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A simple model for the motion of shape-changing swimmers in Poiseuille flow
was recently proposed and numerically explored by Omori et al. (2022). These
explorations hinted that a small number of interacting mechanics can drive long-
time behaviours in this model, cast in the context of the well-studied alga Chlamy-
domonas and its rheotactic behaviours in such flows. Here, we explore this model
analytically via a multiple-scale asymptotic analysis, seeking to formally identify
the causal factors that shape the behaviour of these swimmers in Poiseuille
flow. By capturing the evolution of a Hamiltonian-like quantity, we reveal the
origins of the long-term drift in a single swimmer-dependent constant, whose sign
determines the eventual behaviour of the swimmer. This constant captures the
nonlinear interaction between the oscillatory speed and effective hydrodynamic
shape of deforming swimmers, driving drift either towards or away from rheotaxis.

1. Introduction

The behaviours of microswimmers in flows have long been a topic of broad
theoretical and experimental study. Recently, Omori et al. (2022) numerically
explored a model of a shape-changing swimmer in Poiseuille flow, posed in the
context of the alga Chlamydomonas for comparison with their experimental
findings. Their investigations suggested an interesting and subtle connection
between the long-time behaviours of the microswimmer and the details of its
changing speed and shape, with certain conditions apparently necessary for long-
time upstream-facing swimming in the flow, referred to as rheotaxis by Omori
et al.. Their ordinary differential equation (ODE) model may be simply stated in
terms of a transverse coordinate y and the swimmer orientation θ as

dy

dt
= ωu(ωt) sin θ , (1.1a)

dθ

dt
= γy(1−B(ωt) cos 2θ) , (1.1b)
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Figure 1: Notation and set-up. We illustrate a model swimmer in Poiseuille flow,
located at a transverse displacement y from the midline of the parabolic flow
profile. The swimming direction θ is measured from the midline, with θ = 0
corresponding to downstream swimming.

with given initial conditions and with reference to the setup of fig. 1, where all
quantities are considered dimensionless. We refer the interested reader to the
work of Omori et al. (2022) for a full derivation of the model. The functions u
and B capture the time-dependent active swimming speed and shape-capturing
Bretherton constant (Bretherton 1962), respectively. These prescribed functions
are assumed to be oscillatory with a shared high frequency ω � 1. In particular,
the swimming speed naturally scales with ω in eq. (1.1a), as the Stokes equations
are both linear and independent of time except via boundary conditions (Kim
& Karrila 2005). However, such a velocity scaling is absent from the explicitly
stated equations of Omori et al. (2022), although it is present in their explored
parameter regimes. The equations of Stokes flow are appropriate in the low-
Reynolds-number and low-frequency-Reynolds-number regimes associated with
many microswimmers, including Chlamydomonas (Guasto et al. 2012), and we
will restrict our analysis to such regimes of practical interest. Here, γ is a fixed
characteristic shear rate of the flow, non-negative without loss of generality.
This model neglects any interactions of the swimmer with solid boundaries
typically associated with Poiseuille flow, and we will proceed without additional
consideration of boundary effects.

Via the numerical explorations of Omori et al. (2022), this model is noted to
give rise to a range of complex, long-time behaviours, perhaps most remarkable of
which is conditional convergence towards a central upstream-facing configuration.
In this study, we will aim to analytically uncover the driving factors behind these
long-time dynamics. Via a multiple-scale asymptotic analysis (Bender & Orszag
1999), as recently applied to similar models of swimming (Gaffney et al. 2022; Ma
et al. 2022; Walker et al. 2022), we will show how the effective swimmer behaviour
can be captured by a Hamiltonian-like quantity, whose slow evolution accurately
encodes the long-time trends of behaviour noted by Omori et al. (2022). Further,
we will identify a markedly simple relation between the eventual behaviour of the
swimmer and its oscillating speed and shape, enabling the deduction of long-time
dynamics through the calculation of a single swimmer-dependent constant.

2. Direct asymptotic analysis

The timescales present in the model of Omori et al. (2022) are best identified
through a change of variable. Defining z(t) := y(t)/ω1/2, the system reads

dz

dt
= ω1/2u(ωt) sin θ , (2.1a)

dθ

dt
= γω1/2z(1−B(ωt) cos 2θ) . (2.1b)
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This suggests a natural fast timescale T := ωt, that of the oscillating swimmer
speed and shape. Additionally, O (1) oscillations of u and B in eq. (2.1) drive
O (1) changes in z and θ over an intermediate timescale of t = O

(
ω−1/2

)
. We will

later see that these changes correspond to quasiperiodic orbits of the swimmer in
the flow, quantifying motion on this timescale via τ := ω1/2t. In addition to the
two timescales T and τ evident from this system of equations, Omori et al. (2022)
observed behavioural changes over longer timescales, with t = O (1). Hence, we
expect the system to evolve on three separated timescales, corresponding to T ,
τ , and t each being O (1). Our overarching aim is to characterise and understand
the behaviours of the system over the timescale t = O (1).

To this end, we implement a multiple-scale analysis and formally write z(t) =
z(T, τ, t) and θ(t) = θ(T, τ, t), treating each time variable as independent (Bender
& Orszag 1999). This transforms the proper time derivative via

d

dt
7→ ω

∂

∂T
+ ω1/2 ∂

∂τ
+
∂

∂t
, (2.2)

which transforms eq. (2.1) into the system of partial differential equations (PDEs)

ωzT + ω1/2zτ + zt = ω1/2u(T ) sin θ , (2.3a)

ωθT + ω1/2θτ + θt = ω1/2γz(1−B(T ) cos 2θ) . (2.3b)

Here and hereafter, subscripts of t, τ , and T denote partial derivatives. We will
later remove the extra degrees of freedom that we have introduced by imposing
periodicity of the dynamics in the intermediate and fast variables τ and T .
Expanding z and θ in powers of ω−1/2 as z ∼ z0 + ω−1/2z1 + ω−1z2 + · · · and
θ ∼ θ0 + ω−1/2θ1 + ω−1θ2 + · · · , we obtain the O (ω) balance

z0T = 0 , θ0T = 0 , (2.4)

so that z0 = z0(τ, t) and θ0 = θ0(τ, t) are independent of T . To determine how z0
and θ0 depend on τ and t, we must proceed to higher asymptotic orders.

We next consider the balance of O
(
ω1/2

)
terms in eq. (2.3), which reads

z1T + z0τ = u(T ) sin θ0 , (2.5a)

θ1T + θ0τ = γz0(1−B(T ) cos 2θ0) . (2.5b)

The Fredholm solvability condition for eq. (2.5) is equivalent to averaging over a
period in T and enforcing T -periodicity of z1 and θ1. Introducing the averaging
operator 〈·〉, defined via its action on functions v(T, τ, t) via

〈v〉 (τ, t) :=

∫ 1

0

v(T, τ, t) dT , (2.6)

we obtain the averaged equations

z0τ = 〈u〉 sin θ0 , (2.7a)

θ0τ = γz0(1− 〈B〉 cos 2θ0) , (2.7b)

where 〈u〉 and 〈B〉 are the averages of u(T ) and B(T ), respectively, representing
the average speed and shape of the model swimmer. In particular, 〈u〉 and 〈B〉
are constant, with the dynamics being rendered trivial if 〈u〉 = 0; we exclude
this case from our analysis and henceforth take 〈u〉 > 0 without further loss of
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generality†. We will also assume that |〈B〉| < 1, which imposes only a minimal
restriction on the admissible swimmer shapes, since |B| > 1 is typically associated
with objects of exceedingly large aspect ratio (Bretherton 1962).

Of particular note, if viewed as a system of ODEs in τ , the system of eq. (2.7)
corresponds precisely to the original dynamical system of eq. (2.1), suitably
scaled, but with the time-varying speed and shape parameters replaced by their
averages. We will shortly return to these equations and explore the ramifications
of this observation in detail, in particular noting the existence of a Hamiltonian-
like quantity, but first complete our analysis of the O

(
ω1/2

)
problem to determine

the form of z1 and θ1 for later convenience.
Without solving eq. (2.7), we can deduce the form of z1 and θ1 by substituting

eq. (2.7) into eq. (2.5), yielding the simplified system

z1T = [u(T )− 〈u〉] sin θ0 , (2.8a)

θ1T = −γz0[B(T )− 〈B〉] cos 2θ0 . (2.8b)

Integrating eq. (2.8) in T , recalling that z0 and θ0 are independent of T , yields
the solution

z1 = Iu(T ) sin θ0 + z̄1(τ, t) , (2.9a)

θ1 = −γz0IB(T ) cos 2θ0 + θ̄1(τ, t) , (2.9b)

where z̄1 and θ̄1 are functions of τ and t, undetermined at this order, and we
define

Iu(T ) :=

∫ T

0

[u(T̃ )− 〈u〉] dT̃ , IB(T ) :=

∫ T

0

[B(T̃ )− 〈B〉] dT̃ . (2.10)

Noting that Iu(T ) and IB(T ) are T -periodic with period one, it follows that z1
and θ1 are T -periodic with the same period.

In principle, one could proceed to the next asymptotic order to determine how
z0 and θ0 evolve in t through the derivation of an additional solvability condition.
However, here, this procedure would be complicated by the absence of an explicit
solution to the nonlinear system of eq. (2.7), compounded by the potentially
t-dependent period of the solution, which would require using the generalised
method of Kuzmak (1959). To circumvent this difficulty, we instead turn our
attention back to eq. (2.7), seeking further understanding of the leading-order
dynamics over the intermediate timescale τ .

3. A Hamiltonian-like quantity

If treated as a system of ODEs, we noted that eq. (2.7) closely resembles the
original swimming problem, with averages taking the place of oscillatory swim-
ming speeds and swimmer shapes. In fact, the equivalent ODE problem has been
extensively studied, with Zöttl & Stark (2013) thoroughly exploring this dynam-
ical system and identifying a Hamiltonian-like constant of motion. Motivated by
their study, we identify an analogous first integral of eq. (2.7):

H0(t) :=
γ

2 〈u〉
z20 + g(θ0) (3.1)

† The mapping θ 7→ θ + π transforms 〈u〉 < 0 into the positive case.
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Figure 2: Phase portrait of motion on the intermediate timescale τ . Solutions of
eq. (3.1) are closed orbits in the z0-θ0 plane for constant H0, symmetric in both
z0 = 0 and θ0 = π. Solutions in the shaded region, where H0 > g(0), do not
cross z0 = 0, corresponding to tumbling motion and monotonic evolution of θ0.
Trajectories with H0 < g(0) instead exhibit swinging motion, with θ0 oscillating
between two values. The black contour H0 = g(0) separates these regimes, with
the direction of motion in the phase plane indicated by arrowheads, recalling that
γ > 0. The point (z0, θ0) = (0, π) corresponds to rheotaxis, with H0 = g(π).

for H0(t) ∈ [g(π),∞), where, for 〈B〉 ∈ (−1, 1),

g(θ0) :=
arctanh

(√
2〈B〉
1+〈B〉 cos θ0

)
√

2 〈B〉 (1 + 〈B〉)
, g′(θ0) = − sin θ0

1− 〈B〉 cos 2θ0
, (3.2)

taking the appropriate limits and branches where required. As H0(t) is effectively
a constant of motion over the intermediate timescale τ , eq. (3.1) demonstrates
that solutions to eq. (2.7) are closed orbits in z0-θ0 phase space over this timescale,
with θ0 appropriately understood to be taken modulo 2π. We illustrate this
phase space in fig. 2, equivalent to the plot of Zöttl & Stark (2013, Fig. 2b).
In particular, it is helpful to emphasise the two distinct behavioural regimes on
this timescale: (1) endless tumbling, where the swimmer does not cross z0 = 0
and θ0 varies monotonically, and (2) periodic swinging, where the swimmer
repeatedly crosses the midline of the flow and θ0 oscillates between two values,
θ0 ∈ [θmin, θmax], readily computed from eq. (3.1). The separating trajectory
passes through (z0, θ0) = (0, 0) and corresponds to H0 = g(0). Here, H0 > g(0)
corresponds to tumbling, shaded grey in fig. 2, and H0 < g(0) corresponds to
swinging. Of note, the period of these dynamics over the intermediate timescale,
which we denote by Pτ , depends non-trivially on H0.

We can identify these dynamics with those reported both numerically and
experimentally by Omori et al. (2022). In particular, as H0(t) approaches its
minimum of g(π), the trajectory in the phase space approaches a single point,
(z0, θ0) = (0, π), corresponding to a swimmer that is directed upstream on
the midline of the flow. This is precisely the so-called rheotactic behaviour
observed by Omori et al. (2022), which they noted as the long-time behaviour
of eq. (1.1) for particular definitions of u(T ) and B(T ), corresponding also to
the experimentally determined behaviours of Chlamydomonas in channel flow.
This agreement suggests that the long-time dynamics of the full system may be
captured by the evolution of the Hamiltonian-like quantity H0(t).

In order to examine this evolution, we consider the dynamics of the following
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Hamiltonian-like expression,

H(t) :=
γ

2 〈u〉
z2 + g(θ) . (3.3)

Taking the proper time derivative of eq. (3.3) and inserting eq. (2.1) yields

dH

dt
= γω1/2z sin θ

[
u(T )

〈u〉
− 1−B(T ) cos 2θ

1− 〈B〉 cos 2θ

]
. (3.4)

Transforming the time derivative following eq. (2.2), we then insert our expansions
of z and θ into eq. (3.4), noting that H is equal to H0 at leading order. Expanding
H ∼ H0 +ω−1/2H1 +ω−1H2 + · · · , the balance at O (ω) is simply H0T = 0, so we
deduce that H0 = H0(τ, t), as expected. At O

(
ω1/2

)
, we have

H1T +H0τ = γz0 sin θ0

[
u(T )

〈u〉
− 1−B(T ) cos 2θ0

1− 〈B〉 cos 2θ0

]
. (3.5)

Averaging over the fast timescale T , equivalent to applying the Fredholm solv-
ability condition, we immediately see that the term in square brackets vanishes,
so that H0τ = 0 and H0 = H0(t) is also independent of τ , as expected.

Finally, we consider the O (1) terms in eq. (3.4), which may be stated as

H2T +H1τ +H0t = h(T, τ, t) , (3.6)

where

h(T, τ, t) := γ(z0θ1 + z1 sin θ0)

[
u(T )

〈u〉
− 1−B(T ) cos 2θ0

1− 〈B〉 cos 2θ0

]
− 2γz0θ1 sin θ0 sin 2θ0

(1− 〈B〉 cos 2θ0)2
[B(T )− 〈B〉] , (3.7)

and we note that the expressions in the square brackets each average to zero over
a period in T . Inserting our expressions for z1 and θ1 from eq. (2.9), we have

h(T, τ, t) = γ
(
sin2 θ0Iu(T )− γz20 cos θ0 cos 2θ0IB(T )

) [u(T )

〈u〉
− 1−B(T ) cos 2θ0

1− 〈B〉 cos 2θ0

]
+
γ2z20 sin θ0 sin 2θ0 cos 2θ0

(1− 〈B〉 cos 2θ0)2
IB(T )(B(T )− 〈B〉) + [·] , (3.8)

with [·] encompassing terms that have zero fast-timescale average, which here are
those involving z̄1 and θ̄1. It is also helpful to note that 2IB(T )(B(T ) − 〈B〉) =
(I2B)T , so that 〈IB(B − 〈B〉)〉 = 0 by the periodicity of IB. Hence, the entire
second line of eq. (3.8) will vanish when averaged over a period in T . Averaging
over T and noting the further relations 〈IBB〉 = 〈IB 〈B〉〉, 〈Iuu〉 = 〈Iu 〈u〉〉, and

(IuIB)T = Iu(T )(B(T )− 〈B〉) + IB(T )(u(T )− 〈u〉) , (3.9)

the fast-timescale average of h is simply

〈h〉 = γ cos 2θ0

(
γ

〈u〉
z20 cos θ0 +

sin2 θ0
1− 〈B〉 cos 2θ0

)
〈Iu(B − 〈B〉)〉︸ ︷︷ ︸

W

, (3.10)

where W := 〈Iu(B − 〈B〉)〉 is constant. Thus, averaging eq. (3.6) over a period in
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Figure 3: Exemplifying f(H0). We plot an example f(H0), as defined in eq. (3.12)
and computed numerically, for a range of H0. The non-positivity of f(H0) is
immediately evident, with f → 0 from below as H0 → g(π) or H0 → g(0). As
noted in the main text, f is undefined at H0 = g(0), which we indicate with a
hollow circle, but this point is readily seen to be half stable in the context of
the dynamical system of eq. (3.11), so has negligible impact on the dynamics in
practice. Here, we have fixed γ = 1, 〈u〉 = 1, and 〈B〉 = 0.5. The shaded region
corresponds to tumbling dynamics.

T and then over a period in τ† yields the long-time evolution equation

dH0

dt
= γf(H0)W , (3.11)

where

f(H0) :=
1

Pτ

∫ Pτ

0

cos 2θ0

(
γ

〈u〉
z20 cos θ0 +

sin2 θ0
1− 〈B〉 cos 2θ0

)
dτ , (3.12)

recalling that Pτ denotes the period of the oscillatory dynamics in τ and H0

is independent of τ and T . Notably, the integrand of eq. (3.12) depends on
the swimmer’s speed and shape only via their fast-time averages 〈u〉 and 〈B〉.
Therefore, all of the information encoding the dynamic variation of u and B
about their mean is solely contained within the swimmer-dependent constant
W . Of particular note, if either u or B is constant, then W = 0 and, hence,
dH0/dt = 0, so that there is no long-time drift of H0. This analytically verifies
the numerical observations of Omori et al. (2022), who concluded that oscillations
in both swimmer speed and shape were required to modify long-time behaviour.

Having reduced the dynamics to the one-dimensional autonomous dynamical
system of eq. (3.11), notably independent of ω, it remains to understand f(H0),
the average of a particular function of z0 and θ0 over a period in τ , which we
illustrate in fig. 3. In appendix A, we analytically demonstrate that f(H0) 6 0 for
all H0, in agreement with fig. 3. Hence, the sign of eq. (3.11) is determined by W ,
which depends only on the dynamics of u and B over a single oscillation. Strictly,
there is a higher-order problem to be solved close to H0 = g(0), evidenced by the
cusp-like profile in fig. 3, with Pτ → ∞ and f(H0) → 0 as H0 → g(0). However,
noting that f(H0) < 0 either side of H0 = g(0), this point is half stable in the
context of eq. (3.11) (Strogatz 2018), so that it is unstable in practice and does
not materially impact on the evolving dynamics.

Thus, the fixed point at H0 = g(π), corresponding to the rheotactic configura-
tion (z0, θ0) = (0, π), is globally stable if W > 0 and unstable if W < 0. Hence,

† Here, noting that H0 is independent of τ , we can naively average over a single oscillation in
τ , despite the t-dependence of Pτ , which would otherwise require the method of Kuzmak (1959).
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Figure 4: Numerical validation. (a) The value of H, as computed from the full
numerical solution of eq. (2.1) and the approximation of eq. (3.11), shown as
blue and black curves, respectively, for three phase shifts λ ∈ {4π/5, π, 6π/5}.
Small, rapid oscillations in the full numerical solution are visible in the inset.
(b) The asymptotically predicted bounds of z oscillations for λ = 6π/5 are
shown as black curves, with the rapidly oscillating full solution shown in
blue, highlighting excellent agreement even when the full solution transitions
from tumbling dynamics towards rheotactic behaviour. Here, we have taken
(α, β, δ, µ) = (1, 0.5, 0.32, 0.3) and λ ∈ {4π/5, π, 6π/5} in the sinusoidal model
of Omori et al. (2022), fixing γ = 1, ω = 50, and (z, θ) = (1, π/4) initially. The
shaded regions correspond to tumbling dynamics.

rheotaxis is the globally emergent behaviour at leading order if W > 0, whilst
endless tumbling arises if W < 0.

4. Summary and conclusions

Our analysis allows us to characterise the long-time behaviour of a swimmer in
Poiseuille flow via the computation of a simple quantity, W , defined in eq. (3.10)
and dependent only on the dynamics of the speed u and the shape parameter
B of the swimmer over a single oscillation. In particular, we find that the long-
time behaviours take one of three possible forms, given in terms of the leading-
order Hamiltonian-like quantity H0 of eq. (3.1): (1) endless tumbling at increasing
distance from the midline of the flow (H0 →∞); (2) preserved initial behaviour
of the swimmer (H0 = H0(0)); (3) convergence to upstream rheotaxis, where the
swimmer is situated at the midline of the flow (H0 → g(π)). We find that the drift
towards these long-time regimes is caused by the delicate higher-order interactions
in the system. Specifically, the nonlinear interaction between the small O

(
ω−1/2

)
variations from the leading-order system over the fast timescale t = O (ω) gives
rise to the significant O (1) effect over the slow timescale t = O (1).

In the context of Omori et al., where u(T ) = α + β sin (2πT ) and B(T ) =
δ + µ sin (2πT + λ), we note that in-phase oscillations with λ ∈ {nπ|n ∈ Z}
immediately lead to W = 0, corresponding to case (2) above. Any other values
of λ lead to W 6= 0 (with maximal magnitude for λ ∈ {π/2 + nπ|n ∈ Z}) and
long-term evolution of the swimmer behaviour. Notably, shifting λ by π results
in a precise reversal of the sign of W and a corresponding reversal of the sign
of dH0/dt. Hence, this shift in phase will precisely flip the fate of the swimmer,
with rheotaxis being replaced by tumbling, or vice versa. Concretely, if βµ > 0,
then λ ∈ (0, π) results in tumbling, whilst λ ∈ (π, 2π) gives rise to rheotaxis.
Further, our analysis predicts that swimmers having either u or B constant will
not undergo a similar drift over t = O (1) at leading order. In particular, this
highlights that rigid externally driven swimmers and Janus particles, associated
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with constant B, would differ fundamentally in their long-time behaviour from
shape-changing swimmers with dynamically varying B.

In support of our asymptotic analysis, we present three numerical examples in
fig. 4, approximating f(H0) with quadrature using the easily obtained numerical
solution of the simple ODE system of eq. (2.7) in τ for fixed H0(t). In fig. 4a,
we compare the asymptotic and full numerical solutions through the evolution
of H, adopting the sinusoidal model of Omori et al. (2022) and demonstrating
excellent agreement between the solutions. This numerical validation spans the
distinct dynamical regimes of tumbling and swinging, with different values of the
phase shift λ giving rise to distinct behaviours from otherwise identical initial
conditions. Figure 4b captures a transition between behaviours, as observed by
Omori et al. (2022) for λ = 6π/5, where we have predicted the bounds of z
oscillations by combining the solution of eq. (3.11) with eq. (3.1) evaluated
at θ0 = θmin and θ0 = π. We anticipate that similar calculations may be
used to predict collisions between swimmers and channel boundaries in related
experimental set-ups, though theoretical consideration of boundary effects in
future work is warranted and may complicate analysis. A promising direction
for such an exploration is the augmentation of the model of Zöttl & Stark (2012)
with the effects of an oscillatory swimming speed and swimmer shape, equivalent
to extending the studied model of Omori et al. (2022) to a confined geometry.

More generally, the study of long-time swimmer dynamics in other scenarios,
such as extensional flows, merits further investigation via multiscale analysis, with
the behaviours of microswimmers in flow having been the subject of extensive
research interest since the early 20th century, as summarised by Bretherton &
Rothschild (1961). Recent examples of this include, but are not limited to, the
works of Marcos et al. (2012); Miki & Clapham (2013) and Uspal et al. (2015),
which consider the rheotaxis of spermatozoa, bacteria, and active particles, re-
spectively. The study of microswimmers in flow has also recently been considered
in the context of theoretical control and guidance (Moreau & Ishimoto 2021;
Moreau et al. 2021; Walker et al. 2018), further motivating the development of
our understanding of the potentially subtle interactions between swimmer shape,
swimming speed, and background flows.

In summary, an asymptotic (three-timescale) multiple-scale analysis of the
swimming model of Omori et al. (2022) has revealed a trichotomy of startlingly
simple long-time behaviours, determined only by a single swimmer-specific con-
stant of motion that may be readily computed a priori. This analysis, which
complements the earlier works of Zöttl & Stark (2012, 2014) and Junot et al.
(2019), confirms the numerical predictions of Omori et al. (2022), in agreement
with their experimental observations of Chlamydomonas, and formally identifies
the interacting oscillatory effects needed to elicit the eventual behaviours of
endless tumbling and upstream rheotaxis in this model of swimming.
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The computer code used in this study is available at https://gitlab.com/
bjwalker/emergent-rheotaxis-in-Poiseuille-flow.
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Appendix A. Deducing the sign of f(H0)

Consider the integrand of eq. (3.12). Recalling the evolution equations of z0 and
θ0 on the intermediate timescale, given in eq. (2.7), this can be written as

cos 2θ0
〈u〉 (1− 〈B〉 cos 2θ0)

(z0 sin θ0)τ .

Integrating by parts then yields

Pτf(H0) =

∫ Pτ

0

2z0 sin θ0 sin 2θ0
〈u〉 (1− 〈B〉 cos 2θ0)2

θ0τ dτ =

∫
2z0 sin θ0 sin 2θ0

〈u〉 (1− 〈B〉 cos 2θ0)2
dθ0 ,

(A 1)
with boundary terms vanishing due to periodicity. With reference to the phase
diagram of fig. 2, we note that we need only integrate in θ0 from its minimum
attained value up to π, with both the integrand and the phase-space trajectory
being symmetric about both θ0 = π and z0 = 0. This corresponds to integrating
over the branch of the trajectory in the upper-left quadrant of fig. 2, with the true
value of Pτf(H0) then being recovered by appropriate multiplication by two or
four, depending on whether the trajectory is one of tumbling or swinging. Hence,
we consider the integral only over the range θ0 ∈ [θmin, π], where θmin ∈ [0, π] is
the minimum value attained by θ0 over an orbit, as specified solely by H0(t).

In the upper-left quadrant of the phase plane, z0 is a non-negative increasing
function of θ0, evident from eq. (2.7a) and eq. (3.1). In particular, z0(θ0 +π/2) >
z0(π/2) for θ0 ∈ [0, π/2]. Further, the remaining combination of trigonometric
terms in the integrand, denoted by I(θ0) for brevity, satisfies I(θ0) > 0 and
I(θ0 +π/2) = −I(θ0) for θ0 ∈ [0, π/2]. Hence, the integral is trivially negative for
θmin ∈ [π/2, π], whilst for θmin ∈ [0, π/2] we have∫ π

θmin

z0(θ0)I(θ0) dθ0 =

∫ π/2

θmin

z0(θ0)I(θ0) dθ0 +

∫ π

π/2

z(θ0)I(θ0) dθ0

6
∫ π/2

0

z0(π/2)I(θ0) dθ0 +

∫ π/2

0

z0(θ0 + π/2)I(θ0 + π/2) dθ0

=

∫ π/2

0

[z0(π/2)− z0(θ0 + π/2)]I(θ0) dθ0 6 0 . (A 2)

Hence, Pτf(H0) 6 0, so that f(H0) 6 0 for all H0. In particular, this equality
is strict unless H0 = g(π) or H0 = g(0), which correspond to the degenerate
rheotactic trajectory (z0, θ0) = (0, π) and the separating trajectory that lies
between tumbling and swinging behaviours in fig. 2. As discussed in the main
text, the case withH0 = g(0) requires the consideration of a higher-order problem,
though has negligible impact on the dynamics in practice.
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