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1. Berger’s list

1.1. Holonomy.
• Mn connected smooth manifold
• G Lie group with Lie algebra g
• principal G–bundle P over M : smooth manifold P , with smooth free right action R : P ×

G → P of G, and smooth projection π : P → M = P/G to the quotient space
• Examples: Hopf circle bundle S3 → S1, quaternionic Hopf bundle S7 → S4, frame bundle
• ρ : G → End(V ) ❀ P ×ρ V , e.g. ρ = Ad ❀ adjoint bundle ad P

Exercise 1
• A connection on π : P → M is a G–invariant splitting TP = ker π∗ ⊕ H of

0 → ker π∗ → TP → π∗TM → 0
H is called the horizontal subspace

• Since ker π∗ ≃ P × g, a connection is a 1-form θ : TP → g such that R∗
gθ = Ad(g−1)θ

• horizontal lift XH of a vector field X on M : the unique G–invariant vector field on P such
that XH ∈ H ⊂ TP at every point of P and π∗XH = X

• curvature Rθ ∈ Ω2(M ; ad P ) of θ: π∗Rθ(X, Y ) = [X, Y ]H − [XH , Y H ]
Exercises 2 and 3.

• The horizontal lift of a path γ : [0, 1] → M is 󰁨γ : [0, 1] → P such that π ◦ 󰁨γ = γ and
󰁨γ′(t) ∈ Hγ(t) for all t ∈ [0, 1]

• Standard ODE theory ⇒ existence of unique horizontal lift for each choice of u ∈ π−1(γ(0))
• Hθ(u) = {g ∈ G | u · g = 󰁨γ(1) for some loop γ on M}
• Holonomy group H(θ) of θ: conjugacy class of Hθ(u)
• restricted holonomy H0(θ) if only consider horizontal lifts of contractible loops in M
• H0(θ) is a connected Lie subgroup of G

Exercise 4
• X, Y commuting vector fields on M , [X, Y ] = 0 ❀ contractible loops γs obtained by

composition of flows of X and Y
• =⇒ 󰁨γs(1) = u · gs and so

π∗Rθ(X, Y ) = −[XH , Y H ] = d

ds
(u · gs)|s=0 ∈ hθ

• Ambrose–Singer (1953): hθ is generated by elements of the form π∗Rθ(X, Y )|u′ for u′ = 󰁨γ(1)
endpoint of horizontal lift with 󰁨γ(0) = u

1.2. Riemannian holonomy.
• Riemannian manifold (Mn, g)
• orthogonal frame bundle P = {isometry u : TxM → Rn}
• tautological Rn–valued 1-form ω, ω(v)|u = u(π∗v)
• Levi-Civita connection: ∃ ! connection θ on P such that dω + θ ∧ ω = 0
• Hol(g) = Hθ

Exercises 5 and 6

Classification of Riemannian holonomy groups.
• first Bianchi identity (dθ + 1

2 [θ, θ]) ∧ ω = 0
⇒ curvature function R : P → Λ2(Rn)∗ ⊗ so(n) takes values at u ∈ P in

K(h) = ker
󰀓
Λ2(Rn)∗ ⊗ h → Rn ⊗ Λ3(Rn)∗

󰀔

❀ h cannot strictly contain an ideal h′ such that K(h) ⊆ Λ2(Rn)∗ ⊗ h′
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• 2nd Bianchi identity & symmetric spaces
– symmetric spaces G/H: Hol = H and curvature function is constant, ∇R ≡ 0
– ∇R ∈ K ′(h) = ker

󰀃
K(h) ⊗ (Rn)∗ → h ⊗ Λ3(Rn)∗󰀄

⇒ if (M, g) non-symmetric then K ′(h) ∕= 0
• reducible Riemannian manifolds

– H = Hol(g) acts on Rn reducibly ⇒ H = H1 × · · · × Hk and Rn = Rn1 × · · · × Rnk

with Hi ⊆ O(ni) acting irreducibly on Rni

– de Rham Theorem: (Mn, g) complete and simply connected and Hol(g) = H1×· · ·×Hk

as above ⇒ (Mn, g) ≃ (Mn1
1 , g1) × · · · × (Mnk

k , gk) with Hol(gi) = Hi

Theorem 1.1 (Berger, 1955). If (Mn, g) is non-symmetric and irreducible then Hol0(g) is one of

SO(n), U(n
2 ), SU(n

2 ), Sp(n
4 ), Sp(n

4 )Sp(1), G2, Spin7.

1.3. How to analyse the groups in Berger’s list.
• (Mn, g) simply connected with Hol(g) = H

• Holonomy Principle: H–invariant (TxM)⊗r ⊗ (T ∗
x M)⊗s 1:1←→ parallel tensors on M

e.g. generic holonomy H = SO(n): g, dvg only parallel tensors
• Reduction of structure group to H: PH ⊆ P

– intrinsic torsion τ : θLC = θH + τ ∈ h ⊕ h⊥ = so(n)
– H–structure torsion-free, τ ≡ 0 ⇐⇒ PH preserved by holonomy ⇐⇒ Hol(g) ⊆ H

The Kähler case. H = U(m) (n = 2m)
• metric g
• almost complex structure J
• Kähler form ω( · , · ) = g(J · , · )

Proposition 1.2. (M2m, g) with g–orthogonal almost complex structure J and associated Kähler
form ω. TFAE:

(i) Hol(g) ⊆ U(m)
(ii) ∇J = 0
(iii) ∇ω = 0
(iv) J is integrable and dω = 0

Proof. We only indicate why intrinsic torsion τ ≡ 0 iff (iv).
• V = R2m as a U(m)–rep
• ΛkV ∗ ⊗ C =

󰁏
p+q=k Λp,q

• 󰌻Λp,q󰌼 the real representation such that 󰌻Λp,q󰌼 ⊗ C = Λp,q ⊕ Λp,q = Λp,q ⊕ Λq,p

• Λ2V ∗ = 󰌻Λ1,1󰌼 ⊕ 󰌻Λ2,0󰌼 = u(n) ⊕ u(n)⊥

• =⇒ τ ∈ Λ1V ∗ ⊗ 󰌻Λ2,0󰌼 = 󰌻Λ1,0 ⊗ Λ2,0󰌼 ⊕ 󰌻Λ2,1󰌼
• projection on first factor is NJ via Λ1,0 ⊗ Λ2,0 ≃ T 1,0 ⊗ Λ2,0 ≃ T 0,1 ⊗ Λ2,0

• if NJ ≡ 0 then dω ∈ 󰌻Λ2,1󰌼 is exactly the second factor □

Exercises 7 and 8

Special holonomy and Ricci curvature.
• R ∈ K(so(n)) ⊂ Λ2(Rn)∗ ⊗ so(n)
• as SO(n)-rep K(so(n)) = Sym2(Rn) ⊕ W = R⊕ Sym2

0(Rn) ⊕ W (W = W+ ⊕ W− if n = 4)
• R = Ric+W = 1

nScal idRn+R̊ic+W , where Ric(X, Y ) = tr 〈R(x, · ) · , y〉 =
󰁓n

i=1 〈R(x, ei)ei, y〉
• g Einstein: R̊ic = 0 ⇐⇒ Ric = λg for some λ ∈ R
• the most natural PDE for a Riemannian metric:

– Ricg = △gg + h.o.t. in harmonic coordinates
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– g Einstein ⇐⇒ g critical point of Einstein–Hilbert functional S(g) =
´

M Scalg dvg

restricted to metrics of fixed volume
• H ∕= SO(n), U(n

2 ) in Berger’s list =⇒ K(h) ⊂ {R̊ic = 0}
• H = SU(n

2 ), Sp(n
4 ), G2, Spin7 =⇒ K(h) ⊂ {Ric = 0}

Exercises 9 and 10

The Calabi–Yau case. H = SU(m) (n = 2m)
• Kähler form ω
• complex volume form Ω ❀ almost complex structure J

• ω ∧ Ω = 0 and 1
n!ω

n = (−1)
m(m−1)

2 im

2m Ω ∧ Ω
• SU(m)–structure (ω, Ω) torsion-free iff dω = 0 = dΩ
• every CY metric is Ricci-flat (cf. later)

The hyperKähler case. H = Sp(m) (n = 4m)
• triple of Kähler forms ω = (ω1, ω2, ω3) modelled on

󰁓m
i=1 dqi ∧ dqi on Hm

❀ triple of almost complex structures J1, J2, J3 such that J1J2 = J3 etc
• Sp(m)–structure (ω1, ω2, ω3) torsion-free iff dωi = 0 for all i = 1, 2, 3
• every HK metric is Ricci-flat

Exercises 11 and 12

The quaternionic Kähler case. H = Sp(m)Sp(1) (n = 4m ≥ 8)
• triple ω1, ω2, ω3 rotated by Sp(1)–factor (acting on the right on H)

❀ only Span(ω1, ω2, ω3) ⊂ Λ2(R4m)∗ and 4-form Φ = 1
2(ω2

1 + ω2
2 + ω2

3) well defined
• every QK metric is Einstein and is HK if Ricci-flat

Remark. Since Sp(1)Sp(1) = SO(4) quaternionic Kähler metrics in dimension 4 do not make much
sense. However, quaternionic Kähler metrics turn out to have many common features with self-dual
Einstein 4-manifolds. See Exercise 13.
The exceptional cases. H = G2 if n = 7 and H = Spin(7) if n = 8

• G2 = Aut(O)
– G2 = stabiliser in GL(7,R) of ϕ0(u, v, w) = 〈u × v, w〉 on R7 ≃ ImO
– G2–structure ϕ on M7 induces gϕ: gϕ(u, v) dvgϕ = 1

6(u┘ϕ) ∧ (v┘ϕ) ∧ ϕ

e.g. SU(3)–structure (ω, Ω) on Y 6 ❀ G2–structure ϕ = dt ∧ ω + Re Ω on X7 = R × Y 6

e.g. SU(2)–structure (ω1, ω2, ω3) on Z4 ❀ G2–structure on X7 = R3 × Z4

ϕ = dt1 ∧ dt2 ∧ dt3 − dt1 ∧ ω1 − dt2 ∧ ω2 − dt3 ∧ ω3

• G2–structure (M7, ϕ) torsion-free (or (M7, ϕ) G2–manifold) ⇐⇒ dϕ = 0 = d ∗ϕ ϕ
• G2–manifold (M7, ϕ) =⇒ Ric(gϕ) = 0
• Spin(7)–structure on M8: choice of an “admissible” 4-form Φ

e.g. ϕ on Y 7 ❀ Spin(7)–structure Φ = dt ∧ ϕ + ∗ϕϕ on X8 = R × Y 7

• Spin(7)–structure (M8, Φ) torsion-free (or (M8, Φ) Spin(7)–manifold) ⇐⇒ dΦ = 0
• Spin(7)–manifold (M8, Φ) =⇒ Ric(gΦ) = 0

Exercise 14

Special holonomy and parallel spinors. An example: CY 3-folds
• SU(3) ⊂ SU(4) ≃ Spin(6) stabiliser of a non-zero vector in C4

⇒ SU(3)–structures on M6 1:1←→ spin structures on M + nowhere-vanishing spinor ψ
• more explicitly: under /S(M) ⊗ /S(M)∗ ≃ Cl(M) ≃ Λ•T ∗M

8 ψ ⊗ ψ∗ = 1 + Re Ω − 1
2ω2

• SU(3)–structure torsion-free ⇐⇒ ∇ψ = 0
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• Clifford multiplication by dv = complex structure on spinor bundle: 2 parallel spinors
ψ, dv ·ψ and Hol = SU(3) is the space of parallel spinors is exactly 2-dimensional

Exercise 15

1.4. Exercises.

Exercise 1. In this exercise we study principal bundles on spheres.
(i) Show that isomorphism classes of principal G–bundle on the sphere Sn are in 1:1 corres-

pondence with πn−1(G).
(ii) Specialise part (i) to principal U(1)–bundles on S2.
(iii) What is the non-trivial SO(3)–bundle on S2?
(iv) Show that every SU(2)–bundle on S3 is trivial, that SU(2)–bundles on S4 are classified by

an integer and that there are only two principal SU(2)–bundles on S5. Can you describe
the non-trivial SU(2)–bundle on S5?

Exercise 2. Let π : P → M be a principal G–bundle with connection θ and let E = P ×ρ V be
an associated vector bundle.

(i) Show that there is a 1:1 correspondence between sections s ∈ C∞(M ; E) of E and G–
equivariant V –valued functions 󰁨s ∈ C∞(P ; V ) on P .

(ii) Show that the formula s 󰀁→ d󰁨s|H defines a covariant derivative on E, i.e. an R–linear map
∇θ : C∞(M ; E) → C∞(M ; T ∗M ⊗ E) satisfying the Leibniz rule ∇(fs) = df ⊗ s + f∇s
for all f ∈ C∞(M) and s ∈ C∞(M ; E).

Exercise 3. Let θ be a connection on a principal bundle and identify the curvature Rθ with its
pull-back to P as a 2-form with values in the Lie algebra g.

(i) Show that Rθ = dθ + 1
2 [θ, θ].

(ii) Deduce the Bianchi identity dRθ + [θ, Rθ] = 0 from part (i) and the Jacobi identity in g.

Exercise 4. Show that H(θ) is well-defined. This involves the following steps:
(i) Hθ(u) is a subgroup of G;
(ii) Hθ(u · g) = Ad(g−1)Hθ(u);
(iii) for all u, u′ ∈ P there exists g ∈ G such that Hθ(u′) = Ad(g−1)Hθ(u).

Exercise 5. For α ∈ R/Z consider the 3-manifold Mα = R3/Z, where Z acts by n · (t, z) =
(t + n, e2πinαz). Here we indentified R3 ≃ R×C. Endow Mα with the flat metric gα induced by the
standard flat metric on R3.
(i) Show that Mα is diffeomorphic to S1 × R2.
(ii) Calculate the holonomy of gα and deduce that (Mα, gα) is not isometric to (Mα′ , gα′) if α ∕= α′.

Exercise 6. Suppose that (Mn, g) has holonomy Hol(g) with Lie algebra h ⊆ so(n). Regard the
curvature of (M, g) as the curvature function R : P → Λ2(Rn)∗ ⊗ so(n), where P is the orthogonal
frame bundle of (M, g).
(i) Use the Ambrose–Singer Theorem to show that the curvature function takes values at u ∈ P

in Λ2(Rn)∗ ⊗ h where h is the Lie algebra of HθLC(u).
(ii) Use the symmetries of the curvature operator to deduce that the curvature function takes

value in Sym2(h) ⊂ h ⊗ h ⊆ so(n) ⊗ h ≃ Λ2(Rn)∗ ⊗ h. Here we use the metric to identify
2-forms and skew-symmetric matrices.

Exercise 7. Complete the proof of Proposition 1.2.

Exercise 8. Show that there exists a metric g on R4 which is flat outside the disjoint union of two
balls, every point x ∈ R4 has a neighbourhood Ux such that g|Ux is Kähler, but Hol(g) = SO(4).
(This shows that the holonomy of a metric cannot be determined locally in general. However the
holonomy reduction to one of the other special holonomy groups in Berger’s list can be detected
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locally, since the metric must be Einstein in all these cases and therefore it is real analytic in
harmonic coordinates.)

Exercise 9. Let M be a closed manifold and denote by Met(M) (respecticely, Met1(M)) the space
of Riemannian metrics (with unit volume) on M . In this exercise you are going to show that critical
points of the Einstein–Hilbert functional S(g) =

´

M Scalg dvg restricted to Met1(M) are Einstein.
(i) Let {gt}t∈(−󰂃,󰂃) ⊂ Met(M) be a 1-parameter family of metrics on M depending smoothly on

t and set h = d
dtgt|t=0. Show that d

dtdvgt |t=0 = 1
2(trgh) dvg. Deduce that

´

M trgh dvg = 0 if
{gt}t∈(−󰂃,󰂃) ⊂ Met1(M).

(ii) The L2–gradient gradgS of the Einstein–Hilbert functional S at g ∈ Met(M) is defined as
follows: if {gt}t∈(−󰂃,󰂃) ⊂ Met(M) is a 1-parameter family of metrics on M with gt|t=0 = g and
d
dtgt|t=0 = h then

d

dt
S(gt)|t=0 = 〈gradgS, h〉L2 =

ˆ

M
〈gradgS, h〉g dvg.

Show that
gradgS = −

󰀓
Ricg − 1

2Scalg g
󰀔

.

(Hint: you can take for granted the following formula: if gt is a smooth path in Met(M) starting
at g in the direction of h then

d

dt
Scalgt |t=0 = △(trgh) + d∗(δh) − 〈Ricg, h〉.)

(iii) Show that g ∈ Met1(M) is a critical point of S|Met1(M) if and only if there exists a function
λ ∈ C∞(M) such that Ric = λg.

(iv) For a 1-form ξ let δ∗ξ denote the symmetrisation of ∇ξ, i.e.
δ∗ξ(X, Y ) = 1

2
󰀃
(∇Xξ)(Y ) + (∇Y ξ)(X)

󰀄

for every pair X, Y of vector fields.
(a) Show that δ∗ξ = −1

2Lξ󰂒g.
(b) Let δ : C∞(M ; Sym2T ∗M) → Ω1(M) denote the formal L2–adjoint of δ∗ : Ω1(M) →

C∞(M ; Sym2T ∗M). Show that δ(ug) = −du for every function u.
(v) Use the invariance under diffeomorphisms of the Hilbert–Einstein functional to deduce that

δRic + 1
2dScal = 0,

and use this fact to show that if Ric = λg then λ is constant. (Hint: invariance of S under
diffeomorphisms implies that δ(gradgS) = 0.)

Exercise 10. Let M be a compact reductive homogeneous space, i.e. M = G/K for a compact
Lie group G and a closed subgroup K of G and moreover there is a K–invariant decomposition
g = k⊕p of the Lie algebra g of G in terms of the Lie algebra k of K and a complementary subspace
p. The induced action of K on p is called the isotropy representation of M . You are going to study
G–invariant Einstein metrics on M .
(i) Suppose that M is isotropy irreducible, i.e. p is an irreducible representation of K. Show that

there exists a unique G–invariant metric on M up to scale, which must therefore be Einstein.
Apply this fact to G = SU(n + 1) and K = U(n) (embedded in SU(n+1) as the stabiliser of a
vector in Cn+1) to construct an Einstein metric on CPn. (Hint: use the fact that G–invariant
Riemannian metrics on M are in 1-to-1 correspondence with K–invariant positive definite
inner products on p and Schur’s Lemma.)

(ii) Suppose there exists a closed subgroup H of G which contains K as a closed subgroup and
so that B = G/H and F = H/K are both isotropy irreducible reductive homogeneous spaces.
Then the projection G/K → G/H exhibits M as the total space of a fibre bundle over B with
fibre F . Let gB and gF be G–invariant (Einstein) metrics on B and F and denote by sB and
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sF their respective scalar curvatures. Further assume that any G–invariant metric on M can
be written up to scale as

gt = gB + tgF , t ∈ R+.

(This happens if and only if the two summands pF and pB in the decomposition g = h⊕ pB =
(k ⊕ pF ) ⊕ pB are non-isomorphic irreducible K–representations.) Restricting the normalised
Hilbert–Einstein functional to G–invariant metrics we obtain a function S : R+ → R defined
by

S(gt)
Vol(M, gt)

n−2
n

∝ t
dimF

n

󰀓
1
t sF + sB − t|curv|2

󰀔
=: S(t).

Here curv is the curvature of the connection on the principal H–bundle G → B induced by
the decomposition g = h ⊕ pB. By Palais’ Principle of Symmetric Criticality, gt is Einstein if
and only if S ′(t) = 0.
You are going to apply this facts to produce an Einstein metric on S7 that does not have
constant curvature. Consider K ⊂ H ⊂ G with K = Sp(1)×Sp(1), H = Sp(1) and G = Sp(2).

(a) Show that M = S7, B = S4 and F = S3. (Hint: you might want to use the double covers
Sp(2) → SO(5) and Sp(1) × Sp(1) → SO(4).)

(b) Verify that B and F are isotropy irreducible homogeneous spaces. Normalise the resulting
Einstein (constant curvature) metrics so that sB = 12 and sF = 6.

(c) Calculate |curv|2. (Hint: you can use the fact that g1 is the standard round metric on S7

with scalar curvature 42.)
(d) Deduce the existence of a critical point t∗ ∕= 1 of S(t).
(e) Show that the Einstein metric gt∗ does not have constant curvature.
(f) Show that g1 and gt∗ , normalised to have the same volume, cannot be connected by a

path of Einstein metrics. (Hint: compare the values of the Hilbert–Einstein functional.)
Exercise 11. Show that Sp(m) is a compact, connected and simply connected Lie group. Calculate
its dimension. (Hint: use the fact that Sp(1) = SU(2) ≃ S3 and S4m−1 = Sp(m)/Sp(m − 1).)
Exercise 12. This exercise is about hyperkähler structures.
(i) Let (ω1, ω2, ω3) be an Sp(m)–structure on M4m. Observe that Sp(m) ⊆ SU(2m) (with equality

only if m = 1) and use this to explain why the triple (ω1, ω2, ω3) determines (g, J1, J2, J3).
(Hint: what about ω1 and the complex 2m–form Ω = 1

m!(ω2 + iω3)m?)
(ii) Suppose that (M, ω1, ω2, ω3) is torsion-free. For every a = (a1, a2, a3) define ωa = a1ω1 +

a2ω2 + a3ω3 and Ja = a1J1 + a2J2 + a3J3. Show that (M, g, Ja, ωa) is Kähler.
Exercise 13. Let V be a 4–dimensional vector space endowed with a positive definite inner product
and a volume form dv ∈ Λ4V ∗.
(i) Using dv and the wedge product define a non-degenerate pairing q on Λ2V ∗. Show that q has

signature (3, 3). Let Λ±V ∗ be maximal positive/negative subspaces of (Λ2V ∗, q).
(ii) Show that the induced action of SL(V ) ≃ SL(4,R) (i.e. the matrices that preserve dv) on

Λ2V ∗ defines a double cover SL(4,R) → SO(3, 3). Restricting to compact subgroups, we see
that SO(4) → SO(3)+ × SO(3)− is a double-cover; here SO(3)± is the induced action of SO(4)
on Λ±V ∗.

(iii) Identify V with the quaternions H and SU(2) with the unit sphere S3 ⊂ H. Define a map
SU(2) × SU(2) × H, by (q1, q2, x) 󰀁→ q1xq2. Show that this defines a double cover SU(2)+ ×
SU(2)− → SO(4).

(iv) Show that this induces a double cover of U(1) × SU(2)− → U(2), where U(1) ⊂ SU(2)+ is the
subgroup of diagonal matrices.

(v) Show that U(2) acts on Λ−V ∗ as SO(3)− and on Λ+V ∗ as the subgroup SO(2) ⊂ SO(3)+

preserving the standard Kähler form ω1 on H ≃ C2.
(vi) Deduce that on a Kähler surface (M, ω), Λ+M = 󰌻Λ2,0M󰌼 ⊕ Rω and Λ−M = 󰌻Λ1,1

0 M󰌼, where
Λ1,1

0 M are the (1, 1)-forms on TxM orthogonal to ω.
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Exercise 14. Work out all the possibilities for the holonomy group of a simply connected Ricci-flat
manifold of real dimension 8. (Hint: the only simply connected Ricci-flat symmetric space is Rn.)

Exercise 15. Let (M6, ω, Ω) be a Calabi–Yau 3-fold and denote by ψ the defining parallel spinor.
(i) Show that (f, g, γ) 󰀁→ fψ + g dv ·ψ + γ · ψ identifies the spinor bundle of M with Λ0T ∗M ⊕

Λ0T ∗M ⊕ Λ1T ∗M .
(ii) Show that

/D(fψ + g dv ·ψ) = (df + Jdg) · ψ

where the complex structure J on 1-forms is defined by (Jγ) ·ψ = γ ·dv ·ψ = − dv ·γ ·ψ. (Hint:
observe that /Dψ = 0 = /D(dv ·ψ).)

(iii) Show that /D(γ · ψ) = dγ · ψ + (d∗γ) ψ.
(iv) It remains to understand the action of the 2-form dγ on ψ via Clifford multiplication. This

requires various steps. Consider the decomposition of 2-forms Λ2 = Λ2
1⊕Λ2

6⊕Λ2
8 into irreducible

SU(3)–representations, where
Λ2

1 = Rω, Λ2
6 = {X┘Re Ω | X a vector field},

and Λ2
8 consists of primitive (1, 1)–forms, i.e. 2-forms σ such that σ ∧ ω2 = 0 = σ ∧ Re Ω or

equivalently σ · ψ = 0.
(a) Show that ω · ψ = 3 dv ·ψ. (Hint: do the computation in an orthonormal coframe

{e1, Je1, . . . , e3, Je3} such that ω =
󰁓3

i=1 ei ∧ Jei.)
(b) Show that 1

2dγ ∧ ω2 = −d∗(Jγ), i.e. the projection of dγ in Λ2
1 is −1

3d∗(Jγ) ω.
(c) Show that a 2-form σ = X┘Re Ω ∈ Λ2

6 acts on ψ by σ · ψ = ∗(σ ∧ Re Ω) · ψ. (Hint: first
argue that σ · ψ must be of the form η · ψ for some 1-form η; next using Schur’s Lemma
deduce that η = c ∗ (σ ∧ Re Ω) for some constant c independent of σ and (M, ω, Ω);
finally calculate c by considering the standard Calabi–Yau structure on C3 and X the
first vector in the standard orthonormal basis.)

(v) Deduce that the Dirac operator /D of M can be identified with the operator
/D(f, g, γ) = (d∗γ, d∗(Jγ), curl γ + df + Jdg) ,

where curl γ = ∗(dγ ∧ Re Ω) for every 1-form γ.

1.5. Bibliographical notes. Our presentation of Riemannian holonomy groups and Berger’s list
is based on [4, Chapter 10], [9], [13] and the survey paper [5]. For background on spin structures
and the Dirac operator see [2] and [10].
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2. Kähler Ricci-flat (KRF) metrics

2.1. The Calabi–Yau Theorem: the existence and uniqueness problem.

Ricci-curvature in Kähler geometry. Want to explain why

(2.1) 1
n! ωn = (−1)

m(m−1)
2 im

2m Ω ∧ Ω
=⇒ Ric(gω,Ω) = 0
• Chern connection: E → M holomorphic vector bundle over complex manifold (M, J) + h

Hermitian metric on E ❀ ∃ ! connection ∇ on E such that ∇0,1 = ∂E and ∇h = 0
Proof. (in the case where E = L is a line bundle)
Over U ⊂ X open choose local trivialising holomorphic section s
Write ∇ = d + α and 󰀂s󰀂2

h = e2ϕss
– α = α1,0

– dϕ = 1
2(α + α)

=⇒ α = 2∂ϕ □
Exercise 16
• first Chern class: c1(E) = c1(det E) = i

2π [tr(F∇)] ∈ H2(X;R)
• Prescribing curvature of a line bundle

– fix (L, h0) and closed (1, 1)-form ρ ∈ −2πic1(L)
– h = e2ϕh0 with Fh = ρ ⇐⇒ 2∂∂ϕ = ρ − Fh0

– on a compact Kähler manifold can always solve this thanks to ∂∂–Lemma:
σ exact (1, 1)–form =⇒ σ = ∂∂u for some function u

• Also by ∂∂–Lemma: every Kähler metric in a fixed Kähler class [ω] ∈ H1,1(M ;R) is of the
form ωu = ω + i∂∂u

Exercises 17 and 18
• Ricci-form: (1, 1)–form ρω(X, Y ) = Ric(JX, Y )
• T 1,0M holomorphic bundle + Hermitian metric h = g + iω

❀ R = curvature of Chern connection and Tr R curvature of K−1
M

• ρω = iTr R
Exercise 19

The Calabi Conjecture.

Theorem 2.2 (Yau, 1978). Let (M2m, g, J, ω) be a closed Kähler manifold. Then for every f ∈
C∞(M) such that f > 0 and

´

M f ωm =
´

M ωm there exists u ∈ C∞(M), unique up to the addition
of a constant, such that ω + i∂∂u is a Kähler form in the same Kähler class as ω and

󰀓
ω + i∂∂u

󰀔m
= f ωm.

Corollary 2.3. Let (M2m, J) be a closed complex manifold with c1(M, J) = 0 and admitting Kähler
metrics. Then in every Kähler class there exists a unique Kähler metric that is Ricci-flat.

Exercises 20 and 21

2.2. The Beauville–Bogomolov decomposition: when is Hol(g) = SU(m) or Sp(m)?

The Cheeger–Gromoll Splitting Theorem.
Exercise 22
• ray: unit-speed geodesic γ : [0, ∞) → M such that distg(γ(t), γ(s)) = |s − t| for all t, s ≥ 0
• line: unit-speed geodesic γ : R → M such that distg(γ(t), γ(s)) = |s − t| for all t, s ∈ R
• (Mn, g) complete non-compact: for every point p ∈ M ∃ ray γ with γ(0) = p
• (Mn, g) complete non-compact and π0(M \ K) ≥ 2 for connected compact K: ∃ line
Exercise 23
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Theorem 2.4 (Cheeger–Gromoll, 1971). Let (Mn, g) be a complete Riemannian manifold with
Ric(g) ≥ 0. If M contains a line then (M, g) ≃ (Nn−1, gN ) × (R, dt2).

Corollary 2.5. Let (Mn, g) be a closed Riemannian manifold with Ric(g) ≥ 0. Then the universal
cover ( 󰁩M, 󰁨g) of (M, g) splits isometrically as the product of (Rk, gEucl) and a compact Riemannian
manifold (Nn−k, gN ). If Ric(g) = 0 then there exists a finite cover M ′ that splits isometrically as
the product of a flat k-torus T k and the compact manifold N .
Proof. There are two main steps in the proof.
(i) If M is compact and its universal cover 󰁩M is non-compact, then 󰁩M contains a line: one starts

with a ray γ and constructs a line as a limit of translations fi · γ(ti + · ) for ti → ∞ and
elements fi ∈ π1(M).

(ii) If 󰁩M splits as an isometric product 󰁩M = N ×Rk with N containing no lines, then Isom( 󰁩M) =
Isom(N) × Isom(Rk) (since isometries must preserve lines).

Theorem 2.4 implies that 󰁩M splits as in (ii). If by contraddicition N were non-compact then the
construction in (i) would yield a line in 󰁩M starting from a ray in N , which would then be contained
in N by (ii).

For the final statement, we need to observe that a simply connected closed Riemannian manifold
with Ric ≤ 0 has no Killing fields (since any Killing field X satisfies ∇∗∇X − 2Ric(X, X) = 0
and therefore the dual 1-form is harmonic), so the subgroup of Isom(Rk) given by the kernel of
π1(M) → Isom(N) must act cocompactly on Rk: by Bieberbach Theorem it must therefore contain
a full rank lattice as a finite index subgroup. □

Exercise 24

The Kähler case.

Theorem 2.6 (Beauville, 1983). Let (M2m, g, J, ω) be a closed Kähler manifold with Ric(g) = 0.
(i) The universal cover 󰁩M is isomorphic as a Kähler manifold to the product 󰁩M = Ck ×

󰁔
i Xi ×󰁔

j Yj, where Xi is a compact simply connected manifold with holonomy SU(mi) and Yj is a
compact simply connected manifold with holonomy Sp(nj). The decomposition is unique up to
reordering the factors.

(ii) There exists a finite cover M ′ of M isomorphic as a Kähler manifold to the product M ′ =
T×

󰁔
i Xi ×

󰁔
j Yj, where Tk is a compact complex torus of complex dimension k. In particular,

π1(M) is an extension of a finite group by Z2k.

Exercises 25 and 26

2.3. Moduli spaces.
• (M2m, ω, Ω) Calabi–Yau m-fold, i.e. Hol(gω,Ω) ⊆ SU(m)
• Deformations of (ω, Ω) as a CY structure
Complex-structure deformations: Bogomolov 1978, Tian 1988, Todorov 1989

Theorem 2.7. Let (M2m, J, ω) is a closed Kähler manifold with c1(M, J) = 0. Then the local
universal deformation space of (M, J) is isomorphic to an open set in H1(M ; T 1,0M).

Combined with Corollary 2.2 and a result of Kodaira that guarantees that complex-structure
deformations of a Kähler manifold remain Kähler =⇒

Corollary 2.8. Let (M2m, g, J, ω) be a closed Kähler Ricci-flat manifold. Then the moduli space
of Kähler Ricci-flat metrics on M is smooth of dimension

h1,1(M) + 2 dimC H1(M ; T 1,0M) − 2h0,2(M).

Note: KM trivial =⇒ dimC H1(M ; T 1,0M) = h1,m−1(M) via X 󰀁→ X┘Ω
Exercise 27
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The case m = 2: deforming hyperkähler triples.
• (M4, µ0) oriented 4-manifold ❀ quadratic form on Λ2T ∗

x M for all x ∈ M
• ω = (ω1, ω2, ω3) definite triple if Span(ωx) ⊂ Λ2T ∗

x M positive definite
ω definite ⇐⇒ Q > 0, where Qijµ0 = 1

2ωi ∧ ωj

• normalisation: (Qω, µω) so that Qωµω = Qµ0 and det Qω ≡ 1
• gω unique metric with Λ+T ∗M = Span(ω) and volume form µω

• gω hyperkähler ⇐⇒ Qω ≡ id and dωi = 0 for all i = 1, 2, 3
• deform hyperkähler triple ω ❀ ω + η such that dη = 0 and, for some v > 0,

(2.9) 1
2(ωi + ηi) ∧ (ωj + ηj) = v δij µω

• decompose η = η+ + η−

• η+
i =

󰁓3
j=1 Aij ωj for matrix-valued function A

• η− ∗ η− the symmetric (3 × 3)–matrix with entries (1
2 η−

i ∧ η−
j )/µω

• rewriting of (2.9)
AT + A + AAT + η− ∗ η− = 0.

• smooth function F : Sym2(R3) → Sym2(R3) such that AT + A + AAT = S iff A = F(S)
3-dimensional kernel of linearisation of A 󰀁→ AT + A + AAT at 0 1:1←→ HK rotations

• reformulation of (2.9)
η+ = F

󰀃
(id − Qω) − η− ∗ η−󰀄

• H+
ω = Span(ω)

=⇒ elliptic equation
d+a + ζ = F

󰀃
(id − Qω) − η− ∗ η−󰀄

d∗a = 0
for a triple a of 1-forms on M and a triple ζ ∈ H+

ω ⊗ R3

• linearisation
(D ⊕ id) ⊗ R3 :

󰀓
Ω1(M) ⊕ H+

ω

󰀔
⊗ R3 →

󰀓
Ω0(M) ⊕ Ω+(M)

󰀔
⊗ R3

D : (a, ζ) 󰀁−→ (d∗a, d+a + ζ)
surjective map with kernel harmonic 1-forms

Conclusion
• M4 closed, simply connected
• C(M) = {ω hyperkähler triple}
• Diff0(M) acts on C(M)
• M = C(M)/Diff0(M)

Theorem 2.10. If non-empty M is a smooth manifold of dimension 3b−
2 (M) + 3 + 1 and the

projection π : M → H2(M) ⊗ R3 induced by ω 󰀁→ [ω] is an immersion.

• M4 HK simply connected ❀ M diffeomorphic to quartic surface in CP3, the “K3 manifold”
• fix isomorphism H2(M ;Z) ≃ (Λ, q) unimodular lattice of signature (3, 19)
• λ ∈ Λ is a root ⇐⇒ q(λ, λ) = −2
• Q = {α ∈ Λ ⊗ R3 | q(αi, αj) = v δij for some v > 0 and q(α, λ) ∕= 0 for all root λ}
• Torelli Theorem: π : M → Q is a diffeomorphism
Exercises 28 and 29

2.4. Exercises.

Exercise 16. Let L be a holomorphic line bundle over a complex manifold M . Let h be a Hermitian
metric on L and denote by Fh the curvature of the Chern connection of (L, h).
(i) Show that Fh is a closed (1, 1)–form.
(ii) Show that i[Fh] ∈ H2(M ;R) is independent of h. Up to a factor of 2π, i[Fh] = 2πc1(L) is

called the (real) first Chern class of L.
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(iii) Think of CP1 as parametrising lines in C2. Let CP1 × C2 → CP1 be the trivial rank 2 bundle
and denote by O(−1) the holomorphic subbundle whose fibre over [z] ∈ CP1 is the line in C2

parametrised by [z]. Calculate c1(O(−1)).

Exercise 17. Let (M2m, J, ω) be a closed Kähler manifold. You are going to prove the ∂∂–Lemma
for (1, 1)–forms.
(i) First observe that 2i∂∂u = d(Jdu) and therefore we need to prove that every exact (1, 1)–form

σ on M can be written in the form σ = d(Jdu) for some function u.
(ii) Show that you can find a function u, unique up to the addition of a constant, such that

d(Jdu) ∧ ωm−1 = σ ∧ ωm−1. (Hint: note that d(Jdu) ∧ ωm−1 = m △u ωm.)
(iii) Consider now the exact primitive (1, 1)-form σ′ = σ − d(Jdu). Here primitive means that

σ′ ∧ ωn−1 = 0. Show that if d∗σ′ = 0 then σ′ = 0. (Hint: here you need to use the fact that M
is closed.)

(iv) Show that there exists a universal constant cm ∕= 0 such that if σ′ is a primitive (1, 1)-form
then ∗σ′ = cmσ′ ∧ ωm−2. (Hint: consider the map σ′ 󰀁→ ∗(σ′ ∧ ωm−2) and argue that it must
be a non-zero multiple of the identity.)

(v) Conclude the proof.

Exercise 18. Let Ω be a (local) holomorphic volume form on a Kähler manifold (M2m, ω, J) (if
Ω is globally defined then we must have c1(M, J) = 0). We can therefore think of Ω as a (local)
trivialising holomorphic section of the canonical line bundle KM = Λ(m,0)T ∗M . The Kähler metric
gω,J induces a Hermitian metric hω on KM .
(i) Show that 󰀂Ω󰀂2

hω

1
m!ω

m = cmΩ ∧ Ω, where cm is the dimensional constant of (2.1).
(ii) Deduce that equation (2.1) implies that the curvature of the Chern connection of (KM , hω)

vanishes (over the set where Ω is defined).
(iii) Conversely, show that if KM is holomorphically trivial and the Chern connection on KM is

flat then (2.1) must hold for a suitably chosen trivialising holomorphic section Ω of KM .

Exercise 19. Let (M, g, J, ω) be a Kähler manifold. Let R be the curvature of the Chern connection
of T 1,0M endowed with the Hermitian metric h = g + iω.

For computations it will be convenient to introduce a local orthonormal frame {E1, JE1, . . . , Em, JEm}
adapted to the U(m)–structure.

As usual, we introduce the notation Rm(X, Y, Z, W ) = 〈Rm(X, Y )W, Z〉 for the curvature of g.
Recall the symmetries of the Riemannian curvature: Rm is skew-symmetric in (X, Y ) and (Z, W ),
invariant under exchange of the pairs (X, Y ) and (Z, W ) and (the Bianchi identity)

R(X, Y, · , W ) + R(Y, W, · , X) + R(W, X, · , Y ) ≡ 0.

Finally, the Ricci curvature of g is defined by

Ric(X, Y ) =
m󰁛

j=1
Rm(Ej , X, Ej , Y ) + Rm(JEj , X, JEj , Y ).

(i) Show that Rm(X, Y, Z, JW ) = −Rm(X, Y, JZ, W ).
(ii) Show that the Ricci curvature of g satisfies

Ric(X, Y ) =
m󰁛

j=1
Rm(Ej , JEj , X, JY )

(Hint: use (i) to rewrite Rm(Ej , X, Ej , Y ) = Rm(Ej , X, JEj , JY ) and Rm(JEj , X, JEj , Y ) =
−Rm(JEj , X, Ej , JY ), then rearrange terms so that JY is in the third position and finally
use the Bianchi identity.)

(iii) Deduce that Ric(JX, JY ) = Ric(X, Y ) and therefore ρω(X, Y ) = Ric(JX, Y ) is a (1, 1)–form.
(iv) Show that itr R(X, Y ) =

󰁓m
i=1 Rm(X, Y, Ej , JEj). (Hint: note that R is the curvature of g

thought of as a 2-form with value in the bundle of skew-Hermitian endomorphisms of TM ; now
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write the trace of a matrix in u(m) ⊂ gl(n,C) in terms of the basis {E1, JE1, . . . , Em, JEm}
of R2m ≃ Cm.)

(v) Deduce that ρω = itr R.

Exercise 20. Prove Corollary 2.3 assuming Theorem 2.2.

Exercise 21. Let X be a complex manifold of complex dimension m + 1, m ≥ 2, such that the
anticanonical bundle K−1

X is ample. By the Kodaira Embedding Theorem, we can assume this is
equivalent to the existence of a Hermitian metric on K−1

X (not necessarily induced by a a Kähler
metric on X) with curvature Fh that is a Kähler form on X. Consider a smooth anticanonical
divisor M ∈ | − KX |.
(i) Show that X has finite fundamental group. (Hint: use Theorem 2.2 to prove that X admits a

Kähler metric with positive Ricci curvature.)
(ii) Since K−1

X is ample, the Kodaira Vanishing Theorem says that hp,0(X) = 0 for all p > 1 and
therefore the holomorphic Euler characteristic χ(X, OX) :=

󰁓m+1
p=0 (−1)ph0,p(X) = 1. Deduce

that X is simply connected. (Hint: look at how the holomorphic characteristic behaves under
finite coverings.)

(iii) Use the Lefschetz Hyperplane Theorem to deduce that M is also simply connected.
(iv) Use the Adjunction Formula to show that KM is trivial.
(vi) Use the exact sequence

0 → KX → OX → OM → 0
and the fact that H i(X, KX) = 0 for all i ≤ m (by the Nakano Vanishing Theorem) to show
that hp,0(M) = 0 for all 0 < p < m.

(v) Deduce that M admits a metric g with Hol(g) ⊆ SU(m). In fact, in view of Exercise 26 we
have Hol(g) = SU(m).

(vii) Justify the fact that a hypersurface of degree m + 2 in CPm+1 admits a Calabi–Yau metric.

Exercise 22. In this exercise you dicuss Bochner’s theorem about harmonic 1-forms on closed
manifolds (Mn, g) with non-negative Ricci curvature.
(i) Show that △γ = ∇∗∇γ + Ric(γ󰂒)󰂐 for every 1-form γ.
(ii) (Bochner, 1948) Suppose that M is closed and Ric(g) ≥ 0. If γ is a harmonic 1-form then

X = γ󰂒 is a parallel vector field such that Ric(X) = 0.
(iii) Assume that 󰁨X is a parallel vector field on a simply connected manifold ( 󰁩M, 󰁨g). Show that

( 󰁩M, 󰁨g) ≃ (N, gN ) × (R, dt2).
(iv) Let (M, g) be a closed manifold with Ric ≥ 0 and b1(M) = k. Show that the universal cover

( 󰁩M, 󰁨g) of M splits isometrically as ( 󰁩M, 󰁨g) ≃ (N, gN ) × (Rk, gEucl).

Exercise 23. Let (Mn, g) be a complete non-compact Riemannian manifold and fix p ∈ M . Show
that there exists a ray γ : [0, ∞) → M such that γ(0) = p and that if M has at least two ends
then there exists a line. (Hint: for the ray consider geodesics γi joining p and a sequence of points
qi → ∞; for the line consider geodesics joining points p−

i , p+
i → ∞ belonging to two distinct

connected components of M \ K.)

Exercise 24. In this exercise we consider consequences of Theorem 2.4 and Corollary 2.5.
(i) Show that S2 × S1 and S3 × S1 cannot carry Ricci-flat metrics.
(ii) Let (Mn, g) be a closed manifold with Ric(g) ≥ 0. Show that if Hol(g) acts irreducibly on Rn

then π1(M) is finite.
(iii) Let (M7, ϕ) be a closed 7-manifold with a torsion-free G2–structure, so that Hol(gϕ) ⊆ G2.

Show that Hol(g) = G2 if and only if π1(M) is finite. (Hint: given the above, the only new
ingredient is to establish, going through Berger’s list and using the fact that the only symmetric
Ricci-flat metrics are flat, that if M is simply connected and has Hol(g) strictly contained in
G2 then there must be a parallel 1-form.)
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Exercise 25. Prove part (i) of Theorem 2.6 using the de Rham Theorem, Berger’s list and Theorem
2.5.

Exercise 26. Let (M2m, g, J, ω) be a closed Kähler manifold with Ric(g) = 0. In this exercises we
develop vanishing theorems for holomorphic (p, 0)-forms on M and derive some consequences.

(i) Prove that every holomorphic (1, 0)-form is parallel. (Hint: use the fact that ∂
∗|Λp,0 = 0,

△∂ = 2△d and part (i) of Exercise 22.)
(ii) Prove that the automorphism group of (M, J) is discrete and that the isometry group of

(M, g) is therefore finite. (Hint: the Lie algebra of the automorphism group consists of
holomorphic sections of T 1,0M ; the automorphism group is the complexification of the
isometry group.)

(iii) Prove part (ii) of Theorem 2.6. (Hint: every element of π1(M) must act on 󰁩M as a product
of isometric automorphisms of each factor in the decomposition.)

(iv) Prove that every holomorphic (p, 0)-form is parallel for every p ≥ 0. (Hint: the argument
is the same as in part (i), using the fact that △d = ∇∗∇ on Λp,0 if g is Ricci-flat.)

(v) Prove that Hol(g) = SU(m) if and only if hp,0(M) = 0 for all 0 < p < m and hp,0(M) = 1
if p = 0, m.

(vi) Suppose that Hol(g) = SU(m) and m ≥ 3. Then (M, J) is projective. (Hint: show that the
Kähler cone must contain a rational class and then use the Kodaira Embedding Theorem.)

(vii) Let (M2m, J) be a closed complex manifold admitting Kähler metrics. We say that M is an
irreducible holomorphic symplectic variety if there exists a holomorphic (2, 0)–form ωc that
is non-degenerate at every point and if hp,0(M) = 0 if p is odd, while every holomorphic
(2k, 0)-form is a constant multiple of ωk

c . Prove that (M4m, g, J, ω) has Hol(g) = Sp(m) if
and only if (M, J) is an irreducible holomorphic symplectic manifold.

Exercise 27. Let M be a smooth hypersurface in CPm+1 of degree m + 2, m ≥ 3. It follows from
Exercise 21 and Corollary 2.3 that M carries a unique Kähler Ricci-flat metric g in the cohomology
class of the restriction of the Fubini–Study metric.

(i) Show that Hol(g) = SU(m). (Hint: use Exercises 21 and 26.)
(ii) Use the Lefschetz Hyperplane Theorem to show that bk(M) = bk(CPm+1) for all k ∕= m.
(iii) Use the exact sequence

0 → TM → TCPm+1|M → OCPm+1(m + 1)|M → 0

to derive the recursive formula ck(M) + (m + 1)h ∪ ck−1(M) =
󰀃m+1

k

󰀄
hk, where h is the

generator of H2(CPm+1;Z) ≃ H2(M ;Z).
(iv) Specialising to m = 3 for simplicity, find a formula for the top Chern class cm(M) and

then calculate bm(M). (Hint: the top Chern class yields the Euler characteristic of M .)
(v) Use Corollary 2.8 to calculate the dimension of the moduli space of Kähler Ricci-flat metrics

on M when m = 3.

Exercise 28. Let M be a quartic surface in CP3.
(i) Consider the exact sequence

0 → TM → TCP3|M → O(4)|M → 0.

(a) Taking determinants, show that c1(M) = 0.
(b) Show that M has Euler characteristic χ(M) = 24. (Hint: the Euler class of M is

c2(M).)
(ii) Show that b2(M) = 22. (Hint: M is simply connected by the Lefschetz Hyperplane The-

orem.)
(iii) Show that h2,0(M) = h0,2(M) = 1 and h1,1(M) = 20.
(iv) Show that b+(M) = 3 and b−(M) = 19.
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Exercise 29. By Exercise 13 in dimension 4 we have a decomposition Λ2 = Λ+ ⊕Λ−. We can then
decompose the curvature operator R : Λ2 → Λ2 of a Riemannian metric g on a 4-manifold M as
follows:

R =

󰀳

󰁅󰁅󰁅󰁅󰁃

1
12Scal + W+ ◦

Ric

◦
Ric 1

12Scal + W−

󰀴

󰁆󰁆󰁆󰁆󰁄
.

If M is closed, Chern–Weyl theory for the Riemannian curvature yields the Chern–Gauss–Bonnet
Theorem, expressing the Euler characteristic χ(M) =

󰁓
i (−1)ibi(M) as

χ(M) = 1
8π2

ˆ

M

󰀕
1
24Scal2 + |W+|2 + |W−|2 − 1

2 |
◦

Ric |2
󰀖

dvg,

and the Hirzebruch Signature Theorem, expressing the signature τ(M) = b+(M) − b−(M) as

τ(M) = 1
12π2

ˆ

M

󰀓
|W+|2 − |W−|2

󰀔
dvg.

(i) Let g be an Einstein metric on a closed 4-manifold M . Show the Hitchin–Thorpe Inequality
2χ(M) ≥ 3|τ(M)|.

(ii) Let Mk,l = kCP2󰂒CP2, where CP2 denotes CP2 with the opposite orientation. For which
(k, l) can’t Mk,l admit an Einstein metric?

(iii) Let g be an Einstein metric on the K3 manifold. Show that g is hyperkähler. (Hint: use
the fact that every flat metric bundle on a simply connected manifold can be trivialised
by a basis of orthonormal parallel sections.)

2.5. Bibliographical notes. See [1] for background in Kähler geometry. There, as well as in [9],
you will find a complete account of Yau’s Theorem and the Calabi Conjecture. For a reference on
background in complex geometry (perhaps needed to solve a couple of exercises) see [8].

Beauville’s original paper [3] (in French) on the Beauville–Bogomolov Decomposition Theorem
is quite readable. A complete proof of the Cheeger–Gromoll Splitting Theorem is contained in [12].

For the deformation theory of CY 3-folds we have followed the approach pioneered by [7], see
also [11]. The notion of definite triples is discussed in [6].
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3. Examples of complete non-compact manifolds with special holonomy,
singularities and degenerations

In this section we discuss some examples of complete non-compact KRF manifolds. In contrast
to the abstract existence theorem of Corollary 2.3, the non-compact setting will allow us to describe
various (almost) explicit examples. As we will discuss later, complete non-compact examples are
also important to understand formation of singularities in sequence of compact manifolds with
special holonomy.

3.1. Volume growth.
(Mn, g) complete non-compact with Hol(g) one of the Ricci-flat holonomy groups
Theorem 2.4 =⇒ M has only one end unless reducible

Theorem 3.1 (Bishop–Gromov volume comparison). Let (Mn, g) be a complete Riemannian man-
ifold with Ric(g) ≥ 0. Then the function

r 󰀁−→ Volg (B (p, r))
rn

is decreasing.

Proof. (sketch) Ignoring issues with the cut-locus (which has anyway measure zero), we work in
normal coordinates around p: consider TpM ≃ Rn endowed with the Riemannian metric exp∗

p g =
dr2 + gr, for a 1-parameter family of metrics gr on Sn−1 depending smoothly on r and with
gr ≈ r2gSn−1 as r → 0.

For each r > 0 define a function µr on Sn−1 by dvgr = µr dvSn−1 . Then Volg (B (p, R)) =
´ R

0
󰀃´

Sn−1 µr dvSn−1
󰀄

dr. The shape operator S = ∇∂r of the hypersurfaces {r = const} satisfies
1
2∂rgr = gr(S · , · )

and therefore ∂r log µr = trgr S.
The shape operator satisfies the Riccati equation ∂rS + S2 + Rmg( · , ∂r)∂r = 0. Using Gauss’

equations to express the Ricci curvature of g in terms of S and the Ricci curvature of gr, taking
traces one then finds

∂r(trgr S) + |S|2gr
≤ 0.

Since |S|2gr
= 1

n−1(trgr S)2 + |
◦
S |2gr

, where
◦
S denotes the trace-less part of S, one deduces trgr S ≤

(n − 1)r−1 from ODE comparison theory. A further integration yields the result. □

Exercise 30

Corollary 3.2. Let (Mn, g) be a complete Riemannian manifold with Ric(g) ≥ 0.
(i) For all p ∈ M and r ≥ 0 we have

Volg (B (p, r)) ≤ ωnrn

where nωn is the volume of the unit (n − 1)–sphere.
(ii) Fix p ∈ M and r0 > 1. Then there exists c = c(g, p, r0) such that

c r ≤ Volg (B (p, r))

for all r ≥ r0.

Proof. Since limr→0 Volg (B (p, r)) = ωnrn, the first part of the Corollary is an immediate con-
sequence of Theorem 3.1.

In order to prove the second part, fix a point q ∈ ∂B (p, r), so that B (p, 1) is contained in the
annulus B (q, r + 1) \ B (q, r − 1). Since B (q, r) ⊂ B (p, 2r) it suffices to show that Volg (B (q, r))
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grows at least linearly in r ≥ r0, with a constant that depends only on r0 and Volg (B (p, 1)). We
calculate

Volg (B (p, 1))
Volg (B (q, r)) ≤ Volg (B (p, 1))

Volg (B (q, r − 1)) ≤ Volg (B (q, r + 1) \ B (q, r − 1))
Volg (B (q, r − 1))

= Volg (B (q, r + 1))
Volg (B (q, r − 1)) − 1 ≤ (r + 1)n

(r − 1)n
− 1 ≤ C

r

by Theorem 3.1 and Taylor’s Theorem applied to the function x 󰀁→ (1+x)n

(1−x)n − 1 for x ≤ r−1
0 . □

Exercise 31

3.2. 4-dimensional hyperkähler ALE spaces.

Theorem 3.3 (Bando–Kasue–Nakajima, 1989). Let (M4, g) be a complete Ricci-flat manifold.
Suppose that there exists p ∈ M , v, C > 0 such that

Volg (B (p, r)) ≥ vr4 for all r ≥ 0 and 󰀂Rmg󰀂L2 ≤ C.

Then (M, g) is ALE of order τ = 4: there exists a compact set K ⊂ M , a finite group Γ ⊂ O(4)
acting freely on S3, a ball BR ⊂ R4 and a diffeomorphism f : (R4 \ BR)/Γ → M \ K such that

|∇k(gflat − f∗g)|gflat
= O(r−τ−k) for all k ≥ 0.

Remark. There is a similar statement in any dimension, but the necessary condition 󰀂Rmg󰀂
L

n
2 < ∞

is less geometrically natural for n > 4.

All known simply connected examples are hyperkähler and in particular Γ ⊂ SU(2) ⊂ O(4);
Nakajima (1990) asks whether there are no further examples

Exercise 32
• X = C2/Γ with Γ ⊂ SU(2) acting freely on C2 \ {0}

An: Γ = Zn, xy + zn+1 = 0
Dn: Γ binary dihedral group of order 4(n − 2), n ≥ 4: x2 + y2z + zn−1 = 0
En: Γ binary tetrahedral, octahedral, icosahedral group (n = 6, 7, 8)

• existence of minimal resolution π : 󰁨X → X
– Exc(π) = Σ1, . . . , Σn union of rational curves
– (Σi ·Σj)1≤i,j≤n = − Cartan matrix of root system of ADE type (in particular Σi ·Σi =

−2)
• π : 󰁨X → X is a crepant resolution: K 󰁨X = π∗KX trivial ⇐⇒ π∗ωc extends to holomorphic

symplectic form on 󰁨X
Exercise 33

Theorem 3.4 (Kronheimer, 1989). Let M be the smooth 4-manifold underlying the minimal res-
olution of C2/Γ for Γ a finite subgroup of SU(2) acting freely on S3. Let α ∈ H2(M) ⊗ R3 be a
triple of cohomology classes such that
(3.5) α(Σ) ∕= 0 for all Σ ∈ H2(M ;Z) with Σ · Σ = −2.

Then there exists an ALE hyperkähler structure ω on M with [ω] = α.
Furthermore, every ALE hyperkähler 4-manifold (M,ω) is diffeomorphic to the minimal resolu-

tion of C2/Γ for Γ as above and [ω] satisfies (3.5). Finally, if (M1,ω1) and (M2,ω2) are two ALE
hyperkähler 4-manifolds and there exists a diffeomorphism f : M1 → M2 such that [f∗ω2] = [ω1]
then (M1,ω1) and (M2,ω2) are isomorphic.

Proof. (sketch) We illustrate Kronheimer’s construction with the simplest example Γ = Z2.
Let H2 be endowed with the flat hyperkähler structure ω and consider the action of U(1) ⊂ Sp(2)

on H defined by eiθ · (q1, q2) = (eiθq1, eiθq2).
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Let ξ be the vector field generating this U(1)–action. Then µ : H2 → ImH defined by µ(q1, q2) =
q1iq1 + q2iq2 is a hyperkähler moment map for the U(1)–action, i.e. dµ = ω(ξ, · ).

The hyperkähler quotient construction endows (the smooth part of) Mζ = µ−1(ζ)/U(1) with a
hyperkähler structure ωζ uniquely determined by the relation ι∗

ζω = π∗
ζωζ , where ιζ : µ−1(ζ) → H2

is the inclusion and πζ : µ−1(ζ) → Mζ the projection.
One can identify (M0,ω0) with H/Z2 endowed with its flat hyperkähler structure, while for

ζ ∕= 0 (Mζ ,ωζ) is a smooth hyperkähler manifold. In order to show that ωζ is ALE of order 4:
(i) identify Mζ with M0 outside a compact set by identifying µ−1(ζ) and µ−1(0) outside a

compact set using the exponential map of H2;
(ii) use the homogeneity of the moment map to observe that ωζ |rx̂

= ωr−2ζ |x̂ , where we work
in polar coordinates x = rx̂ on H/Z2 = R+ × (S3/Z2);

(iii) identify ∂sωsζ |s=0 with the curvature of the connection on the circle bundle µ−1(0) → M0

induced by the Riemannian metric on µ−1(0) ⊂ H2;
(iv) observe that µ−1(0) = H2 × U(1) → H2/Z2 is the flat non-trivial circle bundle.

Then under the identification in (i) we have an expansion
ωζ |rx̂

= ωr−2ζ |x̂ = ω0 + O(r−4)
as r → ∞. □

Exercise 34

3.3. Remarks on complete CY 3-folds with maximal volume growth.

Theorem 3.6 (Calabi, 1979). Let (D, gD) be a Kähler Einstein metric with positive scalar curvature.
The the total space KD of the canonical line bundle over D carries a complete Calabi–Yau metric.

Proof. We only prove the case where dim KD = 3. The general case is similar up to changing
dimensional constants.

• π : Σ5 → D4 unit circle bundle in KD

• Kähler Einstein metric ω1 on D, Ric(ω1) = λω1, λ > 0 =⇒ [ω1] ∝ c1(KD)
• 2π∗ω1 = dη for connection 1-form η : TΣ → R ❀ horizontal subspace ker η ≃ π∗TD
• tautological (2, 0)-form ω2 + iω3 with d(ω2 + iω3) = 3η ∧ (ω2 + iω3)

⇒ conical CY structure
ωC = rdr ∧ η + r2π∗ω1 = d

󰀓
1
2r2η

󰀔
, ΩC = (dr + irη) ∧ r2(ω2 + iω3)

on C = R+ × Σ with induced metric gC = dr2 + r2(η2 + π∗gD)
• crepant resolution p : KD → C = K×

D : p∗ΩC extends to holomorphic volume form Ω
• look for Kähler Ricci-flat metric ω = d

󰀓
1
2u2η

󰀔
for u = u(r)

2ω3 = 3 Re Ω ∧ Im Ω ⇐⇒ u6 = r6 + a3, a > 0
• [ω] = a[ω1] under H2(KD) ≃ H2(D)

□
• D = CP1 is the Eguchi–Hanson metric, i.e. the metric of Theorem 3.4 with Γ = Z2
• D = CP2 =⇒ (C, gC) = (C3/Z3, gflat) and (KD, gω,Ω) is ALE
• D = CP1 × CP1 =⇒ (C, gC) non-flat CY cone (the Z2–quotient of the conifold) and

(KD, gω,Ω) is asymptotically conical (AC)
• D = BlkCP2 with 4 ≤ k ≤ 8 =⇒ families of AC CY metrics (parametrised by variation of

complex structure)
Exercise 35

• Note: ALE and AC asymptotic geometries don’t exhaust possible asymptotic geometries
of CY metrics with maximal volume growth
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– Joyce (2000): QALE CY metrics on resolutions of Cn/Γ where Γ ⊂ SU(n) does not
act freely on S2n−1

– Li, Conlon–Rochon, Székelyhidi (2017): even on C3 there exists a complete CY metric
with maximal volume growth asymptotic to C × C2/Z2; qualitative description as a
fibration of A1 ALE spaces via

(z1, z2, z3) 󰀁−→ z2
1 + z2

2 + z2
3

3.4. Kummer-type constructions.
See §2 of my survey paper “Gravitational instatons and degenerations of Ricci-flat metrics

on the K3 surface”, available at http://www.homepages.ucl.ac.uk/~ucahlfo/Publications_
files/Survey_K3.pdf.

3.5. Exercises.

Exercise 30. Fix κ ∈ R. Consider separately the three cases κ > 0, κ = 0 and κ < 0.
(i) Find the solution snκ(r) of the IVP

f ′′ = −f, f(0) = 0, f ′(0) = 1.

(ii) Show that the unique solution of
λ′ + λ2 + κ = 0

with λ ∼ 1
r as r → 0 is ctκ(r) = sn′

κ(r)
snκ(r) .

(iii) Identify the complete Riemannian manifold (Mκ, gκ) which contains (0, Rκ)×Sn−1 endowed
with the metric dr2 +sn2

κ(r)gSn−1 as a dense open set. Here Rκ = π√
κ

if κ > 0 and Rκ = ∞
otherwise.

Exercise 31. Let (Mn, g) be a complete Riemannian manifold with non-negative Ricci curvature.
Show that if there exists p ∈ M such that

lim
r→∞

Volg (B (p, r))
ωnrn

= 1

then (Mn, g) is isometric to flat space (Rn, gEucl). (Hint: what can you say about S in the proof of
Theorem 3.1?)

Exercise 32. Let (Mn, g) be an ALE manifold asymptotic to Rn/Γ with Ric(g) ≥ 0. You are going
to show that M has finite fundamental group.

(i) Show that either M is isometric to Rn or it does not carry parallel 1-forms. (Hint: use
Exercise 31 to show that either M is isometric to Rn or Γ ∕= {1}; in the latter case use the
fact that Γ cannot preserve any vector in Rn.)

(ii) Observe that π1(M \ K) is finite for every large enough compact set K ⊂ M .
(iii) Show that π1(M \ K) → π1(M) is surjective. (Hint: if not construct a finite cover of M

with at least two ALE ends and use Theorem 2.4 and part (a).)

Exercise 33. In this exercise we construct the minimal resolution of C2/Z2 and compare it with
its smoothing.

(i) Identify C2/Z2 with the hypersurface X of equation xy + z2 = 0 in C3. (Hint: consider
invariant polynomials.)

(ii) Define 󰁨X as the strict transform of X in the blow-up of C3 at the origin. Show that 󰁨X is
smooth and that the exceptional locus of the resolution π : 󰁨X → X is a rational curve Σ.

(iii) Let Bl0C2 denote the blow-up of C2 at the origin. Show that Bl0C2 → 󰁨X is a double cover
branched along the exceptional curve Σ.

(iv) Deduce that Σ · Σ = −2 and therefore that 󰁨X = T ∗CP1. (Hint: Bl0C2 and T ∗CP1 are the
holomorphic line bundles O(−1) and, respectively, O(−2) over CP1.)

http://www.homepages.ucl.ac.uk/~ucahlfo/Publications_files/Survey_K3.pdf
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(v) A different way to desingularise X is to consider the smooth hypersurface Xt for t ∈ C∗

defined by the equation xy + z2 = t in C3. You are going to show that X1 is diffeomorphic
to 󰁨X.

• Show that there exists a linear change of variables in C3 such that X1 is defined by
the equation z2

1 + z2
2 + z2

3 = 1.
• Writing za = xa + iya, a = 1, 2, 3, identify X1 with TS2, the tangent bundle of the

unit 2-sphere in R3.
• Deduce that X1 is diffeomorphic to 󰁨X.

Exercise 34. Let H2 be endowed with the flat hyperkähler structure ω and consider the action of
U(1) ⊂ Sp(2) on H defined by eiθ · (q1, q2) = (eiθq1, eiθq2). Denote by ξ the vector field generating
this U(1)–action and define µ : H2 → ImH by µ(q1, q2) = q1iq1 + q2iq2.

(i) Show that dµ = ω(ξ, · ).
(ii) Fix a direction, say i, in ImH and split µ = µR ⊕ µc according to the decomposition

ImH = R ⊕ C. Show that for every (ζR, ζc) ∈ R ⊕ C there is a bijection µ−1
c (ζc)/C∗ ≃

µ−1
R (ζR) ∩ µ−1

c (ζc)/U(1). Here the action of C∗ on H2 extends in the obvious way the
action of U(1), i.e. if we identify H2 with C4 by writing qa = za + waj for a = 1, 2 then
t · (z1, w1, z2, w2) = (tz1, t−1w1, tz2, t−1w2).

(iii) Use part (b) to identify µ−1(0, ζc)/U(1) with the affine variety of equation xy+z(z−ζc) = 0
in C3.

(iv) Identify µ−1(ζ, 0)/U(1) with T ∗CP1 and relate the parameter ζ to the area of the zero-
section.

Exercise 35. In this exercise we work with the notation introduced in the proof of Theorem 3.6.
Let D = CP1 × CP1 be endowed with its standard Kähler Einstein metric ω1, i.e. ω1 is the sum
of (appropriate multiples) of the area forms of the two factors. Observe that D carries a closed
primitive (1, 1)–form ω0, the difference between the area forms of the two factors. Normalise ω0 so
that ω2

0 = −ω2
1.

(i) Show that π∗ω0 ∧ π∗ω1 = 0 = π∗ω0 ∧ (ω2 + iω3).
(ii) Show that for every −a < b < a there exists a complete CY metric ωa,b on KD with

[ω] = a[ω1] + b[ω0] under the isomorphism H2(KD) ≃ H2(D). (Hint: try ωa,b = aπ∗ω1 +
bπ∗ω0 + d

󰀓
1
2u2η

󰀔
with u = u(r) satisfying u(0) = 0.)

(iii) Show that ωa,b is AC asymptotic to C with rate 6 if b = 0 and rate 2 otherwise. Here
we say that (M, g) is asymptotic to (C, gC) with rate τ > 0 if there exists a compact set
K ⊂ M , R > 0 and a diffeomorphism f : (R, ∞) × Σ → M such that

|∇k(gC − f∗g)|gC = O(r−τ−k) for all k ≥ 0.
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