQmTdMpTDout/Oyura+sZmYau4vbO7t186OGyYJNOM+yyRiW6F1HApFPdRoOStVHMah5I3w+HVtN584tqIRD3iKOVBTPtKRIJRtJZ/f3N9d9ktld2KOxNZBi+HMuSqd0tfnV7CspgrZJIa0/bcFIMx1SiY5JNiJzM8pWxI+7xtUdGYm2A8W3ZCTq3TI1Gi7VNIZu7viTGNjRnFoe2MKQ7MYm1q/ldrZxhdBGOh0gy5YvOPokwSTMj0ctITmjOUIwuUaWF3JWxANWVo8ynaELzFk5ehUa14lh+q5Volj6MAx3ACZ+DBOdTgFurgAwMBz/AKb45yXpx352PeuuLkM0fwR87nD9XFjfY=</latexit><latexit sha1_base64="JGvRUojLnI7nSYC++nLJ0oHlZr0=">AAAB7HicbZBNSwMxEIZn/az1q+rRS7AInspuL3qsqKAHoYLbFtqlZNNsG5rNLsmsUEp/gxcPinj1B3nz35i2e9DWFwIP78yQmTdMpTDout/Oyura+sZmYau4vbO7t186OGyYJNOM+yyRiW6F1HApFPdRoOStVHMah5I3w+HVtN584tqIRD3iKOVBTPtKRIJRtJZ/f3N9d9ktld2KOxNZBi+HMuSqd0tfnV7CspgrZJIa0/bcFIMx1SiY5JNiJzM8pWxI+7xtUdGYm2A8W3ZCTq3TI1Gi7VNIZu7viTGNjRnFoe2MKQ7MYm1q/ldrZxhdBGOh0gy5YvOPokwSTMj0ctITmjOUIwuUaWF3JWxANWVo8ynaELzFk5ehUa14lh+q5Volj6MAx3ACZ+DBOdTgFurgAwMBz/AKb45yXpx352PeuuLkM0fwR87nD9XFjfY=</latexit>

HYDROGEL
<latexit sha1_base64="cPYEUiFpcmZ7R5gZ7HsmPn9V/5w=">AAAB73icbZDLSgMxFIbPeK31VnXpJlgEV2WmG10WVOxCsIq9SDuUTJppQzPJmGSEMvQl3LhQxK2v4863MW1noa0/BD7+cw455w9izrRx3W9naXlldW09t5Hf3Nre2S3s7Te0TBShdSK5VK0Aa8qZoHXDDKetWFEcBZw2g+H5pN58okozKe7NKKZ+hPuChYxgY61W9eHi7ubq8rpbKLoldyq0CF4GRchU6xa+Oj1JkogKQzjWuu25sfFTrAwjnI7znUTTGJMh7tO2RYEjqv10uu8YHVunh0Kp7BMGTd3fEymOtB5Fge2MsBno+drE/K/WTkx45qdMxImhgsw+ChOOjEST41GPKUoMH1nARDG7KyIDrDAxNqK8DcGbP3kRGuWSZ/m2XKyUsjhycAhHcAIenEIFqlCDOhDg8Ayv8OY8Oi/Ou/Mxa11yspkD+CPn8wfLO48S</latexit><latexit sha1_base64="cPYEUiFpcmZ7R5gZ7HsmPn9V/5w=">AAAB73icbZDLSgMxFIbPeK31VnXpJlgEV2WmG10WVOxCsIq9SDuUTJppQzPJmGSEMvQl3LhQxK2v4863MW1noa0/BD7+cw455w9izrRx3W9naXlldW09t5Hf3Nre2S3s7Te0TBShdSK5VK0Aa8qZoHXDDKetWFEcBZw2g+H5pN58okozKe7NKKZ+hPuChYxgY61W9eHi7ubq8rpbKLoldyq0CF4GRchU6xa+Oj1JkogKQzjWuu25sfFTrAwjnI7znUTTGJMh7tO2RYEjqv10uu8YHVunh0Kp7BMGTd3fEymOtB5Fge2MsBno+drE/K/WTkx45qdMxImhgsw+ChOOjEST41GPKUoMH1nARDG7KyIDrDAxNqK8DcGbP3kRGuWSZ/m2XKyUsjhycAhHcAIenEIFqlCDOhDg8Ayv8OY8Oi/Ou/Mxa11yspkD+CPn8wfLO48S</latexit><latexit sha1_base64="cPYEUiFpcmZ7R5gZ7HsmPn9V/5w=">AAAB73icbZDLSgMxFIbPeK31VnXpJlgEV2WmG10WVOxCsIq9SDuUTJppQzPJmGSEMvQl3LhQxK2v4863MW1noa0/BD7+cw455w9izrRx3W9naXlldW09t5Hf3Nre2S3s7Te0TBShdSK5VK0Aa8qZoHXDDKetWFEcBZw2g+H5pN58okozKe7NKKZ+hPuChYxgY61W9eHi7ubq8rpbKLoldyq0CF4GRchU6xa+Oj1JkogKQzjWuu25sfFTrAwjnI7znUTTGJMh7tO2RYEjqv10uu8YHVunh0Kp7BMGTd3fEymOtB5Fge2MsBno+drE/K/WTkx45qdMxImhgsw+ChOOjEST41GPKUoMH1nARDG7KyIDrDAxNqK8DcGbP3kRGuWSZ/m2XKyUsjhycAhHcAIenEIFqlCDOhDg8Ayv8OY8Oi/Ou/Mxa11yspkD+CPn8wfLO48S</latexit><latexit sha1_base64="cPYEUiFpcmZ7R5gZ7HsmPn9V/5w=">AAAB73icbZDLSgMxFIbPeK31VnXpJlgEV2WmG10WVOxCsIq9SDuUTJppQzPJmGSEMvQl3LhQxK2v4863MW1noa0/BD7+cw455w9izrRx3W9naXlldW09t5Hf3Nre2S3s7Te0TBShdSK5VK0Aa8qZoHXDDKetWFEcBZw2g+H5pN58okozKe7NKKZ+hPuChYxgY61W9eHi7ubq8rpbKLoldyq0CF4GRchU6xa+Oj1JkogKQzjWuu25sfFTrAwjnI7znUTTGJMh7tO2RYEjqv10uu8YHVunh0Kp7BMGTd3fEymOtB5Fge2MsBno+drE/K/WTkx45qdMxImhgsw+ChOOjEST41GPKUoMH1nARDG7KyIDrDAxNqK8DcGbP3kRGuWSZ/m2XKyUsjhycAhHcAIenEIFqlCDOhDg8Ayv8OY8Oi/Ou/Mxa11yspkD+CPn8wfLO48S</latexit>

cM (x, z, t)
wM (x, z, t)

<latexit sha1_base64="Wut93x64hRI2ceyudy9iLdiH2Q4="></latexit><latexit sha1_base64="Wut93x64hRI2ceyudy9iLdiH2Q4=">AAACP3icbVDLSgMxFM3UVx1fVZdugq2gUMpMN7osuHEjVLAP6JSSSTNtMJMZkjtqHfpnbvwFd27duFDErTvTB2hbDwROzj33Jvf4seAaHOfFyiwtr6yuZdftjc2t7Z3c7l5dR4mirEYjEammTzQTXLIacBCsGStGQl+whn9zPqo3bpnSPJLXMIhZOyQ9yQNOCRipk6t7MuKyyyTYuEA76eXQEyyA4/viQxGDp3ivDycF7BWx59m/XnMv3M26Z8ydXN4pOWPgReJOSR5NUe3knr1uRJPQDKeCaN1ynRjaKVHAqWBD20s0iwm9IT3WMlSSkOl2Ot5/iI+M0sVBpMyRgMfq346UhFoPQt84QwJ9PV8bif/VWgkEZ+2UyzgBJunkoSARGCI8ChN3uWIUxMAQQhU3f8W0TxShYCK3TQju/MqLpF4uuYZflfMVZxpHFh2gQ3SMXHSKKugCVVENUfSIXtE7+rCerDfr0/qaWDPWtGcfzcD6/gE7d6yJ</latexit><latexit sha1_base64="Wut93x64hRI2ceyudy9iLdiH2Q4="></latexit><latexit sha1_base64="Wut93x64hRI2ceyudy9iLdiH2Q4="></latexit>
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Figure 1. (Top) Schematic of ‘CXP1’ bioreactor (Ellis et al., 2019). (Bottom) Two–dimensional cross–
section of the bioreactor, with arrows indicating the half–Poiseuille flow profile. Blue is media, yellow is
hydrogel, grey is organoid biomass. The glucose concentrations within the media and hydrogel are given
by cM and cH , respectively. Similarly, the lactate concentrations within hydrogel and media are denoted
wM and wH , respectively. (Bottom right) Example of colorectal cancer organoid. Confocal image using
20X objective of Cell Insight Cx7. Organoid stained for nuclear (blue) and cytoskeletal (red) markers for
imaging. Scalebar 50µm. Reproduced with permission from Cellesce.
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Figure 2. Schematic of the boundary conditions for the media (blue) and hydrogel (yellow) layers for
eqs. (2.1), (2.2), (2.6) and (2.7). At the media-hydrogel interface, we impose continuity of concentration
and flux. At the air–media interface and at the impermeable hashed boundaries, we impose no flux. The
black arrows indicate the half-Poiseuille flow profile.
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Figure 3. Metabolite concentrations at 1, 3, and 7 days into a typical simulation. The horizontal lines at
Z = 1/3 represents the media–hydrogel interface. (Top) Glucose distribution C (X,Z, T ) at (A) T = 1,
(B) T = 3, (C) T = 7. (Bottom) Lactate distribution W (X,Z, T ) at (D) T = 1, (E) T = 3, (F) T = 7.
Parameter values: see Table 3.
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Figure 4. Results showing how the glucose (A, C, E) and lactate (B, D, F) concentrations change over time
during a typical simulation. (A, B) Results from Z-averaged full model. (C, D) Longwave approximation.
(E, F) Sublimit of longwave approximation, where the upper left and lower right regions are the replenished
and unreplenished regions, respectively. Parameter values: see Table 3.
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Figure 5. Comparison of outputs from the different mathematical models and their evolution in time:
(A) minimum glucose concentration, Cmin(T ); (B) maximum lactate concentration, Wmax(T ); (C) spatial
position of maximum lactate concentration, Xmax(T ) s.t. W (Xmax, T ) = Wmax(T ); (D) lactate
concentration at outlet of bioreactor, W (X = 1, T ). The red points represent the values predicted in
the hydrogel region of the full 2D model. Parameter values: see Table 3.
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Figure 6. Evolution of glucose (left grid) and lactate (right grid) concentration profiles over the duration
of a typical experiment for different organoid lines under the same operating conditions. The rates of
cell proliferation rates and glucose consumption per cell are: (A), (E) organoid line (i), p = 1/6,
ρ = 0.027; (B), (F) organoid line (ii), p = 1/6, ρ = 2.7; (C), (G) organoid line (iii), p = 1, ρ = 0.027;
(D), (H) organoid line (iv), p = 1, ρ = 2.7. The other parameters used are given in Table 3.
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Figure 7. Comparison of (A) glucose conversion Q, Eq. (3.3), (B) maximum lactate concentration
Wmax(T ), Eq. (3.2), where the red line represents the maximum tolerated lactate concentration, W = Wtol,
and (C) proportion of domain which is uninhabitable at time T , PU , Eq. (3.4), for different organoid lines
cultured within the bioreactor under the same operating conditions. The proliferation rates and rate of
glucose consumption per cell for each organoid line are: (i) p = 1/6, ρ = 0.027, (ii) p = 1/6, ρ = 2.7,
(iii) p = 1, ρ = 0.027, (iv) p = 1, ρ = 2.7, and (v) p = 1/3, ρ = 0.27. The other parameters used
are given in Table 3. The line styles correspond to rate of cellular proliferation: solid, P = 1/6; dashed,
P = 1/3; and dotted, P = 1. The line colours correspond to rate of glucose consumption per cell density:
purple, ρ = 0.027; blue, ρ = 2.7; and green, ρ = 2.7.
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Figure 8. Results for a specific organoid line within the CXP1 bioreactor showing the evolution of: (A)
glucose conversion Q, Eq. (3.3), (B) maximum lactate concentrationWmax(T ), Eq. (3.2), where the red line
respresents the maximum tolerated lactate concentration, W = Wtol, and (C) proportion of domain which
is uninhabitable at time T , PU , Eq. (3.4), against time for five different flow rates. For [u] = 10−5m s−1,
the value of PU is zero. The peak flow velocities [u] ∈ {10−7, 5× 10−7, 10−6, 2× 10−6, 10−5}m s−1 used
correspond to the dimensionless flow velocity parameter µ ∈ {0.096, 0.48, 0.96, 1.92, 9.6}, respectively.
Remaining parameter values: see Table 3.
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Figure 9. (A) Glucose conversion Q, Eq. (3.3), at time T = 7 and (B) turn–off time Toff (the time when
intolerable lactate levels first experienced) for the CXP1 bioreactor varying with flow rate, for a given
organoid line. Peak flow velocities [u] ∈

[
10−7, 10−5

]
m s−1 correspond to dimensionless flow rate, µ, in

the range µ ∈ [0.096, 9.6] and the other parameter values are given in Table 3.
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