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We consider the drainage of blood plasma across the capillary wall, focusing on the flow through
the endothelial glycocalyx layer that coats the luminal surface of vascular endothelial cells. We
investigate how the presence of a sub-glycocalyx space between the porous glycocalyx and the
impermeable endothelial cells affects the flow, using the Darcy and Stokes equations to model the
flow in the glycocalyx and sub-glycocalyx space, respectively. Using an asymptotic analysis, we
exploit the disparity of lengthscales to reduce the problem complexity to reveal the existence of
several asymptotic regions in space. We provide a detailed characterisation of the flow through the
glycocalyx layer in terms of the microscale system parameters, and we derive analytic macroscale
results, such as for the flux through and hydraulic conductivity of the glycocalyx layer. We show
that the presence of a sub-glycocalyx space results in a higher flux of blood plasma through the
glycocalyx layer, and we use our theoretical predictions to suggest experiments that could be carried
out to shed light on the extent of the layer.

I. INTRODUCTION

The endothelial glycocalyx (eGlx) is a porous coating found on the luminal surface of most blood vessels [1, 2].
The eGlx is a complex biochemical and structural entity, and though there is little consensus within the field over
the specifics of its biochemical make-up and structure, it is known to serve several purposes: it acts as a molecular
sieve for plasma proteins; it regulates blood cell interactions; it acts as a mechanotransducer of hydrodynamical shear
stress to the endothelial cells to which it is attached; and it modulates the vascular permeability of the vessel wall
to plasma leakage to the interstitium [1, 3–6]. Damage to the vasculature through inflammation, disease, or insult
can change the local resistance of the eGlx structure, and hence affect the drainage of plasma [7–9]. To aid the use
of targeted therapies, it is important to develop a better understanding of how the microstructure of the eGlx layer
affects the function of the vascular wall.

As blood plasma drains from the lumen on its way to the interstitium, it first passes through the porous eGlx
attached to the endothelial cells. The impermeability of the endothelial cell body means that in non-fenestrated
vessels the only route to the interstitium is though the small gaps between these cells, referred to as the intercellular
clefts [4]. The current belief is that the the eGlx is a layered structure consisting of an inner layer (approximately
200nm thick) which acts as a filtration barrier, and a highly permeable diffuse outer layer (up to 1000nm thick) which
is involved in the mechanotransduction and mechanistic roles [10]. We provide a schematic of the structure of, and
the flow through, the eGlx in Figure 1.

The global resistance of the vascular wall can be experimentally measured using single capillary cannulation with
pressure control [11, 12], but determining the microstructure of individual layers is more difficult. Electron microscopy
is currently the only experimental method with the potential to determine the ultrastructural space in the glycocalyx
structure. Although there is some visual evidence for a sub-glycocalyx space [13, 14], the extent of this space is unclear
due to the practicalities of the imaging process and there remain several challenges with this procedure. Firstly, when
using electron microscopy, the eGlx must be stained and immobilised since polysaccharides (which make up part
of the glycocalyx) are not fully immobilised by aldehyde fixation [15–18]. These charged stains induce a structural
alteration of the glycocalyx, including a collapse of the layer. Secondly, when curing the resin between the tissue and
the lumen, splitting between the fixed cells in the tissue and the relatively empty lumen can occur, making it difficult
to validate the extent of this sub-glycocalyx space experimentally.

It is particularly important to understand the extent of this space for the revised Starling hypothesis. The standard
Starling hypothesis provides a macroscale relationship between the plasma flux and the net driving pressure between
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FIG. 1. (a) A schematic of the endothelial glycocalyx and the plasma leakage through it as a cross-section through the radial
and axial directions of the capillary. As blood passes through the lumen, a small amount of plasma leaks across the capillary
wall. This plasma travels through the two-layer structure of the eGlx then down the intercellular clefts between neighbouring
endothelial cells, before reaching the interstitium.

the lumen and the interstitium [19]. However, common misinterpretations of the hypothesis do not agree with
physiological experiments due to confusion over the nature of the oncotic pressure from albumin concentration [20],
which usually acts in the opposite direction to hydrostatic pressure [21, 22]; while varying the albumin concentration
in the lumen alters the flux as expected, varying the albumin concentration in the interstitium does not [22].

This discrepancy is explained by the revised Starling Hypothesis, which proposes that there is a critical point
below the eGlx but above the interstitium wherein the albumin concentration is negligible. Moreover, it holds that
the important locations for calculating the oncotic pressure difference are between the lumen and this critical point,
rather than the lumen and the interstitium. The oncotic pressure difference between the critical point and the
interstitium can then be ignored, as the flow through the intercellular clefts to the interstitium is rapid enough to
negate diffusion back from the tissue [20, 23, 24]. However, the location of this critical point is not known precisely,
largely due to the unknown nature of the eGlx structure. As the filter functionality of the eGlx means that the
critical point is likely to be immediately below the eGlx, it is vital to know whether the eGlx terminates above the
endothelial cells to leave a significant sub-glycocalyx space, or much closer to the level of the endothelial cells where
the intercellular clefts begin. This is because the former possibility has a much greater seepage area than the latter,
with important implications for the revised Starling hypothesis, since this gives the plasma flux per unit area.

The main goal of this paper is to determine the effect of any sub-glycocalyx space on the flow through the eGlx,
and whether the height of this space can be inferred through future experiments. This space is not necessarily devoid
of all material, as the protein core tether would attach the porous glycocalyx to the surface of the endothelial cells,
but it would have a very large void fraction, in contrast to the filtration zone of the eGlx. The size and extent of this
sub-glycocalyx space is unknown: it could range from being a small region localised around the entrance of each cleft
through to extending under the entire glycocalyx. We compare these two extreme scenarios in this paper, and provide
a schematic of them in Figure 2. In addition, understanding the flow though the eGlx will allow us to determine
the horizontal extent of the flow within the glycocalyx, as well as to derive the macroscale hydraulic conductivity, a
constitutive parameter in the revised Starling Hypothesis, as a function of the microscale properties of the eGlx.

Mathematical modelling has been used to understand the role of the glycocalyx in molecular transport better, with
a focus on the effect of the junction strands within the intercellular clefts. The most extensive models are combined
flow and transport models due to Weinbaum and colleagues [25–27]. While these models are useful, they do not
address the issue of a sub-glycocalyx space nor the horizontal extent of the flow within the glycocalyx (as indicated
in Figure 2), and hence the proportion of the glycocalyx that is used for filtration. In the recent work of [28], the
authors consider the coupled solute transport and flow problem across microvessel walls, with the aim of investigating
solute exchange with time-dependent pressure drops across the wall. However, as the authors model the endothelial
glycocalyx as a membrane, the exact nature of the flow within the endothelial glycocalyx is not considered.

In this paper, we seek to investigate the effect of a sub-glycocalyx space on the flow through the glycocalyx. To
focus on the geometrical effect of the sub-glycocalyx space, we do not consider solute transport. We consider the flow
through the glycocalyx in two cases - where the height of the sub-glycocalyx space is comparable to or much larger
than the typical pore size within the porous glycocalyx. We refer to these two cases as the height of the sub-glycocalyx
space being ‘negligible’ and ‘significant’, respectively. We assume that the glycocalyx and sub-glycocalyx space each
have a uniform height, and span the entirety of the vessel wall, including over the intercellular clefts. To focus on
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FIG. 2. A schematic of the differences between the plasma leakage through the glycocalyx, centred around a single intercellular
cleft when there is (a) a negligible sub-glycocalyx space (Case 1) and (b) a significant sub-glycocalyx space (Case 2). The
question of the existence of a sub-glycocalyx gap has important implications for calculating the oncotic pressure (∆πc) across
the glycocalyx in the revised Starling hypothesis. In this paper, we show that the horizontal extent of the flow (and thus the
useful filtration width) in the glycocalyx is larger when the sub-glycocalyx space is significant, i.e. in Case 2.

the effect of a sub-glycocalyx space on the flow, we choose a simplified model geometry in which the cross-section
of an endothelial cell is rectangular, resulting in right-angled corners at the entrance to the intercellular cleft and
no junction strand within the cleft. In addition, we will also neglect the effect of the highly porous diffuse eGlx
region, which we do not expect to have a significant effect on the plasma leakage [10], and of any tight junctions or
fenestrations in our vasculature. The latter assumptions mean that our model will be suitable only for non-neural
and non-glomerular vasculature. There has been modelling work for the case with a junction strand but without a
sub-glycocalyx [29] and, more recently, for the flow through the bilayer structure [10].

As the glycocalyx has a complex bushy structure, we model the plasma flow through this region using the Darcy
equations for flow through a porous medium. The intercellular cleft and the (speculative) sub-glycocalyx space do not
contain these resistive structures, and so we model the flow in these regions using Stokes equations. There are several
important questions to consider when coupling these two flow regions. One such is the correct interfacial conditions
to impose on a boundary between Stokes and Darcy flow regions, which remains an area of active research [30, 31].
We use the boundary conditions of continuity of pressure, continuity of flux, and a Beavers–Joseph slip condition.
The first two conditions were derived in [32] and the last was experimentally derived in [33], and given theoretical
justification in [34]. Another important question is whether the two regions should be treated as distinct. If the
height of the sub-glycocalyx space is of the same order as the pore size within the glycocalyx, the sub-glycocalyx
space is indistinguishable from the porous glycocalyx region, and thus should be governed by Darcy’s equations. As
we will show, neither the case with or without a sub-glycocalyx space is a sub-limit of the other, and thus we must
consider two potential models: the first where there is a negligible sub-glycocalyx space (any such space is then
indistinguishable from the Darcy region), and the second where there is a significant sub-glycocalyx space, resulting
in a separate sub-glycocalyx region.

The structure of this paper is as follows. In Sec. II we present the general dimensional problem, which accounts for
both cases (i.e. when the sub-glycocalyx space is significant and negligible). In Sec. III we specifically consider the
case with a negligible sub-glycocalyx space; we nondimensionalize the problem then perform an asymptotic analysis
by exploiting the small aspect ratio of the geometry, allowing us to derive analytic solutions for the flow in each
asymptotic region. In Sec. IV we consider the case with a significant sub-glycocalyx space, and the analysis proceeds
in a similar manner to that described above. In Sec. V we summarise the main differences between the cases and,
finally, in Sec. VI we discuss our results and their physical implications.
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FIG. 3. A schematic of the model geometry. The single-headed arrows show the flow direction. It is not known whether the
sub-glycocalyx exists, and so we consider h > 0. As explained in the main text, we must consider different models for h = 0
and h > 0.

II. MODEL SET-UP

We consider the leakage of plasma across the endothelial glycocalyx layer, from the boundary between lumen and
glycocalyx to the interstitial fluid located beyond the endothelial cells. We treat the bushy glycocalyx as a porous
medium, and the endothelial cells to which it attaches as impermeable boundaries. The plasma leaks through the
gaps between endothelial cells, referred to as intercellular clefts, into the reservoir of interstitial fluid located below
the endothelial cells.

As an intercellular cleft has typical width much smaller than the typical radius of an endothelial cell and is not
particularly tortuous, we simplify the geometry by considering the two-dimensional problem with the intercellular cleft
perpendicular to the lumen wall. Essentially, we neglect any effect of cell curvature or of junctions where intercellular
clefts meet. In addition, we consider the problem with one intercellular cleft in an infinite domain. Although there
are many intercellular clefts along the glycocalyx in the lumen (see Figure 1), we will show that the flow decays
exponentially away from the intercellular clefts sufficiently rapidly that restricting our model to a single intercellular
cleft has no significant bearing on the results. Additionally, we will not consider the flow within the main blood
vessel above the glycocalyx, instead imposing a constant pressure difference across the system, which extends from
the interface between the glycocalyx and the lumen at the top to the end of the intercellular cleft at the bottom.
This will allow us to obtain a relationship between the total pressure drop across and the flux through the system.
Finally, we also assume that the lumen to glycocalyx, and glycocalyx to sub-glycocalyx-space interfaces are a uniform
distance from the endothelial cell membrane.

We work in (x̂, ŷ)-coordinates, which are tangential and perpendicular to the lumen wall, respectively, and we show
a schematic of the model set-up in Figure 3. We model plasma flow within the glycocalyx as incompressible Darcy
flow

Û = −k
µ
∇P̂ , ∇ · Û = 0 for x̂ ∈ R, ŷ ∈ (h,H), (1)

with velocity Û = (Û , V̂ ) and pressure P̂ , through a porous medium with constant permeability k. As the plasma
moving through the glycocalyx does not contain blood cells, we treat it as an incompressible Newtonian fluid with
constant viscosity µ. We model the flow in the sub-glycocalyx space and in the intercellular cleft as incompressible
Stokes flow

∇p̂ = µ∇2û, ∇ · û = 0 for x̂ ∈ R, ŷ = (0, h) and |x̂| < d/2, ŷ = (−L, 0), (2)

with velocity û = (û, v̂) and pressure p̂. The entire glycocalyx and sub-glycocalyx structure has height H, the sub-
glycocalyx has height h (so 0 6 h < H) and the intercellular cleft has width d. As discussed in Sec. I, the height and
extent of the sub-glycocalyx space are largely unknown. The space could range from only existing at the cleft entrance
(the case h = 0) to extending across the entire endothelial cell membrane (the case h > 0). In the latter case, the
glycocalyx is held away from the endothelial cells by thin stems. As a modelling assumption, we neglect any effect of
these stems on the flow, and we will show that the aspect ratio of this problem results in lubrication scalings within
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the sub-glycocalyx space. Finally, as mentioned in Sec. I, when the sub-glycocalyx height or the intercellular cleft
width are comparable to the typical pore size in the glycocalyx, the two regions are indistinguishable. Mathematically,
these occur when h = O(k1/2) and d = O(k1/2), respectively. In this case, the Darcy flow equations govern all the
flow above the intercellular cleft. We will show that the limit h → 0 is singular, and does not yield the same results
as for the case where h = 0.

At the interface between the Darcy and the Stokes flow regions, we impose continuity of pressure, continuity of
flux, and a Beavers-Joseph slip condition for the tangential velocity in the sub-glycocalyx region [32, 33] as follows:

P̂ = p̂, V̂ = v̂,
a√
k

(
Û − û

)
=
∂û

∂ŷ
on Γ, (3)

where a is the dimensionless Beavers–Joseph slip coefficient and Γ is the interface between the Darcy and Stokes
regions. We emphasize that the Beavers-Joseph slip condition will not be appropriate if there is an impermeable
membrane in the Stokes region close to the permeable interface (as would occur in the limit h → 0) and, as such,
we define this interface separately for the two cases we consider. At the boundary where the intercellular cleft region
meets the endothelial cells, we impose a no-slip condition

û = 0 for |x̂| = d/2, ŷ ∈ (−L, 0). (4)

We note that when there is no sub-glycocalyx space (h = 0), we will require an additional no-flux condition at the
interface between the glycocalyx and the endothelial cells, whereas when there is a sub-glycocalyx space (h > 0), we
will require an additional no-slip condition at the interface between the sub-glycocalyx-space and the endothelial cells.
We will introduce both of these later when required. Finally, we impose a constant pressure difference of Π across the
system as follows:

P̂ = Π for x̂ ∈ R, ŷ = H, (5a)

p̂ = 0 for |x̂| < d/2, ŷ = −L. (5b)

It will also be helpful to use our model to calculate the steady fluid flux through the glycocalyx system, defined as

Q = −
∫ d/2

−d/2
v(x̂,−L) dx̂, (6)

as a function of the pressure drop. To quantify this relationship, we define the effective resistance

K =
Π

µQ
. (7)

We give typical parameter values for this system in Table I and note that there are several extreme parameter
ratios; exploiting these will facilitate our analysis. In particular, we note that: H � D - the height of the glycocalyx
is much smaller than the typical lengthscale of an endothelial cell; d � L - the width of the intercellular cleft (the
endothelial gap) is much smaller than the length of the cleft; and d � H - the width of the cleft is much smaller
than the height of the glycocalyx. Finally, we also note that k � d2, corresponding to the typical pore size in the
glycocalyx being smaller than the width of the intercellular cleft, and thus, as discussed in Sec. I, the Stokes equations
are valid within the intercellular cleft. In the two cases we consider, with and without a sub-glycocalyx space, we will
first nondimensionalize the problem appropriately, then exploit these extreme ratios to solve the system. We start by
considering the problem with no sub-glycocalyx space.

III. CASE 1: NEGLIGIBLE SUB-GLYCOCALYX SPACE

We first consider the problem with no sub-glycocalyx space, corresponding to h = 0, where the glycocalyx extends
directly to the endothelial cells. With the addition of the no-flux condition

V̂ = 0 for |x̂| > d/2, ŷ = 0, (8)

at the boundary where the glycocalyx meets the endothelial cells, the governing system for Case 1 is defined by
(1)–(5), (8). Additionally, we note that Γ, the interface for (3), is defined as

Γ = {(x̂, ŷ) : |x̂| < d/2, ŷ = 0}, (9)

for Case 1. We give a schematic of our model set-up and summarise the governing system in Figure 4.
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Variable Description Approximate value
H Height of glycocalyx layer 200 nm [4]
dp Pore width within glycocalyx 8 nm [22]
φ Porosity of glycocalyx 0.7 [27]
h Height of sub-glycocalyx space 40 nm (assumed)
D Length of endothelial cell 4000 nm [25]
L Height of intercellular cleft 400 nm [25]
d Width of intercellular cleft 10 nm [25]
Π Hydraulic pressure difference across system 3 cmH2O [27]
µ Dynamic viscosity of plasma 1.2 mPa s [35]
k Permeability of glycocalyx 0.5 nm2 [36]
a Beavers–Joseph slip coefficient Unknown

TABLE I. Approximate values of the system parameters. The height of the glycocalyx could vary from anywhere between
150–400 nm [4]. The approximate porosity of the glycocalyx is estimated by treating the glycocalyx as a hexagonal lattice of
fibres with centre-to-centre fibre separation of 20 nm and fibre radius of 6 nm [27]. The height of the sub-glycocalyx space
is unknown, though it has been observed and is expected to be between 0–50 nm [14]. For the permeability, we use the
approximation k ≈ φd2p/96 from §5.10 of [36] for a porous medium consisting of randomly orientated equal circular tubes of
diameter dp.

P̂ = Π

P̂ = p̂, V̂ = v̂,
α√
k

(
Û − û

)
=

∂û

∂ŷ

p̂ = 0

ŷ

x̂

V̂ = 0V̂ = 0

û = 0 û = 0

Glycocalyx

Intercellular cleft

CellCell

Û = −k

µ
∇P̂ , ∇ · Û = 0

∇p̂ = µ∇2û

∇ · û = 0

H

L

d

FIG. 4. Schematic of the dimensional flow problem with no sub-glycocalyx space. Darcy flow governs the dark grey region,
Stokes flow governs the light grey region, and the white regions denote the impermeable endothelial cells.

A. Dimensionless problem

We scale our variables as follows

(
Û , V̂ , û, v̂

)
=
kΠ

µH
(U, V, u, v/δ) ,

(
P̂ , p̂

)
= Π (P, p) , (x̂, ŷ) = H(x, y), (10)

where δ = d/2H. From (1), we obtain the dimensionless problem in the glycocalyx

U = −Px, V = −Py, Ux + Vy = 0 for x ∈ R, y ∈ (0, 1), (11a)

and from (2), in the intercellular cleft

px = δ2ω∇2u, py = δω∇2v, δux + vy = 0 for |x| < δ, y ∈ (−λ, 0), (11b)
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FIG. 5. The asymptotic structure of the problem in the case without a sub-glycocalyx region. The size of the asymptotic
regions have been exaggerated for illustrative purposes.

where ω = 4k/d2 and λ = L/H. Finally, the boundary and coupling conditions (3)–(5), (8) become

P = 1 for x ∈ R, y = 1, (12a)

v = δV, p = P, U − u = δα
∂u

∂y
for |x| < δ, y = 0, (12b)

V = 0 for |x| > δ, y = 0, (12c)

u = 0 for |x| = δ, y ∈ (−λ, 0), (12d)

p = 0 for |x| < δ, y = −λ, (12e)

where α = 2k1/2/ad.

B. Asymptotic structure

To facilitate our analysis, we exploit the small parameter ratios in the system and consider the asymptotic limits
of k � d2 and d � H, corresponding to ω → 0+ and δ → 0+. We proceed by performing an asymptotic analysis in
these two small parameters, and we will find that there is a distinguished asymptotic limit when ω = O(δ). Hence, we
introduce ω = δξ, where ξ = O(1). Additionally, we take λ to be of O(1), essentially a statement that the height of
the glycocalyx is of the same order as the length of the intercellular cleft, and from this we also implicitly consider the
limit d� L. The magnitude of a, the Beavers–Joseph slip coefficient, is relatively unknown, so we take α = 2k1/2/ad
to be of O(1) in Case 1, which results in a distinguished asymptotic limit from the tangential slip condition. We will
find, however, that this dimensionless grouping has no effect on the leading-order flux through the glycocalyx for this
case.

We illustrate the asymptotic structure of the problem in Figure 5. The intercellular cleft (Region III) acts as a sink
to the flow in the glycocalyx. In Region I, the channel acts as a point sink, and thus the flow magnitude is of the same
asymptotic order in both horizontal and vertical directions. In Region II the finite nature of the intercellular cleft
becomes apparent and, although the flow velocity is increased by a factor of 1/δ in Region II over that in Region I, the
flow magnitude is of the same asymptotic order in both horizontal and vertical directions. For notational purposes,
we split Region II into the glycocalyx (Region IIa) and the intercellular cleft (Region IIb). As the flow from Region II
carries on vertically downwards into Region III, the flow magnitude in Region III is the same as in Region II, though
it is directed vertically at leading order.
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C. Solving for the flow

1. Region I

We start by considering the asymptotic limit δ → 0+. As the intercellular cleft acts as a sink, the effective
leading-order problem in Region I is

∇2P = 2κδ̂(x), (13a)

where κ is a measure of the dimensionless sink strength, which will be obtained later via matching, and δ̂(x) is the

Dirac delta function. We use the hat to distinguish the Dirac delta function δ̂ from the small parameter δ. The
appropriate boundary and far-field conditions in Region I are

P = 1 for x ∈ R, y = 1, (13b)

∂P

∂y
= 0 for x ∈ R, y = 0, (13c)

∇P → 0 for |x| → ∞, y ∈ (0, 1). (13d)

The system for Region I is defined by (13) in terms of the fluid pressure, from which the fluid velocity can be obtained,
using the first two equations in (11). We may solve (13) using complex-variable theory introducing z = x+iy, with the
transformation tanhπz/4 mapping the infinite-strip domain into a semi-circle, with origin mapped to origin. Then,
the system (13) in transformed space satisfies the standard Green’s function in an infinite 2D domain, yielding the
result

P = 1 +
κ

π
<
(

log tanh
πz

4

)
, (14)

where <(·) denotes the real part. We show this Region I pressure and the streamlines it induces in Figure 6.
Additionally, we highlight that the far-field pressure is

P ∼ 1− 2κ

π
e−π|x|/2 cos

πy

2
as |x| → ∞, y ∈ (0, 1). (15)

which we note decays exponentially away from the intercellular cleft, justifying our restriction of the model to a single
intercellular cleft.

For later matching purposes, it will be useful to note from (14) that

P ∼ κ

π
log |x|+ 1− κ

π
log

4

π
as |x| → 0. (16)

We note that the Region I pressure appears to be logarithmically unbounded as we approach the intercellular cleft.
This unphysical result is remedied in the next section, where we consider the problem in Region II, the transition
region near the intercellular cleft entrance. Moreover, investigating Regions II and III in turn will allow us to determine
the value of κ (currently unknown) in terms of the system parameters.

2. Region II

We scale into Region II using x = δX = δ(X,Y ), U = U/δ = (U, V )/δ, and u = u/δ. Additionally, to capture all
the relevant terms at once, we shall treat, in a well-established fashion, logarithmically large terms as O(1).

In the glycocalyx (Region IIa), the pressure satisfies Laplace’s equation in the half-plane

∇2P = 0 for X ∈ R, Y ∈ R+, (17a)

with the flow given by U = −∇P . In the intercellular cleft (Region IIb), the governing equations become

pX = δξ∇2u, pY = δξ∇2v, uX + vY = 0 for |X| < 1, Y < 0. (17b)

The boundary and coupling conditions for this system arise from (12b–d), and are

v = V , p = P, U − u = α
∂u

∂Y
for |X| < 1, Y = 0, (18a)
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(a) (b)

FIG. 6. (a) A pressure contour map in Region I from P = 0.55 to P = 1 in increments of 0.05, as given by (14). (b) The
streamlines in Region I, as given by the complex conjugate of (14). We use κ = 0.3 for both figures.

∂P

∂Y
= 0 for |X| > 1, Y = 0, (18b)

u = v = 0 for |X| = 1, Y < 0. (18c)

In the limit of δ → 0+, we see from (17b) that the leading-order pressure within Region IIb is constant, and thus

p = B, (19)

where B is a constant to be determined via matching. In Region IIb, we note that the leading-order flow is coupled
to the first-correction to the pressure, which is of O(δ). We do not need to solve this problem to obtain the fluid flux
results in which we are interested; for an example of a related problem coupled in a similar manner where the inner
flow problem must be solved to obtain the required outer results, the interested reader is directed to [37]. For the
problem at hand, it suffices to note that the flux is conserved through Region II, and thus the flux entering Region
IIa from Region I is equal to the flux entering Region III from Region IIb. This corresponds to the mathematical
statement

lim
r→∞

∫ π

0

∂P

∂r
r dθ = lim

Y→−∞

∫ 1

−1

(−v) dX, (20)

which follows on application of the divergence theorem to the continuity equations in (17b), and where (r, θ) are polar
coordinates centred around (X,Y ) = (0, 0). That the exact details of the flow in Region IIb have no bearing on the
leading-order flux through the glycocalyx system immediately implies that the exact value of the Beavers–Joseph slip
coefficient will have no leading-order effect on the flux through the system when there is no sub-glycocalyx.

Using (19), we note that the second equation in (18a) becomes

P = B for |X| < 1, Y = 0. (21)

Hence, the system for P , consisting of (17a), (18b), and (21), decouples from the remaining dependent variables. We
solve this system using complex-variable theory in Z = X + iY , noting that the transformation cosh−1 Z maps the
half-plane-with-a-slot Z-domain into a semi-infinite rectangle, and that the logarithmic far-field matching becomes
linear in the transformed domain. Therefore, the system (17a), (18b), and (21) is solved by

P = B +
D

π
<
(
cosh−1 Z

)
, (22)

where D is a constant to be determined via matching. For the purposes of matching, we note that the far-field
behaviour of (22) is

P ∼ D

π
log |Z|+ D

π
log 2 +B as |Z| → ∞, (23)

justifying the Dirac delta function in (13). Matching between Regions I and II using (16) and (23) with van Dyke’s
matching rule [38], we deduce that

D = κ, B = 1− κ

π
log

8

πδ
. (24)
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(a) (b)

FIG. 7. (a) A pressure contour map in Region IIa from P = 0.63 to P = 0.83 in increments of 0.05, as given by (22) and (24).
(b) The streamlines in Region IIa, as given by (22) and (24). We use κ = 0.3 and δ = 0.05 in both figures.

Thus we have deduced the relevant terms in Region II in terms of κ, which is still to be determined. Using (20), the
conservation of flux condition, we note that the dimensionless flux entering Region III from Region IIb can be written
as

lim
Y→−∞

∫ 1

−1

(−v) dX = κ, (25)

and we show the Region IIa pressure and streamlines in Figure 7.
From (22) and (24), we may also determine that the flow velocity on the interface between glycocalyx and intercel-

lular cleft is

U = 0, V =
κ

π

1√
1−X2

for |X| < 1, Y = 0. (26)

There are integrable singularities in (26) at (|X|, Y ) = (1, 0), which are artefacts that arise due to the sharp corners
in our model geometry. Our remaining task is to couple the analysis thus far with the flow in the intercellular cleft,
in Region III, which will allow us to close the system and determine κ, the sole remaining free parameter, in terms of
the system parameters.

3. Region III

In Region III we use Y = Ŷ /δ and u = δû to scale the Stokes equations (17b), obtain the following at leading order

pX = O(δ2), pŶ = ξvXX + O(δ2), ûX + vŶ = 0 for |X| < 1, Ŷ ∈ (−λ, 0). (27a)

The appropriate boundary conditions are (12d,e), which become

û = v = 0 for |X| = 1, Ŷ ∈ (−λ, 0), (27b)

p = 0 for |X| < 1, Ŷ = −λ. (27c)

The system (27) is solved by

û = 0, v = C
X2 − 1

2ξ
, p = C

(
Ŷ + λ

)
, (28)

where C is a constant to be determined by one last asymptotic matching procedure between Regions IIb and III.
To match these regions, we first note from (19) and (24) that p is constant at leading order within Region II. Thus,

we are able to deduce that

C =
1

λ
− κ

λπ
log

8

πδ
. (29)
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Second, we note from the continuity equation in (27a) that the flux in Region III is conserved. As the flux into Region
III is given by (25), we may deduce that

κ = −
∫ 1

−1

v(X,−λ) dX =
2C

3ξ
, (30)

and hence

κ =
2

3ξλ+
2

π
log

8

πδ

, (31)

thus completing the asymptotic solution for Case 1.
We can calculate the dimensional flux through the system, defined in (6), using (10), (28), (29), and (31), to obtain

Q =
Π

µ

d3

12L+
d3

πk
log

16H

πd

, (32)

leading to an effective resistance, defined in (7), of

K =
12L

d3
+

1

πk
log

16H

πd
. (33)

The first term on the right-hand side of (33) is due to the intercellular cleft and the second is due to the structure of
the glycocalyx. Therefore it is the latter that will be useful in comparing the effective resistance in this case to that
in the second case, for which there is a significant sub-glycocalyx space (h > 0). We do this in the next section, where
we show that the dimensional flux and effective resistance have different dependencies on the system parameters.
Additionally, we will also show that the model we present in the next section becomes invalid when h→ 0, and that
this limit is when Case 1, the model we have considered in this section, is valid.

IV. CASE 2: SIGNIFICANT SUB-GLYCOCALYX SPACE

We now consider the problem with a sub-glycocalyx space, corresponding to 0 < h < H. With the addition of the
no-slip condition

u = 0 for |x̂| > d/2, ŷ = 0, (34)

at the boundary where the sub-glycocalyx space meets the endothelial cells, the governing system for Case 2 is defined
by (1)–(5), (34). Additionally, we note that Γ, the interface for (3), is now defined as

Γ = {(x̂, ŷ) : x̂ ∈ R, ŷ = h}. (35)

We give a schematic of our model set-up and the governing equations in Figure 8.
We will solve the system (1)–(5), (34) for h > 0 by exploiting the extreme parameter ratios discussed in Sec. II. To

highlight the important parameters in the system and facilitate an asymptotic analysis, we now nondimensionalize
the system.

A. Dimensionless problem

To obtain a distinguished asymptotic limit, we use the following lubrication-type scalings

(
Û , V̂ , û, v̂

)
=
kΠ

µH
(εU, V, u/ε, v) ,

(
P̂ , p̂

)
= Π (P, p) , (x̂, ŷ) = l(x, εy), (36)

where we preemptively define the horizontal lengthscale as

l =

(
h3(H − h)

(
ah+ 4k1/2

)

12k
(
ah+ k1/2

)
)1/2

, (37)
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P̂ = Π

P̂ = p̂, V̂ = v̂,
α√
k

(
Û − û

)
=

∂û

∂ŷ

p̂ = 0

n

t

û = 0û = 0

û = 0 û = 0

ŷ

x̂

Glycocalyx

Sub-glycocalyx

Intercellular cleft

Cell Cell

Darcy flow

Û = −k

µ
∇P̂ , ∇ · Û = 0

Stokes flow

∇p̂ = µ∇2û, ∇ · û = 0

H

h

L

d

FIG. 8. Schematic of the dimensional flow problem with a sub-glycocalyx. We consider a two-dimensional set-up, with the
impermeable sub-glycocalyx and intercellular cleft walls representing the endothelial cells. Darcy flow governs the dark grey
region, Stokes flow governs the light grey region, and the white regions denote the impermeable endothelial cells.

which describes the typical horizontal extent of flow in the glycocalyx, and we define the dimensionless aspect ratio
as ε = H/l. In (37), the ah and k1/2 terms arise due to the Beavers-Joseph interfacial condition, and the remaining
terms arise due to the geometry of the glycocalyx.

Using the scalings (36), we obtain the following dimensionless governing equations in the glycocalyx

U = −Px, V = −Py, ε2Ux + Vy = 0, (38a)

and in the sub-glycocalyx and intercellular cleft

px = β
(
uyy + ε2uxx

)
, py = ε2β

(
vyy + ε2vxx

)
, ux + vy = 0. (38b)

Here, we define the dimensionless parameters η = h/H, α = k1/2/aH, and β = kl2/H4 and, for clarity, we use the
following domain descriptions

Glycocalyx = {(x, y) : x ∈ R, y ∈ (η, 1)}, (39a)

Sub-glycocalyx = {(x, y) : x ∈ R, y ∈ (0, η)}, (39b)

Intercellular cleft = {(x, y) : x ∈ (−δ, δ), y ∈ (−ν/ε, 0)}, (39c)

where we additionally define the dimensionless parameters δ = d/2l and ν = L/l. We note that β can be written in
terms of η and α but, to avoid cumbersome expressions in the dimensionless system for Case 2, we retain its use. We
will discuss the asymptotic sizes of our dimensionless parameters in Sec. IV B. Finally, the dimensionless boundary
and coupling conditions are

P = 1 for x ∈ R, y = 1, (40a)

v = V, p = P, u− ε2U = −α∂u
∂y

for x ∈ R, y = η, (40b)

u = 0 for |x| > δ, y = 0, (40c)

u = 0 for |x| = δ, y ∈ (−ν/ε, 0), (40d)

p = 0 for |x| < δ, y = −ν/ε. (40e)
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Region Ia

Region Ib Region Ib

Region II

Region III

O(1/ǫ)

O(1)

1

O(1/ǫ)

2δ

FIG. 9. The asymptotic structure of the problem in the case with a sub-glycocalyx region. For visual clarity, the asymptotic
regions are not to scale.

B. Asymptotic structure

We consider the asymptotic limits of H/l � 1 and d/L � 1, with the remaining dimensionless parameters being
of O(1). These asymptotic limits correspond to lubrication flow in the sub-glycocalyx layer and in the intercellular
cleft, respectively. The first limit follows from k � h2, which is required for the Stokes region to be distinguishable
from the Darcy region (as discussed in Sec. II), and the second limit follows from having a long, thin intercellular
cleft; in terms of dimensionless parameters, these asymptotic limits are ε → 0+ and δ → 0+. We proceed by
performing an asymptotic analysis in these two small parameters. With regards to η = O(1), we note from (37) that
ε = O(k1/2/hη1/2) as h → 0. As k1/2/h � 1, and we must have ε � 1 for the asymptotic analysis that follows
to be valid, we see that our asymptotic limit will break down when η is small - specifically, when η = O(k/h2),
which corresponds to h = O((kH)1/3) (approximately h = 5 nm using Table I). To summarise, if η = O(1) then the
lubrication scalings in this section are valid; however, as η becomes small the horizontal extent of the flow becomes
of O(H) and our analysis in Sec. III is valid. Finally, although the value of a, the Beavers–Joseph slip coefficient,
is unknown, we take the dimensionless α to be of O(1) as this results in a distinguished asymptotic limit from the
tangential slip condition, and will allow us to quantify the influence of the parameter a fully.

We show the asymptotic structure of the problem in Figure 9. At leading order in Region I, the flow is vertical in the
glycocalyx (Region Ia), but horizontal in the sub-glycocalyx (Region Ib). As the leading-order flow in the intercellular
cleft is also vertical, the transition from horizontal to vertical occurs close to the intercellular cleft entrance, which
we term Region II. In this region, the effect of flow from Region Ia is not felt at leading order. Finally, Region II
transitions into Region III, the main intercellular cleft region. Here, the leading-order flow is vertical.

C. Solving for the flow

In the glycocalyx (Region Ia) and sub-glycocalyx (Region Ib), the leading-order system is obtained by taking the
limit ε→ 0+ in (38). In Region Ia, the leading-order equations are

U = −Px, V = −Py, Vy = 0 for x ∈ R, y ∈ (η, 1), (41a)

and in Region Ib they are

px = βuyy, py = 0, ux + vy = 0 for x ∈ R, y ∈ (0, η). (41b)

The relevant boundary conditions for Region I are the leading-order versions of (40a)–(40c), i.e.

P = 1 for x ∈ R, y = 1, (42a)

v = V, p = P, u = −α∂u
∂y

for x ∈ R, y = η, (42b)
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u = 0, v = 0 for x ∈ R, y = 0. (42c)

To solve this system we first determine the flow in the sub-glycocalyx in terms of p, then we use the coupling
conditions to solve for the flow in the glycocalyx, also in terms of p, then this will enable us to obtain a closed
governing equation for p. This will also require an asymptotic matching procedure with Regions II and III (carried
out in Appendix A) to close the system.

We solve (41b) with the tangential slip condition in (42b) and the no-slip condition (42c) to obtain

u =
1

2β

(
y2 − η η + 2α

η + α
y

)
dp

dx
, v =

1

12β

(
3η
η + 2α

η + α
y2 − 2y3

)
d2p

dx2
, (43)

noting that p = p(x), which will be determined from (45) below. Then, using (41a), (42a), and the continuity of flux
condition in (42b), we deduce

U =
y − 1

1− η
d3p

dx3
, V =

1

1− η
d2p

dx2
, P = 1 +

1− y
1− η

d2p

dx2
, (44)

where the reduction of the right-hand side for V follows from the definitions of l and β in Sec. IV A. Then, imposing
the continuity of pressure condition in (42b), we obtain the governing equation

d2p

dx2
− p = −1 + (2γp(0, 0)) δ̂(x, y), (45)

where δ̂(x, y) is a Dirac delta function which appears from matching with Regions II and III (performed in Appendix
A), and

γ =
d3

4hL

(
(H − h)(ah+ k1/2)

3kh(ah+ 4k1/2)

)1/2

. (46)

In (45), the right-hand side represents the pressure forcing in the system, from just above the glycocalyx to the
entrance of the intercellular channel. In particular, the Dirac delta function in (45) arises from continuity of flux
across Region II, from which we are also able to determine Q, the dimensional fluid flux through the system, in terms
of the pressure at the cleft entrance, given by

Q =

(
Πd3

12µL

)
p|x=0. (47)

The solution to (45) is

p = 1− γ

1 + γ
e−|x|, (48)

and we illustrate p(x) for different values of γ in Figure 10. We note that the pressure (and thus the flow) decays
exponentially away from the intercellular cleft, justifying our restriction of the model to a single intercellular cleft.
The non-analyticity in (48) arises from the intercellular cleft appearing as a point sink in this region. It could be
smoothed out by solving for the pressure within Region II in Appendix A 1, but we restrict that analysis to deriving
the information required to close the system.

Using (46) and (48) in (47), we may calculate the dimensional flux through the system in terms of the system
parameters, given by

Q =
Π

µ

d3

12L+ d3

(
3(H − h)(ah+ k1/2)

kh3(ah+ 4k1/2)

)1/2
. (49)

We can then use (49) to determine the effective resistance, defined in (7), as

K =
12L

d3
+

(
3(H − h)(ah+ k1/2)

kh3(ah+ 4k1/2)

)1/2

. (50)

In a similar manner to (33), the first term on the right-hand side of (50) is due to the intercellular cleft, and the second
to the structure of the glycocalyx. Therefore, the second is the more useful for comparing the effective resistance
between cases.
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FIG. 10. The pressure distribution within the sub-glycocalyx region for γ = 0.1, 0.5, 1, 2, 10, as defined in (48).

Case 1 Case 2
Horizontal extent of flow in eGlx O(H) O(l)

Magnitude of vertical flow in eGlx O

(
kΠ

µd

)
O

(
kΠ

µH

)
Magnitude of horizontal flow in eGlx O

(
kΠ

µH

)
O

(
kΠ

µl

)
Magnitude of vertical flow in sub-glycocalyx space N/A O

(
kΠ

µH

)
Magnitude of horizontal flow in sub-glycocalyx space N/A O

(
kΠl

µH2

)
Effective resistance due to glycocalyx structure

1

πk
log

16H

πd

√
3(H − h)(ah+ k1/2)

kh3(ah+ 4k1/2)

TABLE II. A comparison of the differences between the two cases we consider in this paper.

V. COMPARISON BETWEEN CASES

Our asymptotic results allow us to determine the key differences between the flow structures in each case. In
this section, we restate and summarise these results for convenience and compare them. We summarize the key
quantitative differences in Table II. Recall that parameter definitions are given in Sec. II.

In Case 1, where the sub-glycocalyx space is negligible, the horizontal extent of the flow within the glycocalyx is
of O(H), the same order as the height of the glycocalyx. The horizontal extent of the flow is much larger when the
sub-glycocalyx space is significant (Case 2), where it is of O(l), given by

l =

(
h3(H − h)

(
ah+ 4k1/2

)

12k
(
ah+ k1/2

)
)1/2

, (51)

originally given in (37). Using (51), we note that l � H is self-consistent with our observation in Sec. IV B that
we require h3 � Hk for Case 2 to be valid. Therefore, our results suggest that a significant sub-glycocalyx gap
causes a greater horizontal extent of the glycocalyx to be used for filtration (which is advection-dominated). If the
sub-glycocalyx gap is negligible, only the parts of the glycocalyx near each intercellular cleft will be used for filtration.

We may also use our asymptotic results (summarised in Table II) to obtain the magnitude of the flow within
the glycocalyx in each case. In Case 1, the horizontal velocity in the main part of the glycocalyx has magnitude
of O(kΠ/(µH)), and the vertical velocity has magnitude of O(kΠ/(µd)). Therefore, the magnitude of the vertical
velocity is significantly higher than that of the horizontal, and the streamlines are vertical to leading order within the
glycocalyx. In Case 2, the horizontal velocity in the main part of the glycocalyx has magnitude of O(kΠ/(µl)), and
the vertical velocity has magnitude of O(kΠ/(µH)). Therefore, the streamlines are again vertical to leading-order
within the glycocalyx here, but the strength of the flow within the glycocalyx is significantly smaller than in Case
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FIG. 11. The effective resistance for the two cases we have considered in this paper, with and without a sub-glycocalyx space,
given in (52). As discussed in the main text, the case with a sub-glycocalyx space is valid for larger values of h, and the case

with a negligible sub-glycocalyx space becomes valid when h = O((kH)1/3) ≈ O(5 nm), which is very close to the intersection
point between the two lines. We use the parameter values in Table I, with variable h. We also use a = 0.025, corresponding to
a = (2k)1/2/h if we were to fix h = 40 nm.

1. This is because the horizontal extent of the flow is far greater. Within the sub-glycocalyx region in Case 2, the
horizontal velocity has magnitude of O(kΠl/(µH2)), and the vertical velocity has magnitude of O(kΠ/(µH)). Here,
the streamlines are horizontal to leading order, as fluid from a large horizontal extent must be transported to the
intercellular cleft in the centre of the domain.

It is also helpful to compare the effective resistances in each case, given by

K =
12L

d3
+

1

πk
log

16H

πd
in Case 1, (52a)

K =
12L

d3
+

(
3(H − h)(ah+ k1/2)

kh3(ah+ 4k1/2)

)1/2

in Case 2, (52b)

originally given in (33) and (50), respectively. In Figure 11, we compare the two resistances in (52) graphically. In
both expressions, the first term on the right-hand side is the resistance due to the intercellular cleft and the second
term on the right-hand side is the resistance due to the glycocalyx structure. The appropriate comparison is therefore
between the second term on the right-hand sides of the effective resistances.

In particular, we note that the effective resistance in Case 2 decreases as h increases (Figure 11); the presence of
a sub-glycocalyx results in a lower effective resistance through the system, and this allows for a greater fluid flux
through the glycocalyx structure for a given pressure difference, as one might expect on physical grounds. Although
a naive inspection of (52b) would suggest that K scales with h−3/2 as h→ 0, our Case 1 analysis tells us that this is
not the case: in fact, the effective resistance from Case 2 is bounded as h is reduced, as seen from (52a), and Case 1
becomes a more appropriate model when h = O((kH)1/3).

We also note that the effective resistance has an inversely proportional relationship with the effective permeability
k for Case 1, but an inverse square root relationship for Case 2. Thus, the permeability of the glycocalyx is more
important when there is a negligible sub-glycocalyx space. Perhaps less intuitively, we note that the effective resistance
has a logarithmic relationship with the height of the glycocalyx H for Case 1, but a square-root relationship for Case
2. Thus, a thicker glycocalyx increases the effective resistance (with diminishing returns) in both cases, but this effect
is more pronounced in Case 2.

Finally, we note that the Beavers–Joseph slip coefficient a does not contribute to the leading-order effective resistance
in Case 1. However, in Case 2 we see that although the effective resistance increases as a increases, the effect of varying
a is fairly small. That is, as a varies from 0 to ∞, the second term on the right-hand side of (52b) only increases by
a factor of two. This is significantly less than the effect of the other system parameters.

VI. DISCUSSION

We investigated the flow through the glycocalyx for two plausible structures of the glycocalyx - the first with a
negligible sub-glycocalyx space, the second with a significant sub-glycocalyx space. In the analysis of both cases, we
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exploited the small aspect ratio in the geometry of the problem to investigate the system via an asymptotic reduction.
Our asymptotic analysis allowed us to derive analytic results for the flow through the glycocalyx in terms of the
system parameters. We found that when the sub-glycocalyx space was significant, the horizontal extent of the flow
was far greater, providing an estimate of the proportion used for filtration. Moreover, the presence of a sub-glycocalyx
gap provided less overall resistance for the plasma flow through the system, allowing for a greater flux for a given
pressure drop. We summarise the key differences between the two cases in Sec. V. Our theoretical predictions provide
a way to estimate some microscale properties of the glycocalyx, such as the permeability, that cannot be calculated
using current imaging technology.

We note that the flux we calculate in this paper, Q, has units of area per time. To obtain the fluid filtration flux
across the capillary wall per unit area used in the revised Starling hypothesis, which has units of length per time, we
can multiply Q/2 by the typical perimeter of an endothelial cell and divide this by the typical area of an endothelial
cell, both as viewed on the surface of the capillary wall. We use the factor of 1/2 to counter the double-counting of
adjacent cells. Using Table I for typical parameter values, and assuming that an endothelial cell is approximately
circular on the surface of a capillary wall, this yields a fluid filtration flux across the capillary wall per unit area of
approximately 2Q/D = 2Π/µKD = 0.04 – 0.2µm s−1, where the lower bound of our estimate corresponds to the case
where the height of the sub-glycocalyx space is negligible. Here, D is the typical ‘diameter’ of the cell as seen on the
surface of the capillary wall, Π is the difference in hydraulic pressure across the glycocalyx system, µ is the viscosity
of the interstitial fluid, and K is the effective resistance, defined in (33) and (50) for the cases where the height of
the sub-glycocalyx space is negligible and significant, respectively. Although our approximation shows reasonable
agreement with measured fluid filtration fluxes [26], it does slightly overestimate the fluid filtration flux. We attribute
this overestimation to the fact that our model does not take any solute transport into account: both the osmotic
pressure across the glycocalyx and an increase in the effective plasma viscosity due to solute transport would cause
lower values of the fluid filtration flux. We also note that, in a similar manner to the above, we are able to estimate the
local hydraulic conductivity present in Starling’s hypothesis by 2/µKD. This provides a way to link the microscale
properties of the glycocalyx with the macroscale properties used in Starling’s hypothesis. Additionally, although we
do not consider the solute transport problem here, it would be possible to model the effect of an oncotic pressure
by modifying the effective pressure difference across the endothelial glycocalyx layer. As the pressure difference is a
multiplicative scaling of the variables in the problem, this would not qualitatively change any flow properties.

The two parameters of which we have the most uncertainty are the Beavers–Joseph slip coefficient and the height of
the sub-glycocalyx layer, with no information regarding the former. As our model predicts the effective resistance and
flux through the system, we could use these results to predict these two parameters by data fitting with appropriate
experiments. However, we do note that our model suggests that the exact value of the Beavers–Joseph slip coefficient
is unimportant to the effective resistance and flux through the system when the height of the sub-glycocalyx space is
negligible.

With regards to the sub-glycocalyx layer, our analysis suggests several experiments that could be carried out to
determine the extent of this space. As noted above, one of the key differences between the two cases is the horizontal
extent of the flow within the glycocalyx structure. Therefore, it would be possible to estimate the extent of the
sub-glycocalyx space if it were possible to track streamlines of the flow. This would ideally be carried out in real-time,
although this may be too delicate to carry out with current technology. An alternative method could be to track
the distribution of non-binding large molecules being sieved through the glycocalyx structure, for example organic
nanodots [39]. If the majority of the molecules were deposited in very localized horizontal regions, this would provide
evidence for a negligible sub-glycocalyx space. However, if the large molecules were deposited more uniformly in the
horizontal direction, this would provide evidence for a significant sub-glycocalyx space, with the extent of deposition
being related to the height of the sub-glycocalyx space. An additional experiment to determine the extent of the
space takes advantage of our theoretical predictions that the effective resistance of the glycocalyx has a square root
dependence on the glycocalyx height when the sub-glycocalyx space is significant, but only a logarithmic dependence
when the space is negligible. If systematic experiments could be carried out using the glycocalyx height as a variable
parameter, perhaps by biochemical manipulation, this could shed light on the height and extent of the sub-glycocalyx
space.

A theoretical understanding of how the flow through the endothelial glycocalyx layer is affected by a sub-glycocalyx
space is an important first step towards understanding the size of such a space. Although we could model the effect of
an oncotic pressure in the manner mentioned above, it is our hope that the hydrodynamical results we have derived in
this paper will be formally combined with models for molecular transport, such as [40], and used to predict outcomes
that cannot be directly obtained directly through experimental procedures.

In this paper we have neglected additional factors which might affect transport, such as electric effects generated
by the active transport of ions across the cell membrane [41] and glycocalyx deformability [4]. While the framework
we have introduced could be modified to account for these effects, it is also helpful to hypothesize on how these
effects may change our results. If the electrokinetic effects led to flow reversal near the endothelial cells, as seen in
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[42], this would lead to an increase in the effective flow resistance. Although this effect would be more pronounced
when the hydrostatic pressure difference across the endothelial glycocalyx layer was smaller, it is worth noting that
a recent model for fluid transport across the retinal pigment epithelium (RPE) accounting for electrokinetic effects
suggests that the electroosmotic effects were around three orders of magnitude smaller than osmotic effects for water
transport [43]. Given that one would expect the net hydrostatic and osmotic pressure difference across the RPE to
be lower than that across a vascular wall, the inclusion of electrokinetic effects is unlikely to have a significant effect
on the effective flow resistance. However, the electrokinetic effects would be important for ion transport, and we
would expect the negative endothelial glycocalyx fixed charge density to contribute directly to molecular transport
by effectively changing the pore size, particularly for larger molecules such as albumin with a reflection coefficient
close to 1. With regards to glycocalyx deformability, while a increased external pressure may compress the glycocalyx
slightly, decreasing its permeability and the size of any sub-glycocalyx space, it would also make the glycocalyx
shorter, reducing the distance fluid has to travel. As these two mechanisms have competing effects on the filtration
resistance, it is likely that the exact way in which glycocalyx compression affects its permeability would be important.

We have modelled the flow in the intercellular cleft using the lubrication equations. However, we note that if the
cleft width were comparable to the typical pore size in the glycocalyx it would be possible to use the Darcy flow
equations in the cleft region instead of the lubrication equations. Although it would not change the nature of our
solutions (we would obtain the same results averaged over the cleft cross-section), if the entire system were to be
solved numerically it may be preferable to pose the Darcy flow equations instead of the lubrication equations when
there is no sub-glycocalyx space (Case 1), since this avoids the issue of coupling different flow domains.

We also note that we have ignored the effect of any junction strands within the intercellular cleft for mathematical
expediency. Although we expect this cleft to have an effect on the flow, we do not expect it to qualitatively affect the
flow within either the glycocalyx or the sub-glycocalyx space. By changing the geometry of the problem we consider
here, it would be possible to extend this work to consider the effect of a junction strand within the intercellular cleft
as well as the effect of a sub-glycocalyx space. Moreover, our model does not fully account for the slow variation
(compared to the ‘fast’ variation associated with the distance between intercellular clefts) of pressure along a blood
vessel over many endothelial cells. This is because we have assumed the pressure to be constant at the top of the
glycocalyx. While this is likely to be correct at leading order, a more refined model could include the effect of blood
flowing within the lumen above the glycocalyx, which would involve a slow variation of pressure along the top of the
glycocalyx, and the periodic distribution of many intercellular clefts. As this is a multiscale problem, one could use
homogenization theory [44] to upscale this microscale problem systematically to derive a homogenized equation which
describes the flux over the macroscale.
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Appendix A: Closing the sub-glycocalyx problem

1. Region II

In this Appendix, we derive the closure conditions for Region Ib in the case with a sub-glycocalyx space. When
x = O(δ) in Region Ib, the finite nature of the intercellular cleft becomes apparent. In this transition region, which
we define as Region II (see Figure 9), the vertical velocity grows in magnitude to accommodate the transition from
horizontal to vertical flow within the intercellular cleft. Thus, we must additionally scale v = O(1/δ). In this region,
the relative sizes of ε and δ become important. We consider the distinguished limit where h = O(d), corresponding
to εη = O(δ), and thus we write εη = δψ, where ψ = O(1). Writing x = δx̄ and v = v̄/δ, and using the asymptotic
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expansions

p ∼ 1

1 + γ
+ δp1, u ∼ u0, v̄ ∼ v̄0, (A1)

noting that p is constant at leading-order in this region, where γ is defined in (46), we obtain the governing equations

p1x̄ = β

(
u0yy +

ψ2

η2
u0x̄x̄

)
, p1y =

ψ2β

η2

(
v̄0yy +

ψ2

η2
v̄0x̄x̄

)
, u0x̄ + v̄0y = 0. (A2)

The flux through this region is conserved, and thus

lim
x̄→∞

∫ 1

0

u(x̄, y) dy − lim
x̄→−∞

∫ 1

0

u(x̄, y) dy = lim
y→−∞

∫ 1

−1

v̄(x̄, y) dx̄, (A3)

where there is no contribution from Region Ia because of the asymptotic increase from v to v̄. As we see from (A2),
the leading-order flow is coupled to the first-order pressure, resulting in the Stokes equations. As we do not require
any further results from this region, we proceed straight to Region III.

2. Region III

To move from Region II to Region III, we further scale y = ȳ/δ and u = δū. Using εη = δψ again, the governing
equations become

px̄ = O(δ
2
), pȳ =

ψ4β

η4
v̄x̄x̄ + O(δ

2
), ūx̄ + v̄ȳ = 0 for |x̄| < 1, y ∈ (−νη/ψ, 0) (A4a)

The boundary conditions are

ū = 0, v̄ = 0 for |x̄| = 1, y ∈ (−νη/ψ, 0), (A4b)

p = 0 for |x̄| < 1, y = −νη/ψ. (A4c)

The system (A4) is solved by

ū = 0, v̄ =
Aη4

2ψ4β

(
x̄2 − 1

)
, p = A

(
ȳ +

νη

ψ

)
, (A5)

where A is an as-of-yet unknown constant. To obtain (45), and the delta function within, we note that the pressure
at ȳ = 0 is given by

p(x̄, 0) = Aνη/ψ, (A6)

and the total dimensionless flux out of the channel (and the system) is given by

−
∫ 1

−1

v̄(x̄,−ν/ψ) dx̄ =
2Aη4

3ψ4β
. (A7)

Noting that the flux is conserved within Region III, we can combine (A3), (A6), and (A7) with (43), the solutions for
the flow in Region Ib, to deduce the form of the delta function in (45), thereby closing the system.
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