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Abstract. When modelling transport of a chemical species to a colony of bacteria in a biofilm, it is computationally expensive4
to treat each bacterium even as a point sink, let alone to capture the finite nature of each bacterium. Instead, models tend to5
treat the bacterial and extracellular matrix domains as a single phase, over which an effective bulk uptake is imposed. In this6
paper, we systematically derive the effective equations that should govern such a system, starting from the microscale problem of a7
chemical diffusing through a colony of finite-sized bacteria, within which the chemical species can also diffuse. The uptake within8
each bacterium is a nonlinear function of the concentration; across the bacterial membrane the concentration flux is conserved and9
the concentration ratio is constant. We upscale this system using homogenization via the method of multiple scales, investigating10
the two distinguished limits for the effective uptake and the effective diffusivity, respectively. This work is a natural sequel to11
Dalwadi et al. 2018 (SIAM J Appl Math, 78(3), 1300-1329), the main difference in this current work being nonlinear uptake within12
the bacteria and a general partition coefficient across the bacterial membrane. The former results in a significantly more involved13
general asymptotic analysis, and the latter results in the merging of two previous distinguished limits. We catalogue the different14
types of microscale behaviour that can occur in this system and the effect they have on the observable macroscale uptake. In15
particular, we show how the nonlinearities in microscale uptake should be modified when upscaled to an effective uptake and how16
different microscale uptake properties and behaviours, such as chemically depleted regions within the bacteria, can lead to the same17
observed uptake.18
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1. Introduction. The majority of bacteria live communally in biofilms, which can help them survive in21

hostile environments [11]. This can be a hindrance to humans, since biofilms cause a significant proportion of22

microbial infections in the body, and tend to be extremely resistant to antibiotics [10, 28]. To understand how23

to deal with biofilms, it is important to understand how chemicals are absorbed by the bacteria within.24

While mathematical modelling can be used to help answer questions involving bacterial chemical uptake, the25

vast separation of bacterial (0.1 – 10µm) and biofilm (0.1 – 10 cm) lengthscales [16] means that it is prohibitively26

expensive to include small bacterial regions of uptake in computational models over the lengthscale of a biofilm.27

A common way to circumvent this issue is by not differentiating between the fluid and bacterial regions in28

a computational model, treating both regions as a combined single-phase domain and imposing an effective29

bulk chemical sink over this domain to model the combined effect of many small bacterial regions. While30

this is certainly a useful mathematical resolution to the problem, it is not always clear how this effective sink31

should relate to the microscale uptake. For example, how should a nonlinear form of pointwise bacterial uptake32

transform into an effective bulk uptake? While one might expect the form of uptake to be preserved during an33

upscaling for weak uptake, the effective results from upscaling are less intuitive when the uptake is stronger.34

The goal of this paper is to understand and quantify this upscaling procedure in a systematic manner, in terms35

of the system functions and parameters.36

To this end, in this paper we systematically upscale the microscale problem of unsteady chemical diffusion37

past a locally periodic array of spherical bacteria that act as volumetric sinks with nonlinear kinetics, governed38

by the reaction–diffusion equation39

∂C

∂t
= ∇ · (D̃∇C)− f̃(C).(1)40

41

Here, D̃ is a piecewise-constant function which is discontinuous across each bacterial membrane, and the uptake42

f̃(C) > 0 depends on the concentration within each bacterium, but vanishes outside each. We impose a43

continuous concentration flux across the bacterial membrane, but allow the concentration to be discontinuous44

across the membrane, coupling the concentration by imposing a constant concentration ratio, also known as a45

partition coefficient. We provide a schematic of the set-up in Figure 1.46

Our main goal in this paper is to determine the effective uptake for the upscaled system when the effective47

uptake balances diffusion over the biofilm lengthscale, since this yields a balance of transport mechanisms in the48

upscaled equation. To upscale this problem, we use mathematical homogenization via the method of multiple49

scales as outlined in, for example, [2, 13, 26]. We derive and investigate the two distinct distinguished limits in50
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the system for the effective uptake and the effective diffusivity, respectively. As different microorganisms will51

have different microscale parameters, it is helpful to retain the generality provided by the distinguished limit in52

our analysis.53

The work presented here is a natural sequel to [9], in which we considered a sub-case of (1) involving a54

linear uptake function and a unitary partition coefficient, the latter resulting in a continuous concentration55

across the entire domain. The linear form of the uptake function in [9] meant that we were able to derive56

analytic expressions for the effective uptake. However, this linearity also meant that the effective uptake was57

always a linear function (or functional, in Case 2 therein) of the macroscale concentration. For nonlinear uptake,58

there is no guarantee that the form of the nonlinearity will be preserved during the upscaling procedure, and59

understanding this is one goal of this paper. In [9] we found that there were three distinguished limits in the60

system, one for the effective diffusivity (Case 1) and two for the effective uptake (Cases 2 and 3). As one61

might expect, the inclusion of a general nonlinear uptake in this current work makes the subsequent analysis62

significantly more involved, and general closed-form solutions are not possible. Instead, noting that it is unlikely63

that many systems of interest are exactly in the distinguished limit, we systematically consider sub-limits of the64

reduced system we derive for the effective uptake. The presence of a non-unitary partition coefficient means65

that the two distinguished limits for effective uptake in [9] are actually sub-limits of a single distinguished limit66

for the effective uptake in this work (Case I). To distinguish between the cases in each paper, we use Roman67

numerals to discuss the two cases we consider in this paper and Arabic numerals to discuss the three cases from68

[9].69

There has been a great deal of work in the upscaling of solute transport problems in general, with applications70

ranging from cell growth in tissue engineering [20], through crystal precipitation/dissolution [30], drug transport71

in tissue [27], drug delivery to tumours [21], and the electrical activity of cells [23], to solute sorption in soil72

[22]. Given their ubiquitous nature, significant effort has gone into proving rigorous uniqueness and convergence73

results for the upscaling of multiscale solute transport problems, e.g. [14].74

In each of the papers mentioned in the above paragraph, the structure of the periodic microscale is general75

within the analysis (although several impose specific microscale structures when performing numerical simula-76

tions). This generality is valuable in that it allows homogenized equations to be calculated in terms of general77

cell problems; however, it also means that effective terms are not derived explicitly.78

We consider spherical bacteria (cocci) whose radius can vary slowly over the macroscale, allowing us to model79

a bacterial density that varies over the lengthscale of the biofilm. While classical homogenization requires a80

strictly periodic microscale geometry, we use the modern framework that allows one to consider problems81

with a locally-periodic microscale, i.e. a microscale that varies over the macroscale [3, 23, 30, 31]. The general82

formulation of this method typically requires a different cell problem to be solved at every point in the macroscale83

rather than just once for the entire problem, as is the case for classic homogenization. We circumvent this issue84

by following the examples of [3, 7, 8] and imposing a specific one-parameter shape on the microstructure,85

namely spheres. Moreover, investigating spherical bacteria maximizes the analytic progress we are able to make86

in determining the effective uptake, yielding greater physical insight into the possible system behaviours.87

The structure of this paper is as follows. We present a dimensional description of the bacterial uptake88

model in §2, which we subsequently nondimensionalize. We then formulate the problem to be upscaled via89

homogenization theory in §3. We upscale this problem for the distinguished limit of effective uptake (Case I)90

in §4, exploit parameter groupings to reduce the complexity of the steady version of this problem, and present91

some numerical results of the reduced system. In certain scenarios, the bacteria can exhibit chemical-depleted92

cores; we investigate the onset of this regime in §5. We then investigate various sub-limits of the distinguished93

limit for effective uptake in §6. Finally, we discuss the implications of our results and conclude in §7. For94

completeness, we also present an upscaling of this problem for the distinguished limit of effective diffusivity95

(Case II) in Appendix A.96

2. Model description. We consider the Fickian diffusion and nonlinear uptake of a chemical species97

through a colony of bacteria within an extracellular matrix (ECM) which represents a biofilm. Our goal is to98

systematically upscale the problem over the lengthscale of the bacteria (which we refer to as the microscale) to99

an effective problem valid over the lengthscale of the bacterial colony (which we refer to as the macroscale), and100

to investigate what can be deduced about the microscale uptake from macroscale measurements of the effective101

uptake.102

We track the chemical field in terms of its molar concentration, defined in the ECM and bacterial phases103

as c̃ and C̃, respectively. These concentrations are dependent variables of the independent variables of space x̃104

and time t̃. We assume that the chemical species diffuses through the ECM with constant diffusivity Dm, and105
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Fig. 1. A two-dimensional projection of the three-dimensional problem. The full problem is shown in the left-hand figure,
and the cell problem (with y ∈ [−1/2, 1/2]3) is shown in the right-hand figure. The pink regions denote the bacteria and the blue
region denotes the ECM.

through the bacteria with constant diffusivity Db. Additionally, we assume that the uptake occurs only within106

the bacteria, as some general function of the concentration f(C̃). While we aim to consider as general an uptake107

function as possible, to ensure physically relevant uptake we restrict our analysis to systems where there is no108

uptake when there is no chemical species, i.e. f(0) = 0, and where an increase in concentration cannot cause a109

decrease of uptake, i.e. f is a non-decreasing function of C̃.110

For simplicity, we model the bacteria as a collection of spheres whose centres are located on a cubic lattice111

at a distance εl apart, where ε is a small dimensionless parameter and l is the typical length of the entire112

domain. To model a bacterial density that can vary in space across the colony, we allow the radii of the bacteria113

to vary slowly in space. Hence, a bacterium centred at x̃ has radius R̃(x̃), with the constraint 2R̃ < εl for114

non-overlapping spheres. The bacterial and ECM phases are denoted as Ωb ⊂ R3 and Ωm ⊂ R3, respectively.115

We denote the entire spatial domain as Ω = Ωb ∪ Ωm ⊂ R3, noting that Ωb ∩ Ωm = ∅. Finally, we denote the116

boundary between the two phases as ∂Ωb, which we refer to as the ‘bacterial membrane’, or just ‘membrane’.117

We emphasize that the bacterial phase is disconnected and that the ECM phase is multiply connected.118

We assume that the concentrations across the bacterial membrane are coupled through a constant partition119

coefficient K and through continuity of concentration flux. We assume that the concentration field is initially120

known and consistent with the coupling conditions discussed above, and that any spatial variations occur over121

the lengthscale of the colony rather than that of the bacteria. The setup we describe here is similar to that in122

[9], but now with a nonlinear uptake and a general partition coefficient instead of a linear uptake and unitary123

partition coefficient, respectively. We will show that the former change causes markedly different macroscale124

behaviour compared to [9], while the latter causes different distinguished asymptotic limits.125

Mathematically, we have the dimensional problem126

∂c̃

∂t̃
= Dm∇2c̃ for x̃ ∈ Ωm,

∂C̃

∂t̃
= Db∇2C̃ − f(C̃) for x̃ ∈ Ωb,(2a)127

c̃ = KC̃, n ·Dm∇c̃ = n ·Db∇C̃ for x̃ ∈ ∂Ωb,(2b)128

c̃(x̃, 0) = c̃init(x̃) for x̃ ∈ Ωm, C̃(x̃, 0) = c̃init(x̃)/K for x̃ ∈ Ωb,(2c)129130

where n is the unit normal of the bacterial membrane pointing into the surrounding ECM. The function c̃init(x̃)131

appearing in the initial conditions (2c) is continuous across the bacterial membrane and allows for a slow132

variation of the chemical concentration in space. To close the system (2), we also require boundary conditions133

at the external boundary of Ω. However, to keep the generality of our analysis we will not impose a specific134

form in this paper.135

It is helpful to discuss parameter values for the problem we have introduced. Spherical bacteria, known136
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as cocci, have a typical diameter of around 2R̃ ≈ 1µm, and an approximate cell spacing of εl ≈ 2 − 20µm137

[9, 16, 17]. It is possible to obtain the diffusion coefficient of a given chemical within water; for example, the138

diffusivity of dissolved oxygen within water is approximately 2× 10−9 m2s−1 at room temperature. In a similar139

manner, the partition coefficients for many different chemicals across an octanol/water interface is well-known,140

and these can vary across many orders of magnitude [15]. However, it is significantly more difficult to obtain141

diffusivity, partition coefficient, and uptake measurements involving cytoplasm, partly due to the difficulties in142

isolating and imaging a single bacterium. For this reason, and in order to present a more general analysis of143

the problem, it will be instructive to consider the various distinguished asymptotic limits of this problem.144

2.1. Dimensionless equations. We scale the variables via x̃ = lx, t̃ = (l2/Dm)t, R̃ = εlR, (c̃, C̃, c̃init) =145

c∞(c, C, cinit), and f̃(C̃) = (c∞Dm/l
2)f(C), where c∞ is a characteristic concentration scale in the ECM, to146

yield the dimensionless equations147

∂c

∂t
= ∇2c for x ∈ Ωm,

∂C

∂t
= D∇2C − f(C) for x ∈ Ωb,(3a)148

c = KC for x ∈ ∂Ωb,(3b)149

n · ∇c = n ·D∇C for x ∈ ∂Ωb,(3c)150

c(x, 0) = cinit(x) for x ∈ Ωm, C(x, 0) = cinit(x)/K for x ∈ Ωb.(3d)151152

where D = Db/Dm is the ratio of chemical diffusivity in the ECM to that in the bacteria. We do not specify the153

asymptotic orders of these dimensionless parameters yet, but our interest will be in the distinguished asymptotic154

limits where the timescale of effective uptake balances the timescale of macroscale diffusion in the ECM, in which155

t = O(1).156

In dimensionless units, the bacteria now form a cubic lattice of spheres whose centres are a distance of ε157

apart, and a bacterium centred at x has radius εR(x). A schematic of this set-up is shown in Figure 1.158

3. Deriving effective equations. Our goal is to upscale the governing equations (3) using a homoge-159

nization procedure via the method of multiple scales. Essentially, we introduce the additional spatial variable160

y =
x− bxc

ε
− b,(4)161

162

where we treat x and y as independent. In (4), we introduce the constant translation vector b = (1/2, 1/2, 1/2)163

for notational purposes. Thus, the microscale variable y ∈ [−1/2, 1/2]3 is defined within a unit cell ω(x),164

centred around one bacterium, and our dependent variables are now c(x,y, t) and C(x,y, t). As is standard165

in homogenization via the method of multiple scales, the extra freedom that arises from introducing y is later166

removed by imposing that the problem is 1-periodic in each component of y.167

Within each cell, we define several regions for convenience. The bacterium and ECM phases are defined168

as ωb(x) and ωm(x), respectively. The spherical bacterial membrane between these two phases is defined as169

∂ωb(x). Finally, the cubic outer boundary of the cell is defined as ∂ω. These regions are all labelled in Figure170

1.171

We are interested in deriving effective governing equations for the experimentally measurable concentration172

ĉ(x, t), the intrinsic-averaged concentration within the ECM, defined as173

ĉ(x, t) =
1

|ωm(x)|

∫
ωm(x)

c(x,y, t) dy,(5)174

175

where |ωm| is the volume of the ECM phase in one cell.176

Treating each dependent variable as a function of both x and y, the spatial derivatives transform as follows177

∇ 7→ ∇x +
1

ε
∇y,(6)178

179

where ∇x and ∇y refer to the nabla operator in the x- and y-coordinate systems respectively. The spatial180

transformation (6) also causes the unit normal on the boundary to transform (as also occurs in, for example,181

[3, 30]). This can be seen by defining the function χ(x,y) = ‖y‖ − R(x), noting that the bacterial membrane182

is defined by χ = 0 and thus n = ∇χ/‖∇χ‖, then using (6) to yield183

n 7→ ny − ε∇xR
‖ny − ε∇xR‖

,(7)184
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D f |ωb| K C
Case I O(ε6) O(1/ε6) O(ε6) O(ε6) O(1/ε6)

Case II O(1) O(1) O(1) O(1) O(1)
Table 1

The scalings for the two distinguished asymptotic limits. Case I is the distinguished limit for the effective uptake, and Case
II is the distinguished limit for the effective diffusivity. Note that |ωb| ∼ R3 has already been scaled by ε3 so that it is of the same
asymptotic order as the periodic-cell size when |ωb| = O(1).

185

where ny = y/‖y‖. This transformation is also known as the level-set framework [31].186

Using the transformations (6)–(7), the dimensionless governing equations (3) become187

ε2
∂c

∂t
= (∇y + ε∇x) · (∇y + ε∇x) c for y ∈ ωm(x),(8a)188

ε2
∂C

∂t
= D (∇y + ε∇x) · (∇y + ε∇x)C − ε2f(C) for y ∈ ωb(x),(8b)189

c = KC for y ∈ ∂ωb(x),(8c)190

(ny − ε∇xR) · (∇y + ε∇x) c = (ny − ε∇xR) ·D (∇y + ε∇x)C for y ∈ ∂ωb(x),(8d)191

c(x,y, 0) = cinit(x) for y ∈ ωm(x), C(x,y, 0) = cinit(x)/K for y ∈ ωb(x),(8e)192

c periodic for y ∈ ∂ω.(8f)193194

where (8f) is required to remove secular terms, as is standard in the method of multiple scales.195

We are interested in the physical scenarios in which the effective uptake balances the macroscale diffusion196

over the timescale of the latter, t = O(1). We summarize two different balances which yield a distinguished197

asymptotic limit in the macroscale problem in Table 1. In order to get a sense of from where these asymptotic198

limits arise, it is helpful to use (3) to consider the removal rate of the total chemical species in the system, in199

the absence of any source/sink at the external boundary200

∂

∂t

(∫
ωm

cdx+

∫
ωb

C dx

)
= −

∫
ωb

f(C) dx.(9)201

202

When bacterial uptake occurs over the entire bacterium and not just within a boundary layer near the bacterial203

membrane, we see from (9) that an uptake timescale of t = O(1) occurs when f(C)|ωb| = O(1), noting that204

|ωm| = O(1) and c = O(1) (the latter being true away from any boundary layer near an external boundary).205

Additionally, the coupling conditions (8c)–(8d) also yield KC = O(1) and DC = O(1). The remaining scalings206

arise through seeking a balance between diffusion and uptake at leading-order within each bacterium, as will be207

seen through our analysis.208

4. Case I: distinguished limit for the effective uptake. The distinguished limit for the effective209

uptake occurs when the timescale of microscale uptake balances that of macroscale diffusion, retaining as many210

terms from the governing equation (8) at leading order as possible. Preserving the timescale of macroscale211

diffusion, this distinguished limit occurs when the bacteria are very sparse (R � 1), the pointwise uptake212

is very strong f(C) � 1, the chemical species has a strong preference for the bacterial cytoplasm (K � 1),213

and the chemical diffusivity within the cytoplasm is very small (D � 1). With appropriate scalings that we214

discuss below, we are able to retain all terms at leading order within the bacterial domain. Investigating this215

distinguished limit will allow us to derive the effective uptake in its most general form. We can then explore216

relevant sub-limits to obtain physical insight into this system. This distinguished limit for the effective uptake217

contains Cases 2 and 3 from [9] as asymptotic sub-limits.218

4.1. Asymptotic structure. The formal scalings we consider are C = C̄/ε6, D = ε6D̄, R = ε2R̄,219

f(C) = f̄(C̄)/ε6, and K = ε6K̄, where the new inner variables are labelled with an overline and are each of220

O(1). These scalings ensure that the leading-order inner problem within the bacterium retains all terms at221

leading order. Note that we have already scaled R with the microscale variable, so in terms of dimensionless222

macroscale variables we are considering the case where the radius scales with the cube of the small parameter223

of periodicity, the critical case in [6, 18].224
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x ∈ Ω

O(1)

ε

1

y ∈ ω(x)

∂ω O(ε2)
R̄(x)

r

Y ∈ ωin(x)

O(1)

Fig. 2. A two-dimensional projection of the asymptotic structure of the three-dimensional problem, involving the distinguished
limit for the effective uptake. The full problem in the outer region is shown in the left figure, the centre figure denotes the cell
region (with y ∈ [−1/2, 1/2]3), and the rightmost figure denotes the inner region within the cell region (with Y ∈ R3 and r = ‖Y ‖).
In the cell region, the effect of the bacterial sink appears as a delta function, and not through the problem geometry. The strength
of this sink is determined by solving the problem in the inner region.

In this section, our analysis involves upscaling the governing equations (3) using a combination of boundary225

layer analysis and homogenization via the method of multiple scales. There are three important asymptotic226

regions in this problem. The first is the outer region, x = O(1). This is the lengthscale over which we want to227

determine an effective equation which systematically accounts for the bacterial uptake. Thus in the outer region228

the bacterial uptake appears as a bulk effect from our homogenization procedure. The second (intermediate)229

region is the cell region, x = O(ε). This region will yield the cell problem and, in this region, the bacterial230

uptake appears as a point sink. The third and final region is the inner region, x = O(ε3). In this region, the231

finite nature of a bacterium is apparent, and it appears as a region of O(1) volume surrounded by ECM, within232

which we must solve a coupled concentration problem. The solution from the inner region will determine the233

strength of the point sink in the cell region, which will determine the effective uptake over the outer region. A234

schematic of these three regions is given in Figure 2.235

4.2. Homogenization. Using the scalings discussed above, we re-write the equations (8) as follows236

ε2
∂c

∂t
= (∇y + ε∇x) · (∇y + ε∇x) c for ‖y‖ > ε2R̄ and ‖y‖∞ < 1/2,(10a)237

∂C̄

∂t
= ε4D̄ (∇y + ε∇x) · (∇y + ε∇x) C̄ − f̄(C̄) for ‖y‖ < ε2R̄,(10b)238

c = K̄C̄, (ny − ε∇xR) · (∇y + ε∇x) c = (ny − ε∇xR) · D̄ (∇y + ε∇x) C̄ for ‖y‖ = ε2R̄,(10c)239

c(x,y, 0) = cinit(x) for ‖y‖ > ε2R̄ and ‖y‖∞ < 1/2,(10d)240

C̄(x,y, 0) = cinit(x)/K̄ for ‖y‖ < ε2R̄,(10e)241

c periodic for ‖y‖∞ = 1/2,(10f)242243

where ‖ · ‖ is the Euclidean norm and ‖ · ‖∞ is the maximum norm. We cannot obtain a solution for C̄ by244

simply expanding in powers of ε, since the bacterial domain in (10) depends on the small parameter ε. Instead,245

we seek an inner solution to the system about a (small) bacterium at the origin, in which ‖y‖ = O(ε2). In246

the next section, we show that the inner solution only affects the governing equation for c in the cell region at247

O(ε2). Thus, substituting the asymptotic expansion c(x,y, t) ∼ c0(x,y, t)+ εc1(x,y, t)+ ε2c2(x,y, t) into (10a)248

implies that c0 = c0(x, t) and c1 = c1(x, t). Therefore, the average concentration (5) behaves as ĉ ∼ c0. We249

now investigate the inner region.250

4.3. Inner region. To move into this region we scale y = ε2Y , where Y ∈ R3. We define this inner region251

as ωin(x), where the dependence on x arises from the radius of the bacterium in this domain. From (10), the252
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relevant leading-order system is253

∇2
Y c = 0 for r > R̄(x),(11a)254

∂C̄

∂t
= D̄∇2

Y C̄ − f̄(C̄) for 0 < r < R̄(x),(11b)255

c = K̄C̄ ∂c

∂r
= D̄

∂C̄

∂r
for r = R̄(x),(11c)256

c→ c0(x, t) ∼ ĉ(x, t) as r →∞,(11d)257

C̄ = cinit(x)/K̄ for r < R̄(x) at t = 0,(11e)258259

where r = ‖Y ‖. The far-field condition (11d) arises from matching with the cell region using van Dyke’s260

matching principle [29].261

We now reduce the system (11) to a closed system for C̄ in terms of the effective concentration ĉ and the262

microscale parameters. This is possible since the bacteria are spherical, so (11a) and (11d) imply263

c = c0(1−B/r),(12)264265

for some function B(x, t). Substituting the solution (12) into the interfacial conditions (11c), we obtain266

C̄ =
c0
K̄

(
1− B(x, t)

R̄

)
, D̄

∂C̄

∂r
=
c0B(x, t)

R̄2
for r = R̄(x).(13)267

268

We are able to remove B from (13) by combining both equations, allowing us to derive the following Robin269

boundary condition for C̄270

K̄C̄ + R̄D̄
∂C̄

∂r
= ĉ(x, t) for r = R̄(x),(14a)271

272

and we note this also tells us that B = (ĉ−K̄C̄|r=R̄)/R̄. Thus, we have derived a reduced problem which consists273

of solving a single nonlinear parabolic equation in a finite domain (11b), with a Robin boundary condition on274

the bacterial membrane (14a), and a symmetry condition at the bacterium centre275

∂C̄

∂r
= 0 for r = 0.(14b)276

277

Solving the closed inner system (11b), (14) will allow us to determine the effective uptake over the macroscale278

domain. We show in §4.4 that this is equal to the total flux in the far-field, so it is helpful to define the functional279

ν[ĉ] := 4π lim
r→∞

r2 ∂c

∂r
= 4πR̄2D̄

∂C̄

∂r

∣∣∣∣
r=R̄

,(15)280

281

which, we shall show later, defines the effective uptake in the upscaled problem. Given the form of ν and the282

boundary condition (14a), we are able to make the following general statement about ν, no matter the specific283

details of the pointwise nonlinear uptake function. Given that C̄ and ∂C̄/∂r are both non-negative, (14a)284

implies that 0 6 D̄∂C̄/∂r 6 ĉ/R̄ at the cell membrane. Hence, from (15) we may obtain the bounds285

0 6 ν[ĉ] 6 4πR̄ĉ.(16)286287

Since the closed problem we have derived in this section represents the distinguished limit for the effective288

uptake, we will return to it later to investigate its steady states further, after we understand how this problem289

relates to the effective uptake over the macroscale.290

4.4. Higher-order cell region problem. Given the far-field form of the concentration field in the inner291

problem (12), we must introduce a Dirac delta function into the cell region problem (10) at O(ε2) to match292

appropriately. This represents the effect of the bacterial uptake region over the cell region. From this, the O(ε2)293

terms from (10) are294

∂ĉ

∂t
= ∇2

yc2 +∇2
xĉ− δ̂(y)ν[ĉ] for y ∈ ω,(17a)295
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c2 periodic for y ∈ ∂ω,(17b)296297

where we have used ĉ ∼ c0.298

Integrating (17a) over the periodic cell and applying the periodic boundary conditions (17b), we obtain the299

effective equation for the intrinsic-averaged concentration300

∂ĉ

∂t
= ∇2

xĉ− ν[ĉ].(18a)301
302

where ν is defined in (15), and is derived by solving (11b) with boundary conditions (14). The initial condition303

for this system is304

ĉ(x, 0) = cinit(x),(18b)305306

which arises from substituting (10d) into (5). We note that the effective uptake here is of O(1), and hence the307

macroscale uptake balances macroscale diffusion.308

The effective diffusivity in Case I is one, corresponding to that of pure ECM and representing the fact309

that chemical diffusivity within the cytoplasm is unimportant when the bacteria are very small. A non-trivial310

effective diffusivity arises in Case II, which we present in Appendix A.311

To give an idea of the form of the effective uptake ν[ĉ], we give the solution to the inner problem (11b) with312

boundary conditions (14) for a linear uptake, f̄(C̄) = µ̄C̄. The analysis is similar to that of Cases 2 and 3 in313

[9], where we solely consider linear uptake, in which reduced versions of this inner problem are derived. In this314

case, C̄ can be solved for as follows315

C̄ =
ĉ

K̄ −
2

R̄D̄r

∞∑
n=1

sinλnR̄ sinλnr

λ2
n

e−(µ̄+D̄λ2
n)t

∫ t

0

(
∂ĉ

∂τ
+ µ̄ĉ

)
e(µ̄+D̄λ2

n)τ dτ,(19a)316

317

where the eigenvalues are the countably infinite positive solutions to the following transcendental equation318

(K̄ − D̄) sinλnR̄+ D̄λnR̄ cosλnR̄ = 0.(19b)319320

From (19), we may deduce the following form for the effective uptake321

ν[ĉ] =
8πK̄
D̄R̄

∞∑
n=1

sin2 λnR̄

λ2
n

e−(µ̄+D̄λ2
n)t

∫ t

0

(
∂ĉ

∂τ
+ µ̄ĉ

)
e(µ̄+D̄λ2

n)τ dτ.(20)322

323

We see from (20) that the system history is important for the functional ν. Given the integral in (20), we expect324

this memory property to have a smoothing influence for ν.325

As the problem we have presented in §4 represents the distinguished limit for the effective uptake, it will be326

instructive to investigate the inner problem and how it affects the effective uptake in more detail. The analysis327

of its steady state is the remaining focus of this paper, so it is helpful to present the reduced steady problem.328

4.5. System reduction. To simplify our analysis of how the effective uptake depends on the inner prob-329

lem, we consider the steady problem. Since all the steady states of this system are stable (Appendix B) and we330

expect the effective uptake to smooth out its history, the steady state is of fundamental interest.331

The steady-state version of the inner problem (11b), (14) is332

0 =
D̄

r2

∂

∂r

(
r2 ∂C̄

∂r

)
− f̄(C̄) for 0 < r < R̄(x),(21a)333

∂C̄

∂r
= 0 for r = 0, K̄C̄ + R̄D̄

∂C̄

∂r
= ĉ(x) for r = R̄(x),(21b)334

335

and the effective uptake over the macroscale is the total concentration flux into this system (15). As the336

macroscale parameter x only appears as a parameter in this inner problem, for notational purposes we henceforth337

suppress any functional dependence on x.338

We are able to scale out several of the parameters in the system (21) by introducing r = R̄r, C̄ = (ĉ/D̄)w,339

and f̄(C̄) = ĉF (w)/R̄2, to transform (21) into340

0 =
1

r2

∂

∂r

(
r2 ∂w

∂r

)
− F (w) for 0 < r < 1,(22a)341
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(a) (b)

Fig. 3. Solutions to the system (22) using a power-law uptake of the form F (w) = µwβ , with (a) k = 1 and (b) k = 0.1.

∂w

∂r
= 0 for r = 0, kw +

∂w

∂r
= 1 for r = 1,(22b)342

343

where k = K̄/D̄. Under this scaling the effective uptake (15) becomes344

ν[ĉ] = 4πR̄ĉ
∂w

∂r

∣∣∣∣
r=1

.(23)345
346

Restricting the problem to the steady state means the effective uptake reduces from a functional to a function347

of ĉ. However, since w may have a nonlinear dependence on ĉ through the scalings of w and F , the effective348

uptake will still have a nonlinear dependence on ĉ in general.349

To contextualize our asymptotic results in the following sections, it is helpful to understand how our scaling350

transforms a power-law uptake. Such an uptake can arise via e.g. the law of mass action [19], with homopolymer-351

ization. For example, if ĉ were a monomer that had to be dimerised before uptake, we could have a power-law352

uptake with exponent 2. Alternatively, if ĉ were a dimer that had to be dissociated before uptake, we could353

have a power-law uptake with exponent 1/2. A power-law uptake is transformed as follows:354

f̄(C̄) = µ̄C̄β 7→ F (w) = µwβ , with µ =
µ̄R̄2ĉβ−1

D̄β
.(24)355

356

In particular, we note that large ĉ corresponds to large µ if β > 1 and to small µ if β < 1, with vice versa for357

small ĉ.358

4.5.1. Numerical results. We can solve the system (22) in MATLAB for given uptake function F (w)359

and parameter k, using the in-built boundary-value solver bvp5c, which essentially iterates an initial guess for360

the solution (we use w = 1/k) until the numerical solution falls below a specified relative error tolerance (10−3361

in our simulations). As one might expect, a larger µ corresponds to a smaller w (Figure 3). However, in terms of362

the power-law uptake given in (24), the relationship between the size of w and β is non-monotonic. In addition,363

the uptake is non-Lipschitz when β < 1, and this can result in a situation where the bacterial core is depleted of364

the chemical species, as shown in the µ = 102, β = 0.5 cases in Figure 3. Despite the fundamental change in the365

nature of the solution at the onset of core depletion, we are still able to approximate the solution numerically366

using the method outlined above, since we iterate to within a specified error tolerance. However, we note that367

we would need to take significantly more care with our numerical method if we wanted to determine the position368

of the free boundary. We explore the onset of the free-boundary regime in more detail in §5.369

The important quantity from this analysis is ∂w/∂r evaluated at r = 1, which is fundamentally related370

to the effective uptake over the entire colony of bacteria from (23). As one may expect, the effective uptake371

increases as µ increases (Figure 4). However, this increase has severe diminishing returns since ∂w/∂r is bounded372

above by 1, as predicted by (16). Since ∂w/∂r evaluated at r = 1 appears to vary smoothly as the parameters373
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(a) (b)

Fig. 4. The derivative of the solution to the system (22), evaluated at the boundary r = 1, which feeds into the effective uptake
over the entire system, as defined in (23). We use a power-law uptake of the form F (w) = µwβ , with (a) β = 0.5 and (b) β = 2.

in the system vary smoothly, the onset of a concentration-depleted bacterial core for certain parameter values374

does not have a significant effect on the effective uptake, despite the drastic change in the microscale problem.375

To understand these observations in more detail, we investigate the system analytically in the remainder of376

the paper, interrogating various sub-limits of the problem. We start by investigating the onset of the depleted377

bacterial core.378

5. Depleted core. As noted in §4.5.1, there exist solutions in which the bacteria contains a concentration-379

depleted core. In this section, we characterize the onset of this behaviour for a power-law uptake with the form380

F (w) = µwβ for 0 < β < 1 in the system (22). That is, in this section we solely consider uptake functions381

with a non-Lipschitz power-law form. After the onset of the core-depletion regime, the system becomes a free-382

boundary problem. That is, depletion means that (22) is only valid in rc < r < 1, with w = 0 for 0 < r < rc. At383

the free boundary r = rc, we may close the problem and prescribe rc by imposing continuity of concentration384

and concentration flux, i.e. w(rc) = 0 and w′(rc) = 0. As this regime represents a fundamental change in the385

solution structure, it is helpful to be able to calculate the point at which this occurs; the onset of this regime is386

the subject of this section.387

There is a critical surface in (β, k, µ) parameter space that separates the original fixed-boundary problem388

and the free-boundary problem outlined above. This critical surface occurs at the onset of the depletion regime,389

which corresponds to rc = 0. At this point, (22) can be solved using the power-law solution390

w =

(
µ(1− β)2r2

2(3− β)

) 1
1−β

for 0 < r < 1,(25)391
392

which defines the following critical surface in (β, k, µ) parameter space393

µ

(
k +

2

1− β

)1−β

=
2(3− β)

(1− β)2
.(26)394

395

From the scalings in (24), we see that µ has an inherent β-dependence. Hence, we use the pre-scaled396

variables in §4.5 (essentially replacing k with K̄/D̄ and µ with µ̄R̄2ĉβ−1/D̄β) to illustrate the onset of the397

depletion regime in Figure 5. We see that increasing µ̄R̄2 has the effect of increasing the domain of parameter398

space in which depletion can occur. Moreover, there is a critical value of µ̄R̄2 above which the critical line399

becomes non-monotonic in (ĉ, β)-space. Additionally, we note that the critical value of ĉ becomes very small as400

β → 1−.401

To quantify these observations, we calculate the following asymptotic results (in terms of the pre-scaled402

variables in §4.5) for the onset of the depletion regime:403

ĉ ∼ µ̄R̄2(K̄ + 2D̄)

6D̄

[
1 + β

(
log

µR̄2

6D̄
− 5K̄ + 4D̄

3(K̄ + 2D̄)

)]
as β → 0+,(27a)404
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Fig. 5. The critical lines defining the onset of depletion for different uptake strength, calculated from the nonlinear algebraic
equation (26). Depletion occurs to the left of each critical line. We transform µ into µ̄ using (24), and use K̄ = 1, D̄ = 1
throughout. In terms of these parameters, the critical value where the extent of the depletion zone starts to increase as β is
increased is µ̄R̄2 = 6e ≈ 16.31, from (28). We use values of µ̄R̄2 ∈ {1, 10, 6e, 20, 30}. The dashed black lines denote the small β
results (27a).

ĉ ∼ 2D̄
√
e

1− β

(
µ̄R̄2(1− β)2

4D̄

) 1
1−β

as β → 1−.(27b)405
406

From (27a), we see that there is a critical value of µ̄ = µ̄∗ where ∂ĉ/∂β = 0 on the critical line at β = 0. Across407

this critical value, the critical line switches from being monotonic in parameter space to being non-monotonic,408

as seen in Figure 5. This critical value is given by409

µ̄∗ =
6D̄

R̄2
exp

(
5K̄ + 4D̄

3(K̄ + 2D̄)

)
.(28)410

411

While there is an exponential dependence in (28), the value of µ̄∗ is not especially sensitive to the parameter412

values in the system. This is because the argument of the exponential in (28) can only take values within413

(2/3, 5/3), so the exponential term can only vary by a factor of e. For the parameter values used in Figure414

5, µ̄∗ = 6e ≈ 16.31. With regards to our observation above regarding the extent of the depletion regime as415

β → 1−, we may deduce from (27b) that the depletion regime does exist for all 0 < β < 1, but that its extent416

becomes exponentially small as β → 1−.417

6. Asymptotic limits of Case I. In this section we investigate various asymptotic limits of the system418

(22) and deduce how these limits affect the effective uptake. We then discuss how these results apply to different419

physical limits in the system. We discuss the three main cases of fast (F � w), moderate (F = O(w)), and420

slow (F � w) uptake separately, as we will show that they each exhibit distinct behaviour. We name these421

cases in reference to the speed of their uptake timescales compared to the timescale of diffusive transport across422

a single bacterium, in dimensional terms. In each case, we identify and use the asymptotic size of k that gives a423

distinguished limit for that case, in order to keep our analysis as general as possible. However, we also consider424

sub-limits of k where instructive. As opposed to the power-law form assumed in §5, our analysis in this section425

applies to general nonlinear uptake functions F (w), though we will discuss how our results apply to power-law426

uptakes where relevant.427

6.1. Fast uptake: F � w. In the case of fast uptake, there is a boundary layer near the membrane within428

the bacterium, through which the concentration rapidly decreases, and therefore w must be small to allow the429

derivative in the boundary condition (22b) to balance one of the additional terms. We have a full distinguished430

limit if k � 1, and we show the reasoning for this below. Performing this scaling analysis systematically, we431
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12 M. P. DALWADI AND J. R. KING

may derive the scalings r = 1− δρ, w = δW , and F (w) = G(W )/δ, where δ satisfies the implicit equation432

δF (δ) = 1.(29)433434

Since F (z)� z here, we emphasize that δ � 1. We also scale k = κ/δ to obtain a distinguished limit, and the435

reason for this scaling will be made apparent below. In our new boundary layer coordinate, ρ = 0 corresponds436

to the bacterial membrane and ρ > 0 corresponds to the bacterial domain.437

From the scalings presented above, we obtain the leading-order system438

0 =
∂2W

∂ρ2
−G(W ) for ρ > 0,(30a)439

κW − ∂W

∂ρ
= 1 for ρ = 0,(30b)440

W → 0 for ρ→∞.(30c)441442

We obtain the last condition via asymptotic matching, noting that W will become asymptotically smaller away443

from the interface in order to obtain a balance between uptake and diffusion in the bulk bacterial domain.444

We can in the usual way solve (30) implicitly, by first multiplying (30a) by ∂W/∂ρ and integrating with445

respect to ρ:446 (
∂W

∂ρ

)2

= 2

∫ W

0

G(s) ds,(31)447
448

where we have invoked (30c) (and additionally ∂W/∂ρ→ 0 as ρ→∞). For later use, we note that combining449

(30b) and (31) leads to the following implicit representation of W (0)450

(1− κW (0))
2

= 2

∫ W (0)

0

G(s) ds.(32)451
452

Since the left-hand side of (32) monotonically decreases from 1 to 0 as W (0) increases from 0 to 1/κ, and the453

right-hand side monotonically increases from a value of 0 to a positive value as W (0) increases from 0 to 1/κ,454

(32) has a unique solution W (0) ∈ (0, 1/κ).455

As W decreases when we move into the bacterial domain, we may re-write (31) as456

∂W

∂ρ
= −

√
2

∫ W

0

G(s) ds,(33)457

458

which we can integrate to obtain the following implicit representation for W459 ∫ W (0)

W

du√
2
∫ u

0
G(s) ds

= ρ,(34)460

461

recalling that W (0) is defined in (32).462

The implicit solution (34) is not necessarily valid through the entire boundary layer if the uptake function463

is non-Lipschitz. In such scenarios, the representation (34) is valid only for 0 < ρ < ρ∗, with W ≡ 0 for ρ > ρ∗,464

resulting in a chemically depleted core. We are able to calculate this critical point in closed form as follows465

ρ∗ :=

∫ W (0)

0

du√
2
∫ u

0
G(s) ds

.(35)466

467

Although we can use the implicit representation (34) to obtain the effective uptake (23), it is simpler to use468

the leading-order boundary condition (30b) to deduce that, in the super-linear case,469

ν[ĉ] ∼ 4πR̄ (1− κW (0)) ĉ,(36)470471

where W (0) ∈ (0, 1/κ) is the unique solution to (32). Hence, in the fast-uptake case we have reduced the472

problem of determining the effective uptake to the problem of solving a nonlinear algebraic equation (32) in473

terms of the nonlinear uptake function G. We show ν/4πR̄ĉ = 1− κW (0) for a power-law uptake in Figure 6.474

This manuscript is for review purposes only.



HOMOGENIZATION OF NONLINEAR CHEMICAL UPTAKE 13

Fig. 6. The solution to the nonlinear equation (39) for a power-law uptake. We plot 1 − κW (0), which is related to the
effective uptake through (36). We use values of β ∈ {0.2, 0.5, 1, 2, 5}, noting that W (0) = 1/(1 + κ) for β = 1.

There are some further reductions of complexity possible for asymptotic limits of the scaled partition475

coefficient κ in the nonlinear equation (32). In particular,476

ν[ĉ] ∼ 4πR̄ĉ if κ→ 0+, ν[ĉ] ∼

4πR̄

√
2

∫ 1/κ

0

G(s) ds

 ĉ if κ→∞,(37)477

478

and we note that the effective uptake decreases as κ increases. In the small-κ limit, the effective uptake479

is bounded above and independent of all parameters in the system except the bacterial radius and external480

concentration. Moreover, in the same limit the effective uptake is insensitive to the form of the nonlinear481

pointwise uptake. This insensitivity in the observable effective uptake belies the radically different behaviour482

possible on the microscale; it is striking that the macroscale behaviour can be the same even when there are483

fundamental differences in the microscale behaviour such as, for example, the presence or absence of a chemically484

depleted core within a bacterium.485

In the specific case where the uptake satisfies a power law, with F (w) = µwβ for β > 0, fast uptake occurs486

when µ� 1. In this case, we see from (29) that δ = µ−
1

β+1 , and the implicit solution (34) can be made explicit:487

W =

(
(W (0))

1−β
2 +

(β − 1)ρ√
2(β + 1)

) 2
1−β

.(38)488

489

From (32), W (0) satisfies the nonlinear equation490

(1− κW (0))
2

=
2 (W (0))

β+1

β + 1
for W (0) ∈ (0, 1/κ).(39)491

492

When 0 < β < 1, the solution (38) is only valid for 0 < ρ < ρ∗, with critical depletion point493

ρ∗ =

√
2(β + 1) (W (0))

β+1

(1− β)
2 ,(40)494

495

and, as stated previously, W ≡ 0 for for ρ > ρ∗ when depletion occurs.496

In terms of the effective uptake (36), we note that κ is scaled with δ, which is a function of ĉ. Therefore,497

the effective uptake will scale with ĉ in a manner that must be determined by solving (39). However, we can498
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use our general asymptotic results (37) for extreme values of κ to note the following results in terms of the499

pre-scaled parameters in §4.5:500

ν[ĉ] ∼ 4πR̄ĉ if
K̄β+1

µ̄D̄R̄2ĉβ−1
� 1, ν[ĉ] ∼ 4πR̄2

√
2µ̄D̄

(β + 1)K̄β+1
ĉ
β+1
2 if

K̄β+1

µ̄D̄R̄2ĉβ−1
� 1,(41)501

502

and we note that the separate requirement of fast uptake, µ � 1, corresponds to µ̄R̄2ĉβ−1/D̄β � 1. We see503

from (41) that the effective uptake can scale from anywhere between the bacterial radius to the bacterial surface504

area. Additionally, we note that a pointwise power-law uptake with exponent β can result in an effective uptake505

that scales as ĉ(β+1)/2 in the large-K̄ limit, and can scale linearly with the effective concentration in the small-K̄506

limit. Therefore, we can infer that observing a power-law dependence on the concentration in the effective507

uptake does not mean the pointwise uptake satisfies the same power-law form, even for a linear effective uptake.508

If the order of magnitude of physical bacterial parameters is known, our results can be used to infer details of509

the microscale uptake, given observations of the effective uptake for a varying concentration.510

6.2. Moderate uptake: F = O(w). For a balanced uptake, there is a distinguished limit when k = O(1).511

In this scenario, the full system is (22), so we cannot make generic analytic progress. In the asymptotic limit512

k � 1, the boundary condition at the cell membrane (22b) reduces to a Neumann condition. In this case, even513

though we cannot obtain a general reduced solution for w, we are able to use this simplification of (22b) to514

immediately deduce that the effective uptake (23) becomes515

ν[ĉ] ∼ 4πR̄ĉ as k → 0+.(42)516517

In the asymptotic limit of k � 1, (22b) reduces to the Dirichlet condition kw = 1 with w = O(1/k). If518

kF (1/k) = O(1) in this sub-limit, we would still have to solve the remaining system numerically to determine519

the effective uptake. If not, we could use the results we provide for fast (§6.1) or slow (§6.3) uptake.520

For completeness, we also present the steady results for the linear case where F (w) = µw. While we give a521

representation of the solution and effective uptake in (19)–(20) for the full time-dependent problem, the steady522

solution can be written in terms of analytic functions, avoiding the need for an infinite sum. In the steady linear523

case, (21) is solved by524

w =
sinh
√
µr

r
(
(k − 1) sinh

√
µ+
√
µ cosh

√
µ
) ,(43)525

526

which is similar to the equivalent result obtained in [9], but now including the effect of the scaled partition527

coefficient k. The corresponding effective uptake (23) is528

ν[ĉ] =
4πR̄ĉ

1 +
k

√
µL
(√
µ
) ,(44)529

530

where L is the Langevin function, defined as531

L(z) = coth z − 1

z
.(45)532

533

We can therefore deduce that if the pointwise uptake is linear in the intrinsic concentration, the effective534

uptake will be linear in the effective concentration. In terms of the pre-scaled parameters in §4.5, we note535

that F (w) = µw corresponds to f̄(C̄) = µC̄ with µ = µR̄2/D̄. As the strength of the linear pointwise uptake536

becomes large and µ→∞, the effective uptake in (44) scales as ν ∼ 4πR̄ĉ, and carries no information about the537

underlying microscale uptake. We also note that as µ→ 0+, the effective uptake in (44) scales as ν ∼ |ωb|µĉ/K,538

scaling with bacterial volume.539

6.3. Slow uptake: F � w. In the case of slow uptake within the bacteria, the asymptotic solution to540

(22) is a constant plus a small correction to account for this slow uptake. From this, we pose the following541

asymptotic ansatz for w:542

w(r) = A+ F (A)W1(r) + O(F (A)F ′(A)),(46)543544
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where A is a constant to be determined. There is a full distinguished limit if A = O(1/k) � 1 with F (1/k) =545

O(1), and we show the reasoning for this below. Substituting (46) into (22), the leading-order system implies546

that A is indeed constant. The value of this constant can be determined by closing the system at the next order,547

which is548

0 =
1

r2

∂

∂r

(
r2 ∂W1

∂r

)
− 1 for 0 < r < 1,(47a)549

∂W1

∂r
= 0 for r = 0, kA+

∂W1

∂r
F (A) = 1 for r = 1.(47b)550

551

The second condition in (47b) shows why we require the balances A = O(1/k) � 1 with F (1/k) = O(1) for a552

distinguished limit. We can solve (47) for W1 up to a constant B, as follows553

W1 =
1

6

(
r2 −B

)
.(48)554

555

The boundary condition at the bacterial membrane (47b) then yields the following nonlinear equation for A:556

kA+
F (A)

3
= 1.(49)557

558

We note that (49) could alternatively be derived by invoking the divergence theorem on the full inner problem559

(22), in conjunction with the ansatz (46). As A and F (A) are both monotonic increasing functions of A, there560

is exactly one solution to (49) with A > 0. Using the results (46) and (48) to determine the effective uptake561

(23), we obtain562

ν[ĉ] =
4

3
πR̄ĉF (A).(50)563

564

We have therefore reduced the problem of determining the effective uptake to the problem of solving the nonlinear565

algebraic equation (49) for a given uptake function F . We are also able to reduce the complexity further in566

various limits. Firstly, if k � F (A)/A then A ∼ 1/k, and the effective uptake can simply be read off from (50).567

Secondly, if k � F (A)/A and F (s) > 3 as s→∞, then (49) asymptotically reduces to A = F−1(3). That is, as568

the pointwise uptake increases, the effective uptake behaves as ν[ĉ] ∼ 4πR̄ĉ, and conveys no information about569

the microscale uptake to the macroscale.570

Although we do not need to determine B in order to obtain results about the effective uptake, it can be571

obtained by going to O(F (A)F ′(A)) in the asymptotic expansion (46). For completeness, but omitting the572

details for brevity, we thereby obtain573

B =
3

5

F ′(A) + 5k

F ′(A) + 3k
∈ (0.6, 1).(51)574

575

In terms of the pre-scaled parameters of §4.5, the effective uptake (23) is576

ν[ĉ] = |ωb|f̄(ĉA/D̄),(52a)577578

where A satisfies the nonlinear equation (49), which can also be re-written as579

K̄
D̄
A+

R̄2f̄(ĉA/D̄)

3ĉ
= 1.(52b)580

581

Since f̄(z)� z, in order for both terms on the right-hand side of (52b) to contribute to A we require 3K̄/R̄2 =582

O(f̄(ĉA/D̄)/(ĉA/D̄)). If this is not the case, we may obtain the following asymptotic results for the effective583

uptake:584

ν[ĉ] ∼ |ωb|f̄(ĉ/K̄) if K̄ � R̄2

3
f̄(ĉ/K̄),(53a)585

ν[ĉ] ∼ 4πR̄ĉ if ĉ� R̄2

3
f̄(ĉ/K̄).(53b)586

587

Hence, the effective uptake in this case can scale from bacterial volume to radius, and from a nonlinear function588

of the concentration that mirrors the pointwise uptake to a linear function of concentration which carries no589

information about the underlying microscale uptake.590
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7. Discussion. We systematically upscale the microscale problem of a chemical species diffusing through a591

extracellular matrix containing a locally periodic array of spherical bacteria, modelling a biofilm. The chemical592

can diffuse within the bacteria, which also act as volume sinks of the chemical species, with general nonlinear593

kinetics. Across the cell membrane, the concentration ratio is a prescribed constant and the concentration flux594

is conserved. Using homogenization via the method of multiple scales, we derive effective reaction–diffusion595

equations over the macroscale that systematically account for the microscale bacterial details. Through an596

asymptotic analysis, we investigate the distinguished limits for the effective uptake in §4 (Case I) and the597

effective diffusivity in Appendix A (Case II), in each case where the effective uptake balances the macroscale598

diffusion over the timescale of the latter. In the key sub-limits of fast and slow uptake within the bacteria, we599

reduce the problem of determining the effective uptake (which generally involves solving a nonlinear PDE) to600

that of solving a nonlinear algebraic equation for each case. These results represent the effective uptake and601

diffusivity that should be imposed in biofilm models involving chemical uptake, as they have been systematically602

derived in terms of microscale bacterial properties.603

The distinguished limit for the effective uptake is a double-porosity model [1] in the sense that it occurs604

when the diffusivity varies greatly between the inside and the outside of the bacteria, by a factor that depends605

on the separation of scales in the problem. Upscaling this double-porosity model results in two coupled partial606

differential equations, one for the macroscale diffusion which includes a term that accounts for the microscale607

uptake, the latter being determined by solving a coupled problem on the microscale. However, as this dis-608

tinguished limit involves several different microscale parameters, there are many physically relevant sub-limits609

where these macroscale equations will decouple. As such, in §6 we investigate in detail the steady version of610

the reduced system that governs the effective uptake, in an effort to catalogue the different types of behaviour611

that this system can exhibit. We show that the effective uptake over the macroscale, the lengthscale over which612

uptake is measured, can have a very different form to the actual nonlinear pointwise uptake occurring within613

the bacteria.614

In terms of dimensional quantities, the steady effective equations we derive in Case I (for a distinguished615

limit of effective uptake) have the following form:616

Dm∇2c̃ = ν̃[c̃],(54)617618

where ν̃ is the dimensional version of the effective uptake we calculate in various asymptotic limits, and we define619

the system parameters in §2. Fast and slow uptake (investigated in §6.1 and §6.3, respectively) correspond to620

the timescale of uptake compared to the timescale of diffusion across the bacteria i.e. R̃2/Db � C̃/f(C̃) and621

R̃2/Db � C̃/f(C̃), respectively. For fast uptake, we deduce that622

ν̃[c̃] ∼ 4πR̃2

(εl)3

√
2Db

∫ ζ[c̃]

0

f(s) ds,(55a)623

624

where ζ[c̃] satisfies the following nonlinear equation625

(c̃−Kζ)
2

=
2R̃2Db

D2
m

∫ ζ

0

f(s) ds.(55b)626
627

For slow uptake, we deduce that628

ν̃[c̃] ∼ 4πR̃3

3(εl)3
f(η[c̃]),(56a)629

630

where η[c̃] satisfies the following nonlinear equation631

f(η[c̃]) +
3DmK
R̃2

η[c̃] =
3Dmc̃

R̃2
.(56b)632

633

As can be deduced from (55)–(56), for a strong pointwise uptake the observed uptake appears as a linear function634

of concentration, even though the microscale behaviour is very different in each limit. In this case, the effective635

uptake is bounded above and cannot be improved by increasing the pointwise uptake through, for example, a636

genetic modification to up-regulate enzymes associated with an uptake of the chemical of interest. Moreover,637

(55)–(56) show that a nonlinear observed uptake may have a significantly different nonlinear form compared to638

the actual pointwise uptake, e.g. a different exponent in a power-law uptake.639
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As our upscaling procedure results in an effective reaction-diffusion equation, non-trivial steady solutions are640

possible for suitable boundary conditions. Moreover, since the coefficients of this effective equation can depend641

on the spatial coordinate, a wide range of interesting steady-state behaviours are possible. For example, in the642

limiting behaviour given in (41b), it is the square root of the microscale uptake coefficient which is important643

at the macroscale. This demonstrates that a very wide class of effective uptake functions are possible at the644

macroscale, depending on what type of heterogeneity is present at the microscale.645

The results we derive in this paper provide a cautionary tale for anyone attempting to infer microscale646

kinetics occurring within bacteria from macroscale observations, or trying to use experimental results of enzyme647

kinetics measured in a cell-free environment to model bacterial uptake in, for example, biofilms. In general, when648

modelling the chemical uptake over a colony of bacteria, the mathematical form of the uptake requires careful649

thought. In this paper, we systematically derive the correct uptake to impose in terms of the bacterial properties650

and the measured results from cell-free enzyme assays. Moreover, our results show that the inverse problem of651

understanding the microscale uptake from macroscale observations is ill-posed in general. For example, there652

are several different types of microscale behaviour that lead to an observed effective uptake which is linear653

with chemical concentration. The microscale problem could involve chemically depleted zones for fast non-654

Lipschitz pointwise uptake, as shown in §5 and §6.1; the partition coefficient could be much smaller than the655

ratio of bacterial-to-ECM diffusivity for slow uptake, as shown in §6.3; or the pointwise uptake could simply be656

inherently linear, as shown in §6.2.657

In both Cases I and II, the leading-order concentration within the ECM does not depend on the microscale658

variable over the lengthscale of bacterial separation, except very close to the bacteria in Case I. This means659

that our results are not restricted to bacteria arranged in a cubic lattice. In fact, due to their leading-order660

independence of the microscale, our effective uptake results will formally hold for any Bravais lattice of spheres,661

with an appropriate factor to account for the relative phase volumes. Moreover, since the distinguished limit662

for effective uptake does not include any information about neighbouring bacteria, we also expect our effective663

uptake results to hold for randomly-placed bacteria, again with an appropriate factor to account for the relative664

phase volumes. However, we expect the effective diffusivity we calculate to strongly depend on the microscale665

structure, as the geometry of the cell problem will change. It would be interesting to formally investigate this666

problem with stochastically placed bacteria, using the framework of [4, 5, 24, 25], for example.667

The difference in microscale dependence of the effective diffusivity and uptake can be understood by con-668

sidering the classical homogenization of a one-dimensional reaction–diffusion equation (see, for example, §5.2 in669

[12]), where the effective diffusivity is determined to be the harmonic average of the periodic diffusivity and the670

effective uptake is determined to be the arithmetic average of the periodic uptake. The harmonic average causes671

the effective diffusivity to be very sensitive to low diffusivity regions. In higher dimensions, this also causes a672

sensitivity on the relative positions of such regions, as low diffusivity trapping regions will have a greater effect673

on effective diffusivity. The same is not true for the effective uptake, which remains as an arithmetic average674

of the (weak) pointwise uptake for higher dimensions. Thus the effective uptake in the classical case only de-675

pends on the microscale structure through an appropriate factor to account for the relative phase volumes. We676

note that our work in Case II can be applied directly to more general periodic arrays of arbitrary bacterial677

shapes; the relevant effective diffusion coefficients can be obtained from (A8c) by solving the cell problem (A4)678

for different geometries. However, although the general reduced inner problem we derive in (11) does hold for679

arbitrary bacterial shapes, the reduced boundary condition (14a) does not: this is because we require spherical680

bacteria to derive (14a), exploiting the separability of Laplace’s equation in spherical coordinates. As such, we681

expect that further analytic progress could be made for bacterial shapes defined by a surface in other separable682

coordinate systems, such as ellipsoidal bacteria, as considered in the Appendix of [9].683

A more generalized version of the partition coupling condition across the bacterial membrane (3b) is684

Π (c−KC) = n · ∇c,(57)685686

for constant permeability Π. The condition (57) can be formally derived by a suitable asymptotic analysis of687

a membrane of finite thickness which is thin compared to the two outer domains it separates; it is a statement688

about concentration flux being proportional to the concentration difference across the membrane, accounting for689

chemical preference towards a particular phase. The boundary condition (3b) is a sub-limit of (57) in the limit690

of Π→∞. If we were to use (57) instead of (3b), the full generality of (57) would appear in the distinguished691

limit of Case I using the current scalings of Case I (see Table 1) in addition to Π = O(1/ε3). This added692

generality does not affect matters significantly; it simply modifies (14a), the boundary condition we derive on693
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18 M. P. DALWADI AND J. R. KING

the bacterial membrane to close the problem, to the following:694

K̄C̄ +

(
R̄+

1

ε3Π

)
D̄
∂C̄

∂r
= ĉ(x, t) for r = R̄(x).(58)695

696

Replacing the scaling we make in §4.5 with r = R̄r, C̄ = (ε3ΠR̄ĉ/D̄(1 + ε3ΠR̄))w, and f̄(C̄) = ε3ΠĉF (w)/R̄(1 +697

ε3ΠR̄), we recover the previous scaled equations (22) with k = ε3ΠR̄K̄/D̄(1 + ε3ΠR̄). Under this new scaling698

the previous effective uptake (23) is replaced with699

ν[ĉ] = 4πR̄2

(
ε3Π

1 + ε3ΠR̄

∂w

∂r

∣∣∣∣
r=1

)
ĉ.(59)700

701

For Case II, the full generality of (57) would appear using the current scalings of Case II (see Table 1) in addition702

to Π = O(1/ε). In this case, the final upscaled equation (A8) would still hold, but now with the boundary703

condition (A4b) in the cell problem being replaced with704

ny · (∇yξi − ei) =
εΠ

K (ξi − Ξi) for y ∈ ∂ωb(x).(60)705
706

Therefore, the results we derive in this paper can easily be modified to account for the more general coupling707

condition (57) instead of (3b).708

We neglect any advection in this work, in order to focus on the distinguished limits that arise with diffusion709

and uptake as the dominant transport processes. Although this may appear to restrict our analysis to stagnant710

bacterial colonies, our results can actually be applied to a broader range of physical set-ups, including non-motile711

microorganisms in the presence of a background flow. This is because non-motile microorganisms will simply712

be advected with the flow, i.e. there is no relative movement between the flow and the microorganism motion,713

and in the frame of reference of the background flow, our analysis pertains so long as the lengthscale of fluid714

shear is significantly larger than the bacterial lengthscale.715

In this paper, we investigate and quantify how the effective uptake and diffusivity depend on microscale716

bacterial properties. We show how a nonlinear pointwise uptake is transformed into an observable macroscale717

uptake with different nonlinear properties, and how significantly different microscale behaviours can still result718

in the same observed uptake. Additionally, we show how the relative size of a non-unitary partition coefficient719

can affect in which of the observed uptake regimes one finds oneself. We emphasize that the reaction–diffusion720

system we consider is not restricted to bacteria; it can also be applied to many other single-celled microorganisms,721

such as cyanobacteria, microalgae, protozoa, and yeast. Moreover, the microscale framework we upscale in this722

paper is fairly general - diffusive transport past finite-volumetric sinks with a general nonlinear uptake. We723

hope that the framework and results we present here will be used and extended to other related problems in a724

wide range of physical applications.725
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Appendix A. Case II: The distinguished limit for the effective diffusivity.729

The distinguished limit for the effective diffusivity occurs when all dimensionless parameters in the system730

are of O(1). While this limit is only a slight modification of the general classical case (§5.3 in [12]), now including731

an arbitrary partition coefficient across the internal boundary, it does provide the distinguished limit for the732

effective diffusivity. We therefore include the analysis for completeness. This case contains Case 1 from [9] as a733

sub-limit.734

To proceed, we introduce the asymptotic expansions735

c = c0(x,y, t) + εc1(x,y, t) + ε2c2(x,y, t) + O(ε3),(A1)736737

with the equivalent for C, substitute these into (8), and equate terms of equal magnitude.738

At O(1), we obtain solutions which are independent of y, thus c0 = c0(x, t) and C0 = C0(x, t), with739

c0 = KC0 and c0(x, 0) = KC0(x, 0) = cinit(x). To close the problem at leading order, we must derive a740

solvability condition from higher asymptotic orders.741

The O(ε) terms in (8) yield742

0 = ∇2
yc1 for y ∈ ωm(x), 0 = D∇2

yC1 for y ∈ ωb(x),(A2a)743
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c1 = KC1, ny · (∇yc1 +∇xc0) = Dny · (∇yC1 +∇xC0) for y ∈ ∂ωb(x),(A2b)744

c1 periodic for y ∈ ∂ω.(A2c)745746

We can express solutions to (A2) in the form747

c1(x,y, t) = −ξ(x,y) · ∇xc0(x, t) + c̆1(x, t),(A3a)748

C1(x,y, t) = −Ξ(x,y) · ∇xC0(x, t) + C̆1(x, t),(A3b)749750

where c̆1 and C̆1 are functions of x and t only that we do not need to calculate to obtain the leading-order751

homogenized problem. The components ξi and Ξi of the functions ξ and Ξ satisfy the cell problems752

0 = ∇2
yξi for y ∈ ωm(x), 0 = D∇2

yΞi for y ∈ ωb(x),(A4a)753

ξi = Ξi for y ∈ ∂ωb(x),(A4b)754

ny ·
(
∇yξi −

D

K∇yΞi

)
=

(
1− D

K

)
ny · ei for y ∈ ∂ωb(x),(A4c)755

ξi periodic for y ∈ ∂ω,(A4d)756757

where ei is the unit vector in the yi-direction. The cell problem (A4) depends on two parameters: the ratio758

D/K, which appears explicitly in the cell problem, and R, the bacterial radius.759

Finally, the O(ε2) terms in (8) yield760

∂c0
∂t

= ∇y · (∇yc2 +∇xc1) +∇x · (∇yc1 +∇xc0) for y ∈ ωm(x),(A5a)761

∂C0

∂t
= D∇y · (∇yC2 +∇xC1) +D∇x · (∇yC1 +∇xC0)− f(C0) for y ∈ ωb(x),(A5b)762

c2 = KC2 for y ∈ ∂ωb(x),(A5c)763

ny · (∇yc2 +∇xc1)−∇xR · (∇yc1 +∇xc0)764

= D (ny · (∇yC2 +∇xC1)−∇xR · (∇yC1 +∇xC0)) for y ∈ ∂ωb(x),(A5d)765

c2 periodic for y ∈ ∂ω.(A5e)766767

To derive effective equations for the averaged concentration (5), we integrate (A5a) over ωm(x) and (A5b) over768

the domain ωb(x), sum the results, then apply the divergence theorem with the boundary conditions (A5d,e)769

to obtain770 ∫
ωm(x)

∂c0
∂t

dy +

∫
ωb(x)

∂C0

∂t
dy =

∫
ωm(x)

∇x · (∇yc1 +∇xc0) dy771

−
∫
∂ωb(x)

∇xR · (∇yc1 +∇xc0) ds+D

∫
ωb(x)

∇x · (∇yC1 +∇xC0) dy772

−D
∫
∂ωb(x)

∇xR · (∇yC1 +∇xC0) ds−
∫
ωb(x)

f(C0) dy,(A6)773

774

where ds is the surface element of the bacterial membrane ∂ωb(x). Using the Reynolds transport theorem to775

combine the first and second integrals on the right-hand side of (A6) as well as the third and fourth integrals,776

we obtain777

|ωm(x)|∂c0
∂t

+ |ωb(x)|∂C0

∂t
= ∇x ·

∫
ωm(x)

(∇yc1 +∇xc0) dy778

+D∇x ·
∫
ωb(x)

(∇yC1 +∇xC0) dy − |ωb(x)|f(C0).(A7)779

780

We note that (A7) could also have been obtained by summing the integrals of the full governing equations (8a)781

and (8b) over their respective domains, using the coupling condition (8d), and applying the asymptotic ansatz782

(A1).783

To obtain a governing equation for the intrinsic averaged concentration ĉ, we first note that ĉ ∼ c0, which784

follows from the leading-order independence of c0 on y. We then use (A3) to deduce that ∇yc1 = −(JT
ξ )∇xc0785
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and ∇yC1 = −(JT
Ξ)∇xC0. Here, (JT

ξ )ij = ∂ξj/∂yi and (JT
Ξ)ij = ∂Ξj/∂yi are the transposes of the Jacobian786

matrices of ξ and Ξ, respectively, these being the vector solutions to the cell problems defined in (A4). Using787

these results, recalling that c0 = KC0 from the leading-order equations, and that |ωm| + |ωb| = 1, we can788

rearrange (A7) to obtain a leading-order governing equation for ĉ789

∂ĉ

∂t
=

1

α̂(x)
∇x ·

(
D̂(x)∇xĉ

)
− |ωb(x)|

α̂(x)
f(ĉ/K), ĉ(x, 0) = cinit(x).(A8a)790

791

Here, we define792

α̂(x) = 1 +
1−K
K |ωb(x)|(A8b)793

794

and the homogenized diffusion tensor795

D̂(x) =

(
1 +

D −K
K |ωb|

)
I−

∫
ωm(x)

JT
ξ dy − D

K

∫
ωb(x)

JT
Ξ dy,(A8c)796

797

where I is the three-dimensional identity matrix. Since we have spherical bacteria, the homogenized diffusion798

tensor is a multiple of the identity matrix due to the symmetry of the cell problem (A4). That is,799 ∫
ωm(x)

JT
ξ dy =

(∫
ωm(x)

∂ξi/∂yi dy

)
I,

∫
ωb(x)

JT
Ξ dy =

(∫
ωb(x)

∂Ξj/∂yj dy

)
I,(A9)800

801

for i, j = 1, 2, 3, with ξi and Ξj determined by (A4). We emphasize that we do not invoke the summation802

convention in (A9).803

We have therefore derived an upscaled equation for the concentration evolution (A8) in terms of the mi-804

croscale system parameters. We see from (A8a) that the effective uptake is equal to the product of the pointwise805

uptake, the bacterial volume, and a modifying factor of 1/α̂. In comparison, in [9] where we consider a linear806

uptake and K = 1, the effective uptake in Case 1 is the product of the pointwise uptake and the bacterial807

volume with no modifying factor. As α̂→ 1 when K → 1 from (A8b), we are able to recover the limit of [9] in808

the current work. From the form of the effective uptake, we can see that introducing a nonlinearity does not809

affect the effective uptake significantly, as this nonlinearity is carried through the upscaling largely unscathed,810

simply accounting for the partition coefficient. However, the presence of the partition coefficient does modify811

the observed effective uptake in a nontrivial manner, due to the dependence of α̂ on K (Figure 7). That is,812

as 1/α̂ < 1 for K < 1 and vice versa, we may deduce that the observed uptake within a colony of bacteria813

will be smaller/larger than naively assuming that the effective uptake is the product of bacterial volume and814

pointwise uptake if the partition coefficient K is smaller/greater than 1, i.e. if the concentration preference is815

for the cytoplasm/ECM. The reason for this discrepancy in Case 1 is because the chemical concentration will816

be observed in terms of the intrinsic-averaged concentration, whereas the measured uptake will be in terms of817

the moles of chemical species removed, a quantity captured by the volumetric-averaged concentration. Indeed,818

this discrepancy would vanish if one considered the volumetric-averaged concentration version instead of the819

intrinsic-averaged concentration version (A8).820

The homogenized diffusion tensor defined in (A8c) will represent the most general effective diffusivity in821

the system. Moreover, (A8c) represents a more general effective diffusivity than that derived in [9]. From the822

functional form of (A8c), we see that while introducing a non-unitary partition coefficient does have a significant823

effect on the effective diffusivity, introducing a nonlinear uptake does not have any leading-order effect.824

Appendix B. Steady state stability analysis. We consider a small time-dependent perturbation away825

from a steady-state solution C̄∗(r) of (21)826

C̄(r, t) = C̄∗(r) + eλtΘ(r),(B1)827828

where Θ� C̄∗. Here, Θ satisfies the eigenvalue problem829

0 =
D̄

r2

∂

∂r

(
r2 ∂Θ

∂r

)
−
(
f̄ ′(C̄∗) + λ

)
Θ for r < R̄(x),(B2a)830

831
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Fig. 7. The ratio of the observed effective uptake
|ωb|
α̂
f(ĉ/K) to the total actual uptake within a bacterium |ωb|f(ĉ/K), varies

in terms of R and K.

for the eigenvalue λ, with boundary conditions832

∂Θ

∂r
= 0 for r = 0, K̄Θ + R̄D̄

∂Θ

∂r
= 0 for r = R̄.(B2b)833

834

Multiplying (B2a) by r2Θ and integrating over r ∈ (0, R̄) to form the Rayleigh quotient, we obtain835

λ = −
R̄K̄Θ2(R̄) +

∫ R̄
0
r2
(
D̄ (Θ′)

2
+ f̄ ′(C̄∗)Θ2

)
dr∫ R̄

0
r2Θ2 dr

,(B3)836

837

where we used (B2b) to simplify the term outside the integrals. From (B3), we may immediately deduce that838

if f̄ ′(C̄∗) > 0 everywhere within the domain we have λ 6 0, and hence any steady state is stable if f̄ ′(C̄∗) > 0.839

That is, any steady state is stable if the uptake f̄(C̄) is monotonically non-decreasing. An interesting corollary840

of this is that it may be possible to have unstable steady states for this problem if there are strong inhibition841

effects as the concentration increases.842
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