
NOTES ON THE OOGURI-VAFA METRIC

LORENZO FOSCOLO

The Ooguri-Vafa metric is a hyperkähler 4-dimensional metric. After introducing it via the
Gibbons-Hawking ansatz, we will try to get more insight in its geometry by studying it in two
different complex structures: in one case, we will talk about elliptic fibrations; in the second, the
relevant structure is a fibration in special Lagrangian tori.

1. The Ooguri-Vafa metric via the Gibbons-Hawking ansatz

1.1. The Gibbons-Hawking ansatz. We start by giving the construction of the Ooguri-Vafa
metric via the Gibbons-Hawking ansatz, as it was first introduced in [1]; we will follow the detailed
description of [2].

Let X be a U(1)-bundle over an open set U of R3; then X admits a natural fibre-wise S1-
action and we want to find a hyperkähler metric on X for which the circle acts by tri-holomorphic
isometries. It turns out that such a metric is completely described in terms of a harmonic function
on U and a connection form on the bundle: this is known as the Gibbons-Hawking ansatz, [3].

Let U ⊂ R3 be an open subset with Euclidean metric and coordinates (u1, u2, u3) and π : X → U
a principal U(1)-bundle with S1-action on the fibres generated by the vector field ∂

∂t .
We choose a connection 1-form θ, i.e. an u(1) = iR-valued 1-form on X which is S1-invariant and

such that θ
(
∂
∂t

)
= i. Then the curvature dθ = π∗α for a 2-form α on U such that i

2πα represents
the first Chern class of the bundle π : X → U .

Suppose that there exists a positive function V on U such that ∗dV = α
2πi = dθ0, with θ0 = θ

2πi .
Note that, V is then harmonic.

Now define three 2-forms on X by

ω1 = du1 ∧ θ0 + V du2 ∧ du3
ω2 = du2 ∧ θ0 + V du3 ∧ du1
ω3 = du3 ∧ θ0 + V du1 ∧ du2

It is easily checked that ω2
1 = ω2

2 = ω2
3 6= 0, ωi ∧ ωj = 0 if i 6= j and dωj = 0.

We want to show that the triple (ω1, ω2, ω3) defines a hyperkähler structure on X. Since a 4-
dimensional manifold is hyperkähler iff it is Calabi-Yau, let’s consider the real and complex 2-forms

ω3 and Ω3 = −ω1 − iω2 = (θ0 − iV du3) ∧ (du1 + idu2)

and show that they define a Calabi-Yau structure on X.
The forms above satisfy
(i) ω3 is non-degenerate;
(ii) Ω3 is locally decomposable and non-vanishing;
(iii) ω1 ∧Re(Ω3) = ω3 ∧ Im(Ω3) = 0;
(iv) Ω3 ∧ Ω3 = ω2

3;
(v) dω3 = 0 = dΩ3.
We recall how such two forms define a complex structure and a metric on X such that ω3 is the

Kähler form and Ω3 a holomorphic volume form (see for example [4]).
Consider the subspace W of the complexified cotangent bundle of X spanned by (θ0 − iV du3)

and du1 + idu2; since Ω3 ∧Ω3 6= 0, T ∗ ⊗C = W ⊕W and this defines an almost complex structure
J3 such that λ is a 1-form of type (1, 0) iff λ ∧ Ω3 = 0. Moreover, (v) implies that dλ ∧ Ω3 = 0 if λ
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is of type (1, 0) and by the Newlander-Niremberg theorem J3 is integrable. Also (iii) and the fact
that ω3 is real imply that ω3 is of type (1, 1).

Considering that J3(du1) = −du2 and J3(du3) = −V −1θ0, we see that the metric g defined by
the formula g(u, v) = ω3(u, J3v) is

g = V du · du + V −1θ20 .

Example: gravitational instantons of type ALF.. Start with the standard projection C2 \ {0} →
CP1 = S2 and restrict it to the 3-sphere:

(z1, z2) 7→
(
2Re(z1z2), 2Im(z1z2), |z1|2 − |z2|2

)
;

extend it radially to C2 \ {0} → R3 \ {0} and compose with z2 7→ z2. We obtain the S1-bundle
p : C2 \ {0} → R3 \ {0}

p(z1, z2) =
(
2Re(z1z2), 2Im(z1z2), |z1|2 − |z2|2

)
with S1-action (eitz1, e

−itz2), which is just the Hopf map S3 → S2 extended radially.
We want to look for a harmonic function on R3 \ {0} such that −

∫
S2 ∗dV = ±1, the Chern

number of the bundle (the sign depend on the chosen orientation on S2), and a connection 1-form
θ such that dθ

2πi = ∗dV . Such a couple is for example given by, for e ≥ 0,

V = e+
1

4π|u|
and θ =

iIm(z1dz1 − z2dz2)
|z1|2 + |z2|2

.

By a change of coordinates one can check that the corresponding metric g extends to R4 and all
these examples are ALF metrics, the Euclidean one when e = 0 and the Taub-NUT when e = 1.

1.2. S1-invariant Ricci-flat metrics. Consider now a principal U(1)-bundle over B × S1, where
B is an open set of C; a solution V, θ of the Gibbons-Hawking ansatz periodic in u = u3 defines a
metric that descends on the U(1)-bundle iff ω1, ω2, ω3 are invariant under changing u by a period,
i.e. the periodicity of u is independent of y = u1 + iu2 ∈ B.

Take B to be a disc in C and define U :=
[
(B × R) \ ({0} × 2πZ)

]
/2πZ. We want to construct

a harmonic function V on U with singular behaviour at the point 0 analogous to the Taub-NUT
case: in this way, by applying the Gibbons-Hawking ansatz, we will obtain a hyperkähler metric on
the one-point compactification of the U(1)-bundle over U = D × S1.

Since in the Taub-NUT case we take V to be 1
4π|u| , we simply make periodic this function in the

third variable u = u3:

V (y, u) :=
1

4π

∑
m∈Z

1√
|y|2 + (u+ 2πm)2

− a|m|

with am = 1/(2πm) if m > 0 and a0 = (−γ + log 2)/π (γ is the Euler constant).
An alternative and useful expression for V0 can be obtained by Fourier analysis in the circle

variable u. Recall that we are looking for a harmonic function on U with fixed singular behaviour at
the puncture; we can reformulate this, asking for a solution of the Poisson’s equation4V = −δ(y, u)
with the Dirac delta on the right-hand side. Decomposing in Fourier modes we have

V (y, u) =
∑
m∈Z

Vm(y)eimu and δ(y, u) =
1

2πε

∑
m∈Z

δ(y)eimu

and therefore the equations we have to solve are

4Vm −m2Vm = −δ

in R2. It follows that V0(y) = − 1
2π log |y| + f(y) for a harmonic function f on the whole disc B

and Vm(y) = 1
2πK0(|my|), with K0 the second modified Bessel function of the second kind; the

particular choice of constant a0 in the previous formula implies that in this case f ≡ 0.
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Using well-known facts about Bessel functions, one can prove that there exists a constant C such
that for any 0 < r0 < 1, if |y| > r0 then∣∣∣∣V +

1

2π
log |y|

∣∣∣∣ ≤ C

ε
e−|y| .

As we saw, we have the freedom to consider V + f in the Gibbons-Hawking ansatz, for some
harmonic function f defined on the whole disc B; the only condition one has to check is that, taking
the diameter of B small enough, V + f stays positive on B × R.

2. From the Gibbons-Hawking ansatz to holomorphic coordinates and elliptic
fibration

Taking the harmonic function V defined in the previous section, by the Gibbons-Hawking we
construct a hyperkähler metric on a S1-bundle over U that compactifies to a manifold X with a
projection over U .

Let’s look at this manifold with complex structure J3, Kähler form ω3 and holomorphic volume
form Ω3 = (θ0 − iV du) ∧ dy. As we have already explained, this means that θ0 − iV du and dy
span the space of (1, 0) form and therefore y is a holomorphic coordinate on X and the projection
π : X → B is an elliptic fibration in complex structure J3.

Moreover, locally there exists a holomorphic coordinate x such that dx = θ0 − iV du (mod dy).
Pass to the universal cover B×R2 of X and fix a holomorphic section σ0; then integrating θ0−iV du
along the fibres from the base-point σ0, we can define a global holomorphic coordinate x on B×R2

and see X as a quotient of the holomorphic cotangent bundle T ∗B → B by a degenerating family
of lattices Λ(y) (because the elliptic fibration π is singular at the origin); notice also that, since σ0
was chosen to be holomorphic, the holomorphic volume form Ω3 on X is induced by the standard
complex symplectic form dx ∧ dy on T ∗B .

We want to compute the periods of the elliptic fibration π : X → B. Recall that in the Gibbons-
Hawking ansatz we started with an S1-bundle over U with a natural action of the circle on the
fibres. Choose a basis of H1(Xy,Z) taking γ1 to be the S1-orbit and γ2 the circle parametrised by
u in the base; then ∫

γ1

dx =

∫
γ1

θ0 − iV du =

∫
γ1

θ0 = 1

while
τ(y) :=

∫
γ2

θ0 − iV du .

Consider the imaginary part of τ(y):
∫
γ2
Im(dx) = −

∫
γ2
V du = − 1

2π log |y| + f(y) if we started
with V + f/ε in the Gibbons-Hawking construction of the metric. It follows that

∫
γ2
Re(dx) is a

harmonic conjugate of − 1
2π log |y|+ f(y) and therefore

τ(y) =
1

2πi
log y + ih(y) + C

where h = f + ig is a holomorphic function on B; moreover, shifting θ0 by a factor a du (which does
not change the equation ∗dV = dθ0), we can assume that C = 0.

Following Kodaira’s classification of singular fibres of elliptic fibrations, to understand what is
the type of singular fibre π−1(0) we need to compute the monodromy of the fibration, i.e. how
the periods change by topological parallel transport along a path winding 1 around 0 ∈ B: since
τ(eiθy) = τ(y) + θ

2π , we see that the monodromy is given by(
1 1
0 1

)
.

This implies that π−1(0) is a type I1 singular fibre, i.e. a pinching torus.



4 LORENZO FOSCOLO

3. Hyperkähler rotation: from elliptic to SYZ fibration

One of the most interesting features of hyperkähler geometry is the presence of a whole 2-sphere of
complex structures compatible with the same Kähler metric. We saw that in the complex structure
J3 the Ooguri-Vafa metric is defined on a neighborhood of a I1 singular fibre of an elliptic fibration
over a disc B ⊂ C.

We now want to understand the geometry of the Ooguri-Vafa metric in complex structure J1; we
will follow here mainly Chan’s paper [7]. Consider the complex symplectic form Ω1 = ω3 − iω2 =

(iθ0 + V dy1)∧ (dy2 + idu) = (iθ0 + V dy1)∧ dη
η , where η := eiy2eiu defines a holomorphic projection

κ : X → C∗.
Once again recall that we started from a U(1)-bundle over an open set U , thus there is a natural

S1-action on X. Let’s compute the moment map of this action with respect to the symplectic form
ω1. First, if t is a local coordinate on the S1-fibre over U , the S1-action is given by eis ·(y1, y2, u, t) =
(y1, y2, u, t+ s). It follows that the moment map µ : X → iR satisfies dµ = −i ∂∂t yω1 = i

2πdy1 and
therefore µ(y1, y2, u, t) = y1 (after dropping the factor i/2π).

Consider now the Kähler quotient Xr = µ−1(r)/S1. It is a complex curve endowed with a holo-
morphic (1, 0)-form defined by

Ωr := −i ∂
∂t

yΩ1 =
i

2π
d(log η) .

Consider the integral real curves C of the 1-form Im(Ωr): these are the curves Re(log η) = y2 =
const. The inverse image of such a C in X is a surface Tr,s = {y1 = r, y2 = s} such that ω1|Tr,s ≡ 0
(because µ|Tr,s ≡ r and ω1 is non-degenerate) and Im(Ω1)|Tr,s ≡ 0. In other words, each Tr,s is a
special Lagrangian submanifold of (X, J1, ω1,Ω1) and π : X → B is a SYZ fibration, i.e. a fibration
in special Lagrangian tori. When (r, s) 6= (0, 0) Tr,s is a torus embedded in X and T0,0 is nodal.

3.1. The Ooguri-Vafa metric via a toric construction, the complement of a conic in C2

and holomorphic discs. Now we want to identify the SYZ fibration we have just described with
a standard special Lagrangian fibration of the complement of a conic in C2. As an intermediate
step, we will give a toric description of the Ooguri-Vafa space following [5] that will be useful also
in the following.

Consider the standard 2-simplex with vertexes τ = {e1, e2} in a 3-dimensional lattice N ' Z3;
fix also a 2-simplex σ in the dual lattice N∗ with the property that 〈σ, τ〉 = 1: for example we
can choose σ = {e∗1 + e∗2, e

∗
1 + e∗2 + e∗3}. Let Xτ be the toric 3-dimensional variety associated to τ

which with our choice is simply C2 × C∗; we define a hypersurface Zτ,σ as the closure in Xτ of the
hypersurface XY (1− Z) = 1 in (C∗)3. The circle σ⊥ ⊗R/σ⊥ = R(e1 − e2)/Z(e1 − e2) acts on Zτ,σ
and taking a moment map µ for this action and the natural projection κ : Xτ → C∗ gives a map

(µ, κ) : Zτ,σ −→ R× C∗

which is a principal S1-bundle over (R× C∗) \ {(0, 1)}.
If we want to define a hyperkähler metric on this bundle by the Gibbons-Hawking ansatz, by direct

inspection of the topological behaviour at the singular point (0, 1), then we have to solve 4V =
−δ(y1, y2, u), where we are taking y1 to be the moment map coordinate and ey2eiu a coordinate on
C∗. It follows that Zτ,σ, or better the subset where the chosen harmonic function V + f is positive,
is the Ooguri-Vafa space.

On the other hand, from the description we have given, it is clear that we can identify Zτ,σ with
C2 \ {XY = 1}. We will then use work of Auroux, for example in [6], to describe a natural SYZ
fibration on the complement of a conic in C2; this coincides with the previous description (of course,
restricting to the subset where V + f is positive).

We equip C2 \ {XY = 1} with the symplectic form induced by the standard one on C2 and with
the holomorphic volume form Ω = dX∧dY

XY−1 . Let the circle act on C2 by (eitx, e−ity) with moment
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map µ(X,Y ) = |X|2 − |Y |2; then C2 \ {XY = 1} is fibred by special Lagrangian tori

Tr,s = {(X,Y ) ∈ C2 |XY 6= 1 , µ(X,Y ) = r , log |XY − 1| = s} .

A useful way to see these tori is to consider the projection κ : (X,Y ) 7→ xy ∈ C \ {1} (its fibres are
conics, κ−1(0) being the nodal XY = 0); then Tr,s is contained in the inverse image by κ of a circle
of radius es centred in 1 ∈ C and consists of one single S1-orbit in each fibre of κ. To see that Tr,s
is special Lagrangian, as before, notice that it is the lift of an integral curve of the form Im(Ωred),
where id log (XY − 1), in the Kähler reduction µ−1(r)/S1.

We conclude with a discussion of holomorphic discs with boundary on Tr,s. Suppose to have a
holomorphic disc ϕ : (D2, ∂D2)→ (X,Tr,s); then the composition with κ gives a holomorphic map
(D2, ∂D2) → (C \ {1}, {|z| = es}) and by the maximum principle κ ◦ ϕ has to be constant, i.e. a
holomorphic disc is contained in a single fibre of κ. Since κ−1(z) is a smooth conic if z 6= 0, there
cannot be any holomorphic disc in such a fibre. On the opposite, the torus Tr,0 intersects the X-axis
(Y -axis) in a circle |Y |2 = −r if r < 0 (|X|2 = r if r > 0) and therefore it bounds a holomorphic
disc.

3.2. Affine coordinates. From the previous discussion we can see the base B of the SYZ fibration
as an open set in the moduli space (or better at its boundary, because of the presence of the nodal
torus) of such deformations.

Hitchin showed in [4] that the moduli space of smooth special Lagrangian deformations of a
given compact special Lagrangian submanifold L of a Calabi-Yau n-fold X carries two natural sets
of affine coordiantes, one related to the symplectic geometry and the other to the complex structure.
We briefly recall this construction in the second case and then compute the affine coordinates in
the Ooguri-Vafa case.

Let (t1, . . . , tm) be coordinates on the moduli space of smooth special Lagrangian deformations
of a compact special Lagrangian submanifold L ⊂ X; it is then known that m = b1(L). Consider
the interior product

∂

∂tj
y ImΩ ,

where, by a little abuse of notation, we are identifying the vector field ∂
∂tj

on the moduli space with
the normal vector field on L corresponding to the infinitesimal variation in the direction tj .

Choose a basis B1, . . . , Bm of Hn−1(L,Z) and define the period matrix to be

µij =

∫
Bi

∂

∂tj
y ImΩ .

Since the 1-forms ξi :=
∑m

j=1 µijdtj are closed there exists local coordinates (v1, . . . , vm) on the
moduli space such that dvi = ξi.

Let’s compute them for the Ooguri-Vafa metric and the SYZ-fibration we described. We have
ImΩ1 = θ0 ∧ dy2 + V dy1 ∧ du. We can also decompose V = V sf + V inst, where V sf = − 1

2π log |y|
and V inst depends on u (this is the infinite sum of Bessel functions), and accordingly decompose
the connection 1-form θ0 as dt

2π +Asfdu+αdy, where α is a complex valued function depending on
u, and Asf is the multi-valued function 1

2π arg y.
With respect to the basis ∂

∂y1
, ∂
∂y2

of the tangent space ofB and γ1, γ2 (S1-orbit, circle parametrised
by u) of H1(Tr,s,Z), we easily compute

µ11 = 0, µ12 = −1, µ21 = − 1

2π
log |y|, µ22 =

1

2π
arg y ;

thus the affine coordinates are given by

v1 = −y2 , v2 = −Re (y log y − y) .
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It is clear that the affine coordinates, defined on B \ 0, depend only on the semi-flat (sf) part
of V and θ0 and therefore they do not extend over the origin; in other words they do not encode
the correct complex structure of X. To have the correct information one has to take in account the
instanton correction V inst and αdy, as the following theorem of Gross well explains (we won’t be
extremely precise in the statement of the theorem).

Theorem 3.1 (M. Gross, [8]). Suppose to have a symplectic manifold (X,ω) and a fibration π :
X → B. Then giving a non-vanishing n-form Ω such that

- Ω is locally decomposable,
- in

n!Ω ∧ Ω = ω2,
- ω is a positive (1, 1)-form in the almost complex structure defined by Ω,
- π : X → B is special Lagrangian on the smooth part X],

is equivalent to giving a metric h on the fibres of π and a splitting TX] = TX]/B ⊕F .

Here F corresponds to the choice of the subspace J(TX]/B). The proof is an explicit calculation
in Darboux coordinates.

It is then clear that the information we are missing is encoded precisely in the instanton part of
V and θ0, because in the Ooguri-Vafa case

h = V du2 + V −1(dt+Asfdu)2

and F is defined using the full connection θ0.
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