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A multiscale method to calculate filter blockage
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Filters that act by adsorbing contaminant onto their pore walls will experience
a decrease in porosity over time, and may eventually block. As adsorption will
generally be greater towards the entrance of a filter, where the concentration of
contaminant particles is higher, these effects can also result in a spatially varying
porosity. We investigate this dynamic process using an extension of homogenization
theory that accounts for a macroscale variation in microstructure. We formulate
and homogenize the coupled problems of flow through a filter with a near-periodic
time-dependent microstructure, solute transport due to advection, diffusion and filter
adsorption, and filter structure evolution due to the adsorption of contaminant. We
use the homogenized equations to investigate how the contaminant removal and
filter lifespan depend on the initial porosity distribution for a unidirectional flow.
We confirm a conjecture made by Dalwadi et al. (Proc. R. Soc. Lond. A, vol. 471
(2182), 2015, 20150464) that filters with an initially negative porosity gradient have
a longer lifespan and remove more contaminant than filters with an initially constant
porosity, or worse, an initially positive porosity gradient. In addition, we determine
which initial porosity distributions result in a filter that will block everywhere at once
by exploiting an asymptotic reduction of the homogenized equations. We show that
these filters remove more contaminant than other filters with the same initial average
porosity, but that filters which block everywhere at once are limited by how large
their initial average porosity can be.
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1. Introduction
Filtration is a vital process in many industries, such as kidney dialysis (Lonsdale

1982), air purification (Barhate & Ramakrishna 2007), waste water treatment
(Vandevivere, Bianchi & Verstraete 1998) and beer production (Fillaudeau & Carrère
2002). Although the industrial applications may vary widely, the main goal is often
the same: to maximize the removal of contaminants or particulates entrained within
the fluid that passes through the filter. Since a single experiment may take hours to
complete, mathematical modelling provides a valuable tool for assisting with filter
design.
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A multiscale method to calculate filter blockage 265

Broadly speaking, filters are composed of either material containing a series of
pores (e.g. track-etched membranes) or a fibrous mesh (e.g. so-called depth filters).
In the former case, if the contaminants are larger than the pores, filtration occurs
at the pore entrance via size exclusion. A cake layer of particulates builds up on
the entrance, making it more difficult for fluid to pass through the filter. When the
contaminants are smaller than the pores, they are able to penetrate into the pores,
where they may become trapped in the tortuous pore network and adhere to the
pore walls. This reduces the available space through which contaminated fluid can
flow, and again makes it more difficult for fluid to pass through the filter (Griffiths,
Kumar & Stewart 2014). Filters composed of a fibrous mesh provide an internal
structure of obstacles to which the contaminants can adsorb. As with filters composed
of pores, the physical trapping of particulates within the filter will cause a reduction
in the available space through which the fluid can flow. Since the contaminants are
removed as the fluid flows into the filter depth, their concentration decreases with
depth and so this constriction effect is usually more significant towards the filter
entrance (Datta & Redner 1998). Over time, this constriction may ultimately become
a blockage, halting filtration. To prolong lifespan, filters are often designed such
that their porosity decreases with depth, allowing areas of the filter away from the
entrance to have trapped more contaminants by the time of blocking (Anderson 1951;
Burggraaf & Keizer 1991; Dickerson et al. 2005; Barg, Koch & Grathwohl 2009;
Vida Simiti et al. 2012). These are known as porosity-graded filters. Moreover, an
initially homogenous filter will become graded over time as the local porosity changes
due to local contaminant trapping.

While mathematical methods can provide a cost-effective way to predict solute
transport without experimentally sweeping through parameter space, the explicit
coupling of solute transport with filter evolution yields a complicated moving
boundary problem. This significantly increases the mathematical and computational
effort required to solve the system and, as such, many mathematical models of
filtration consider only one of these mechanisms. That is, either the problem of solute
transport, or the problem of filter evolution. For example, in Griffiths et al. (2014),
the filter evolution is considered by simulating a microscale model (on the lengthscale
of pore size) for the blocking of a network of pores from a fundamental mechanistic
level. While the results are consistent with the standard set of constitutive macroscale
laws (on the lengthscale of filter size) used to predict fluid throughput (often fitted
with experimental data) (Bowen, Calvo & Hernandez 1995), the flow problem is
simplified by assuming Poiseuille flow through the constricting cylindrical pores. This
idea is generalized to explore the effect of tapered pores and filters composed of
multiple membrane layers in Griffiths, Kumar & Stewart (2016). A different approach
to the problem of solute transport past sinks is used in Chernyavsky et al. (2011),
where the authors considered blood flow and nutrient delivery in the placenta. Here,
the transport of nutrient governed by diffusion and advection with unidirectional flow
past randomly placed point sinks in the placenta is considered in one dimension. The
effect of placental growth and the nature of the local flow are neglected to focus
on the important features of the paper, such as quantifying the error in upscaling
techniques. The authors do this by analytically determining the concentration field
for different statistical distributions of the sinks using homogenization techniques
and comparing these to exact solutions. In Krehel, Muntean & Knabner (2015), the
authors also use homogenization techniques to consider colloid particles diffusing
around a fluid domain past a periodic array of solid obstacles. The particles are
trapped on the surface of these obstacles, where they may aggregate.
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266 M. P. Dalwadi, M. Bruna and I. M. Griffiths

Mathematical homogenization provides an upscaling method whereby the fundamen-
tal behaviour of concern, such as the contaminant removal rate, is captured without
the computational expense of globally calculating the microscale behaviour. This
is achieved by averaging the microscale variation while retaining the macroscale
variation (see, for example, Bensoussan, Lions & Papanicolaou 1978, Sánchez-
Palencia 1980, Mei & Vernescu 2010, Hornung 2012). For this procedure to be valid,
it is necessary for the ratio between microscale and macroscale lengthscales to be
small. Although traditional homogenization techniques also require the microstructure
to be strictly periodic, it can be extended to microstructures that are only near-periodic.
Some relevant formal analysis results include Belyaev, Pyatnitskii & Chechkin (1998)
and Chechkin & Piatnitski (1999), and more applied work using this homogenization
method includes van Noorden (2009), Peter & Böhm (2009), Fatima et al. (2011),
van Noorden & Muntean (2011), Richardson & Chapman (2011), Ray et al. (2012)
and Ray, Elbinger & Knabner (2015). Of these, Ray et al. (2012) is particularly
relevant to the work in this paper. Here, the authors considered the dynamics of
colloids suspended within a fluid moving past circular obstacles in a square array.
The colloidal particles were transported by diffusion, advection and an interaction
potential between particles, and were able to attach to and detach from the obstacles.
The colloidal attachment to the obstacles caused the microstructure to vary from
its initially strictly periodic state. The authors used near-periodic homogenization
techniques to upscale the problem, deriving averaged equations for the flow problem,
the colloidal transport and the microstructure evolution, which were all coupled. The
solution scheme for these homogenized equations involved solving a cell problem at
each point in time and space in the macroscale domain, and the results focused on
the impact of the interaction potential between colloidal particles.

Whilst this extension of standard homogenization theory to near-periodic micro-
structures is very useful, the added generality of the extension comes with a drawback.
A varying microstructure means that the cell problem must be solved at every point
in the macroscale, increasing the computational expense required to solve the problem.
This issue is bypassed in Bruna & Chapman (2015), by considering a microstructure
consisting of an array of spherical obstacles whose radii vary spatially over the
macroscale length. Imposing a specific one-parameter shape on the microstructure
means that the cell problem is identified by a single parameter, the cell porosity,
and the macroscale equation can be written explicitly as a function of the porosity.
Moreover, as the cell problems are only dependent on the cell porosity, the coefficients
for the macroscale problem can be calculated beforehand, yielding a macroscale
problem that can be solved at a significantly reduced computational expense.

In a previous work (Dalwadi et al. 2015), we considered solute transport through
a porosity-graded filter. The filter was modelled as a series of fixed spherical
obstacles with a near-periodic spatial variation on the macroscale, through which
the contaminated fluid flowed. The techniques developed in Bruna & Chapman
(2015) were used to derive a homogenized advection–diffusion–reaction macroscale
equation, where the cell problems defining the macroscale coefficients were only
dependent on the cell porosity. Although the particles that make up the solute would
physically accumulate on the surface of each obstacle, causing the filter geometry
to vary over time, we assumed that the particles were sufficiently small and dilute
that this effect was negligible on the timescale of interest. Thus, we did not consider
the filter evolution or the subsequent filter blocking. We showed that filters whose
porosity decreases with depth have a much more uniform adsorption than those with
increasing porosity. Moreover, we conjectured that such uniform adsorption would

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/jfm.2016.656
Downloaded from http:/www.cambridge.org/core. University of Nottingham, on 11 Nov 2016 at 16:06:13, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/jfm.2016.656
http:/www.cambridge.org/core


A multiscale method to calculate filter blockage 267

prolong filter lifespan, as contaminant removal would be distributed throughout the
filter rather than near the filter entrance, and thus blocking may occur ‘all at once’
rather than in just one place. The aim of this paper is to confirm this conjecture, to
quantify the time-dependent evolution of the filter and to determine how to construct
a filter that will block all at once.

In this paper, we derive a generalized mathematical model for a porosity-graded
filter which explicitly accounts for changes in the filter microstructure over time due to
particle adsorption. The time evolution of the filter geometry means that the full fluid
and transport problems are coupled. We use a homogenization method that accounts
for a microstructure that varies over the macroscale to systematically determine an
effective macroscale equation. The filter material is modelled as a lattice of obstacles,
whose size varies both spatially over a long lengthscale and temporally, past which
a fluid with suspended contaminant particles flows. The particles are transported via
advection and diffusion, and can be trapped on the filter as they come into contact
with the obstacles. The accumulation of contaminant particles via trapping modifies
the filter geometry, and this process eventually leads to pore blockage within the filter.
We assume that the contaminant particles are small and in dilute suspension within the
fluid. Thus, particle–particle interactions are negligible, and the dominant interaction
is the adsorption of contaminant on the obstacles, which we assume is proportional
to the concentration of contaminant at the surface. Due to the slow accumulation of
contaminant particles, the cell problems we obtain are only dependent on the cell
porosity, allowing us to solve the macroscale problem we derive in a computationally
efficient manner.

We present the full flow and contaminant transport problems in § 2, and homogenize
these to obtain effective equations on the macroscale in § 3. In § 4 we investigate
the effect of blocking by considering a filter whose porosity varies in one direction
only, with a unidirectional flow in the same direction as the porosity gradient. We use
asymptotic methods to significantly reduce the computational expense of solving our
system, allowing us to perform an efficient parameter sweep, and we use our results to
validate the conjectures made in Dalwadi et al. (2015). In addition, these asymptotic
results allow us to solve the inverse problem of determining which initial porosity
distributions result in filters that block everywhere at once. We conclude in § 5 with
an overview and discussion of our results, and we discuss the challenge of determining
the filter that globally optimizes contaminant removal.

2. Model description

We consider the transport of contaminant particles via advection and diffusion
through a porosity-graded filter, and its resulting blocking. The filter is modelled as a
collection of infinitely long solid cylindrical fibres with circular cross-section, whose
axes are parallel and where the fluid flows normal to these axes. Contaminants can
adsorb onto the solid fibre surface (obstacle surface) and, over time, the build-up
of contaminant will result in a reduction in porosity. We describe the contaminant
particle distribution in terms of the concentration c̃(x̃, t̃), where c̃ is the number of
moles of contaminant per unit volume, x̃ is the spatial vector coordinate and t̃ is
time.

Although the problem we have described is three-dimensional, the inherent
symmetry allows us to consider a two-dimensional problem as follows. The
concentration field is defined within the fluid phase of the domain Ωf (t̃) ⊂ R2.
We denote the entire domain by Ω ⊂ R2, which we refer to as the porous medium.
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FIGURE 1. Model schematic in two dimensions. (a) An example in which the macroscale
porosity decreases in the direction of the flow. (b) A magnified view of a given cell ω(x, t),
with microscale coordinate y ∈ [−1/2, 1/2] × [−√3/2,

√
3/2].

We define the solid phase of the domain as Ωs ⊂ R2, noting that Ωs(t̃)=Ω \Ωf (t̃),
and we define the boundary between fluid and solid phases, ∂Ωf (t̃), which we refer
to as the obstacle surface.

The solid phase is modelled by a collection of fixed non-overlapping discs, whose
centres are located on a hexagonal lattice at a distance δl apart, where δ is a (small)
dimensionless parameter and l is the characteristic filter depth. Thus, δ� 1 is the ratio
of fibre centre separation and filter depth. We allow the radii of the circles to vary in
both space and time, and a circle with centre at x̃ has radius R̃(t̃; x̃), where 2R̃ 6 δl
and blocking occurs when equality is reached. Thus, blocking does not correspond
to the fraction of solid phase reaching 1. We use a hexagonal lattice in contrast to
the cubic lattice used by Dalwadi et al. (2015) so that we can reach a higher solid
fraction at the point of blocking: arranging the obstacles on a cubic lattice, we can
only reach a blocking fraction of π/4≈0.785, whereas the hexagonal lattice at contact
can reach a blocking fraction of π/(2

√
3)=0.907. A schematic of this set-up is shown

in figure 1(a).
The pore space is assumed to be entirely saturated by an incompressible Newtonian

fluid, which satisfies the Stokes equations,

−∇̃p̃+µ∇̃2ũ= 0, x̃ ∈Ωf (t̃), (2.1a)

∇̃ · ũ= 0, x̃ ∈Ωf (t̃), (2.1b)

ũ=−∂R̃
∂ t̃

n, x̃ ∈ ∂Ωf (t̃), (2.1c)

where ∇̃ refers to the nabla operator with respect to x̃, µ is the constant fluid viscosity,
ũ(x̃, t̃) is the fluid velocity, p̃(x̃, t̃) is the fluid pressure and n is the unit normal
to the obstacle surface directed into the obstacle. Here, (2.1c) arises from applying
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A multiscale method to calculate filter blockage 269

a standard no-slip boundary condition to a spherical obstacle, with radius R̃(t̃; x̃),
growing radially.

We assume that the contaminant diffuses within the fluid with a constant diffusion
coefficient, D, and is advected by the velocity field. The governing equation is thus

∂ c̃
∂ t̃
= ∇̃ · (D∇̃c− ũc̃), x̃ ∈Ωf (t̃). (2.2)

To determine the correct boundary condition for the concentration on a moving
boundary, it is helpful to consider the rate of change of the total number of moles of
contaminant in an arbitrary time-dependent volume V(t) with boundary ∂V(t) moving
with the flow:

d
dt̃

∫
V(t̃)

c̃ dV =
∫

V(t̃)

∂ c̃
∂ t̃

dV +
∫
∂V(t̃)

(n · ṽ)c̃ dS=
∫
∂V(t̃)

n · (D∇̃c̃+ (ṽ − ũ)c̃) dS, (2.3)

where ṽ is the velocity of the boundary and n is the outward unit normal to ∂V(t).
In (2.3), we have used the divergence theorem and (2.2). As ũ= ṽ on ∂V(t), equation
(2.3) reduces to

d
dt̃

∫
V(t̃)

c̃ dV =
∫
∂V(t̃)

n ·D∇̃c̃ dS. (2.4)

We suppose that the rate of change of the concentration is linearly dependent on the
concentration at the obstacle surface. Thus, using (2.4) in an infinitesimal fluid volume,
partly bounded by some of the obstacle surface, we obtain a partially adsorbing Robin
boundary condition:

−γ c̃= n ·D∇̃c̃, x̃ ∈ ∂Ωf (t̃), (2.5)

where γ > 0 is the constant contaminant-adsorption coefficient. There is no adsorption
when γ = 0, and the adsorption is instantaneous in the limit as γ →∞.

Finally, we must couple the growth of the obstacles to the accumulation of
contaminant at the obstacle boundary. This is in the form of a volume conservation
law, where the volume of contaminant lost to adhesion is equal to the obstacle volume
gain. If we multiply (2.3) by Vm, the molar volume of the contaminant in the filtrate
(defined as the volume of contaminant per mole of contaminant), we now have an
equation for the rate of change of the volume of contaminant in an arbitrary volume
of fluid. Applying this to an infinitesimal volume, partially bounded by part of the
obstacle surface, and equating the loss of contaminant at the surface to the gain of
obstacle volume, we obtain

∂R̃
∂ t̃
=−Vmn ·D∇̃c̃, x̃ ∈ ∂Ωf (t̃). (2.6)

We have included the effect of filter porosity changing due to contaminant particle
adsorption but neglected the effect of particle–particle interactions because the
contaminant particles are small compared with the obstacles and in dilute suspension
within the fluid, hence particle–particle interactions occur far less frequently than
particle–obstacle interactions. The interfacial condition (2.6) is similar to a Stefan
condition for phase-change problems in heat transport (Gupta 2003).
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2.1. Dimensionless equations

We scale the variables via x̃= lx, ũ= Uu, t̃ = (δl/(c∞Vmγ ))t, R̃= δlR, c̃= c∞c and
p̃= (µU/(δ2l))p, where U and c∞ are characteristic velocity and concentration scales
respectively. The time scale is chosen to balance obstacle growth with contaminant
concentration in (2.6), and the pressure scale is chosen to balance the pressure
gradient over the macroscale with viscous forces over the obstacle microscale. The
flow problem (2.1) then transforms to

−∇p+ δ2∇2u= 0, x ∈Ωf (t), (2.7a)
∇ · u= 0, x ∈Ωf (t), (2.7b)

u=−δα ∂R
∂t

n, x ∈ ∂Ωf (t), (2.7c)

where α = c∞Vmγ /(δU).
For the concentration problem given by (2.2), (2.5) and (2.6), we obtain the

dimensionless solute-transport equation

α
∂c
∂t
=∇ · (Pe−1

∇c− uc), x ∈Ωf (t), (2.8a)

−δkc= n · Pe−1
∇c, x ∈ ∂Ωf (t), (2.8b)

∂R
∂t
= c, x ∈ ∂Ωf (t), (2.8c)

where Pe=U l/D is the Péclet number and k= γ /(δU). The boundary condition (2.8b)
expresses the flux across the moving boundary relative to the boundary, and as such
does not contain any velocity component. This system reduces to that considered in
Dalwadi et al. (2015) when R is independent of t, i.e. when Vm = 0, which can be
seen by scaling t ∼ α and then taking α → 0. We assume that α, Pe and k are
all O(1) parameters, which corresponds to the richest asymptotic limit. That is, all
mechanisms contribute at leading order, from which all asymptotic sublimits may be
distilled. In practice, the contaminant accumulates on the obstacles over a much longer
timescale than the fluid takes to travel through the porous medium. This manifests in
the smallness of the parameter α, and we exploit this feature in § 4.2 to consider the
physically relevant effect of slow contaminant accumulation.

In dimensionless units, the obstacles now form a two-dimensional hexagonal lattice
of circles whose centres are a distance of δ apart, and a circle with centre at x has
radius δR(x, t) (figure 1).

3. Homogenization

The complexity of the problem geometry is reduced by homogenizing the governing
equations (2.7)–(2.8) using the method of multiple scales. This provides effective
equations on a simpler macroscale domain, which formally capture the relevant
information about the microscale geometry (see, for example, Sánchez-Palencia
(1980) for a standard derivation of Darcy’s law, Conca (1985) for a homogenization
of the Navier–Stokes equations for various boundary conditions and Auriault & Adler
(1995) for a derivation of an advection–diffusion solute transport model in porous
media). Following standard homogenization theory, we introduce a microscale variable
y= x/δ and treat x and y as independent. This adds an extra degree of freedom which
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A multiscale method to calculate filter blockage 271

is later removed by imposing that the solution is periodic in y. Hence, any small
variation between unit cells is captured through the macroscale variable x. As shown
in figure 1(b), the microscale variable y is defined in the unit cell ω(x, t), whereas
the macroscale variable x spans across the whole filter. The solid portion of the
cell, occupied by obstacles, is denoted by ωs(x, t). The fluid portion of the cell is
ωf (x, t)= ω(x, t)\ωs(x, t). The boundary between solid and fluid portions within the
cell is denoted by ∂ωf (x, t), while the outer boundary of the unit cell is ∂ω(x, t) (see
figure 1). Further, we treat each dependent variable as a function of both x and y.
Thus, spatial derivatives transform in the following manner

∇ 7→∇x + 1
δ
∇y, (3.1)

where ∇x and ∇y refer to the nabla operator in the x- and y-coordinate systems,
respectively. The introduction of this new spatial variable also changes the normal
vector n, used to evaluate the boundary conditions (2.7c) and (2.8b), to

n= ny + δ∇xR
‖ny + δ∇xR‖ , (3.2)

where ny =−∇y‖y‖ = −y/‖y‖ is the geometric outward unit normal on the obstacle
boundary ∂ωf (x, t), and δ∇xR accounts for the macroscale effect of varying obstacle
size. The details of this transformation are described in Dalwadi et al. (2015).

As our goal is to derive effective governing equations that are valid in the
macroscale domain, we consider variables averaged over an entire cell ω(x, t). To
this end, we define the macroscale porosity φ(x, t) to be

φ(x, t)= |ωf (x, t)|
|ω(x, t)| , (3.3)

and the volumetric average concentration C and volumetric average fluid velocity
U (known as the Darcy velocity in porous-media formulations (Kaviany 2012)) as
follows

C(x, t)= 1
|ω(x, t)|

∫
ω(x,t)

c(x, y, t) dy= 1
|ω(x, t)|

∫
ωf (x,t)

c(x, y, t) dy, (3.4a)

U(x, t)= 1
|ω(x, t)|

∫
ω(x,t)

u(x, y, t) dy= 1
|ω(x, t)|

∫
ωf (x,t)

u(x, y, t) dy, (3.4b)

defining c= 0 and u≡ 0 in ωs(x, t).
The homogenization in this section proceeds in a similar manner to other

homogenization work, such as van Noorden (2009), Ray et al. (2012, 2015), Bruna &
Chapman (2015) and Dalwadi et al. (2015). We first consider the flow problem (2.7),
and use the results in the solute-transport problem (2.8).

3.1. Flow problem
Under the spatial transforms (3.1) and (3.2), the flow equations (2.7) become

−(δ−1
∇y +∇x)p+ (∇y + δ∇x)

2u= 0, y ∈ωf (x, t), (3.5a)
(∇y + δ∇x) · u= 0, y ∈ωf (x, t), (3.5b)
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272 M. P. Dalwadi, M. Bruna and I. M. Griffiths

u=−δα ∂R
∂t

ny +O(δ2), y ∈ ∂ωf (x, t), (3.5c)

u, p periodic, y ∈ ∂ω(x, t). (3.5d)

Expanding the flow velocity and pressure in powers of δ as usual in the multiple-
scales method (see Dalwadi et al. 2015 for details), we find that the leading-order
pressure, p0, is independent of the microscale, i.e. p0 = p0(x, t). Considering the next
order in (3.5) allows us to write

u0 =−K (x, y, t)∇xp0, (3.6a)
p1 =−Π(x, y, t) · ∇xp0 + p(x, t), (3.6b)

where p is an arbitrary function of the macroscale and time only, and the matrix
function K and the vector function Π satisfy the so-called cell problem:

I −∇yΠ +∇2
y K = 0, y ∈ωf (x, t), (3.7a)

∇y · K = 0, y ∈ωf (x, t), (3.7b)
K = 0, y ∈ ∂ωf (x, t), (3.7c)

K ,Π periodic, y ∈ ∂ω(x, t). (3.7d)

Here, I is the two-dimensional identity matrix and the dependence of K and Π on x
and t is due to the dependence of the microscale boundary ∂ωf (x, t) on the macroscale
variable and time.

Integrating (3.6a) over ωf (x, t) and using (3.4b), we obtain the homogenized Darcy
relation

U(x, t)=−K(φ)∇xp (3.8a)

at leading order, where K(φ) is a scalar function that contains the necessary
microscale structure information, and is defined by

K(φ)I = 1
|ω(x, t)|

∫
ωf (x,t)

K dy. (3.8b)

We note that the integral of K in (3.8b) is a multiple of the identity matrix due to
the symmetry of the cell problem described by (3.7). This would not be the case if,
instead of circles, we had considered obstacles with fewer than two orthogonal planes
of symmetry. Finally, to obtain a closed homogenized flow problem, we consider the
O(δ) terms in (3.5b–d), given by

∇y · u1 +∇x · u0 = 0, y ∈ωf (x, t), (3.9a)

u1 =−α∂R
∂t

ny, y ∈ ∂ωf (x, t), (3.9b)

u1 periodic, y ∈ ∂ω(x, t). (3.9c)

Integrating (3.9a) over ωf (x, t) and using Reynolds transport theorem in conjunction
with the periodic and no-slip boundary conditions (3.9b,c) yields a continuity equation
for the macroscale fluid velocity

∇x ·U= α |∂ωf (x, t)|
|ω(x, t)|

∂R
∂t
. (3.10)

The system (3.8) and (3.10) determines the flow problem given the obstacle structure,
which manifests itself through the source term on the right-hand side of (3.10).
This reflects the fact that reducing the available pore space within a cell for an
incompressible fluid will push the fluid out of that cell. If ∂R/∂t≡ 0, we recover the
system derived in Dalwadi et al. (2015).
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3.2. Solute-transport problem
Under the spatial transforms (3.1) and (3.2), the solute-transport problem (2.8)
becomes

δ2α
∂c
∂t
= (∇y + δ∇x) · (Pe−1(∇y + δ∇x)c− δuc), y ∈ωf (x, t), (3.11a)

−δ2kc= (ny + δ∇xR) · (Pe−1(∇y + δ∇x)c)+O(δ3), y ∈ ∂ωf (x, t), (3.11b)
c periodic, y ∈ ∂ω(x, t). (3.11c)

Expanding c(x, y, t) in powers of δ, we find that the leading-order concentration, c0,
is independent of the microscale, i.e. c0= c0(x, t). The O(δ) terms in (3.11) allow us
to write c1 as

c1(x, y, t)=−Γ (x, y, t) · ∇xc0(x, t)+ c̄(x, t), (3.12)

where c̄ is an arbitrary function of the macroscale and time only, and the components
of the function Γ satisfy the cell problem

0=∇2
yΓi, y ∈ωf (x, t), (3.13a)

ny,i = ny · ∇yΓi, y ∈ ∂ωf (x, t), (3.13b)
Γi periodic, y ∈ ∂ω(x, t), (3.13c)

and ny,i is the ith component of the unit vector ny.
The effect of the obstacle growth only appears at the next order. Namely, the O(δ2)

terms in (3.11) are

α
∂c0

∂t
= ∇y · (Pe−1(∇yc2 +∇xc1)− u1c0 − u0c1)

+∇x · (Pe−1(∇yc1 +∇xc0)− u0c0), y ∈ωf (x, t), (3.14a)

−kc0 = ny · (Pe−1(∇yc2 +∇xc1))

+∇xR · (Pe−1(∇yc1 +∇xc0)), y ∈ ∂ωf (x, t), (3.14b)

c2 periodic, y ∈ ∂ω(x, t). (3.14c)

Integrating (3.14a) over ωf and applying the boundary conditions (3.5c), (3.9b),
and (3.14b–c) gives∫

ωf (x,t)
α
∂c0

∂t
dy =

∫
ωf (x,t)
∇x · (Pe−1(∇yc1 +∇xc0)− u0c0) dy

−
∫
∂ωf (x,t)

∇xR · (Pe−1(∇yc1 +∇xc0)− u0c0) ds

−
∫
∂ωf (x,t)

kc0 ds+
∫
∂ωf (x,t)

α
∂R
∂t

c0 ds, (3.15)

where ds denotes the differential element of the obstacle surface ∂ωf (x, t). Using
Reynolds transport theorem, equation (3.15) reduces to

α
∂

∂t
(|ωf (x, t)|c0)=∇x ·

∫
ωf (x,t)

(Pe−1(∇yc1 +∇xc0)− u0c0) dy−
∫
∂ωf (x,t)

kc0 ds, (3.16)
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noting that c0 is independent of y. From now on, we simply write φ but it should be
understood that the porosity will be, in general, a function of x and t. In a similar
manner, henceforth we use ωf (φ) instead of ωf (x, t) and likewise for ∂ωf . Finally,
using (3.12), (3.16) reduces to

α
∂

∂t
(|ωf (φ)|c0) = ∇x ·

(
Pe−1

(∫
ωf (φ)

(I − JT
Γ ) dy

)
∇xc0 −

(∫
ωf (φ)

u0 dy

)
c0

)
− |∂ωf (φ)|kc0, (3.17)

where (JT
Γ )ij = ∂Γj/∂yi is the transpose of the Jacobian matrix of Γ , the solution to

the cell problem (3.13).
To express (3.17) in terms of the volumetric average concentration C(x, t) defined

in (3.4a), we note that C(x, t) ∼ |ω|−1
∫
ωf (φ)

c0 dy = φc0(x, t) at leading order in δ.
Using this relation and (3.8a), we find that

α
∂C
∂t
=∇x ·

(
D(φ)∇xC− C

φ
(U(φ)+D(φ)∇xφ)

)
− f (φ)C, (3.18a)

at leading order in δ, where the effective diffusion coefficient is

D(φ)I = Pe−1

(
I − 1
|ωf (φ)|

∫
ωf (φ)

JT
Γ dy

)
, (3.18b)

and the effective adsorption coefficient is

f (φ)= k
|∂ωf (φ)|
|ωf (φ)| =

4kπR

φ
√

3
, (3.18c)

using the fact that φ = 1 − 2πR2/
√

3, and |∂ωf (φ)| = 4πR. As is the case for the
permeability K, we find that the diffusion tensor is a multiple of the identity due to
the symmetry of the cell problem (3.13). Finally, the condition to couple contaminant
concentration with obstacle growth (2.8c) becomes

φ
∂R
∂t
=C. (3.18d)

The effective permeability K(φ) (from (3.8b)) and the effective diffusion D(φ)
(from (3.18b)) that encapsulate the microscale physics can be computed by solving the
respective cell problems (3.7) and (3.13) for a given cell porosity φ, determined by the
size of the obstacles. We calculate this numerically using the finite-element software
Comsol Multiphysics and find that K and D are both monotonically increasing with
the porosity, as expected, and that there is a sharp decrease in both functions as
the porosity tends down towards the critical porosity where blocking occurs (see
figure 2).

The homogenization procedure has significantly reduced the mathematical complex-
ity of the growing multiply-connected domain in the full problem (2.8), with only
a marginal increase in the complexity of the coefficients in the resulting governing
equations (3.18), which capture the microscale structure of the problem in a systematic
manner.
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FIGURE 2. The functions (a) K(φ) and (b) PeD(φ) (defined in (3.8b) and (3.18b),
respectively) calculated using Comsol Multiphysics, for circular obstacles whose centres
lie on a hexagonal lattice.

4. A unidirectionally graded filter
4.1. Model set-up

We are now in a position to use the homogenized equations (3.8), (3.10) and (3.18) to
quantify the effect of blocking and porosity gradients on filter efficiency. We consider
a canonical industrial process of interest whereby a three-dimensional filter separates
two reservoirs, and a unidirectional flow is induced through the filter. As is common
in industrial set-ups, we assume that the filter is graded in the same direction as the
fluid flow. This reduces the problem to a one-dimensional description.

We define the direction of porosity variation as x, where x ∈ (0, 1) within the filter
(since the dimensional characteristic length l is chosen to be the depth of the filter).
Thus, the set-up is similar to that illustrated in figure 1. The upstream is defined for
x ∈ (−∞, 0) and the downstream for x ∈ (1,∞).

Provided the boundary conditions allow for unidirectionality, equations (3.8) and
(3.10) yield a unidirectional macroscale flux U=U(x, t)ex (where ex is the unit vector
in the x-direction). When filtering at constant (dimensionless) pressure drop 1P, we
find that

U(x, t) = K(t)
(
1P− α

∫ 1

0

1
K(φ(v, t))

(∫ v

0
|∂ωf (u, t)|∂R

∂t
(u, t) du

)
dv
)

+α
∫ x

0
|∂ωf (ξ , t)|∂R

∂t
(ξ , t) dξ, (4.1)

where

K(t)=
(∫ 1

0

dx
K(x, t)

)−1

. (4.2)

Thus, the governing equation (3.18a) becomes

α
∂C
∂t
= ∂

∂x

[
D(φ)

∂C
∂x
− C
φ

(
U(x, t)+D(φ)

∂φ

∂x

)]
− f (φ)C, x ∈ (0, 1), (4.3)

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/jfm.2016.656
Downloaded from http:/www.cambridge.org/core. University of Nottingham, on 11 Nov 2016 at 16:06:13, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/jfm.2016.656
http:/www.cambridge.org/core


276 M. P. Dalwadi, M. Bruna and I. M. Griffiths

and the relationship between obstacle growth and concentration (3.18d) is

φ
∂R
∂t
=C, x ∈ (0, 1). (4.4)

Considering the limit of (3.18b) and (4.3) as φ → 1, and using continuity of
fluid flux, we obtain the following governing equations for the upstream C− and
downstream C+ concentrations

α
∂C−

∂t
= ∂

∂x

(
Pe−1 ∂C−

∂x
−U(0, t)C−

)
, x ∈ (−∞, 0), (4.5a)

α
∂C+

∂t
= ∂

∂x

(
Pe−1 ∂C+

∂x
−U(1, t)C+

)
, x ∈ (1,∞). (4.5b)

We impose continuity of concentration and concentration flux at the boundaries
between the filter and the reservoirs. In the far-field of the reservoirs, the concentration
tends to a constant value. We may take the upstream concentration C−→ 1 (by choice
of our non-dimensionalization), while the downstream concentration C+ tends to a
constant value that must be determined as part of the solution. Mathematically, this
corresponds to

C−→ 1, x→−∞, (4.6a)

C− = C
φ
, x= 0, (4.6b)

Pe−1 ∂C−

∂x
−UC− =D(φ)

∂C
∂x
− C
φ

(
U +D(φ)

∂φ

∂x

)
, x= 0, (4.6c)

C+ = C
φ
, x= 1, (4.6d)

Pe−1 ∂C+

∂x
−UC+ =D(φ)

∂C
∂x
− C
φ

(
U +D(φ)

∂φ

∂x

)
, x= 1, (4.6e)

∂C+

∂x
→ 0, x→∞. (4.6f )

Thus, with appropriate initial conditions, our homogenized system is given by (4.1)–
(4.6). We solve this system numerically using the method of lines, discretizing in
space with a second-order finite difference scheme and using the MATLAB program
ode15s to solve in time.

A suitable measure of filter efficiency is the cumulative contaminant removal,
defined by

T (t) :=
∫ 1

0
(φ(x, 0)− φ(x, t)) dx= 1

k

∫ t

0

∫ 1

0
f (φ(x, s))C(x, s) dx ds, (4.7)

where the second equality can be deduced from using the relationship φ =
1 − 2πR2/

√
3 to obtain ∂φ/∂t = −(|∂ωf |/|ω|)∂R/∂t, in conjunction with (3.18c)

and (4.4). A measure of the corresponding structural changes within the filter is
captured by the quantity

P(x, t)= 1− 2R(x, t) (4.8)
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FIGURE 3. (Colour online) Filtration through an initially uniform porosity filter, φ(x, 0)=
0.8, with Pe = 3, k = 1. (a) The pore size, P, defined by (4.8), throughout the filter
at four snapshots in time (shown by asterisks in b–d). We start with t = 0 and end
with the first time at which a pore size in the filter reaches 0.01, defined as t0.01. The
two intermediate snapshots are at time t0.01/3 and 2t0.01/3, where we use t0.01 calculated
from the solution to the full homogenized equations for all cases. (b) The cumulative
contaminant adsorption T , defined by (4.7), as a function of time. (c) The time taken
until the pore size reaches a minimum value. (d) The cumulative contaminant adsorption
T , defined by (4.7), as a function of minimum pore size. The solid black curves denote
the solutions to the full homogenized equations (4.1)–(4.6), the dashed red curves denote
the asymptotic approximation when obstacle growth is small (4.12) and the dotted yellow
curves denote the asymptotic solution when we further assume a weak porosity gradient
(4.13). We see excellent agreement throughout, with only small deviations that occur when
the pore size becomes small.

which expresses the ratio of the distance between obstacles and the obstacle centres,
or an effective pore size in the filter.

We begin by considering the case of a filter whose initial porosity is uniform.
Solving (4.6) we find that as filtration proceeds the pore size P(x, t) decreases in
time throughout the filter (figure 3a) and the rate of contaminant removal T ′(t)
reduces (figure 3b). The reduction in pore size is more rapid close to the filter
entrance than towards the filter exit (figure 3a), which causes the filter to block at
the entrance while the rest of the filter is still fit for purpose. This has significant
practical disadvantages, and so we now use our model to explore strategies that
minimize this wastefulness by varying the initial filter porosity. To do so, we first
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note that the homogenized system (4.6) can be further simplified by exploiting two
relevant asymptotic regimes. We discuss these in the following section.

4.2. Asymptotic reductions of the homogenized equations
In the majority of filtration applications the growth of the obstacles, and thus the
blocking of the filter, takes place over a timescale that is much longer than the time
taken for the fluid to flow through the filter. Mathematically, this corresponds to the
quasi-steady limit in which α → 0. At leading order in this limit, returning to the
three-dimensional equations for generality, the flow equations (3.8) and (3.10) become

U(x, t)=−K(φ)∇xp, ∇x ·U= 0, (4.9a)

where K(φ) is defined in (3.8b); and the transport equations (3.18) become

∇x ·

(
D(φ)∇xC− C

φ
(U(φ)+D(φ)∇xφ)

)
= f (φ)C, φ

∂R
∂t
=C, (4.9b)

where D(φ) and f (φ) are defined in (3.18b,c), respectively. In this regime, the growth
in R decouples from the flow and transport problems, which are now quasi-steady.

For a unidirectional porosity variation, the flow velocity becomes independent of x
and so (4.9a) simplifies to

U(t)=K(t)1P, (4.10)

where K is given in (4.2). Moreover, the upstream and downstream concentrations can
be solved to obtain

C− = 1− A(t) exp(PeU(t)x), C+ = B(t), (4.11)

where A(t) and B(t) are arbitrary functions of time. Substituting (4.11) into (4.6), the
system for C becomes

f (φ)C= ∂

∂x

[
D(φ)

∂C
∂x
− C
φ

(
U(t)+D(φ)

∂φ

∂x

)]
, x ∈ (0, 1), (4.12a)

−U(t)=D(φ)
∂C
∂x
− C
φ

(
U(t)+D(φ)

∂φ

∂x

)
, x= 0, (4.12b)

0= ∂C
∂x
− C
φ

∂φ

∂x
, x= 1. (4.12c)

The governing equation for the porosity (4.4) is unchanged:

φ
∂R
∂t
=C, x ∈ (0, 1). (4.12d)

This problem is similar to that considered in Dalwadi et al. (2015), where the absence
of microstructural changes due to filter clogging meant that U(t) ≡ 1 in (4.12), and
∂R/∂t ≡ 0 instead of (4.12d). We can solve the system (4.12) numerically using the
method of lines, discretizing in space with a second-order finite difference scheme and
using the MATLAB program ode15s to solve in time.
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We can make further analytic progress by considering the case where, in addition
to the slow obstacle growth, the deviation of the porosity φ(x, t) from its average
value in space φ̄(t)= ∫ 1

0 φ(x, t) dx is small. In this case, we express the porosity as
its average in space plus the deviation, as follows φ(x, t)= φ̄(t)+Φ(x, t), and assume
that maxx∈(0,1) |Φ| � φ̄ for any given time. Thus, the leading-order coefficients in the
linear governing equation (4.12a) are constant in x, and the solution can be written
in terms of hyperbolic functions. The O(Φ) correction terms in (4.12a) can then be
solved using the method of variation of parameters (a similar calculation is carried out
in Dalwadi et al. 2015). From this, we may express the concentration C as a sum
of the concentration distribution in a filter with constant porosity, C0(x, t), and the
adjustment due to the porosity gradient, C1(x, t), i.e.

C(x, t)∼C0(x, t)+C1(x, t), (4.13)

where |C1| �C0; C0 and C1 are functions of φ that can be solved for explicitly and
are given in appendix A. Using this analytic solution, we are able to reduce the entire
problem to solving (4.12d). We solve this system numerically using the method of
lines, discretizing in space with a second-order finite difference scheme and using the
MATLAB program ode15s to solve in time.

In figure 3, we compare the results from these two asymptotic results, (4.12) and
(4.13), with the full numerical solution, (4.1)–(4.6) (solid black lines), as dashed
red and dotted yellow lines, respectively. Both asymptotic solutions offer very good
agreement in the pore size P with the full numerical solution (figure 3a), and in T
until around t= 0.45 (figure 3b).

The discrepancy between numeric and asymptotic solutions appears when considering
the time taken to reach a minimum pore size rather than in the cumulative contaminant
removal metric T . We are able to contextualize this metric by introducing relative
timings in a filter lifespan. That is, we define the minimum pore size

P∗(t)= min
x∈(0,1),t>0

P(x, t), (4.14)

and the time taken until the minimum pore size reaches a given value,

tP∗ =min{t > 0 : P(x, t)6 P∗, for some x ∈ (0, 1)}. (4.15)

Blocking occurs at t0, but we must consider small finite values of P∗ due to the
singularity in (4.12) when φ→ 0, and hence when P∗→ 0, at the point of blocking.
For example, in figure 3 the simulations are stopped at t0.01.

From figure 3(b), we see that although the maximum time to removal is different
between the asymptotic and numerical solutions, the total cumulative removals are
very close. We show the former in more detail in figure 3(c), where we see that
the numerical and asymptotic solutions agree well in tP∗ until P∗ falls below around
P∗ = 0.05. We show the latter in more detail in figure 3(d), where we use P∗ as
the abscissa instead of time, against cumulative contaminant removal. We see that
there is excellent agreement between numeric and asymptotic solutions throughout,
and henceforth use the full asymptotic approximation (4.13), which offers a very
accurate representation of the solution to the full homogenized system (4.1)–(4.6)
while enabling further analytic study of the system. Moreover, we note that we
halt simulations when P∗ reaches 0.01, and refer to this as ‘blocking’, and we see
from figure 3(d) that this is unlikely to yield major differences in values of total
contaminant removal.
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4.3. Linearly graded filters
As shown in figure 3, in a depth filter with a uniform porosity the early portion of
the media will block before the later portion has been used to its full effect. This can
be counteracted by using a filter whose porosity decreases with depth.

In this section we consider linearly graded filters at t = 0, characterized by
φ(0, x) = φ0 + m(x − 0.5), where we vary the initial average porosity, φ0, and
the initial porosity gradient, m. In a similar manner to Dalwadi et al. (2015), we
assume that the pressure drop is kept constant across each filter considered and,
noting that the system is invariant to the scaling

(U(0), Pe, k) 7→ (ωU(0), Pe/ω, ωk), (4.16)

for any constant ω, we impose U(0) = 1 and vary Pe and k accordingly. For short
times, a filter with spatially uniform porosity (i.e. m = 0) provides the largest
cumulative removal for a given average porosity, and there is an optimum value
for this average porosity (figure 4a). This optimum exists because a highly porous
filter has less surface area with which to remove contaminant, but a less porous
filter will admit a lower flow rate through the filter, relying more on diffusion than
advection for contaminant transport and thus lowering the contaminant removal. The
result that there is no apparent difference in the total contaminant removal of a filter
with a positive or negative porosity gradient for small time replicates the results
for the initial instantaneous adsorption obtained in Dalwadi et al. (2015). However,
in contrast to Dalwadi et al. (2015) we are now able to capture the asymmetry in
removal that arises over longer times as a result of blockages within the filter. In
particular, negative initial porosity gradients do provide an inherently larger cumulative
removal at a given time than positive initial porosity gradients (figure 4b,c), and their
final cumulative removal is larger (figure 4d). We note that whilst negative initial
porosity gradients do last for a longer time before blocking, the filters that take the
longest time to block do not automatically remove the most contaminant (figure 5).

In Dalwadi et al. (2015), a further metric was introduced to measure the uniformity
of uptake, thus allowing us to account for the superior performance of filters with
a negative porosity gradient without explicitly accounting for filter evolution. As we
are able to account for filter evolution in this work, T is now the better measure
of filtration. We show in appendix B that this alternative metric can only provide
qualitative insights into filtration, and should not be used when the filter structure
evolves in time.

For a given initial average porosity, the largest cumulative removal does not
necessarily correspond to a filter with the most negative initial porosity gradient
(figure 4d). If the porosity gradient is too negative, the removal is skewed towards
the filter exit, and thus blocking occurs at the filter exit too quickly. This effect causes
the sharp drop-off in filter performance seen in figure 4(c,d) for large negative values
of m. Thus, an optimum initial porosity gradient exists for a given initial average
porosity. Whilst this ‘optimal’ initial porosity gradient maximizes contaminant removal
over the space of initially linear graded filters with a given initial average porosity, it
will not necessarily maximize contaminant removal over the space of all filters with a
given initial average porosity. We explore this idea in more detail in the next section.

4.4. Filters that block everywhere at once
Using the framework we have set up in this paper, we can address the question
of which initial porosity distributions maximize the cumulative removal for given
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FIGURE 4. (Colour online) Cumulative contaminant removal, T , defined by (4.7), for
varying φ0 and m in initial porosity distributions of the form φ(x) = φ0 + m(x − 0.5),
given by the solution to (4.1)–(4.6): (a) t= 10−4; (b) t= 0.1; (c) t= 0.7; (d) t= 2. Each
curve represents a different value of φ0, which increments in steps of 0.1 from φ0 = 0.4
to φ0= 0.8 and the arrow in (d) denotes curves of increasing φ0. We vary m for a given
φ0 such that φ ∈ [0.2, 0.95]. Therefore, the available range of m varies with φ0. We use
the reference values φ= 0.6, Pe= 5, k= 0.1 from which to modify appropriate parameters.
The dashed curves denote that the minimum pore size has reached 0.01 and the filtration
has stopped.

operating conditions. We are able to bypass much of the difficulty involved in the
full optimal control problem by noting that, for a given initial average filter porosity,
the cumulative adsorption (4.7) is maximized when a filter blocks all at once, rather
than in just one place. Most filters will only block in one place, and this is the case
for all of the filters represented in figure 4, where the filters block at either the filter
entrance or the filter exit.

By starting with a filter that is blocked everywhere and running our simulations
backwards in time, we can obtain initial porosity distributions whose lifespans end
with blocking occurring everywhere in the filter at once. To avoid the computational
issues arising when blocking occurs, we approximate the concept of a filter that blocks
everywhere at once by a filter that reaches a pore size of 0.01 everywhere at once. An
issue with this procedure is that the full homogenized system for the concentration
(4.1)–(4.6) is parabolic in time, and thus running the simulations backwards in
time results in an ill-posed problem. However, the evolution equation for the filter
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FIGURE 5. (Colour online) (a) The time until the minimum pore size reaches 0.01 for
varying φ0 and m in initial porosity distributions of the form φ(x) = φ0 + m(x − 0.5),
determined by solving (4.1)–(4.6). The dashed black lines denote the times at which
snapshots are taken in figures 4 and 7. (b) The total cumulative adsorption over the
lifespan of a filter versus the time taken to block. Each line represents a different initial
average porosity, and the unlabelled arrows denote the direction of increasing m for each
line. In both figures, each line represents a different value of φ0, which increments in
steps of 0.1 from φ0 = 0.4 to φ0 = 0.8 and the labelled arrow denotes lines of increasing
φ0. We vary m for a given φ0 such that φ ∈ [0.2, 0.95]. Therefore, the available range of
m varies with φ0. We use the reference values φ = 0.6, Pe = 5, k = 0.1 from which to
modify appropriate parameters.

porosity (4.12d) is well-posed if run backwards in time, and only relies on knowing
the concentration for a given porosity. Thus, if we use the asymptotic solutions
for the concentration derived in § 4.2, we do not have to run the concentration
evolution equation backwards in time and we are able to side-step the issue with the
ill-posedness of this problem.

A related issue, due to solving the system of equations backwards in time, is that
only the final flow velocity can be imposed, and the initial flow velocity is now
an output to the calculation. Thus, a general final flow velocity U(t0.01) will not
necessarily result in U(0) = 1, the condition we prescribe in the forward problem.
Moreover, we vary Pe and k according to the initial porosity in the forward problem,
using the invariant scaling (4.16), and thus it is not immediately clear what values of
Pe and k we should impose for the inverse problem. We overcome these problems by
exploiting the fact that we impose a constant pressure drop across the filter, and thus
K(0) = U(0)K(t0.01)/U(t0.01) = K(t0.01)/U(t0.01), where the first equality holds from
(4.10), and the second equality holds by using U(0)= 1 (the filter for which we are
aiming). This allows us to move between the initial and final average permeabilities
as a function of the final flow velocity, as well as imposing values of Pe and k
using the final porosity. Hence, we are able to use a shooting method for just one
parameter, the final flow velocity U(t0.01), shooting to achieve U(0)= 1.

To summarize, we impose a final constant pore size with P(x, t0.01) ≡ 0.01 and a
final flow velocity and run our simulation in reverse, halting the process when the
porosity at any point reaches a set maximum. We iterate this process, varying the
final flow velocity, until the initial flow velocity U(0) = 1 to within an accuracy of
2 × 10−3. We repeat this process for different maximum porosity constraints to
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FIGURE 6. (Colour online) (a) The initial porosity distributions for filters that block
everywhere at once with different initial average porosities, φ0. The initial average
porosities are: 0.320, 0.390, 0.465, 0.548 and 0.607 (all to three significant figures).
(b) The cumulative contaminant removal T for the pseudo-optimal filters (red asterisks)
compared with the linear filters considered in § 4.3 (black crosses). The data for the black
crosses is from figure 4. We use dimensionless parameters corresponding to the reference
values φ(x, 0)≡ 0.6, Pe= 5, k = 0.1 in the manner described in the text. In (b) we see
that the pseudo-optimal filters do provide increased contaminant removal for a given initial
average porosity, but the average porosity of the pseudo-optimal filters cannot be increased
to an arbitrarily large value.

obtain a family of initial porosity distributions that block everywhere at once when
contaminant flows through, each with a different maximum (and average) porosity.
The maximum porosities we choose are given by 1−πR2, where R takes the values
0.1174, 0.15, 0.2, 0.25 and 0.3. We produce this range of initial porosity distributions
as there may be physical constraints on how large/small the porosity/fibres can be.

Each resulting filter has a decreasing porosity with depth and, compared with the
region near the filter entrance, the porosity gradient in each filter is more negative
towards the centre of the filter and smaller towards the end of the filter (figure 6a).
This effect is more pronounced for larger maximum porosities. We compare how
these filters remove contaminant against the linear filters we considered in § 4.3
and see that the ideal filters do remove around 20 % more contaminant for a given
initial average porosity (figure 6b). However, these filters cannot have arbitrarily large
initial average porosity, as a filter whose initial porosity is everywhere close to 1
will not block everywhere at once, and thus a linearly graded filter with a large
enough initial average porosity can remove more contaminant than a filter with a
lower initial average porosity that blocks everywhere at once. As a result, we may
term these pseudo-optimal filters. As a filter may require a maximum porosity to
maintain structural integrity, the choice of initial porosity distribution will depend on
the operating conditions.

5. Discussion

We have systematically derived a macroscopic model for the dynamic blocking of
a porosity-graded filter from microscale information by a generalization of standard
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homogenization theory for near-periodic systems. The result is an advection–diffusion–
reaction equation for the solute concentration within the filter, a modified Darcy law
for the fluid transport and an evolution equation for the underlying porosity of
the filter. This system depends on the initial porosity distribution of the filter and
the operating conditions. In particular, our theory has allowed us to determine solute
trapping across the lifetime of a filter whose pores are constricting due to contaminant
removal. We have also solved the inverse problem of calculating the initial porosity
distributions that lead to a filter that blocks uniformly for given operating conditions.

To track the evolution of filter porosity, we have accounted for a macroscale
variation in our filter, using the generalized homogenization technique of Bruna &
Chapman (2015). The resulting macroscale equations allow us to efficiently quantify
filter performance. By performing a parameter sweep over the functional space of
initially linear porosity functions, we have quantified the experimental observation
that filters with an initially negative porosity gradient are more effective at removing
contaminant over time than filters with an initially zero (or, worse, positive) porosity
gradient.

In addition, our asymptotic reductions in the limit of slow filter blocking and weak
spatial porosity variation have allowed us to solve an inverse problem to calculate
the initial filter porosity distributions that lead to a filter that blocks uniformly for
given operating conditions. We show that these filters provide a greater contaminant
removal than a linearly graded filter with the same initial average porosity, but there
is a maximum initial average porosity that these filters can reach. As a result, we term
these pseudo-optimal filters.

In Dalwadi et al. (2015) we showed that, for contaminants that did not alter the
geometry of the filter as they adhered, a negative porosity gradient could result in a
near-uniform contaminant removal in space, compared with a significantly asymmetric
removal for a positive porosity gradient. We conjectured that, were this contaminant
removal to result in pore constriction over time, an initially negative porosity gradient
would outlast an initially positive porosity gradient. In this paper, we have confirmed
and quantified this conjecture. Furthermore, we were able to deduce that a filter
with an initially negative porosity gradient yields a larger cumulative contaminant
adsorption than an initially positive porosity gradient at a given time, even before
blocking occurs.

In this paper we considered a microscale structure consisting of cylindrical fibres,
resulting in a method of varying the local porosity through a single parameter (the
fibre radius), and an explicit macroscale equation. However, the homogenization
procedure we use can be readily extended to a general microstructure, and one could
combine this work with that of Richardson & Chapman (2011), who considered
a general curvilinear coordinate transform to map a near-periodic microscale to a
periodic domain, thus allowing a homogenization method to be applied. In general, the
coefficients within the resulting governing equations would have to be determined at
each point in space, and thus the resulting macroscale equations are more complicated
to solve than in the case presented here. However, there is a computationally efficient
middle ground between cylinders and a general microstructure. For instance, one
could choose a one-parameter family for the potential microstructure, which allows
the macroscale coefficients to be written as functions of the porosity. However,
we note that obstacle shape is largely unimportant for high porosities (Bruna &
Chapman 2015) and is unlikely to be preserved as particles are adsorbed. Indeed, one
may intuitively expect initially non-circular obstacles to tend to a more circular shape
as particles are adsorbed, and thus the system would tend towards the one considered
in this paper.
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One simplifying assumption that we have made in this work is that the contaminant
trapping rate is linearly dependent on contaminant concentration, and that the trapping
will continue until the microscale cell is fully blocked. In many adsorption models,
different trapping conditions, for example, the Langmuir adsorption model, are used
(see, for example, Morel & Hering 1993). This model assumes that there are a finite
number of adsorption sites on the obstacle surface (thus, the number of sites is
proportional to the obstacle surface area), and that the adsorption layer is only one
contaminant molecule thick. Thus, while the adsorption rate will be approximately
linearly dependent on the contaminant concentration when few adsorption sites are
in use, the adsorption rate will decrease to zero as more adsorption sites are used.
This adsorption model can easily be included in this work, and the restriction on
the number of adsorption sites means that blocking would not occur in most cases.
In this case, the filter that maximizes adsorption would be the one with the largest
number of adsorption sites, that is, the filter with the maximum surface area.

While we have shown how to maximize contaminant removal across the functional
space of filters with the same initial average porosity, our results only apply up to
some maximum initial average porosity. This is because filters that block everywhere
at once will have an initially decreasing porosity, and the porosity can never exceed
one. Thus, the full control problem for any given initial average porosity is still an
open problem. This is an important question that would be useful to tackle in future
work.

Finally, we note that this work has the potential not only to guide filter manufacture
and operating conditions, but also to provide assistance to many other industries. We
have introduced a general framework in this paper, which applies to any problem
where the underlying transport satisfies an advection–diffusion equation with a general
adsorption condition on the microstructure surface. For example, our model can
predict drug transport and delivery to tumours, and a simple change of sign to the
evolution equation for the porosity will allow prediction of the resultant tumour
shrinkage. Using appropriate parameter values, one can predict the effect of various
drugs, significantly aiding the task of testing new drug therapies.
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Appendix A. Asymptotic results for the concentration field

The functions C0 and C1 are defined as

C0(x, t) = 2β(t)φ̄(t) exp(a(t)x)[b(t) cosh a(t)b(t)(x− 1)− sinh a(t)b(t)(x− 1)],
(A 1a)

C1(x, t) = exp(a(t)x)
sinh a(t)b(t)

[(A1(x, t)+ β(t)B1(t)) sinh(a(t)b(t)x)

+ (A2(x, t)+ β(t)B2(t)) sinh(a(t)b(t)(x− 1))] , (A 1b)
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where

a(t)= U(t)
2φ̄(t)D(φ̄)

, (A 2a)

b(t)=
√

1+ f (φ̄)/
(
a2(t)D(φ̄)

)
, (A 2b)

β(t)= 1
(1+ b2(t)) sinh a(t)b(t)+ 2b(t) cosh a(t)b(t)

, (A 2c)

A1(x, t)= 1
a(t)b(t)D(φ̄)

∫ 1

x
g(ξ , t,C0(ξ , t)) exp(−aξ) sinh ab(ξ − 1) dξ, (A 2d)

A2(x, t)= 1
a(t)b(t)D(φ̄)

∫ x

0
g(ξ , t,C0(ξ , t)) exp(−aξ) sinh abξ dξ, (A 2e)

(
B1(t)
B2(t)

)
=
(−q(t) b(t)

b(t) −q(t)

) b(t)
(

A2(1, t)− 2
∂Φ(1, t)
∂x

)
b(t)A1(0, t)+N(0,C0(0, t))/(a(t)D(φ̄))

 , (A 2f )

g(x, t,C)=− ∂
∂x

N(x, t,C)+Φf (φ̄)C, (A 2g)

N(x, t,C)=ΦD(φ̄)
∂C
∂x
− C
φ̄

(
D(φ̄)

∂Φ

∂x
− Φ
φ̄

)
, (A 2h)

q(t)= sinh(a(t)b(t))+ b(t) cosh(a(t)b(t)). (A 2i)

Appendix B. Uniformity of removal

In Dalwadi et al. (2015), blocking was not explicitly accounted for, and thus the
superior performance of filters with a negative porosity gradient was accounted for by
introducing a metric that measured the uniformity of uptake. The equivalent metric in
our time-dependent case is

S(t)= 1
k

∫ 1

0

∣∣∣∣f (φ(x, t))C(x, t)−
∫ 1

0
f (φ(s, t))C(s, t) ds

∣∣∣∣ dx > 0, (B 1)

where a lower value of S represents a more uniform removal and S = 0 represents
uniform uptake across the filter. As with the cumulative removal, for short times
we observe similar results for S as obtained in Dalwadi et al. (2015) (figure 7a),
with initial negative porosity gradients generally yielding more uniform removal
than positive porosity gradients. However, as time increases, this measure becomes
much less useful (figure 7b–d). Whilst lower values of S(t) are useful indicators of
larger removal, they do not necessarily correspond to the largest values of removal
(comparing figure 7c with figure 4c). The instantaneous nature of S does not convey
enough global information about the cumulative removal, and factors such as a lower
average porosity are also important.
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FIGURE 7. (Colour online) The instantaneous uniformity of adsorption, S, defined by
(B 1), for varying φ0 and m in initial porosity distributions of the form φ(x)= φ0+m(x−
0.5), determined by solving (4.1)–(4.6): (a) t=10−4; (b) t=0.1; (c) t=0.7; (d) t=2. Each
curve represents a different value of φ0, which increments in steps of 0.1 from φ0 = 0.4
to φ0 = 0.8 and the arrow in (a) denotes curves of increasing φ0. We vary m for a given
φ0 such that φ ∈ [0.2, 0.95]. Therefore, the available range of m varies with φ0. We use
the reference values φ= 0.6, Pe= 5, k= 0.1 from which to modify appropriate parameters.
The dashed curves denote that the minimum pore size has reached 0.01 and the filtration
has stopped.
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