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MATHEMATICAL MODELING OF CHEMICAL AGENT REMOVAL
BY REACTION WITH AN IMMISCIBLE CLEANSER∗

M. P. DALWADI† , D. O’KIELY‡ , S. J. THOMSON‡ , T. S. KHALEQUE§ , AND C. L. HALL¶

Abstract. When a hazardous chemical agent has soaked into a porous medium, such as concrete,
it can be difficult to neutralize. One removal method is chemical decontamination, where a cleanser
is applied to react with and neutralize the agent, forming less harmful reaction products. There are
often several cleansers that could be used to neutralize the same agent, so it is important to identify
the cleanser features associated with fast and effective decontamination. As many cleansers are
aqueous solutions while many agents are immiscible with water, the decontamination reaction often
takes place at the interface between two phases. In this paper, we develop and analyze a mathematical
model of a decontamination reaction between a neat agent and an immiscible cleanser solution. We
assume that the reaction product is soluble in both the cleanser phase and the agent phase. At the
moving boundary between the two phases, we obtain coupling conditions from mass conservation
arguments and the oil–water partition coefficient of the product. We analyze our model using both
asymptotic and numerical methods, and we investigate how different features of a cleanser affect
the time taken to remove the agent. Our results reveal the existence of two regimes characterized
by different rate-limiting transport processes, and we identify the key parameters that control the
removal time in each regime. In particular, we find that the oil–water partition coefficient of the
reaction product is significantly more important in determining the removal time than the effective
reaction rate.
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1. Introduction.

1.1. Decontamination in porous media. Chemical spills can be both envi-
ronmentally and financially disastrous, and a clear understanding of the effectiveness
of different clean-up methods is vital for quick and efficient decontamination. Chem-
ical spills are typically neutralized by applying a cleanser solution to the spill which
reacts with the contaminating agent to produce less harmful products. With a small
number of exceptions, the cleansers used for decontamination are applied as aqueous
solutions [17, 19]. However, many agents of concern are organic compounds with low
solubility in water. This means that achieving good mixing of the aqueous decontam-
inant with the organic agent is often a critical rate-limiting step, and the speed of
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decontamination is greatly affected by the water-solubility of the contaminating agent
[1, 9, 10, 17, 21].

The challenges of achieving good mixing of cleanser and agent are particularly
pronounced when the agent has soaked into a porous material, such as concrete. In
this case, the cleanser and agent cannot be mixed mechanically (e.g., by stirring),
and the speed of decontamination is likely to be limited by cleanser and agent trans-
port. Studying the decontamination of porous materials also presents experimental
challenges. While some methods have been developed for investigating the behavior
of agents in porous media [20], it is extremely difficult to track the progress of a neu-
tralization reaction in situ and thus obtain reliable data about the effectiveness of a
decontamination protocol [16].

In many cases, multiple different cleanser solutions could be used to neutralize
the same agent; for a detailed description of cleanser solutions in current use, and
different decontamination reactions and their products, see [19] and [14], respectively.
However, only limited data are available about how quickly and how completely a
contaminating agent in a porous medium is neutralized by a given cleanser.

Mathematical modeling of decontamination in porous media can give valuable
insights into the effectiveness of cleanser solutions by analyzing how different physical
and chemical properties of agents and cleansers affect the speed and effectiveness of
decontamination. This information can be used both to guide the choice of cleanser
for a specific application and to inform the development of new cleansers.

1.2. Reactions at phase boundaries. In a general setting, the evolving dis-
tributions of agent, cleanser, and reaction products in a porous medium are controlled
by (i) the transport of chemical species by diffusion and advection and (ii) the reac-
tions that occur. If the agent and the cleanser solution are completely immiscible,
these reactions only occur at phase boundaries. Reactive transport of chemicals in
multiphase systems is important in hydrology and geology, and various mathematical
models have been developed to describe reactive transport [4, 5, 12, 13, 15, 18].

In many of these models, the reacting species are in different phases and reactions
occur only at phase boundaries. To the best of our knowledge, apart from a study
group report on preliminary work [6], the published literature deals only with reactions
of this type where one of the reacting species is in a solid phase, within which diffusion
and advection can be neglected. In contrast, we are concerned with the reaction
between a water-phase cleanser solution and an oil-phase agent, where the important
reacting species are in two distinct fluid phases and chemical transport in each phase
occurs due to diffusion. In this context, simultaneous transport of the reactive species
to the phase boundary is crucial.

As we describe below, our model of decontamination involves mass exchange
between two phases (an oil phase and a water phase) at a free boundary. Mass
exchange at phase boundaries has been extensively studied in the context of the
Stefan problem, a famous model of melting and freezing (see, for example, [2, 3, 7,
8]). While there are important differences between decontamination and the classical
Stefan problem, we show that our model reduces to a Stefan problem with kinetic
undercooling in certain limits.

1.3. Outline of paper. This paper describes the development and analysis of a
model of decontamination in two immiscible phases, where chemical transport is due
to diffusion in each phase and the decontamination reaction occurs at the boundary
between the two immiscible fluid phases. While real decontamination systems can
be very complicated, often involving multiple reactions with multiple products [14],
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we concentrate on an idealized scenario involving a bimolecular reaction between a
neat agent and a cleanser solution to produce a single reaction product. The agent
and cleanser solution are assumed to be immiscible, but the neutralization reaction
is assumed to yield a reaction product that gets distributed between the two phases
according to a known partition coefficient.

The assumptions that we make in developing our model allow us to analyze how
the salient features of the decontamination system (e.g., the reaction rate constant,
the diffusion constants of different species, the partition coefficient for the distribution
of reaction product between phases) affect the overall speed of decontamination. As
discussed above, since we can find no references in the present literature that discuss
(let alone quantify) how such features affect decontamination speed, this paper repre-
sents a valuable first step in understanding the processes that control the effectiveness
of decontamination.

In section 2, we describe the development and nondimensionalization of our model,
paying particular attention to the boundary conditions that hold at the moving inter-
face. This leads to the model (12)–(15), which gives a dimensionless representation
of the problem, transformed to fixed spatial domains. In section 3 we consider the
early-time asymptotic behavior of the model and present numerical solutions to the
system. While not important for determining the overall speed of decontamination,
the early-time analysis is essential for developing accurate and efficient numerical
schemes for solving (12)–(15). We also introduce two measures of agent removal time
that can be used to characterize decontamination.

We follow this in section 4 with an asymptotic analysis of the governing equations
for long time. Under the assumption that the initial agent layer is deep, we find that
the long-time dynamics of the model fall into one of two regimes. We investigate the
behavior of the system in both of these regimes, providing asymptotic results where
possible. These results allow us to gain deeper physical insight into the underlying
system and predict the most important parameters for decontamination. We discuss
the physical implications of our work in section 5, where we present our results in
dimensional form and thus identify some desirable features of cleansers.

2. Model development.

2.1. Model outline. Throughout this paper, we use SI units to indicate the
dimensions of parameters and variables when they are first introduced. We consider
a one-dimensional porous medium of length L̄ [m], with the x̄-axis pointing into the
medium, as shown in Figure 1. Before the decontamination reaction begins, the neat
agent has penetrated to the end of the porous medium, so that the agent entirely
occupies the region 0 < x̄ < L̄. Then, at time t̄ = 0, an aqueous solution of cleanser
with uniform concentration c̄0 [mol m−3] is introduced to the surface at x̄ = 0. The
aqueous phase (containing the cleanser) and the oil phase (containing the agent) are
assumed to be immiscible, but the position of the interface between them, s̄(t̄) [m],
can change in time. We assume that the porous medium is homogeneous and fully
saturated with fluid. As a result of this, the porosity of the medium does not play an
explicit role in our analysis.

At the interface between the phases, the cleanser and the agent react irreversibly.
This reaction consumes cleanser and agent and leads to the formation of a neutral
product that is soluble in both the aqueous phase and the oil phase. In the aqueous
phase, the evolving concentration of cleanser is given by c̄(x̄, t̄) [mol m−3] and the
evolving concentration of reaction product is given by p̄(x̄, t̄) [mol m−3].

In the oil phase, we assume that the product and agent form an ideal mixture
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x̄

x̄ = 0

x̄ = L̄

x̄ = s̄(t̄)

Aqueous phase, with concentrations

c̄ of cleanser and p̄ of product

Oil phase, with volume fraction

φ̄ of product in agent

Fig. 1. Schematic diagram of the physical problem. Over time, the interface between the aqueous
phase and the oil phase moves down (in the direction of increasing x̄) as agent is consumed.

whose molar volume is independent of composition. We describe the evolving compo-
sition of the oil phase using the volume fraction of reaction product in the oil phase,
φ̄(x̄, t̄) [dimensionless]. Since the oil phase contains only agent and product, the vol-
ume fraction of contaminant in the oil phase is 1 − φ̄. Ideality of the agent–product
mixture implies that the diffusion of product in agent is equivalent to the diffusion
of agent in product, and hence we can represent diffusive transport in the oil phase
using a single diffusion equation for φ̄.

We assume that all transport of cleanser, agent, and product within their re-
spective phases is due to diffusion. Assuming Fickian diffusion and exploiting the
assumption that the porous medium is saturated and uniformly porous, the govern-
ing equations for c̄, p̄, and φ̄ are

c̄t̄ = D̄cc̄x̄x̄ for 0 < x̄ < s̄(t̄) and t̄ > 0,(1a)
p̄t̄ = D̄pp̄x̄x̄ for 0 < x̄ < s̄(t̄) and t̄ > 0,(1b)
φ̄t̄ = D̄φφ̄x̄x̄ for s̄(t̄) < x̄ < L̄ and t̄ > 0,(1c)

where D̄c [m2 s−1], D̄p [m2 s−1], and D̄φ [m2 s−1] are the effective diffusion coefficients
within a porous medium of the cleanser in aqueous solution, the product in aqueous
solution, and the agent/product in the oil phase, respectively. Subscripts of t̄ and x̄
denote partial derivatives with respect to time and space, respectively.

At x̄ = 0, we assume that the cleanser is continually being replenished at a
constant concentration c̄0 [mol m−3] while the reaction product is continually being
removed from the system. At x̄ = L̄, we assume that there is a fixed boundary that
no species can pass through. This yields the boundary conditions

c̄ = c̄0, p̄ = 0 for x̄ = 0,(2)
φ̄x̄ = 0 for x̄ = L̄.(3)

At t̄ = 0, the interface between the phases is located at x̄ = 0, and there is no
oily product yet, so the initial conditions are

φ̄ = 0, s̄ = 0 for t̄ = 0.(4)

2.2. Interfacial conditions. We assume that the agent and the cleanser react
in an irreversible bimolecular reaction at the phase boundary to produce the reaction
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product. For simplicity, we assume that the rate of the decontamination reaction
is proportional to the bulk concentrations of the two reagents in the neighborhood
of the phase boundary. While this approach means that we neglect the kinetics of
absorption and desorption, Kumar, Porkodi, and Rocha [11] have shown that it is
consistent with more complicated kinetic schemes in appropriate limits.

Mathematically, we describe the kinetics of decontamination by introducing the
total molar flux of reaction, R̄ [mol m−2 s−1]. This represents the consumption rate
of cleanser and agent (and, equivalently, the production rate of reaction product) per
unit area of the interface. Using our assumption that R̄ is proportional to the amounts
of cleanser and agent available at the oil–water interface, we obtain

(5) R̄ = k̄c̄ [s̄(t̄), t̄]
{

1− φ̄ [s̄(t̄), t̄]
}
,

where k̄ [m s−1] is a constant of proportionality which we refer to as the effective rate
constant.

We use (5) to obtain interfacial conditions on c̄, φ̄, and p̄, noting that the total
amounts of cleanser, agent, and product in the system (in moles) are given by

C(t̄) = Ā

∫ s̄(t̄)

0
c̄(x̄, t̄) dx̄,(6a)

A(t̄) =
Ā

V̄m

∫ L̄

s̄(t̄)
1− φ̄(x̄, t̄) dx̄,(6b)

P(t̄) = Ā

∫ s̄(t̄)

0
p̄(x̄, t̄) dx̄+

Ā

V̄m

∫ L̄

s̄(t̄)
φ̄(x̄, t̄) dx̄,(6c)

where Ā [m2] is the area of the spill, and V̄m [m3 mol−1] is the molar volume of the
agent/product mixture. Since we have assumed that the agent and product form an
ideal mixture, V̄m is a constant independent of φ̄.

Differentiating (6a) using Leibniz’s rule, we recognize that the molar flux of
cleanser into the oil–water interface is given by D̄cc̄x̄ + c̄s̄t̄, evaluated at x̄ = s̄(t̄).
Since the removal of cleanser at the oil–water interface happens via the decontamina-
tion reaction, we use (5) to obtain

(7a) D̄cc̄x̄ + c̄s̄t̄ = −k̄c̄(1− φ̄) on x̄ = s̄(t̄) for t̄ > 0.

Repeating this process with (6b) and (6c), we obtain two further interfacial con-
ditions,

−D̄φ

V̄m
φ̄x̄ +

1− φ̄
V̄m

s̄t̄ = k̄c̄(1− φ̄) on x̄ = s̄(t̄) for t̄ > 0,(7b)

D̄pp̄x̄ + p̄s̄t̄ =
1
V̄m

s̄t̄ on x̄ = s̄(t̄) for t̄ > 0,(7c)

where (7c) has been rearranged using (7b).
We obtain the final interfacial condition by assuming that the reaction product is

locally in equilibrium between the oil phase and the water phase. Thus, the concen-
trations of product on either side of the interface are related via a partition constant,
and the final interfacial condition is

(7d)
φ̄

V̄m
= Kp̄ on x̄ = s̄(t̄) for t̄ > 0,
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where K [dimensionless] is the oil–water partition constant of the reaction product.
In practice, K can be estimated from octanol–water partition constants, which have
been measured for a range of relevant compounds [14].

We note that the interfacial conditions stated in (7) are similar to those considered
in Stefan problems with kinetic undercooling. To see this, consider the limit K → 0,
where no reaction product enters the oil phase. In this case, the interfacial conditions
for c̄ and s̄ can be reduced to

D̄cc̄x̄ = −k̄c̄− c̄s̄t̄,(8a)
s̄t̄ = k̄V̄mc̄,(8b)

which are equivalent to the classic Stefan problem with kinetic undercooling [8].

2.3. Nondimensionalization and transformation to a fixed domain. As
part of our nondimensionalization, we pre-empt the challenges associated with nu-
merical solution on a domain with a moving boundary and introduce a boundary-
fixing transformation by defining “upper” and “lower” spatial variables, ξ ∈ [0, 1] and
η ∈ [0, 1], respectively, so that

ξ :=
x̄

s̄(t̄)
, η :=

L̄− x̄
L̄− s̄(t̄)

.(9)

With these definitions, the boundary conditions applied at x̄ = 0 and x̄ = L̄ are now
applied at ξ = 0 and η = 0, respectively, while the interfacial conditions applied at
the moving boundary x̄ = s̄(t̄) are now applied at the fixed boundaries ξ = 1 and
η = 1.

We nondimensionalize our dependent variables by introducing

c̄(x̄, t̄) :=
c(ξ, t)
V̄m

, p̄(x̄, t̄) :=
p(ξ, t)
V̄m

, s̄(t̄) :=
D̄c

k̄
s(t), t̄ :=

D̄c

k̄2
t,(10)

and, observing that φ̄ is already dimensionless, we also use φ̄(x̄, t̄) = φ(η, t).
Applying the nondimensionalization and the boundary-fixing transformation de-

scribed above, we identify the following set of five dimensionless parameters that
prescribe the system:

β := c̄0V̄m, Dp :=
D̄p

D̄c
, Dφ :=

D̄φ

D̄c
, K, d :=

L̄k̄

D̄c
.(11)

We discuss the decontamination of sulfur mustard in section 5.3, for which we obtain
typical parameter values of β ≈ 0.03− 8 and K ≈ 0.14− 7.1. However, diffusion and
reaction coefficients are more difficult to obtain. In section 4, we explore in detail the
case where d is much larger than the other parameters in the system, modeling deep
spills of agent.

In rescaled form, the governing equations (1) become

cξξ + ṡsξcξ = s2ct for 0 < ξ < 1 and t > 0,(12a)

Dppξξ + ṡsξpξ = s2pt for 0 < ξ < 1 and t > 0,(12b)

Dφφηη − ṡ (d− s) ηφη = (d− s)2
φt for 0 < η < 1 and t > 0,(12c)

where ṡ = ds/dt and subscripts of ξ, η, and t represent partial differentiation. We
observe that s(t) ∈ [0, d], and hence (d− s) is always nonnegative.
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The initial conditions (4) become

φ(η, 0) = 0, s(0) = 0,(13)

while the boundary conditions (2) and (3) become

c(0, t) = β, p(0, t) = 0, φη(0, t) = 0.(14)

Additionally, the interfacial conditions (7) are now

cξ + sc = sc (φ− ṡ) ,(15a)
Dφφη = − (d− s) (ṡ− c) (1− φ),(15b)
Dppξ = sṡ(1− p),(15c)

φ = Kp,(15d)

where all variables are evaluated for t > 0 and at ξ = 1 or η = 1 as appropriate. The
full dimensionless system is then described by (12)–(15).

3. Early-time asymptotics and numerical solutions.

3.1. Early-time asymptotics. Since the aqueous phase is initially absent from
the system, the boundary-fixing transformation described in section 2.3 is singular
at t = 0. We circumvent the numerical difficulties created by this singularity by
calculating the early-time behavior of the system as t→ 0+. We use these results to
start our computations at a small but finite time.

We begin by using (12)–(15) to obtain consistent initial conditions for c and p.
For small s, assuming that all other terms are bounded, (12) yields cξξ = pξξ = 0 and
(15) yields cξ(1, 0) = pξ(1, 0) = 0. Applying the boundary conditions (14), we obtain

c(ξ, 0) = β, p(ξ, 0) = 0.(16)

We can now obtain early-time results. Rescaling t with an arbitrary small param-
eter and seeking asymptotic balances in (12) and (15) where c, p, φ, and s are close
to their initial values, we find that s = O(t), c = β + O(t), φ = O(t), and p = O(t).
Solving for c, p, and s leads to the explicit results

c ∼ β − β2(1 + β)ξt, p ∼ β2ξt

Dp
, s ∼ βt as t→ 0+.(17)

In order to obtain explicit early-time results for φ, we make the assumption that
d is large. This corresponds to a deep spill of chemical agent and is the main focus
of our analysis in section 4. In this case we seek a boundary layer solution for φ
near η = 1; we introduce the rescaled spatial variable X = d(1 − η) to obtain the
leading-order early-time system

DφφXX + βφX = φt for X > 0 and t > 0,(18a)

φ =
βKt
Dp

on X = 0 for t > 0,(18b)

φ→ 0 as X →∞ for t > 0,(18c)
φ = 0 on t = 0 for X > 0.(18d)

This is solved by

φ =
βK
2Dp

{
(βt+X) erfc

(
X + βt

2
√
Dφt

)
+ e−βX/Dφ(βt−X) erfc

(
X − βt
2
√
Dφt

)}
,(19)

where erfc(z) is the complementary error function.
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p
φ

(b)

Fig. 2. (Color online.) Comparison of numerical solutions (solid) and asymptotic results
(dashed) at early times for β = K = Dφ = Dp = 1, d = 103. (a) The position of the moving
boundary. (b) The change from the initial conditions at early time. The decrease in cleanser
concentration profile, β − c (green), increase in product concentration in aqueous phase, p (blue),
and increase in product concentration in oily phase, φ (red), at times t = 2 × 10−3, 3 × 10−3, 4 ×
10−3, 5 × 10−3 with the arrow denoting an increase in time. The numerical solutions start from
t = 10−3 as described in the text.

3.2. Numerical solutions. The full dimensionless problem (12)–(15) is solved
using the method of lines. We use a uniform mesh for ξ, and, to resolve the boundary
layer observed in the previous section, we use a nonuniform mesh with logarithmically
spaced points for η. The logarithmic spacing is focused near η = 1 and is only used
while s(t) < d/4; after this point in time, we use a uniform mesh. We discretize
(12)–(15) in space, using second-order finite differences, and integrate in time with
ode15s in MATLAB, using the early-time solutions (17) and (19) to provide consistent
initial conditions. We use “ghost” points just outside the domain to impose the
boundary conditions, using (15c) for ṡ, (15a) for c, (15d) for p, and (15b) for φ at
the free boundary. We verify the early-time solution by comparing full numerical
solutions initiated at t = 10−3 with the early-time asymptotic solutions (17) and (19)
in Figure 2, and we observe good agreement. The asymptotic predictions (17) for
β− c and p do not change in time when rescaled for the physical domain via (9), and
the early-time numerical solutions exhibit the same behavior.

In Figures 3 and 4 we show the evolution of the cleanser–agent–product system
for illustrative parameter values, namely β = Dφ = Dp = 1, d = 103, with K = 10
in Figure 3 and K = 1 in Figure 4. As we discuss further in section 5, values of
K within an order of magnitude of unity are realistic. Additionally, we expect all
diffusion constants to be comparable. The choices of K that we make in Figures 3
and 4 enable us to demonstrate how different parameter choices lead to qualitatively
different solution behaviors.

In both Figures 3 and 4, we observe that the interface moves in the positive x-
direction, consuming the agent. The interface reaches the lower boundary almost an
order of magnitude faster for K = 1 than for K = 10. Additionally, we observe that
the concentration profiles of cleanser, c, and product in the upper and lower regions,
p and φ, respectively, are sensitive to the partition coefficient K. For K = 10, we
observe that φ reaches values close to 1 (so agent concentration is close to 0) while
the interface is still far from the lower boundary (Figure 3), whereas, for K = 1, φ < 1
throughout the reaction and c appears to vanish close to the interface (Figure 4).
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Fig. 3. (Color online.) Numerical results for the system (12)–(15) using the parameter values
β = Dφ = Dp = 1, K = 10, and d = 103. (a) The position of the moving boundary, s(t). (b) The
concentrations of the cleanser, c (green), product in aqueous phase, p (blue), and product in oily
phase, φ (red), at (nonuniform) times t = 1×105, 5×105, 1×106, 2×106, 4×106, where the arrows
denote increasing time. (c) The proportion of remaining contaminant in the system, Φ(t), defined
in (20a). The inset shows a log-lin version of the same function.
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Fig. 4. (Color online.) Numerical results for the system (12)–(15) using the parameter values
β = Dφ = Dp = K = 1 and d = 103. (a) The position of the moving boundary, s(t). (b) The
concentrations of the cleanser, c (green), product in aqueous phase, p (blue), and product in oily
phase, φ (red), at times t = 1 × 105, 2 × 105, 3 × 105, 4 × 105, 5 × 105, where the arrows denote
increasing time. (c) The proportion of remaining contaminant in the system, Φ(t), defined in (20a).

There is a significant difference in the system behavior between these two cases, and
we can see this more clearly by considering the proportion of remaining agent in the
system, defined by

Φ(t) =
d− s(t)

d

∫ 1

0
(1− φ(η, t)) dη.(20a)

For K = 10, we see that most of the agent is consumed significantly before the
moving interface reaches the lower boundary (Figure 3c), and we see that, for example,
Φ < 10−4 before the interface has reached a third of the way to the lower boundary.
However, for K = 1 the agent appears to be consumed more uniformly as the interface
moves, and the amount of agent remaining in the system is only small when the
interface is close to the lower boundary (Figure 4c).

In order to make quantitative comparisons of different decontamination simula-
tions, we now introduce two different measures of the time taken to decontaminate
the system. The first of these is a measure of the time until complete agent removal,
tf ; we refer to this as the final time and define it by

tf := min{t > 0 : s(t) = d}.(20b)
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Fig. 5. (Color online.) The final time tf (solid lines) and effective removal time te (dashed)
as functions of K, calculated using numerical solutions of (12)–(15). Each line denotes a different
value of β, corresponding to β = 1, 2, 3, 4, and 5. We use parameter values Dφ = Dp = 1 and
d = 103.

While tf is the time taken for the interface to reach the lower boundary (and
hence the time taken to completely remove all agent), it is possible that most of
the agent reacts with the cleanser long before t = tf , as illustrated in Figure 3. To
investigate this scenario, we introduce a second measure of removal time, te. We refer
to te as the effective removal time, and it corresponds to the time taken until the total
amount of remaining agent drops below some safe threshold. We define te by

te := min {t > 0 : Φ(t) < ε} ,(20c)

where ε represents the proportion of the original agent that remains when the safe
threshold is reached. We take ε = 10−4 throughout this paper. The fact that te < tf
follows from the definitions in (20), from which we also expect the final and effective
removal times to be close to one another, except in scenarios where φ ≈ 1 before the
interface reaches the lower boundary.

As K increases, for a given β, we observe that the final times and the effective
removal times are close to one another until K reaches some threshold value, after
which the two measures of removal time diverge (Figure 5). Moreover, we observe
that neither measure of removal time is a monotone function of K; instead, there are
optimal K values at which the final time or effective removal time is minimized, and
these optimal values of K depend weakly on β. Additionally, we observe that both
measures of removal time depend strongly on β when K is small, but are effectively
independent of β when K is large.

To further understand the dependence of tf and te on β, K, and the other model
parameters, we proceed by analyzing (12)–(15) using asymptotic methods in the phys-
ically relevant limit of large d. This will enable us to make general deductions about
the system and will provide physical insight into the parameters that control the
decontamination process. Additionally, we investigate why the final and effective
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removal times diverge in certain parameter regimes.

4. Long-time asymptotic analysis.

4.1. Large d assumption. We now explore in detail the scenario where there
is a deep spill of agent, so that d� 1. In particular, we investigate the case where d is
much larger than the other parameters in the system. Within this limit, we find that
different regimes arise for quantifiably different values of the remaining dimensionless
parameters.

As we are interested in the removal times tf and te, defined in (20), we consider
the regime where s = O(d). The scalings for this long-time regime are

(21) t = d2T, s = dS,

and hence S ∈ [0, 1]. The time scaling explains the magnitude of the y-axis in Figure
5 and means that Figure 5 will be valid for general large d with a suitable scaling of
the y-axis. Expanding in inverse powers of d and retaining only leading-order terms,
the governing equations (12) become

cξξ + SST ξcξ = S2cT for T > 0 and ξ ∈ (0, 1),(22a)

Dppξξ + SST ξpξ = S2pT for T > 0 and ξ ∈ (0, 1),(22b)

Dφφηη + ST (S − 1) ηφη = (S − 1)2
φT for T > 0 and η ∈ (0, 1).(22c)

Similarly, the leading-order boundary conditions from (14) become

c(0, T ) = β, p(0, T ) = 0, φη(0, T ) = 0 for T > 0,(23)

and the leading-order interfacial conditions from (15) become

(1− φ)c = 0,(24a)
S − 1
S

cξ −Dφφη = (1− S)ST (c+ 1− φ),(24b)

Dppξ = SST (1− p) ,(24c)
Kp = φ,(24d)

where all functions are evaluated for T > 0 and at ξ = 1 or η = 1 as appropriate. The
full leading-order system for long time is then given by (22)–(24).

We see that (24a) offers two possibilities for the behavior of this system, where
either φ = 1 or c = 0 at the interface. Both scenarios are observed numerically, as
illustrated in Figures 3b and 4b. These distinct scenarios arise due to different rate-
limiting mechanisms which we describe in sections 4.2 and 4.3. Once we have derived
asymptotic solutions within each of these regimes, we show that they are associated
with different parameter regimes. This analysis is described in section 4.4, where we
additionally develop an a priori classification based on the system parameters. From
Figures 3 and 4, it appears that c = 0 is associated with larger K, and φ = 1 is
associated with smaller K; we formalize this observation in section 4.4.

In the case where φ = 1 at the interface, which we refer to as Regime I, agent in the
oil phase is consumed as soon as it reaches the interface, and hence the rate-limiting
step is the removal of oily-phase product from the neighborhood of the interface,
which is in turn controlled by the transport and removal of aqueous product to/at
the upper boundary. In this regime, we will also show that the vast majority of
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agent is removed before the interface reaches the lower boundary, resulting in te being
significantly shorter than tf . In the case where c = 0 on the reaction interface, which
we refer to as Regime II, cleanser in the aqueous phase is consumed as soon as it
reaches the interface, and hence the rate-limiting step is the transport of cleanser to
the interface. We now consider Regime I.

4.2. Regime I: Decontamination limited by product removal. In this
section, we consider the regime where φ = 1 at the oil–water interface. We see from
Figure 3 that this case can lead to φ ≈ 1 throughout the oil phase before the interface
reaches the lower boundary, and thus can result in an effective removal time, te, that
is significantly less than the final time, tf . We therefore expect this regime to explain
the disparity between te and tf in Figure 5.

In Regime I, the relevant interfacial conditions from (24) are

φ = 1,(25a)
S − 1
S

cξ −Dφφη = (1− S)ST c,(25b)

Dppξ = SST (1− p) ,(25c)
p = 1/K.(25d)

The leading-order system in this regime is thus given by (22), (23), and (25).
As the interfacial conditions (25c,d) only involve the dependent variables p and

S, we can solve for these variables independently of c and φ, and hence the system
decouples. Moreover, as p now satisfies a Dirichlet condition on the interface, p
exhibits similar behavior to the classic Stefan problem [3, 7]. Solving the system
given by (22b), (23b), and (25c,d), we obtain

p(ξ) =
erf λpξ
K erf λp

, S(T ) = 2λT 1/2.(26)

Here, erf(z) is the error function, λp = λ/D
1/2
p , and λp satisfies the transcendental

equation

K = 1 +
e−λ

2
p

λp
√
π erf λp

.(27)

We note that (27) only has solutions when K > 1; we discuss this in more detail in
section 4.4. Inserting scaling (26) into definition (20b), we deduce that, in this regime,
the final time

tf
d2 =

1
4λ2 + O(1/d) as d→∞,(28)

where λ is defined in (27). We note that the only dimensionless parameters that
affect tf are K and Dp, so of the three diffusion processes occurring in the system the
diffusion of product in aqueous solution is the most important.

Our task is now to solve for the remaining variables, c and φ. Using (26), the
system decouples further, and we can first solve for φ from (22c), (23c), and (25a),
and then solve for c from (22a), (23a), and (25b). To solve this reduced system, we
must obtain effective initial conditions, and this is carried out in a similar manner
to the analysis in section 3.1. That is, we now look for a small-time solution to the
reduced problem, and we refer to this as the intermediate-time solution.
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As T → 0+, we make the formal scalings T = δT̃ and η = 1−δ1/2X̃, where δ � 1
is an arbitrary small parameter. We look for solutions where c = c(ξ) and φ = φ(X̃, T̃ )
in the system (22), (23), and (25), essentially seeking the long-time solution to the
problem with an infinite lower domain. At leading order in δ, the governing equations
(22a,c) are

cξξ + 2λ2ξcξ = 0 for ξ ∈ (0, 1),(29a)

DφφX̃X̃ +
λ

T̃ 1/2
φX̃ = φT̃ for X̃ > 0 and T̃ > 0;(29b)

the fixed boundary condition (23a) is

c(0) = β;(30)

and the interfacial conditions (25a,b) are

φ(0, T̃ ) = 1,(31a)

cξ(1) + 2λ2c(1) = 2λDφT̃
1/2φX̃(0, T̃ ).(31b)

Finally, the matching condition for φ is

φ→ 0 as X̃ →∞.(32)

The system (29)–(32) is solved by

c ∼ β −Dφ

(
βλφ erfcλφ + e−λ

2
φ/
√
π

λ erf λ+ e−λ2/
√
π

)
erf (λξ)
erfcλφ

,(33a)

φ ∼
erfc((1− η)/

√
4DφT + λφ)

erfcλφ
,(33b)

where λφ = λ/D
1/2
φ and we have rewritten the solution for φ in terms of η and T . We

note that the long-time solutions to the modified problem with a semi-infinite lower
domain in Regime I are given by (26) and (33), where λ is the solution to (27).

Thus, in Regime I, we have reduced the task of fully understanding our system
to numerically solving the system (22a,c), (23a,c), and (25a,b) using initial conditions
(33). We use the method of lines as described in section 3.2, but now with a uniform
mesh in both domains. This reduced model gives excellent agreement with the full
problem (12)–(15) (see Figure 6) and demonstrates that, in this regime, the important
dimensionless parameters are K, Dp, and Dφ.

4.3. Regime II: Decontamination limited by supply of cleanser. In the
regime where c = 0 at ξ = 1, the long-time behavior is limited by the supply of
cleanser to the interface. In this regime, the interfacial conditions (24) become

c = 0,(34a)
S − 1
S

cξ −Dφφη = (1− S)ST (1− φ),(34b)

Dppξ = SST (1− p) ,(34c)
Kp = φ.(34d)
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Fig. 6. (Color online.) Comparison of numerical solutions to the full problem (12)–(15) (solid
lines) and the large d problem (22)a,c, (23)a,c, (25)a,b, (26), and (27) (dashed lines) in Regime I,
for β = Dφ = Dp = 1, K = 10, and d = 103. (a) The position of the moving boundary. (b) The
concentrations of the cleanser, c (green), product in aqueous phase, p (blue), and product in oily
phase, φ (red), at (nonuniform) times t = 1 × 105, 5 × 105, 1 × 106, 2 × 106, 4 × 106, with arrows
denoting increasing time. The dotted lines show asymptotic solutions c (green dotted) and φ (red
dotted) in the large K limit, defined in (48) and (45), respectively.

The leading-order system for Regime II is given by (22), (23), and (34). To solve
this system numerically, we must also calculate appropriate “initial” conditions as
T → 0+. Thus, just as we did with Regime I, we now look for a small-time solution to
the reduced problem in Regime II, which we again refer to as the intermediate-time
solution. The scalings are the same in this regime, and we seek solutions using the
formal scalings T = δT̃ , η = 1 − δ1/2X̃, and S = 2λ(δT̃ )1/2, where δ � 1 is an
arbitrary small parameter, and λ is a constant which must be determined as part of
the solution. We note that the interfacial position again scales with the square root of
time in this intermediate-time solution, a scaling often seen in Stefan-type problems
[3, 7]. However, we shall see that the square-root scaling does not hold throughout
this regime.

We look for solutions where c = c(ξ), p = p(ξ), and φ = φ(X̃, T̃ ) in the system
(22), (23), and (34). At leading order in δ, the governing equations (22) are

cξξ + 2λ2ξcξ = 0,(35a)

Dppξξ + 2λ2ξpξ = 0(35b)

for ξ ∈ (0, 1), and

DφφX̃X̃ +
λ

T̃ 1/2
φX̃ = φT̃(35c)

for X̃ > 0 and T̃ > 0; the fixed boundary conditions (23) are

c(0) = β, p(0) = 0;(36)

and the interfacial conditions (34) are

c(1) = 0,(37a)

2λT̃ 1/2DφφX̃(0, T̃ ) = cξ(1) + 2λ2
(

1− φ(0, T̃ )
)
,(37b)
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Dppξ(1) = 2λ2 (1− p(1)) ,(37c)

Kp(1) = φ(0, T̃ ).(37d)

Finally, the matching condition for φ is

φ→ 0 as X̃ →∞.(38)

The system (35)–(38) is solved by

c(ξ) = β

(
1− erf (λξ)

erf λ

)
,(39a)

p(ξ) =
λp erf(λpξ)

λp erf λp + e−λ
2
p/
√
π
,(39b)

φ(η, T ) =
Kλp erf λp erfc((1− η)/

√
4DφT + λφ)(

λp erf λp + e−λ
2
p/
√
π
)

erfcλφ
,(39c)

recalling that λp = λ/D
1/2
p and λφ = λ/D

1/2
φ , and where λ satisfies the transcendental

equation

λφ −
βe−λ

2√
πDφ erf λ

= K

(
λφ −

e−λ
2
φ

√
π erfcλφ

)
λp erf λp

λp erf λp + e−λ
2
p/
√
π
.(40)

We note that the long-time solutions to the modified problem with a semi-infinite
lower domain in Regime II are given by (39) with S = 2λT 1/2, where λ is the solution
to (40).

Thus, in Regime II, we have reduced the task of fully understanding our system
to numerically solving the system (22), (23), and (34) using initial conditions (39)–
(40). We use the method of lines with a uniform mesh in both domains. We see
that these numerical solutions to the reduced problem (dashed lines) show superb
agreement with the solutions to the full problem (solid lines) in Figure 7. Moreover,
the intermediate-time square-root solution to the interfacial position (dotted line in
Figure 7a) also provides excellent agreement until the lower boundary starts to affect
the system.

Although we have derived reduced systems for Regimes I and II in sections 4.2
and 4.3, it is not yet apparent which regime holds for a given set of parameter values.
In the next section, we use the results we have derived from our reduced systems to
a priori classify the two regimes analytically in terms of the system parameters.

4.4. Classifying the long-time regime from parameter values. As de-
scribed in sections 4.2 and 4.3, we find that the position of the moving interface can
be approximated by S = 2λT 1/2 throughout Regime I and for early time in Regime II.
In each case, λ is the solution to a transcendental equation, given by (27) for Regime I
and (40) for Regime II. The critical line in parameter space associated with the bound-
ary between Regime I and Regime II occurs when both transcendental equations are
satisfied. Thus, rewriting (40) using (27) for simplicity, the critical line occurs when

e−λ
2
p

λp
√
π erf λp

= K − 1 and
βe−λ

2√
Dφ erf λ

=
e−λ

2
φ

erfcλφ
(41)
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Fig. 7. (Color online.) Comparison of numerical solutions to the full problem (12)–(15) (solid
lines) and the large d problem defined by (22), (23), (34), (39), (40) (dashed) in Regime II, for
β = Dφ = Dp = K = 1 and d = 103. (a) The position of the moving boundary. The dotted black
line is s = 2λt1/2, where λ is obtained from the solution to the transcendental equation (40). (b)
The concentrations of cleanser, c (green), product in aqueous phase, p (blue), and product in oily
phase, φ (red), at times t = 1×105, 2×105, 3×105, 4×105, 5×105, with arrows denoting increasing
time.

are both satisfied, recalling that λp = λ/D
1/2
p and λφ = λ/D

1/2
φ . This critical line

may be obtained numerically using a standard root-finding method, and we note that
the critical line exists for all positive values of β, Dφ, and Dp but is only defined for
K > 1. In (β,K)-parameter space, K →∞ as β → 0, and K monotonically decreases
as β increases, with K → 1+ as β →∞ (Figure 8). Regime I occurs above the critical
line in Figure 8, and Regime II occurs below.

Finally, in the asymptotic limits of small and large β, we may simplify (41) to
obtain

K =
2DpDφ

πβ2 + O(β−1) for β � 1,(42a)

K ∼ 1 +

(
Dp (π log β)1/Dp−1

)1/2

β1/Dp

(
1 +

log(π log β)
4 log β

)
for β � 1,(42b)

and we see that these asymptotic approximations show excellent agreement with the
numerical solutions to (41) in their respective limits (Figure 8).

Now that we have classified each regime based on the system parameter values,
we can explain when and why the final and effective removal times diverge. As K
increases, more of the product created at the interface goes into the lower oily phase
compared to the upper aqueous phase. This dilutes the oily phase near the interface,
creating a larger concentration gradient in the oily phase which pushes more agent
toward the interface. Thus, significantly more agent is consumed at the interface, so
that the proportion of agent remaining in the system drops close to zero before the
interface is near the lower boundary.

For a given β, we can now associate Regime I with larger K, and Regime II with
smaller K. We now present some asymptotic results for large and small K.

4.4.1. Large K results for Regime I. We now use asymptotic methods to
approximate tf and te in the limit of large K in Regime I. In this limit, we can solve
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Fig. 8. (Color online.) The critical line described by (27) and (41) in a linear (main) and a
log-log plot (inset). The solid gray lines are the numerically determined critical lines, the dashed red
lines are from the small β/large K asymptotics (42a), and the dashed blue lines are from the large
β/small (K− 1) asymptotics given in (42b). We use Dφ = Dp = 1 for both figures.

(27) to obtain an asymptotic result for λ, the coefficient governing the interfacial
velocity, as follows:

λ =

√
Dp

2K

(
1 +

1
3K

+ O(K−2)
)

as K →∞.(43)

Thus we see that the interfacial velocity is slower when K is large, and the leading-
order velocity is inversely proportional to the square root of K. Combining (28) and
(43), we further deduce that

tf
d2 ∼

1
2Dp

(
K − 2

3

)
for K →∞, d→∞,(44)

and thus we see that the time taken for the interface to reach the lower boundary
scales with K in this limit.1 The large K asymptotic results for tf in Figure 9 (green
line) show excellent agreement with the numerical solutions (black addition signs),
even for lower values of K.

Moreover, using the slow interfacial velocity result, we can also obtain an asymp-
totic solution for φ when K → ∞, and hence for te. In this limit, the leading-order
equation for φ becomes

(45a) Dφφηη =
(

2λT 1/2 − 1
)2
φT ,

1We could also have obtained (43) and (44) by directly considering the limit K →∞ in (25).
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Fig. 9. (Color online.) The scaled final time tf/d2 and effective removal time te/d2 as functions
of K for β = Dφ = Dp = 1 and d = 103. The black addition signs are the numerically determined
final times and the gray multiplication signs are the numerically determined effective removal times,
both from the full problem defined in (12)–(15). For large K, we plot asymptotic approximations of
tf/d

2 (green) and te/d2 (blue), from (44) and (47), respectively. For small K, the final and effective
removal times coincide, and we approximate both with the red line using (28). The vertical black
dotted line at K = 2.885 denotes the position of the critical line between regimes, defined by (41).

valid when 0 < T < 1/(4λ2), noting that λ is given by (43), and subject to the initial
and boundary conditions

φ(η, 0) = 0, φη(0, T ) = 0, φ(1, T ) = 1.(45b)

The system (45) is solved by

φ = 1−
∞∑
n=0

2(−1)n

wn
exp

{
−w

2
nDφ

2λ2

[
2λT 1/2

1− 2λT 1/2 + log
(

1− 2λT 1/2
)]}

coswnη,

(46)

where wn = π(2n + 1)/2.2 We see that (46), the asymptotic solution for φ, shows
good agreement with the full numerical solution (Figure 6).

The asymptotic solution (46) allows us to approximate te. From (20c) and (46),
we see that te can be approximated by te ∼ d2T ∗, where T ∗ is a solution to F (T ∗) = ε
and F (T ) is defined by

F (T ) =
(

1− 2λT 1/2
) ∞∑
n=0

2
w2
n

exp
{
−w

2
nDφ

2λ2

[
2λT 1/2

1− 2λT 1/2 + log
(

1− 2λT 1/2
)]}

.

(47)

Furthermore, as λ = O(1/
√
K) is small in this limit, we can approximate F (T ) by the

first term of the infinite sum in (47). Making all of these simplifications, estimating

2We note that the system (45) and solution (46) could also have been derived by investi-
gating the asymptotic region where T = O(1/λ2) and looking for a solution of the form φ =
1 + exp(−g(λ2T )/λ2)f(η).
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te reduces to the problem of numerically solving a transcendental equation. We see
excellent agreement between the asymptotic approximation of te (blue line) and the
full numerical results (grey multiplication signs), again even for only moderately large
values of K (Figure 9).

We note that the interfacial condition (25b) is greatly simplified in this limit if
φ ≈ 1. In this scenario c = c(ξ), and

c(ξ) = β

(
1− λ erf λξ

λ erf λ+ e−λ2/
√
π

)
,(48)

toward the end of the decontamination in Regime I. In Figure 6, we confirm that (48)
only shows good agreement with the full numerical solution when φ ≈ 1.

Finally, our large K analysis shows that te and tf are independent of β in this
regime. This is because the cleanser dynamics are not important in this regime; the
important mechanism is product removal from the oily phase. In general, a large Dφ

results in quicker transport of agent to the interface, with the effect of decreasing te,
the effective removal time, and a large Dp results in quicker transport of product in
the aqueous phase to the upper boundary, with the effect of decreasing tf , the final
time. We note that there is another distinguished asymptotic limit of this system
when Dp is as large as d, but the analysis of this limit is beyond the scope of this
paper.

4.4.2. Small K results for Regime II. In contrast to Regime I, the final time
and effective removal times almost coincide in Regime II (Figures 5 and 9). Naively,
one might hypothesize that the interfacial velocity S = 2λT 1/2, with λ defined in (40)
for the intermediate-time system, would be a good approximation of the interfacial
velocity throughout the process. However, our numerical solutions show that this
only gives a good estimate for the removal time in the limit K → 0 (red line in
Figure 9); the discrepancy between (39c) and (23c), the boundary condition at η = 0,
when 1 − η = O(T

1
2 ) is not small means that the intermediate-time system cannot

generally be used to estimate removal time.
In light of this, and having briefly discussed the limit K → 0 at the end of section

2.2, we now consider this limit in more detail. Our aim is to explain the accuracy of
the removal time naively estimated by the intermediate-time solution when K → 0.
In this limit, we find that φ = O(K), and hence the long-time interfacial conditions
(24) become, to leading order in K,

c = 0,(49a)
cξ + SST = 0,(49b)

Dppξ = SST (1− p) ,(49c)
Kp = φ(49d)

for ξ, η = 1 with T > 0. Hence, the system decouples for c and S, which are now
governed by the classical Stefan problem with interfacial conditions (49a,b); in this
simplified system, β acts as the inverse Stefan number [3, 7]. Thus, the solutions for c
and p in this limit are the same as for the intermediate-time problem, given by (39a)
and (39b), with S = 2λT 1/2, where λ satisfies the transcendental equation

λ =
β exp

(
−λ2

)
√
π erf λ

.(50)
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Although φ must be solved using the full equation (22c) with the interfacial condition
(49d), the small K result for the interfacial velocity over the long timescale, which
we present above, agrees with the intermediate-time result for the interfacial velocity
for small K, presented in section 4.3. This can be seen from the agreement between
the small K limit in (40) and (50). Thus, we have shown that the intermediate-time
interfacial velocity becomes valid for all time in the limit of small K, explaining why
the naive intermediate-time result for the removal time becomes accurate in the same
limit.

5. Discussion and conclusions.

5.1. Dimensional results. The asymptotic results in section 4 are all obtained
by considering a “deep” spill of agent; that is, we assume throughout that d := L̄k̄/D̄c

is large. We find that this leads to two different regimes, one where the rate of
decontamination is limited by the removal of product from the system (Regime I,
described in section 4.2), and another where the rate of decontamination is limited
by the supply of cleanser to the interface between the phases (Regime II, described
in section 4.3).

Our asymptotic results are stated in terms of the dimensionless model developed
in section 2.3, but it is also valuable to examine them in dimensional form. We
find that the leading-order results for the dimensional removal time often depend on
only some of the eight dimensional parameters introduced in sections 2.1 and 2.2 (L̄,
D̄c, D̄p, D̄φ, c̄0, V̄m, k̄, and K). Information about which dimensional parameters
appear in the leading-order expression for the removal time has the potential to be
particularly valuable to experimental researchers, since it indicates the parameters
that have the most influence on the time taken to remove a harmful agent.

In Regime I, reversing the nondimensionalization of (28) gives the result that the
dimensional time to complete removal, t̄f [s], is given to leading order by

(51) t̄f ∼
L̄2

4D̄pλp(K)
,

where λp(K) is implicitly defined by (27). Hence, if d = L̄k̄/D̄c is large and we satisfy
the conditions in section 4.4 in order to be in Regime I, the leading-order time to
complete removal depends only on L̄, D̄p, and K.

Following the analysis that leads to (44), we further simplify this to obtain

(52) t̄f ∼
L̄2

2D̄p
K − L̄2

3D̄p

as long as K and L̄k̄/D̄c are both large.
In Regime I, we recall from Figures 5 and 9 that the effective removal time, te,

may be very different from the final time, tf , and that te may be a better measure of
the decontamination time than tf . Starting from (47) and reversing the nondimen-
sionalization, we find that the dimensional effective removal time, t̄e [s], is given to
leading order in large L̄k̄/D̄c and large K by

(53) t̄e ∼
L̄2

4D̄pλp(K)
τ

[
D̄φ

D̄pλp(K)2

]
,

where τ(R) is implicitly defined by

(54) ε =
8
(

1− τ 1
2

)
π2 exp

{
−π

2R

8

[
τ1/2

1− τ1/2 + log
(

1− τ1/2
)]}

,
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where ε is the threshold introduced in (20c), and λp(K) is implicitly defined by (27) as
before. The dimensional effective removal time is therefore (to leading order) a func-
tion of L̄, D̄p, D̄φ, and K only. This further illustrates the fact that, in Regime I, the
removal of the agent is relatively insensitive to the cleanser dynamics. In particular,
increasing the cleanser concentration, c̄0, or using a cleanser with a higher diffusivity,
D̄c, has very little effect on the agent removal time, provided the parameters already
satisfy the conditions to be in Regime I.

In Regime II, we expect the cleanser dynamics to be more important, since the
rate-limiting process is the supply of cleanser to the interface between the phases.
While Regime II is more complicated than Regime I, we again find that the leading-
order dimensional removal time is independent of some model parameters. We recall
that we are able to obtain an “intermediate-time” solution in Regime II because
(after an initial transient) the solution is insensitive to the initial conditions imposed.
By inspection of (22), (23), and (34), we note that the intermediate-time problem
is independent of d = L̄k̄/D̄c. Hence, by reversing the nondimensionalization and
applying the long-time scaling from (21), we see that the dimensional removal time
must take the form

(55) t̄f ∼
L̄2

D̄c
f

[
c̄0V̄m,

D̄p

D̄c
,
D̄φ

D̄c
,K
]
,

where f is some function. Thus, t̄f must be independent of k̄ to leading order; even in
Regime II, changing the reaction rate constant has only a small effect on the removal
time. Furthermore, when K is small, we find that

(56) t̄f ∼
L̄2

4D̄cλ(c̄0V̄m)
,

where λ(β) is defined implicitly by (50). Hence, for sufficiently small K we find that,
to leading order, t̄f depends only on L̄, D̄c, c̄0, and V̄m; apart from the dependence
on V̄m, the removal time is completely independent of the properties of the agent and
the reaction product.

5.2. The desirable features of a cleanser. In many cases, a range of differ-
ent cleanser solutions could be used against the same agent [14, 19]. Choosing an
appropriate cleanser depends on a number of factors (for example, the possibility of
chemical reactions between the cleanser and the substrate), but one important factor
is the speed with which the cleanser will eliminate an agent. This has been the focus
of our analysis. Our results can be used to indicate how properties such as the cleanser
concentration, the cleanser potency (as measured by the effective rate constant), and
the cleanser reaction mechanism affect the speed of decontamination. Some cleanser
properties that one might expect to be important turn out to have only a minor effect
on the speed of decontamination. This insight is valuable in highlighting how to focus
efforts and resources when choosing a cleanser for a given task.

We find that the leading-order dimensional removal time does not depend on the
cleanser concentration applied at the surface, c̄0, in Regime I, but does depend on
c̄0 in Regime II. If the reaction product is more soluble in water than oil (and hence
K < 1), the relevant parameter regime will always be Regime II and increasing c̄0 will
always decrease the removal time (albeit with diminishing returns). Moreover, when
K → 0 we can use (50) and (56) to obtain asymptotic results for the removal time as
a function of c̄0.
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If the reaction product is more soluble in oil than water (and hence K > 1),
we observe from Figure 8 that increasing c̄0 (and hence β) will lead to a transition
from Regime II to Regime I. Hence, increasing the cleanser concentration will only
cause significant decreases in removal time up to the point where removal of reaction
product (and hence availability of agent at the reaction interface) supersedes cleanser
availability as the rate-limiting step of decontamination. Thereafter, further increases
in cleanser concentration will not lead to significant improvements in decontamination
speed.

Our analysis also shows that the leading-order removal time is independent of the
effective rate constant k̄ in both Regime I and Regime II. If k̄ is sufficiently small that
the “deep spill of agent” assumption is no longer valid, then the decontamination
behavior may change significantly. However, as long as k̄ � D̄c/L̄, changing the
reactivity of a cleanser will only yield a small change in removal time. This suggests
that replacing an effective cleanser with an even more potent cleanser (where the
reaction products are the same but the reaction is faster) will not significantly improve
decontamination speed.

In contrast, the decontamination time depends strongly on the partition coeffi-
cient of the reaction product, K. If all other parameters are kept fixed, we find that
there is an optimal value of K for which the removal time is minimized, as illustrated
in Figures 5 and 9. However, since there are typically only two or three reaction
pathways that can be used to neutralize a given agent [14, 21], there is only limited
scope for tuning K to be close to the optimal value.

That said, our analysis shows that the removal time increases linearly with large
K, while it approaches a constant as K → 0. This suggests that, as a rule of thumb,
a cleanser that leads to a reaction product that is exclusively (or almost exclusively)
soluble in the water phase will lead to faster decontamination than a cleanser that
leads to a reaction product that is exclusively (or almost exclusively) soluble in the
oil phase. While an intermediate value of K may lead to still faster decontamination,
we expect that small K will be preferable to large K in many situations.

5.3. Decontamination of sulfur mustard. We now consider a specific exam-
ple, the decontamination of sulfur mustard. Three examples of cleansers that could
be used to neutralize sulfur mustard are Decontamination Solution 2 (DS2), a 5%
bleach solution, or a saturated calcium hydroxide solution [14, 17]. In each case, the
mechanism of decontamination is different, leading to different reaction products.

From experimental results for each cleanser, we can estimate the concentrations
of active ingredient (c̄0), the key product formed, and estimated oil–water partition
coefficients (K) based on octanol–water partition coefficients given in [14], and we
state these values in Table 1. However, it is more difficult to obtain data on relevant
diffusivities and effective reaction coefficients. It should also be noted that the mecha-
nisms of decontamination of sulfur mustard are far more complicated than the simple
bimolecular reaction we propose in this paper; despite this, we hope to gain valuable
insights into the dominant kinetics of decontamination using our model analysis.

For each of the three cleansers, we determine whether the decontamination reac-
tion takes place in Regime I or Regime II, making the assumption Dp = Dφ = 1. We
find that the reaction is in Regime II for each cleanser, so that increasing cleanser
concentration speeds up decontamination. With DS2, however, the decontamination
reaction will be close to the boundary between Regime I and Regime II, and it is pos-
sible that increases in cleanser concentration will be less effective. Since diethylene-
triamine, the active ingredient in DS2, is highly reactive and corrosive, this might
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Table 1
Reaction products and typical parameters for three cleansers that can be used to neutralize sulfur

mustard. We estimate the molar volume of sulfur mustard V̄m = 1.2×10−3 m3 mol−1 by combining
density [14] and molar mass information.

Cleanser DS2 5% bleach sol. Ca(OH)2 sol. Ref.
Product Divinyl sulfide Mustard sulfoxide Thiodiglycol [14, 17]

c̄0 (mol m−3) 6.7× 103 6.7× 102 2.5× 101 [14, 17]
β = V̄mc̄0 8 8× 10−1 3× 10−2

K 7.1 1.4× 10−1 1.7× 10−1 [14]

even suggest that reducing the concentration of diethylenetriamine in DS2, and hence
increasing the amount of time that it could be applied before the substrate becomes
damaged, might be an effective strategy for improving the efficiency of decontamina-
tion.

5.4. Conclusions. In this paper, we have presented and analyzed a model of
chemical decontamination that reveals how different features of a cleanser affect the
speed of decontamination. We consider a one-dimensional porous medium of finite
depth, fully saturated with a chemical agent. Initially, a cleanser in aqueous solution
is applied at the top of the porous medium. To the best of our knowledge, this
together with a study group report on preliminary work [6] are the first models of
reactive decontamination where the reacting species are in different fluid phases; our
model could therefore form the foundation for a range of future modeling work on
chemical decontamination and similar processes. We note that, since the medium is
fully saturated and the porous medium is inert, the system under consideration is a
diffusion problem with a reaction at the moving interface between the two fluid phases.
Future extensions of this work might include the effects of advection within each fluid
phase, using Darcy’s law. One could model the effect of scrubbing at the surface
by pressure-driven forcing of the cleanser solution through the porous medium, and
scenarios where the medium is only partially saturated, in which the fluid dynamics
could be modeled using the Richards equation.

The problem under consideration here is a moving-boundary problem with some
similarities to the classical Stefan problem with kinetic undercooling, but we find that
the precise behavior is markedly different in different parameter regimes. In the limit
where the initial agent layer is deep compared to diffusive length-scales, we identify
two distinct parameter regimes in which the rate of decontamination is limited by
either the transport of cleanser or the transport of reaction product. In each case we
determine the long-time behavior and hence removal time in this asymptotic limit.
Our asymptotic analysis shows that, to leading order, the time required to remove the
agent only depends on some of the model parameters. Importantly, we find that the
removal time is independent of the effective rate constant in all parameter regimes
considered here. This indicates that using a more potent cleanser (one where the rate
of reaction between cleanser and agent is faster) may not lead to significant improve-
ments in removal time. Moreover, we find that changing cleanser concentration only
affects the removal time in certain parameter regimes. In fact, the oil–water partition
coefficient of the reaction product appears to be more significant in determining the
time taken the remove the agent; for given values of the remaining system parameters,
this partition coefficient has an optimal value that minimizes the removal time.

The work in this paper was motivated by the extreme difficulty of performing
experiments using live agents, due to safety and visualization challenges. By contrast,
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mathematical modeling allows for the exploration of many hypothetical scenarios.
It is our hope that the model and analysis presented in this paper will guide the
development and improvement of methods used by the chemical decontamination
community and provide inspiration for further study of this topic.
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