RIEMANNIAN HOLONOMY GROUPS

LORENZO FOSCOLO

Contents

1. Berger's list 2
1.1. Holonomy 2
1.2. Riemannian holonomy 2
1.3. How to analyse the groups in Berger's list 3
1.4. Exercises 5
1.5. Bibliographical notes 8
2. Kähler Ricci-flat (KRF) metrics 9
2.1. The Calabi-Yau Theorem: the existence and uniqueness problem 9
2.2. The Beauville-Bogomolov decomposition: when is $\operatorname{Hol}(g)=\mathrm{SU}(m)$ or $\operatorname{Sp}(m)$? 9
2.3. Moduli spaces 10
2.4. Exercises 11
2.5. Bibliographical notes 15
3. Examples of complete non-compact manifolds with special holonomy, singularities and degenerations 16
3.1. Volume growth 16
3.2. 4-dimensional hyperkähler ALE spaces 17
3.3. Remarks on complete CY 3-folds with maximal volume growth 18
3.4. Kummer-type constructions 19
3.5. Exercises 19
References 21
[^0]
1. BERGER'S LIST

1.1. Holonomy.

- M^{n} connected smooth manifold
- G Lie group with Lie algebra \mathfrak{g}
- principal G-bundle P over M : smooth manifold P, with smooth free right action R : $P \times$ $G \rightarrow P$ of G, and smooth projection $\pi: P \rightarrow M=P / G$ to the quotient space
- Examples: Hopf circle bundle $S^{3} \rightarrow S^{1}$, quaternionic Hopf bundle $S^{7} \rightarrow S^{4}$, frame bundle
- $\rho: G \rightarrow \operatorname{End}(V) \leadsto P \times{ }_{\rho} V$, e.g. $\rho=\mathrm{Ad} \leadsto \operatorname{adjoint}$ bundle ad P

Exercise 1

- A connection on $\pi: P \rightarrow M$ is a G-invariant splitting $T P=\operatorname{ker} \pi_{*} \oplus H$ of

$$
0 \rightarrow \operatorname{ker} \pi_{*} \rightarrow T P \rightarrow \pi^{*} T M \rightarrow 0
$$

H is called the horizontal subspace

- Since ker $\pi_{*} \simeq P \times \mathfrak{g}$, a connection is a 1-form $\theta: T P \rightarrow \mathfrak{g}$ such that $R_{g}^{*} \theta=\operatorname{Ad}\left(g^{-1}\right) \theta$
- horizontal lift X^{H} of a vector field X on M : the unique G-invariant vector field on P such that $X^{H} \in H \subset T P$ at every point of P and $\pi_{*} X^{H}=X$
- curvature $R^{\theta} \in \Omega^{2}(M ; \operatorname{ad} P)$ of $\theta: \pi^{*} R^{\theta}(X, Y)=[X, Y]^{H}-\left[X^{H}, Y^{H}\right]$

Exercises 2 and 3.

- The horizontal lift of a path $\gamma:[0,1] \rightarrow M$ is $\widetilde{\gamma}:[0,1] \rightarrow P$ such that $\pi \circ \widetilde{\gamma}=\gamma$ and $\widetilde{\gamma}^{\prime}(t) \in H_{\gamma(t)}$ for all $t \in[0,1]$
- Standard ODE theory \Rightarrow existence of unique horizontal lift for each choice of $u \in \pi^{-1}(\gamma(0))$
- $H^{\theta}(u)=\{g \in G \mid u \cdot g=\widetilde{\gamma}(1)$ for some loop γ on $M\}$
- Holonomy group $H(\theta)$ of θ : conjugacy class of $H^{\theta}(u)$
- restricted holonomy $H^{0}(\theta)$ if only consider horizontal lifts of contractible loops in M
- $H^{0}(\theta)$ is a connected Lie subgroup of G

Exercise 4

- X, Y commuting vector fields on $M,[X, Y]=0 \leadsto$ contractible loops γ_{s} obtained by composition of flows of X and Y
- $\Longrightarrow \widetilde{\gamma}_{s}(1)=u \cdot g_{s}$ and so

$$
\pi^{*} R^{\theta}(X, Y)=-\left[X^{H}, Y^{H}\right]=\frac{d}{d s}\left(u \cdot g_{s}\right)_{\left.\right|_{s=0}} \in \mathfrak{h}^{\theta}
$$

- Ambrose-Singer (1953): \mathfrak{h}^{θ} is generated by elements of the form $\left.\pi^{*} R^{\theta}(X, Y)\right|_{u^{\prime}}$ for $u^{\prime}=\widetilde{\gamma}(1)$ endpoint of horizontal lift with $\widetilde{\gamma}(0)=u$

1.2. Riemannian holonomy.

- Riemannian manifold $\left(M^{n}, g\right)$
- orthogonal frame bundle $P=\left\{\right.$ isometry $\left.u: T_{x} M \rightarrow \mathbb{R}^{n}\right\}$
- tautological \mathbb{R}^{n}-valued 1-form $\omega, \omega(v)_{\left.\right|_{u}}=u\left(\pi_{*} v\right)$
- Levi-Civita connection: \exists ! connection θ on P such that $d \omega+\theta \wedge \omega=0$
- $\operatorname{Hol}(g)=H^{\theta}$

Exercises 5 and 6

Classification of Riemannian holonomy groups.

- first Bianchi identity $\left(d \theta+\frac{1}{2}[\theta, \theta]\right) \wedge \omega=0$
\Rightarrow curvature function $R: P \rightarrow \Lambda^{2}\left(\mathbb{R}^{n}\right)^{*} \otimes \mathfrak{s o}(n)$ takes values at $u \in P$ in

$$
K(\mathfrak{h})=\operatorname{ker}\left(\Lambda^{2}\left(\mathbb{R}^{n}\right)^{*} \otimes \mathfrak{h} \rightarrow \mathbb{R}^{n} \otimes \Lambda^{3}\left(\mathbb{R}^{n}\right)^{*}\right)
$$

$\leadsto \mathfrak{h}$ cannot strictly contain an ideal \mathfrak{h}^{\prime} such that $K(\mathfrak{h}) \subseteq \Lambda^{2}\left(\mathbb{R}^{n}\right)^{*} \otimes \mathfrak{h}^{\prime}$

- 2nd Bianchi identity \& symmetric spaces
- symmetric spaces $G / H: \mathrm{Hol}=H$ and curvature function is constant, $\nabla R \equiv 0$
$-\nabla R \in K^{\prime}(\mathfrak{h})=\operatorname{ker}\left(K(\mathfrak{h}) \otimes\left(\mathbb{R}^{n}\right)^{*} \rightarrow \mathfrak{h} \otimes \Lambda^{3}\left(\mathbb{R}^{n}\right)^{*}\right)$
\Rightarrow if (M, g) non-symmetric then $K^{\prime}(\mathfrak{h}) \neq 0$
- reducible Riemannian manifolds
$-H=\operatorname{Hol}(g)$ acts on \mathbb{R}^{n} reducibly $\Rightarrow H=H_{1} \times \cdots \times H_{k}$ and $\mathbb{R}^{n}=\mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{k}}$ with $H_{i} \subseteq \mathrm{O}\left(n_{i}\right)$ acting irreducibly on $\mathbb{R}^{n_{i}}$
- de Rham Theorem: $\left(M^{n}, g\right)$ complete and simply connected and $\operatorname{Hol}(g)=H_{1} \times \cdots \times H_{k}$ as above $\Rightarrow\left(M^{n}, g\right) \simeq\left(M_{1}^{n_{1}}, g_{1}\right) \times \cdots \times\left(M_{k}^{n_{k}}, g_{k}\right)$ with $\operatorname{Hol}\left(g_{i}\right)=H_{i}$
Theorem 1.1 (Berger, 1955). If $\left(M^{n}, g\right)$ is non-symmetric and irreducible then $\operatorname{Hol}^{0}(g)$ is one of

$$
\mathrm{SO}(n), \quad \mathrm{U}\left(\frac{n}{2}\right), \quad \mathrm{SU}\left(\frac{n}{2}\right), \quad \operatorname{Sp}\left(\frac{n}{4}\right), \quad \operatorname{Sp}\left(\frac{n}{4}\right) \operatorname{Sp}(1), \quad \mathrm{G}_{2}, \quad \operatorname{Spin}_{7}
$$

1.3. How to analyse the groups in Berger's list.

- $\left(M^{n}, g\right)$ simply connected with $\operatorname{Hol}(g)=H$
- Holonomy Principle: H-invariant $\left(T_{x} M\right)^{\otimes r} \otimes\left(T_{x}^{*} M\right)^{\otimes s} \stackrel{1: 1}{\longleftrightarrow}$ parallel tensors on M
e.g. generic holonomy $H=\mathrm{SO}(n): g, \mathrm{dv}_{g}$ only parallel tensors
- Reduction of structure group to $H: P_{H} \subseteq P$
- intrinsic torsion $\tau: \theta_{\mathrm{LC}}=\theta_{H}+\tau \in \mathfrak{h} \oplus \mathfrak{h}^{\perp}=\mathfrak{s o}(n)$
$-H$-structure torsion-free, $\tau \equiv 0 \Longleftrightarrow P_{H}$ preserved by holonomy $\Longleftrightarrow \operatorname{Hol}(g) \subseteq H$
The Kähler case. $H=\mathrm{U}(m)(n=2 m)$
- metric g
- almost complex structure J
- Kähler form $\omega(\cdot, \cdot)=g(J \cdot, \cdot)$

Proposition 1.2. $\left(M^{2 m}, g\right)$ with g-orthogonal almost complex structure J and associated Kähler form ω. TFAE:
(i) $\operatorname{Hol}(g) \subseteq \mathrm{U}(m)$
(ii) $\nabla J=0$
(iii) $\nabla \omega=0$
(iv) J is integrable and $d \omega=0$

Proof. We only indicate why intrinsic torsion $\tau \equiv 0$ iff (iv).

- $V=\mathbb{R}^{2 m}$ as a $\mathrm{U}(m)$-rep
- $\Lambda^{k} V^{*} \otimes \mathbb{C}=\bigoplus_{p+q=k} \Lambda^{p, q}$
- $\llbracket \Lambda^{p, q} \rrbracket$ the real representation such that $\llbracket \Lambda^{p, q} \rrbracket \otimes \mathbb{C}=\Lambda^{p, q} \oplus \overline{\Lambda^{p, q}}=\Lambda^{p, q} \oplus \Lambda^{q, p}$
- $\Lambda^{2} V^{*}=\llbracket \Lambda^{1,1} \rrbracket \oplus \llbracket \Lambda^{2,0} \rrbracket=\mathfrak{u}(n) \oplus \mathfrak{u}(n)^{\perp}$
- $\Longrightarrow \tau \in \Lambda^{1} V^{*} \otimes \llbracket \Lambda^{2,0} \rrbracket=\llbracket \Lambda^{1,0} \otimes \Lambda^{2,0} \rrbracket \oplus \llbracket \Lambda^{2,1} \rrbracket$
- projection on first factor is N_{J} via $\Lambda^{1,0} \otimes \Lambda^{2,0} \simeq \overline{T^{1,0}} \otimes \Lambda^{2,0} \simeq T^{0,1} \otimes \Lambda^{2,0}$
- if $N_{J} \equiv 0$ then $d \omega \in \llbracket \Lambda^{2,1} \rrbracket$ is exactly the second factor

Exercises 7 and 8
Special holonomy and Ricci curvature.

- $R \in K(\mathfrak{s o}(n)) \subset \Lambda^{2}\left(\mathbb{R}^{n}\right)^{*} \otimes \mathfrak{s o}(n)$
- as $\operatorname{SO}(n)$-rep $K(\mathfrak{s o}(n))=\operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right) \oplus \mathcal{W}=\mathbb{R} \oplus \operatorname{Sym}_{0}^{2}\left(\mathbb{R}^{n}\right) \oplus \mathcal{W}\left(\mathcal{W}=\mathcal{W}^{+} \oplus \mathcal{W}^{-}\right.$if $\left.n=4\right)$
- $R=\operatorname{Ric}+W=\frac{1}{n} \operatorname{Scal~id}_{\mathbb{R}^{n}}+\operatorname{Ric}+W$, where $\operatorname{Ric}(X, Y)=\operatorname{tr}\langle R(x, \cdot) \cdot, y\rangle=\sum_{i=1}^{n}\left\langle R\left(x, e_{i}\right) e_{i}, y\right\rangle$
- g Einstein: Ric $=0 \Longleftrightarrow$ Ric $=\lambda g$ for some $\lambda \in \mathbb{R}$
- the most natural PDE for a Riemannian metric:
$-\operatorname{Ric}_{g}=\triangle_{g} g+$ h.o.t. in harmonic coordinates
$-g$ Einstein $\Longleftrightarrow g$ critical point of Einstein-Hilbert functional $\mathcal{S}(g)=\int_{M} \operatorname{Scal}_{g} \mathrm{dv}_{g}$ restricted to metrics of fixed volume
- $H \neq \mathrm{SO}(n), \mathrm{U}\left(\frac{n}{2}\right)$ in Berger's list $\Longrightarrow K(\mathfrak{h}) \subset\{$ Ric $=0\}$
- $H=\operatorname{SU}\left(\frac{n}{2}\right), \operatorname{Sp}\left(\frac{n}{4}\right), \mathrm{G}_{2}, \operatorname{Spin}_{7} \Longrightarrow K(\mathfrak{h}) \subset\{\operatorname{Ric}=0\}$

Exercises 9 and 10
The Calabi-Yau case. $H=\operatorname{SU}(m)(n=2 m)$

- Kähler form ω
- complex volume form $\Omega \leadsto$ almost complex structure J
- $\omega \wedge \Omega=0$ and $\frac{1}{n!} \omega^{n}=\frac{(-1)^{\frac{m(m-1)}{2}} i^{m}}{2^{m}} \Omega \wedge \bar{\Omega}$
- $\mathrm{SU}(m)$-structure (ω, Ω) torsion-free iff $d \omega=0=d \Omega$
- every CY metric is Ricci-flat ($c f$. later)

The hyperKähler case. $H=\operatorname{Sp}(m)(n=4 m)$

- triple of Kähler forms $\boldsymbol{\omega}=\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ modelled on $\sum_{i=1}^{m} d \bar{q}_{i} \wedge d q_{i}$ on \mathbb{H}^{m}
\leadsto triple of almost complex structures J_{1}, J_{2}, J_{3} such that $J_{1} J_{2}=J_{3}$ etc
- $\operatorname{Sp}(m)$-structure $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ torsion-free iff $d \omega_{i}=0$ for all $i=1,2,3$
- every HK metric is Ricci-flat

Exercises 11 and 12
The quaternionic Kähler case. $H=\operatorname{Sp}(m) \operatorname{Sp}(1)(n=4 m \geq 8)$

- triple $\omega_{1}, \omega_{2}, \omega_{3}$ rotated by $\operatorname{Sp}(1)$-factor (acting on the right on \mathbb{H})
\leadsto only $\operatorname{Span}\left(\omega_{1}, \omega_{2}, \omega_{3}\right) \subset \Lambda^{2}\left(\mathbb{R}^{4 m}\right)^{*}$ and 4 -form $\Phi=\frac{1}{2}\left(\omega_{1}^{2}+\omega_{2}^{2}+\omega_{3}^{2}\right)$ well defined
- every QK metric is Einstein and is HK if Ricci-flat

Remark. Since $\operatorname{Sp}(1) \mathrm{Sp}(1)=\mathrm{SO}(4)$ quaternionic Kähler metrics in dimension 4 do not make much sense. However, quaternionic Kähler metrics turn out to have many common features with self-dual Einstein 4-manifolds. See Exercise 13.
The exceptional cases. $H=\mathrm{G}_{2}$ if $n=7$ and $H=\operatorname{Spin}(7)$ if $n=8$

- $\mathrm{G}_{2}=\operatorname{Aut}(\mathbb{O})$
$-\mathrm{G}_{2}=$ stabiliser in $\mathrm{GL}(7, \mathbb{R})$ of $\varphi_{0}(u, v, w)=\langle u \times v, w\rangle$ on $\mathbb{R}^{7} \simeq \operatorname{Im} \mathbb{D}$
- G_{2}-structure φ on M^{7} induces $\left.\left.g_{\varphi}: g_{\varphi}(u, v) \mathrm{dv}_{g_{\varphi}}=\frac{1}{6}(u\lrcorner \varphi\right) \wedge(v\lrcorner \varphi\right) \wedge \varphi$
e.g. $\mathrm{SU}(3)$-structure (ω, Ω) on $Y^{6} \leadsto \mathrm{G}_{2}$-structure $\varphi=d t \wedge \omega+\operatorname{Re} \Omega$ on $X^{7}=\mathbb{R} \times Y^{6}$
e.g. $\mathrm{SU}(2)$-structure $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ on $Z^{4} \leadsto \mathrm{G}_{2}$-structure on $X^{7}=\mathbb{R}^{3} \times Z^{4}$

$$
\varphi=d t_{1} \wedge d t_{2} \wedge d t_{3}-d t_{1} \wedge \omega_{1}-d t_{2} \wedge \omega_{2}-d t_{3} \wedge \omega_{3}
$$

- G_{2}-structure $\left(M^{7}, \varphi\right)$ torsion-free (or $\left(M^{7}, \varphi\right) \mathrm{G}_{2}$-manifold) $\Longleftrightarrow d \varphi=0=d *_{\varphi} \varphi$
- G_{2}-manifold $\left(M^{7}, \varphi\right) \Longrightarrow \operatorname{Ric}\left(g_{\varphi}\right)=0$
- Spin(7)-structure on M^{8} : choice of an "admissible" 4 -form Φ e.g. $\quad \varphi$ on $Y^{7} \leadsto \operatorname{Spin}(7)$-structure $\Phi=d t \wedge \varphi+*_{\varphi} \varphi$ on $X^{8}=\mathbb{R} \times Y^{7}$
- $\operatorname{Spin}(7)$-structure $\left(M^{8}, \Phi\right)$ torsion-free (or $\left(M^{8}, \Phi\right) \operatorname{Spin}(7)$-manifold $) \Longleftrightarrow d \Phi=0$
- $\operatorname{Spin}(7)$-manifold $\left(M^{8}, \Phi\right) \Longrightarrow \operatorname{Ric}\left(g_{\Phi}\right)=0$

Exercise 14
Special holonomy and parallel spinors. An example: CY 3-folds

- $\operatorname{SU}(3) \subset \operatorname{SU}(4) \simeq \operatorname{Spin}(6)$ stabiliser of a non-zero vector in \mathbb{C}^{4}
$\Rightarrow \mathrm{SU}(3)$-structures on $M^{6} \stackrel{1: 1}{\longleftrightarrow}$ spin structures on $M+$ nowhere-vanishing spinor ψ
- more explicitly: under $\$(M) \otimes \$(M)^{*} \simeq \mathrm{Cl}(M) \simeq \Lambda^{\bullet} T^{*} M$

$$
8 \psi \otimes \psi^{*}=1+\operatorname{Re} \Omega-\frac{1}{2} \omega^{2}
$$

- $\operatorname{SU}(3)$-structure torsion-free $\Longleftrightarrow \nabla \psi=0$
- Clifford multiplication by $\mathrm{dv}=$ complex structure on spinor bundle: 2 parallel spinors $\psi, \mathrm{dv} \cdot \psi$ and $\mathrm{Hol}=\mathrm{SU}(3)$ is the space of parallel spinors is exactly 2-dimensional
Exercise 15

1.4. Exercises.

Exercise 1. In this exercise we study principal bundles on spheres.
(i) Show that isomorphism classes of principal G-bundle on the sphere S^{n} are in 1:1 correspondence with $\pi_{n-1}(G)$.
(ii) Specialise part (i) to principal $\mathrm{U}(1)$-bundles on S^{2}.
(iii) What is the non-trivial $\mathrm{SO}(3)$-bundle on S^{2} ?
(iv) Show that every $\mathrm{SU}(2)$-bundle on S^{3} is trivial, that $\mathrm{SU}(2)$-bundles on S^{4} are classified by an integer and that there are only two principal $\mathrm{SU}(2)$-bundles on S^{5}. Can you describe the non-trivial $\mathrm{SU}(2)$-bundle on S^{5} ?
Exercise 2. Let $\pi: P \rightarrow M$ be a principal G-bundle with connection θ and let $E=P \times{ }_{\rho} V$ be an associated vector bundle.
(i) Show that there is a $1: 1$ correspondence between sections $s \in C^{\infty}(M ; E)$ of E and G equivariant V-valued functions $\widetilde{s} \in C^{\infty}(P ; V)$ on P.
(ii) Show that the formula $\left.s \mapsto d \widetilde{s}\right|_{H}$ defines a covariant derivative on E, i.e. an \mathbb{R}-linear map $\nabla^{\theta}: C^{\infty}(M ; E) \rightarrow C^{\infty}\left(M ; T^{*} M \otimes E\right)$ satisfying the Leibniz rule $\nabla(f s)=d f \otimes s+f \nabla s$ for all $f \in C^{\infty}(M)$ and $s \in C^{\infty}(M ; E)$.
Exercise 3. Let θ be a connection on a principal bundle and identify the curvature R^{θ} with its pull-back to P as a 2 -form with values in the Lie algebra \mathfrak{g}.
(i) Show that $R^{\theta}=d \theta+\frac{1}{2}[\theta, \theta]$.
(ii) Deduce the Bianchi identity $d R^{\theta}+\left[\theta, R^{\theta}\right]=0$ from part (i) and the Jacobi identity in \mathfrak{g}.

Exercise 4. Show that $H(\theta)$ is well-defined. This involves the following steps:
(i) $H^{\theta}(u)$ is a subgroup of G;
(ii) $H^{\theta}(u \cdot g)=\operatorname{Ad}\left(g^{-1}\right) H^{\theta}(u)$;
(iii) for all $u, u^{\prime} \in P$ there exists $g \in G$ such that $H^{\theta}\left(u^{\prime}\right)=\operatorname{Ad}\left(g^{-1}\right) H^{\theta}(u)$.

Exercise 5. For $\alpha \in \mathbb{R} / \mathbb{Z}$ consider the 3 -manifold $M_{\alpha}=\mathbb{R}^{3} / \mathbb{Z}$, where \mathbb{Z} acts by $n \cdot(t, z)=$ $\left(t+n, e^{2 \pi i n \alpha} z\right)$. Here we indentified $\mathbb{R}^{3} \simeq \mathbb{R} \times \mathbb{C}$. Endow M_{α} with the flat metric g_{α} induced by the standard flat metric on \mathbb{R}^{3}.
(i) Show that M_{α} is diffeomorphic to $S^{1} \times \mathbb{R}^{2}$.
(ii) Calculate the holonomy of g_{α} and deduce that $\left(M_{\alpha}, g_{\alpha}\right)$ is not isometric to $\left(M_{\alpha^{\prime}}, g_{\alpha^{\prime}}\right)$ if $\alpha \neq \alpha^{\prime}$.

Exercise 6. Suppose that $\left(M^{n}, g\right)$ has holonomy $\operatorname{Hol}(g)$ with Lie algebra $\mathfrak{h} \subseteq \mathfrak{s o}(n)$. Regard the curvature of (M, g) as the curvature function $R: P \rightarrow \Lambda^{2}\left(\mathbb{R}^{n}\right)^{*} \otimes \mathfrak{s o}(n)$, where P is the orthogonal frame bundle of (M, g).
(i) Use the Ambrose-Singer Theorem to show that the curvature function takes values at $u \in P$ in $\Lambda^{2}\left(\mathbb{R}^{n}\right)^{*} \otimes \mathfrak{h}$ where \mathfrak{h} is the Lie algebra of $H^{\theta_{\mathrm{LC}}}(u)$.
(ii) Use the symmetries of the curvature operator to deduce that the curvature function takes value in $\operatorname{Sym}^{2}(\mathfrak{h}) \subset \mathfrak{h} \otimes \mathfrak{h} \subseteq \mathfrak{s o}(n) \otimes \mathfrak{h} \simeq \Lambda^{2}\left(\mathbb{R}^{n}\right)^{*} \otimes \mathfrak{h}$. Here we use the metric to identify 2 -forms and skew-symmetric matrices.
Exercise 7. Complete the proof of Proposition 1.2.
Exercise 8. Show that there exists a metric g on \mathbb{R}^{4} which is flat outside the disjoint union of two balls, every point $x \in \mathbb{R}^{4}$ has a neighbourhood U_{x} such that $\left.g\right|_{U_{x}}$ is Kähler, but $\operatorname{Hol}(g)=\mathrm{SO}(4)$.
(This shows that the holonomy of a metric cannot be determined locally in general. However the holonomy reduction to one of the other special holonomy groups in Berger's list can be detected
locally, since the metric must be Einstein in all these cases and therefore it is real analytic in harmonic coordinates.)

Exercise 9. Let M be a closed manifold and denote by $\mathfrak{M e t}(M)$ (respecticely, $\mathfrak{M e t}_{1}(M)$) the space of Riemannian metrics (with unit volume) on M. In this exercise you are going to show that critical points of the Einstein-Hilbert functional $\mathcal{S}(g)=\int_{M} \operatorname{Scal}_{g} \mathrm{dv}_{g}$ restricted to $\mathfrak{M e t}_{1}(M)$ are Einstein.
(i) Let $\left\{g_{t}\right\}_{t \in(-\epsilon, \epsilon)} \subset \mathfrak{M e t}^{\mathfrak{e t}}(M)$ be a 1-parameter family of metrics on M depending smoothly on t and set $h=\left.\frac{d}{d t} g_{t}\right|_{t=0}$. Show that $\left.\frac{d}{d t} \operatorname{dv}_{g_{t}}\right|_{t=0}=\frac{1}{2}\left(\operatorname{tr}_{g} h\right) \mathrm{dv}_{g}$. Deduce that $\int_{M} \operatorname{tr}_{g} h \mathrm{dv}_{g}=0$ if $\left\{g_{t}\right\}_{t \in(-\epsilon, \epsilon)} \subset \mathfrak{M e t}_{1}(M)$.
(ii) The L^{2}-gradient $\operatorname{grad}_{g} \mathcal{S}$ of the Einstein-Hilbert functional \mathcal{S} at $g \in \mathfrak{M e t}(M)$ is defined as follows: if $\left\{g_{t}\right\}_{t \in(-\epsilon, \epsilon)} \subset \mathfrak{M e t}(M)$ is a 1-parameter family of metrics on M with $\left.g_{t}\right|_{t=0}=g$ and $\left.\frac{d}{d t} g_{t}\right|_{t=0}=h$ then

$$
\left.\frac{d}{d t} \mathcal{S}\left(g_{t}\right)\right|_{t=0}=\left\langle\operatorname{grad}_{g} \mathcal{S}, h\right\rangle_{L^{2}}=\int_{M}\left\langle\operatorname{grad}_{g} \mathcal{S}, h\right\rangle_{g} \mathrm{dv}_{g}
$$

Show that

$$
\operatorname{grad}_{g} \mathcal{S}=-\left(\operatorname{Ric}_{g}-\frac{1}{2} \operatorname{Scal}_{g} g\right) .
$$

(Hint: you can take for granted the following formula: if g_{t} is a smooth path in $\mathfrak{M e t}(M)$ starting at g in the direction of h then

$$
\left.\left.\frac{d}{d t} \operatorname{Scal}_{g_{t}}\right|_{t=0}=\triangle\left(\operatorname{tr}_{g} h\right)+d^{*}(\delta h)-\left\langle\operatorname{Ric}_{g}, h\right\rangle .\right)
$$

(iii) Show that $g \in \mathfrak{M e t}_{1}(M)$ is a critical point of $\left.\mathcal{S}\right|_{\mathfrak{M e t}_{1}(M)}$ if and only if there exists a function $\lambda \in C^{\infty}(M)$ such that Ric $=\lambda g$.
(iv) For a 1 -form ξ let $\delta^{*} \xi$ denote the symmetrisation of $\nabla \xi$, i.e.

$$
\delta^{*} \xi(X, Y)=\frac{1}{2}\left(\left(\nabla_{X} \xi\right)(Y)+\left(\nabla_{Y} \xi\right)(X)\right)
$$

for every pair X, Y of vector fields.
(a) Show that $\delta^{*} \xi=-\frac{1}{2} \mathcal{L}_{\xi^{\sharp}} g$.
(b) Let $\delta: C^{\infty}\left(M ; \operatorname{Sym}^{2} T^{*} M\right) \rightarrow \Omega^{1}(M)$ denote the formal L^{2}-adjoint of $\delta^{*}: \Omega^{1}(M) \rightarrow$ $C^{\infty}\left(M ; \operatorname{Sym}^{2} T^{*} M\right)$. Show that $\delta(u g)=-d u$ for every function u.
(v) Use the invariance under diffeomorphisms of the Hilbert-Einstein functional to deduce that

$$
\delta \operatorname{Ric}+\frac{1}{2} d \mathrm{Scal}=0,
$$

and use this fact to show that if Ric $=\lambda g$ then λ is constant. (Hint: invariance of \mathcal{S} under diffeomorphisms implies that $\delta\left(\operatorname{grad}_{g} \mathcal{S}\right)=0$.)
Exercise 10. Let M be a compact reductive homogeneous space, i.e. $M=G / K$ for a compact Lie group G and a closed subgroup K of G and moreover there is a K-invariant decomposition $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ of the Lie algebra \mathfrak{g} of G in terms of the Lie algebra \mathfrak{k} of K and a complementary subspace \mathfrak{p}. The induced action of K on \mathfrak{p} is called the isotropy representation of M. You are going to study G-invariant Einstein metrics on M.
(i) Suppose that M is isotropy irreducible, i.e. \mathfrak{p} is an irreducible representation of K. Show that there exists a unique G-invariant metric on M up to scale, which must therefore be Einstein. Apply this fact to $G=\mathrm{SU}(n+1)$ and $K=\mathrm{U}(n)$ (embedded in $\mathrm{SU}(\mathrm{n}+1)$ as the stabiliser of a vector in \mathbb{C}^{n+1}) to construct an Einstein metric on $\mathbb{C P}^{n}$. (Hint: use the fact that G-invariant Riemannian metrics on M are in 1-to-1 correspondence with K-invariant positive definite inner products on \mathfrak{p} and Schur's Lemma.)
(ii) Suppose there exists a closed subgroup H of G which contains K as a closed subgroup and so that $B=G / H$ and $F=H / K$ are both isotropy irreducible reductive homogeneous spaces. Then the projection $G / K \rightarrow G / H$ exhibits M as the total space of a fibre bundle over B with fibre F. Let g_{B} and g_{F} be G-invariant (Einstein) metrics on B and F and denote by s_{B} and
s_{F} their respective scalar curvatures. Further assume that any G-invariant metric on M can be written up to scale as

$$
g_{t}=g_{B}+t g_{F}, \quad t \in \mathbb{R}_{+} .
$$

(This happens if and only if the two summands \mathfrak{p}_{F} and \mathfrak{p}_{B} in the decomposition $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{p}_{B}=$ $\left(\mathfrak{k} \oplus \mathfrak{p}_{F}\right) \oplus \mathfrak{p}_{B}$ are non-isomorphic irreducible K-representations.) Restricting the normalised Hilbert-Einstein functional to G-invariant metrics we obtain a function $\mathcal{S}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ defined by

$$
\frac{\mathcal{S}\left(g_{t}\right)}{\operatorname{Vol}\left(M, g_{t}\right)^{\frac{n-2}{n}}} \propto t^{\frac{\mathrm{dim} F}{n}}\left(\frac{1}{t} \mathrm{~s}_{F}+\mathrm{s}_{B}-t|\operatorname{curv}|^{2}\right)=: \mathcal{S}(t) .
$$

Here curv is the curvature of the connection on the principal H-bundle $G \rightarrow B$ induced by the decomposition $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{p}_{B}$. By Palais' Principle of Symmetric Criticality, g_{t} is Einstein if and only if $\mathcal{S}^{\prime}(t)=0$.
You are going to apply this facts to produce an Einstein metric on S^{7} that does not have constant curvature. Consider $K \subset H \subset G$ with $K=\operatorname{Sp}(1) \times \operatorname{Sp}(1), H=\operatorname{Sp}(1)$ and $G=\operatorname{Sp}(2)$.
(a) Show that $M=S^{7}, B=S^{4}$ and $F=S^{3}$. (Hint: you might want to use the double covers $\mathrm{Sp}(2) \rightarrow \mathrm{SO}(5)$ and $\mathrm{Sp}(1) \times \mathrm{Sp}(1) \rightarrow \mathrm{SO}(4)$.
(b) Verify that B and F are isotropy irreducible homogeneous spaces. Normalise the resulting Einstein (constant curvature) metrics so that $s_{B}=12$ and $s_{F}=6$.
(c) Calculate \mid curv $\left.\right|^{2}$. (Hint: you can use the fact that g_{1} is the standard round metric on \mathbb{S}^{7} with scalar curvature 42.)
(d) Deduce the existence of a critical point $t_{*} \neq 1$ of $\mathcal{S}(t)$.
(e) Show that the Einstein metric $g_{t_{*}}$ does not have constant curvature.
(f) Show that g_{1} and $g_{t_{*}}$, normalised to have the same volume, cannot be connected by a path of Einstein metrics. (Hint: compare the values of the Hilbert-Einstein functional.)

Exercise 11. Show that $\operatorname{Sp}(m)$ is a compact, connected and simply connected Lie group. Calculate its dimension. (Hint: use the fact that $\operatorname{Sp}(1)=\mathrm{SU}(2) \simeq S^{3}$ and $S^{4 m-1}=\mathrm{Sp}(m) / \mathrm{Sp}(m-1)$.)
Exercise 12. This exercise is about hyperkähler structures.
(i) Let $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ be an $\operatorname{Sp}(m)$-structure on $M^{4 m}$. Observe that $\operatorname{Sp}(m) \subseteq \operatorname{SU}(2 m)$ (with equality only if $m=1$) and use this to explain why the triple $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ determines $\left(g, J_{1}, J_{2}, J_{3}\right)$. (Hint: what about ω_{1} and the complex $2 m$-form $\Omega=\frac{1}{m!}\left(\omega_{2}+i \omega_{3}\right)^{m}$?)
(ii) Suppose that $\left(M, \omega_{1}, \omega_{2}, \omega_{3}\right)$ is torsion-free. For every $\boldsymbol{a}=\left(a_{1}, a_{2}, a_{3}\right)$ define $\omega_{\boldsymbol{a}}=a_{1} \omega_{1}+$ $a_{2} \omega_{2}+a_{3} \omega_{3}$ and $J_{\boldsymbol{a}}=a_{1} J_{1}+a_{2} J_{2}+a_{3} J_{3}$. Show that $\left(M, g, J_{\boldsymbol{a}}, \omega_{\boldsymbol{a}}\right)$ is Kähler.
Exercise 13. Let V be a 4 -dimensional vector space endowed with a positive definite inner product and a volume form $\mathrm{dv} \in \Lambda^{4} V^{*}$.
(i) Using dv and the wedge product define a non-degenerate pairing q on $\Lambda^{2} V^{*}$. Show that q has signature $(3,3)$. Let $\Lambda^{ \pm} V^{*}$ be maximal positive/negative subspaces of $\left(\Lambda^{2} V^{*}, q\right)$.
(ii) Show that the induced action of $\operatorname{SL}(V) \simeq \operatorname{SL}(4, \mathbb{R})$ (i.e. the matrices that preserve dv) on $\Lambda^{2} V^{*}$ defines a double cover $\mathrm{SL}(4, \mathbb{R}) \rightarrow \mathrm{SO}(3,3)$. Restricting to compact subgroups, we see that $\mathrm{SO}(4) \rightarrow \mathrm{SO}(3)^{+} \times \mathrm{SO}(3)^{-}$is a double-cover; here $\mathrm{SO}(3)^{ \pm}$is the induced action of $\mathrm{SO}(4)$ on $\Lambda^{ \pm} V^{*}$.
(iii) Identify V with the quaternions \mathbb{H} and $\operatorname{SU}(2)$ with the unit sphere $\mathbb{S}^{3} \subset \mathbb{H}$. Define a map $\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathbb{H}$, by $\left(q_{1}, q_{2}, x\right) \mapsto q_{1} x \bar{q}_{2}$. Show that this defines a double cover $\mathrm{SU}(2)^{+} \times$ $\mathrm{SU}(2)^{-} \rightarrow \mathrm{SO}(4)$.
(iv) Show that this induces a double cover of $\mathrm{U}(1) \times \mathrm{SU}(2)^{-} \rightarrow \mathrm{U}(2)$, where $\mathrm{U}(1) \subset \mathrm{SU}(2)^{+}$is the subgroup of diagonal matrices.
(v) Show that $\mathrm{U}(2)$ acts on $\Lambda^{-} V^{*}$ as $\mathrm{SO}(3)^{-}$and on $\Lambda^{+} V^{*}$ as the subgroup $\mathrm{SO}(2) \subset \mathrm{SO}(3)^{+}$ preserving the standard Kähler form ω_{1} on $\mathbb{H} \simeq \mathbb{C}^{2}$.
(vi) Deduce that on a Kähler surface $(M, \omega), \Lambda^{+} M=\llbracket \Lambda^{2,0} M \rrbracket \oplus \mathbb{R} \omega$ and $\Lambda^{-} M=\llbracket \Lambda_{0}^{1,1} M \rrbracket$, where $\Lambda_{0}^{1,1} M$ are the (1,1)-forms on $T_{x} M$ orthogonal to ω.

Exercise 14. Work out all the possibilities for the holonomy group of a simply connected Ricci-flat manifold of real dimension 8 . (Hint: the only simply connected Ricci-flat symmetric space is \mathbb{R}^{n}.)

Exercise 15. Let $\left(M^{6}, \omega, \Omega\right)$ be a Calabi-Yau 3 -fold and denote by ψ the defining parallel spinor.
(i) Show that $(f, g, \gamma) \mapsto f \psi+g \mathrm{dv} \cdot \psi+\gamma \cdot \psi$ identifies the spinor bundle of M with $\Lambda^{0} T^{*} M \oplus$ $\Lambda^{0} T^{*} M \oplus \Lambda^{1} T^{*} M$.
(ii) Show that

$$
\not D(f \psi+g \mathrm{dv} \cdot \psi)=(d f+J d g) \cdot \psi
$$

where the complex structure J on 1-forms is defined by $(J \gamma) \cdot \psi=\gamma \cdot \mathrm{dv} \cdot \psi=-\mathrm{dv} \cdot \gamma \cdot \psi$. (Hint: observe that $\not D \psi=0=\not D(\mathrm{dv} \cdot \psi)$.)
(iii) Show that $\not D(\gamma \cdot \psi)=d \gamma \cdot \psi+\left(d^{*} \gamma\right) \psi$.
(iv) It remains to understand the action of the 2 -form $d \gamma$ on ψ via Clifford multiplication. This requires various steps. Consider the decomposition of 2 -forms $\Lambda^{2}=\Lambda_{1}^{2} \oplus \Lambda_{6}^{2} \oplus \Lambda_{8}^{2}$ into irreducible SU(3)-representations, where

$$
\left.\Lambda_{1}^{2}=\mathbb{R} \omega, \quad \Lambda_{6}^{2}=\{X\lrcorner \operatorname{Re} \Omega \mid X \text { a vector field }\right\}
$$

and Λ_{8}^{2} consists of primitive $(1,1)$-forms, i.e. 2 -forms σ such that $\sigma \wedge \omega^{2}=0=\sigma \wedge \operatorname{Re} \Omega$ or equivalently $\sigma \cdot \psi=0$.
(a) Show that $\omega \cdot \psi=3 \mathrm{dv} \cdot \psi$. (Hint: do the computation in an orthonormal coframe $\left\{e_{1}, J e_{1}, \ldots, e_{3}, J e_{3}\right\}$ such that $\omega=\sum_{i=1}^{3} e_{i} \wedge J e_{i}$.)
(b) Show that $\frac{1}{2} d \gamma \wedge \omega^{2}=-d^{*}(J \gamma)$, i.e. the projection of $d \gamma$ in Λ_{1}^{2} is $-\frac{1}{3} d^{*}(J \gamma) \omega$.
(c) Show that a 2-form $\sigma=X\lrcorner \operatorname{Re} \Omega \in \Lambda_{6}^{2}$ acts on ψ by $\sigma \cdot \psi=*(\sigma \wedge \operatorname{Re} \Omega) \cdot \psi$. (Hint: first argue that $\sigma \cdot \psi$ must be of the form $\eta \cdot \psi$ for some 1-form η; next using Schur's Lemma deduce that $\eta=c *(\sigma \wedge \operatorname{Re} \Omega)$ for some constant c independent of σ and (M, ω, Ω); finally calculate c by considering the standard Calabi-Yau structure on \mathbb{C}^{3} and X the first vector in the standard orthonormal basis.)
(v) Deduce that the Dirac operator $I D$ of M can be identified with the operator

$$
\not D(f, g, \gamma)=\left(d^{*} \gamma, d^{*}(J \gamma), \operatorname{curl} \gamma+d f+J d g\right)
$$

where curl $\gamma=*(d \gamma \wedge \operatorname{Re} \Omega)$ for every 1-form γ.
1.5. Bibliographical notes. Our presentation of Riemannian holonomy groups and Berger's list is based on [4, Chapter 10], [9], [13] and the survey paper [5]. For background on spin structures and the Dirac operator see [2] and [10].

2. Kähler Ricci-Flat (KRF) metrics

2.1. The Calabi-Yau Theorem: the existence and uniqueness problem.

Ricci-curvature in Kähler geometry. Want to explain why

$$
\begin{equation*}
\frac{1}{n!} \omega^{n}=\frac{(-1)^{\frac{m(m-1)}{2}} i^{m}}{2^{m}} \Omega \wedge \bar{\Omega} \tag{2.1}
\end{equation*}
$$

$\Longrightarrow \operatorname{Ric}\left(g_{\omega, \Omega}\right)=0$

- Chern connection: $E \rightarrow M$ holomorphic vector bundle over complex manifold $(M, J)+h$ Hermitian metric on $E \leadsto \exists$! connection ∇ on E such that $\nabla^{0,1}=\bar{\partial}_{E}$ and $\nabla h=0$
Proof. (in the case where $E=L$ is a line bundle)
Over $U \subset X$ open choose local trivialising holomorphic section s
Write $\nabla=d+\alpha$ and $\|s\|_{h}^{2}=e^{2 \varphi} s \bar{s}$
$-\alpha=\alpha^{1,0}$
$-d \varphi=\frac{1}{2}(\alpha+\bar{\alpha})$
$\Longrightarrow \alpha=2 \partial \varphi$
Exercise 16
- first Chern class: $c_{1}(E)=c_{1}(\operatorname{det} E)=\frac{i}{2 \pi}\left[\operatorname{tr}\left(F_{\nabla}\right)\right] \in H^{2}(X ; \mathbb{R})$
- Prescribing curvature of a line bundle
- fix $\left(L, h_{0}\right)$ and closed (1,1)-form $\rho \in-2 \pi i c_{1}(L)$
$-h=e^{2 \varphi} h_{0}$ with $F_{h}=\rho \Longleftrightarrow 2 \bar{\partial} \partial \varphi=\rho-F_{h_{0}}$
- on a compact Kähler manifold can always solve this thanks to $\bar{\partial} \partial$-Lemma: σ exact $(1,1)$-form $\Longrightarrow \sigma=\bar{\partial} \partial u$ for some function u
- Also by $\bar{\partial} \partial$-Lemma: every Kähler metric in a fixed Kähler class $[\omega] \in H^{1,1}(M ; \mathbb{R})$ is of the form $\omega_{u}=\omega+i \bar{\partial} \partial u$
Exercises 17 and 18
- Ricci-form: $(1,1)$-form $\rho_{\omega}(X, Y)=\operatorname{Ric}(J X, Y)$
- $T^{1,0} M$ holomorphic bundle + Hermitian metric $h=g+i \omega$
$\leadsto R=$ curvature of Chern connection and $\operatorname{Tr} R$ curvature of K_{M}^{-1}
- $\rho_{\omega}=i \operatorname{Tr} R$

Exercise 19

The Calabi Conjecture.

Theorem 2.2 (Yau, 1978). Let $\left(M^{2 m}, g, J, \omega\right)$ be a closed Kähler manifold. Then for every $f \in$ $C^{\infty}(M)$ such that $f>0$ and $\int_{\underline{M}} f \omega^{m}=\int_{M} \omega^{m}$ there exists $u \in C^{\infty}(M)$, unique up to the addition of a constant, such that $\omega+i \partial \bar{\partial} u$ is a Kähler form in the same Kähler class as ω and

$$
(\omega+i \partial \bar{\partial} u)^{m}=f \omega^{m}
$$

Corollary 2.3. Let $\left(M^{2 m}, J\right)$ be a closed complex manifold with $c_{1}(M, J)=0$ and admitting Kähler metrics. Then in every Kähler class there exists a unique Kähler metric that is Ricci-flat.

Exercises 20 and 21

2.2. The Beauville-Bogomolov decomposition: when is $\operatorname{Hol}(g)=\mathbf{S U}(m)$ or $\mathbf{S p}(m)$?

The Cheeger-Gromoll Splitting Theorem.
Exercise 22

- ray: unit-speed geodesic $\gamma:[0, \infty) \rightarrow M$ such that $\operatorname{dist}_{g}(\gamma(t), \gamma(s))=|s-t|$ for all $t, s \geq 0$
- line: unit-speed geodesic $\gamma: \mathbb{R} \rightarrow M$ such that $\operatorname{dist}_{g}(\gamma(t), \gamma(s))=|s-t|$ for all $t, s \in \mathbb{R}$
- $\left(M^{n}, g\right)$ complete non-compact: for every point $p \in M \exists$ ray γ with $\gamma(0)=p$
- $\left(M^{n}, g\right)$ complete non-compact and $\pi_{0}(M \backslash K) \geq 2$ for connected compact $K: \exists$ line

Exercise 23

Theorem 2.4 (Cheeger-Gromoll, 1971). Let $\left(M^{n}, g\right)$ be a complete Riemannian manifold with $\operatorname{Ric}(g) \geq 0$. If M contains a line then $(M, g) \simeq\left(N^{n-1}, g_{N}\right) \times\left(\mathbb{R}, d t^{2}\right)$.

Corollary 2.5. Let $\left(M^{n}, g\right)$ be a closed Riemannian manifold with $\operatorname{Ric}(g) \geq 0$. Then the universal cover $(\widetilde{M}, \widetilde{g})$ of (M, g) splits isometrically as the product of $\left(\mathbb{R}^{k}, g_{\text {Eucl }}\right)$ and a compact Riemannian manifold $\left(N^{n-k}, g_{N}\right)$. If $\operatorname{Ric}(g)=0$ then there exists a finite cover M^{\prime} that splits isometrically as the product of a flat k-torus T^{k} and the compact manifold N.
Proof. There are two main steps in the proof.
(i) If M is compact and its universal cover \widetilde{M} is non-compact, then \widetilde{M} contains a line: one starts with a ray γ and constructs a line as a limit of translations $f_{i} \cdot \gamma\left(t_{i}+\cdot\right)$ for $t_{i} \rightarrow \infty$ and elements $f_{i} \in \pi_{1}(M)$.
(ii) If \widetilde{M} splits as an isometric product $\widetilde{M}=N \times \mathbb{R}^{k}$ with N containing no lines, then $\operatorname{Isom}(\widetilde{M})=$ $\operatorname{Isom}(N) \times \operatorname{Isom}\left(\mathbb{R}^{k}\right)$ (since isometries must preserve lines).
Theorem 2.4 implies that \widetilde{M} splits as in (ii). If by contraddicition N were non-compact then the construction in (i) would yield a line in \widetilde{M} starting from a ray in N, which would then be contained in N by (ii).

For the final statement, we need to observe that a simply connected closed Riemannian manifold with Ric ≤ 0 has no Killing fields (since any Killing field X satisfies $\nabla^{*} \nabla X-2 \operatorname{Ric}(X, X)=0$ and therefore the dual 1-form is harmonic), so the subgroup of $\operatorname{Isom}\left(\mathbb{R}^{k}\right)$ given by the kernel of $\pi_{1}(M) \rightarrow \operatorname{Isom}(N)$ must act cocompactly on \mathbb{R}^{k} : by Bieberbach Theorem it must therefore contain a full rank lattice as a finite index subgroup.

Exercise 24

The Kähler case.

Theorem 2.6 (Beauville, 1983). Let $\left(M^{2 m}, g, J, \omega\right)$ be a closed Kähler manifold with $\operatorname{Ric}(g)=0$.
(i) The universal cover \widetilde{M} is isomorphic as a Kähler manifold to the product $\widetilde{M}=\mathbb{C}^{k} \times \prod_{i} X_{i} \times$ $\prod_{j} Y_{j}$, where X_{i} is a compact simply connected manifold with holonomy $\mathrm{SU}\left(m_{i}\right)$ and Y_{j} is a compact simply connected manifold with holonomy $\operatorname{Sp}\left(n_{j}\right)$. The decomposition is unique up to reordering the factors.
(ii) There exists a finite cover M^{\prime} of M isomorphic as a Kähler manifold to the product $M^{\prime}=$ $\mathbb{T} \times \prod_{i} X_{i} \times \prod_{j} Y_{j}$, where \mathbb{T}^{k} is a compact complex torus of complex dimension k. In particular, $\pi_{1}(M)$ is an extension of a finite group by $\mathbb{Z}^{2 k}$.

Exercises 25 and 26

2.3. Moduli spaces.

- ($\left.M^{2 m}, \omega, \Omega\right)$ Calabi-Yau m-fold, i.e. $\operatorname{Hol}\left(g_{\omega, \Omega}\right) \subseteq \mathrm{SU}(m)$
- Deformations of (ω, Ω) as a CY structure

Complex-structure deformations: Bogomolov 1978, Tian 1988, Todorov 1989
Theorem 2.7. Let $\left(M^{2 m}, J, \omega\right)$ is a closed Kähler manifold with $c_{1}(M, J)=0$. Then the local universal deformation space of (M, J) is isomorphic to an open set in $H^{1}\left(M ; T^{1,0} M\right)$.

Combined with Corollary 2.2 and a result of Kodaira that guarantees that complex-structure deformations of a Kähler manifold remain Kähler \Longrightarrow
Corollary 2.8. Let $\left(M^{2 m}, g, J, \omega\right)$ be a closed Kähler Ricci-flat manifold. Then the moduli space of Kähler Ricci-flat metrics on M is smooth of dimension

$$
h^{1,1}(M)+2 \operatorname{dim}_{\mathbb{C}} H^{1}\left(M ; T^{1,0} M\right)-2 h^{0,2}(M)
$$

Note: K_{M} trivial $\Longrightarrow \operatorname{dim}_{\mathbb{C}} H^{1}\left(M ; T^{1,0} M\right)=h^{1, m-1}(M)$ via $\left.X \mapsto X\right\lrcorner \Omega$
Exercise 27

The case $m=2$: deforming hyperkähler triples.

- $\left(M^{4}, \mu_{0}\right)$ oriented 4-manifold \leadsto quadratic form on $\Lambda^{2} T_{x}^{*} M$ for all $x \in M$
- $\boldsymbol{\omega}=\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ definite triple if $\operatorname{Span}\left(\boldsymbol{\omega}_{x}\right) \subset \Lambda^{2} T_{x}^{*} M$ positive definite $\boldsymbol{\omega}$ definite $\Longleftrightarrow Q>0$, where $Q_{i j} \mu_{0}=\frac{1}{2} \omega_{i} \wedge \omega_{j}$
- normalisation: $\left(Q_{\boldsymbol{\omega}}, \mu_{\boldsymbol{\omega}}\right)$ so that $Q_{\boldsymbol{\omega}} \mu_{\boldsymbol{\omega}}=Q \mu_{0}$ and $\operatorname{det} Q_{\boldsymbol{\omega}} \equiv 1$
- $g_{\boldsymbol{\omega}}$ unique metric with $\Lambda^{+} T^{*} M=\operatorname{Span}(\boldsymbol{\omega})$ and volume form $\mu_{\boldsymbol{\omega}}$
- $g_{\boldsymbol{\omega}}$ hyperkähler $\Longleftrightarrow Q_{\boldsymbol{\omega}} \equiv \mathrm{id}$ and $d \omega_{i}=0$ for all $i=1,2,3$
- deform hyperkähler triple $\boldsymbol{\omega} \leadsto \boldsymbol{\omega}+\boldsymbol{\eta}$ such that $d \boldsymbol{\eta}=0$ and, for some $v>0$,

$$
\begin{equation*}
\frac{1}{2}\left(\omega_{i}+\eta_{i}\right) \wedge\left(\omega_{j}+\eta_{j}\right)=v \delta_{i j} \mu_{\boldsymbol{\omega}} \tag{2.9}
\end{equation*}
$$

- decompose $\boldsymbol{\eta}=\boldsymbol{\eta}^{+}+\boldsymbol{\eta}^{-}$
- $\eta_{i}^{+}=\sum_{j=1}^{3} A_{i j} \omega_{j}$ for matrix-valued function A
- $\boldsymbol{\eta}^{-} * \boldsymbol{\eta}^{-}$the symmetric (3×3)-matrix with entries $\left(\frac{1}{2} \eta_{i}^{-} \wedge \eta_{j}^{-}\right) / \mu_{\boldsymbol{\omega}}$
- rewriting of (2.9)

$$
A^{T}+A+A A^{T}+\boldsymbol{\eta}^{-} * \boldsymbol{\eta}^{-}=0
$$

- smooth function $\mathcal{F}: \operatorname{Sym}^{2}\left(\mathbb{R}^{3}\right) \rightarrow \operatorname{Sym}^{2}\left(\mathbb{R}^{3}\right)$ such that $A^{T}+A+A A^{T}=S$ iff $A=\mathcal{F}(S)$

3-dimensional kernel of linearisation of $A \mapsto A^{T}+A+A A^{T}$ at $0 \stackrel{1: 1}{\longleftrightarrow}$ HK rotations

- reformulation of (2.9)

$$
\boldsymbol{\eta}^{+}=\mathcal{F}\left(\left(\mathrm{id}-Q_{\boldsymbol{\omega}}\right)-\boldsymbol{\eta}^{-} * \boldsymbol{\eta}^{-}\right)
$$

- $\mathcal{H}_{\omega}^{+}=\operatorname{Span}(\boldsymbol{\omega})$
\Longrightarrow elliptic equation

$$
d^{+} \boldsymbol{a}+\boldsymbol{\zeta}=\mathcal{F}\left(\left(\mathrm{id}-Q_{\boldsymbol{\omega}}\right)-\boldsymbol{\eta}^{-} * \boldsymbol{\eta}^{-}\right) \quad d^{*} \boldsymbol{a}=0
$$

for a triple \boldsymbol{a} of 1-forms on M and a triple $\boldsymbol{\zeta} \in \mathcal{H}_{\boldsymbol{\omega}}^{+} \otimes \mathbb{R}^{3}$

- linearisation

$$
\begin{gathered}
(D \oplus \mathrm{id}) \otimes \mathbb{R}^{3}:\left(\Omega^{1}(M) \oplus \mathcal{H}_{\boldsymbol{\omega}}^{+}\right) \otimes \mathbb{R}^{3} \rightarrow\left(\Omega^{0}(M) \oplus \Omega^{+}(M)\right) \otimes \mathbb{R}^{3} \\
D:(\boldsymbol{a}, \boldsymbol{\zeta}) \longmapsto\left(d^{*} \boldsymbol{a}, d^{+} \boldsymbol{a}+\boldsymbol{\zeta}\right)
\end{gathered}
$$

surjective map with kernel harmonic 1-forms
Conclusion

- M^{4} closed, simply connected
- $\mathfrak{C}(M)=\{\boldsymbol{\omega}$ hyperkähler triple $\}$
- $\mathfrak{D i f f} f_{0}(M)$ acts on $\mathfrak{C}(M)$
- $\mathfrak{M}=\mathfrak{C}(M) / \mathfrak{D i f f}_{0}(M)$

Theorem 2.10. If non-empty \mathfrak{M} is a smooth manifold of dimension $3 b_{2}^{-}(M)+3+1$ and the projection $\pi: \mathfrak{M} \rightarrow H^{2}(M) \otimes \mathbb{R}^{3}$ induced by $\boldsymbol{\omega} \mapsto[\boldsymbol{\omega}]$ is an immersion.

- M^{4} HK simply connected $\leadsto M$ diffeomorphic to quartic surface in $\mathbb{C P}^{3}$, the "K3 manifold"
- fix isomorphism $H^{2}(M ; \mathbb{Z}) \simeq(\Lambda, q)$ unimodular lattice of signature $(3,19)$
- $\lambda \in \Lambda$ is a root $\Longleftrightarrow q(\lambda, \lambda)=-2$
- $\mathcal{Q}=\left\{\boldsymbol{\alpha} \in \Lambda \otimes \mathbb{R}^{3} \mid q\left(\alpha_{i}, \alpha_{j}\right)=v \delta_{i j}\right.$ for some $v>0$ and $q(\boldsymbol{\alpha}, \lambda) \neq \mathbf{0}$ for all root $\left.\lambda\right\}$
- Torelli Theorem: $\pi: \mathfrak{M} \rightarrow \mathcal{Q}$ is a diffeomorphism

Exercises 28 and 29

2.4. Exercises.

Exercise 16. Let L be a holomorphic line bundle over a complex manifold M. Let h be a Hermitian metric on L and denote by F_{h} the curvature of the Chern connection of (L, h).
(i) Show that F_{h} is a closed $(1,1)$-form.
(ii) Show that $i\left[F_{h}\right] \in H^{2}(M ; \mathbb{R})$ is independent of h. Up to a factor of $2 \pi, i\left[F_{h}\right]=2 \pi c_{1}(L)$ is called the (real) first Chern class of L.
(iii) Think of $\mathbb{C P}{ }^{1}$ as parametrising lines in \mathbb{C}^{2}. Let $\mathbb{C P}^{1} \times \mathbb{C}^{2} \rightarrow \mathbb{C P}^{1}$ be the trivial rank 2 bundle and denote by $\mathcal{O}(-1)$ the holomorphic subbundle whose fibre over $[z] \in \mathbb{C P}^{1}$ is the line in \mathbb{C}^{2} parametrised by $[z]$. Calculate $c_{1}(\mathcal{O}(-1))$.
Exercise 17. Let $\left(M^{2 m}, J, \omega\right)$ be a closed Kähler manifold. You are going to prove the $\bar{\partial} \partial$-Lemma for (1,1)-forms.
(i) First observe that $2 i \bar{\partial} \partial u=d(J d u)$ and therefore we need to prove that every exact $(1,1)$-form σ on M can be written in the form $\sigma=d(J d u)$ for some function u.
(ii) Show that you can find a function u, unique up to the addition of a constant, such that $d(J d u) \wedge \omega^{m-1}=\sigma \wedge \omega^{m-1}$. (Hint: note that $d(J d u) \wedge \omega^{m-1}=m \triangle u \omega^{m}$.)
(iii) Consider now the exact primitive (1,1)-form $\sigma^{\prime}=\sigma-d(J d u)$. Here primitive means that $\sigma^{\prime} \wedge \omega^{n-1}=0$. Show that if $d^{*} \sigma^{\prime}=0$ then $\sigma^{\prime}=0$. (Hint: here you need to use the fact that M is closed.)
(iv) Show that there exists a universal constant $c_{m} \neq 0$ such that if σ^{\prime} is a primitive (1,1)-form then $* \sigma^{\prime}=c_{m} \sigma^{\prime} \wedge \omega^{m-2}$. (Hint: consider the map $\sigma^{\prime} \mapsto *\left(\sigma^{\prime} \wedge \omega^{m-2}\right)$ and argue that it must be a non-zero multiple of the identity.)
(v) Conclude the proof.

Exercise 18. Let Ω be a (local) holomorphic volume form on a Kähler manifold $\left(M^{2 m}, \omega, J\right)$ (if Ω is globally defined then we must have $c_{1}(M, J)=0$). We can therefore think of Ω as a (local) trivialising holomorphic section of the canonical line bundle $K_{M}=\Lambda^{(m, 0)} T^{*} M$. The Kähler metric $g_{\omega, J}$ induces a Hermitian metric h_{ω} on K_{M}.
(i) Show that $\|\Omega\|_{h_{\omega}}^{2} \frac{1}{m!} \omega^{m}=c_{m} \Omega \wedge \bar{\Omega}$, where c_{m} is the dimensional constant of (2.1).
(ii) Deduce that equation (2.1) implies that the curvature of the Chern connection of $\left(K_{M}, h_{\omega}\right)$ vanishes (over the set where Ω is defined).
(iii) Conversely, show that if K_{M} is holomorphically trivial and the Chern connection on K_{M} is flat then (2.1) must hold for a suitably chosen trivialising holomorphic section Ω of K_{M}.

Exercise 19. Let (M, g, J, ω) be a Kähler manifold. Let R be the curvature of the Chern connection of $T^{1,0} M$ endowed with the Hermitian metric $h=g+i \omega$.

For computations it will be convenient to introduce a local orthonormal frame $\left\{E_{1}, J E_{1}, \ldots, E_{m}, J E_{m}\right\}$ adapted to the $\mathrm{U}(m)$-structure.

As usual, we introduce the notation $\operatorname{Rm}(X, Y, Z, W)=\langle\operatorname{Rm}(X, Y) W, Z\rangle$ for the curvature of g. Recall the symmetries of the Riemannian curvature: Rm is skew-symmetric in (X, Y) and (Z, W), invariant under exchange of the pairs (X, Y) and (Z, W) and (the Bianchi identity)

$$
R(X, Y, \cdot, W)+R(Y, W, \cdot, X)+R(W, X, \cdot, Y) \equiv 0
$$

Finally, the Ricci curvature of g is defined by

$$
\operatorname{Ric}(X, Y)=\sum_{j=1}^{m} \operatorname{Rm}\left(E_{j}, X, E_{j}, Y\right)+\operatorname{Rm}\left(J E_{j}, X, J E_{j}, Y\right)
$$

(i) Show that $\operatorname{Rm}(X, Y, Z, J W)=-\operatorname{Rm}(X, Y, J Z, W)$.
(ii) Show that the Ricci curvature of g satisfies

$$
\operatorname{Ric}(X, Y)=\sum_{j=1}^{m} \operatorname{Rm}\left(E_{j}, J E_{j}, X, J Y\right)
$$

(Hint: use (i) to rewrite $\operatorname{Rm}\left(E_{j}, X, E_{j}, Y\right)=\operatorname{Rm}\left(E_{j}, X, J E_{j}, J Y\right)$ and $\operatorname{Rm}\left(J E_{j}, X, J E_{j}, Y\right)=$ $-\operatorname{Rm}\left(J E_{j}, X, E_{j}, J Y\right)$, then rearrange terms so that $J Y$ is in the third position and finally use the Bianchi identity.)
(iii) Deduce that $\operatorname{Ric}(J X, J Y)=\operatorname{Ric}(X, Y)$ and therefore $\rho_{\omega}(X, Y)=\operatorname{Ric}(J X, Y)$ is a $(1,1)$-form.
(iv) Show that $i \operatorname{tr} R(X, Y)=\sum_{i=1}^{m} \operatorname{Rm}\left(X, Y, E_{j}, J E_{j}\right)$. (Hint: note that R is the curvature of g thought of as a 2 -form with value in the bundle of skew-Hermitian endomorphisms of $T M$; now
write the trace of a matrix in $\mathfrak{u}(m) \subset \mathfrak{g l}(n, \mathbb{C})$ in terms of the basis $\left\{E_{1}, J E_{1}, \ldots, E_{m}, J E_{m}\right\}$ of $\mathbb{R}^{2 m} \simeq \mathbb{C}^{m}$.)
(v) Deduce that $\rho_{\omega}=i \operatorname{tr} R$.

Exercise 20. Prove Corollary 2.3 assuming Theorem 2.2.
Exercise 21. Let X be a complex manifold of complex dimension $m+1, m \geq 2$, such that the anticanonical bundle K_{X}^{-1} is ample. By the Kodaira Embedding Theorem, we can assume this is equivalent to the existence of a Hermitian metric on K_{X}^{-1} (not necessarily induced by a a Kähler metric on X) with curvature F_{h} that is a Kähler form on X. Consider a smooth anticanonical divisor $M \in\left|-K_{X}\right|$.
(i) Show that X has finite fundamental group. (Hint: use Theorem 2.2 to prove that X admits a Kähler metric with positive Ricci curvature.)
(ii) Since K_{X}^{-1} is ample, the Kodaira Vanishing Theorem says that $h^{p, 0}(X)=0$ for all $p>1$ and therefore the holomorphic Euler characteristic $\chi\left(X, \mathcal{O}_{X}\right):=\sum_{p=0}^{m+1}(-1)^{p} h^{0, p}(X)=1$. Deduce that X is simply connected. (Hint: look at how the holomorphic characteristic behaves under finite coverings.)
(iii) Use the Lefschetz Hyperplane Theorem to deduce that M is also simply connected.
(iv) Use the Adjunction Formula to show that K_{M} is trivial.
(vi) Use the exact sequence

$$
0 \rightarrow K_{X} \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{M} \rightarrow 0
$$

and the fact that $H^{i}\left(X, K_{X}\right)=0$ for all $i \leq m$ (by the Nakano Vanishing Theorem) to show that $h^{p, 0}(M)=0$ for all $0<p<m$.
(v) Deduce that M admits a metric g with $\operatorname{Hol}(g) \subseteq \mathrm{SU}(m)$. In fact, in view of Exercise 26 we have $\operatorname{Hol}(g)=\mathrm{SU}(m)$.
(vii) Justify the fact that a hypersurface of degree $m+2$ in $\mathbb{C P}^{m+1}$ admits a Calabi-Yau metric.

Exercise 22. In this exercise you dicuss Bochner's theorem about harmonic 1-forms on closed manifolds $\left(M^{n}, g\right)$ with non-negative Ricci curvature.
(i) Show that $\triangle \gamma=\nabla^{*} \nabla \gamma+\operatorname{Ric}\left(\gamma^{\sharp}\right)^{b}$ for every 1-form γ.
(ii) (Bochner, 1948) Suppose that M is closed and $\operatorname{Ric}(g) \geq 0$. If γ is a harmonic 1-form then $X=\gamma^{\sharp}$ is a parallel vector field such that $\operatorname{Ric}(X)=0$.
(iii) Assume that \widetilde{X} is a parallel vector field on a simply connected manifold $(\widetilde{M}, \widetilde{g})$. Show that $(\widetilde{M}, \widetilde{g}) \simeq\left(N, g_{N}\right) \times\left(\mathbb{R}, d t^{2}\right)$.
(iv) Let (M, g) be a closed manifold with Ric ≥ 0 and $b_{1}(M)=k$. Show that the universal cover $(\widetilde{M}, \widetilde{g})$ of M splits isometrically as $(\widetilde{M}, \widetilde{g}) \simeq\left(N, g_{N}\right) \times\left(\mathbb{R}^{k}, g_{\text {Eucl }}\right)$.

Exercise 23. Let $\left(M^{n}, g\right)$ be a complete non-compact Riemannian manifold and fix $p \in M$. Show that there exists a ray $\gamma:[0, \infty) \rightarrow M$ such that $\gamma(0)=p$ and that if M has at least two ends then there exists a line. (Hint: for the ray consider geodesics γ_{i} joining p and a sequence of points $q_{i} \rightarrow \infty$; for the line consider geodesics joining points $p_{i}^{-}, p_{i}^{+} \rightarrow \infty$ belonging to two distinct connected components of $M \backslash K$.)

Exercise 24. In this exercise we consider consequences of Theorem 2.4 and Corollary 2.5.
(i) Show that $S^{2} \times S^{1}$ and $S^{3} \times S^{1}$ cannot carry Ricci-flat metrics.
(ii) Let $\left(M^{n}, g\right)$ be a closed manifold with $\operatorname{Ric}(g) \geq 0$. Show that if $\operatorname{Hol}(g)$ acts irreducibly on \mathbb{R}^{n} then $\pi_{1}(M)$ is finite.
(iii) Let $\left(M^{7}, \varphi\right)$ be a closed 7 -manifold with a torsion-free G_{2}-structure, so that $\operatorname{Hol}\left(g_{\varphi}\right) \subseteq \mathrm{G}_{2}$. Show that $\operatorname{Hol}(g)=\mathrm{G}_{2}$ if and only if $\pi_{1}(M)$ is finite. (Hint: given the above, the only new ingredient is to establish, going through Berger's list and using the fact that the only symmetric Ricci-flat metrics are flat, that if M is simply connected and has $\operatorname{Hol}(g)$ strictly contained in G_{2} then there must be a parallel 1-form.)

Exercise 25. Prove part (i) of Theorem 2.6 using the de Rham Theorem, Berger's list and Theorem 2.5 .

Exercise 26. Let $\left(M^{2 m}, g, J, \omega\right)$ be a closed Kähler manifold with $\operatorname{Ric}(g)=0$. In this exercises we develop vanishing theorems for holomorphic ($p, 0$)-forms on M and derive some consequences.
(i) Prove that every holomorphic (1,0)-form is parallel. (Hint: use the fact that $\left.\bar{\partial}^{*}\right|_{\Lambda^{p, 0}}=0$, $\triangle_{\bar{\partial}}=2 \triangle_{d}$ and part (i) of Exercise 22.)
(ii) Prove that the automorphism group of (M, J) is discrete and that the isometry group of (M, g) is therefore finite. (Hint: the Lie algebra of the automorphism group consists of holomorphic sections of $T^{1,0} M$; the automorphism group is the complexification of the isometry group.)
(iii) Prove part (ii) of Theorem 2.6. (Hint: every element of $\pi_{1}(M)$ must act on \widetilde{M} as a product of isometric automorphisms of each factor in the decomposition.)
(iv) Prove that every holomorphic ($p, 0$)-form is parallel for every $p \geq 0$. (Hint: the argument is the same as in part (i), using the fact that $\triangle_{d}=\nabla^{*} \nabla$ on $\Lambda^{p, 0}$ if g is Ricci-flat.)
(v) Prove that $\operatorname{Hol}(g)=\operatorname{SU}(m)$ if and only if $h^{p, 0}(M)=0$ for all $0<p<m$ and $h^{p, 0}(M)=1$ if $p=0, m$.
(vi) Suppose that $\operatorname{Hol}(g)=\operatorname{SU}(m)$ and $m \geq 3$. Then (M, J) is projective. (Hint: show that the Kähler cone must contain a rational class and then use the Kodaira Embedding Theorem.)
(vii) Let $\left(M^{2 m}, J\right)$ be a closed complex manifold admitting Kähler metrics. We say that M is an irreducible holomorphic symplectic variety if there exists a holomorphic $(2,0)$-form ω_{c} that is non-degenerate at every point and if $h^{p, 0}(M)=0$ if p is odd, while every holomorphic $(2 k, 0)$-form is a constant multiple of ω_{c}^{k}. Prove that ($M^{4 m}, g, J, \omega$) has $\operatorname{Hol}(g)=\operatorname{Sp}(m)$ if and only if (M, J) is an irreducible holomorphic symplectic manifold.

Exercise 27. Let M be a smooth hypersurface in $\mathbb{C P}^{m+1}$ of degree $m+2, m \geq 3$. It follows from Exercise 21 and Corollary 2.3 that M carries a unique Kähler Ricci-flat metric g in the cohomology class of the restriction of the Fubini-Study metric.
(i) Show that $\operatorname{Hol}(g)=\mathrm{SU}(m)$. (Hint: use Exercises 21 and 26.)
(ii) Use the Lefschetz Hyperplane Theorem to show that $b_{k}(M)=b_{k}\left(\mathbb{C P}^{m+1}\right)$ for all $k \neq m$.
(iii) Use the exact sequence

$$
\left.\left.0 \rightarrow T M \rightarrow T \mathbb{C P}^{m+1}\right|_{M} \rightarrow \mathcal{O}_{\mathbb{C P}^{m+1}}(m+1)\right|_{M} \rightarrow 0
$$

to derive the recursive formula $c_{k}(M)+(m+1) h \cup c_{k-1}(M)=\binom{m+1}{k} h^{k}$, where h is the generator of $H^{2}\left(\mathbb{C P}^{m+1} ; \mathbb{Z}\right) \simeq H^{2}(M ; \mathbb{Z})$.
(iv) Specialising to $m=3$ for simplicity, find a formula for the top Chern class $c_{m}(M)$ and then calculate $b_{m}(M)$. (Hint: the top Chern class yields the Euler characteristic of M.)
(v) Use Corollary 2.8 to calculate the dimension of the moduli space of Kähler Ricci-flat metrics on M when $m=3$.

Exercise 28. Let M be a quartic surface in $\mathbb{C P}^{3}$.
(i) Consider the exact sequence

$$
\left.\left.0 \rightarrow T M \rightarrow T \mathbb{C P}^{3}\right|_{M} \rightarrow \mathcal{O}(4)\right|_{M} \rightarrow 0
$$

(a) Taking determinants, show that $c_{1}(M)=0$.
(b) Show that M has Euler characteristic $\chi(M)=24$. (Hint: the Euler class of M is $c_{2}(M)$.)
(ii) Show that $b_{2}(M)=22$. (Hint: M is simply connected by the Lefschetz Hyperplane Theorem.)
(iii) Show that $h^{2,0}(M)=h^{0,2}(M)=1$ and $h^{1,1}(M)=20$.
(iv) Show that $b^{+}(M)=3$ and $b^{-}(M)=19$.

Exercise 29. By Exercise 13 in dimension 4 we have a decomposition $\Lambda^{2}=\Lambda^{+} \oplus \Lambda^{-}$. We can then decompose the curvature operator $\mathcal{R}: \Lambda^{2} \rightarrow \Lambda^{2}$ of a Riemannian metric g on a 4-manifold M as follows:

$$
\mathcal{R}=\left(\begin{array}{c|c}
\frac{1}{12} \mathrm{Scal}+\mathrm{W}^{+} & \text {Ric } \\
\hline \text { Ric } & \frac{1}{12} \mathrm{Scal}+\mathrm{W}^{-}
\end{array}\right) .
$$

If M is closed, Chern-Weyl theory for the Riemannian curvature yields the Chern-Gauss-Bonnet Theorem, expressing the Euler characteristic $\chi(M)=\sum_{i}(-1)^{i} b_{i}(M)$ as

$$
\chi(M)=\frac{1}{8 \pi^{2}} \int_{M}\left(\frac{1}{24} \mathrm{Scal}^{2}+\left|\mathrm{W}^{+}\right|^{2}+\left|\mathrm{W}^{-}\right|^{2}-\frac{1}{2}\left|\mathrm{Ric}^{\circ}\right|^{2}\right) \mathrm{dv}_{g}
$$

and the Hirzebruch Signature Theorem, expressing the signature $\tau(M)=b_{+}(M)-b_{-}(M)$ as

$$
\tau(M)=\frac{1}{12 \pi^{2}} \int_{M}\left(\left|\mathrm{~W}^{+}\right|^{2}-\left|\mathrm{W}^{-}\right|^{2}\right) \mathrm{dv}_{g}
$$

(i) Let g be an Einstein metric on a closed 4-manifold M. Show the Hitchin-Thorpe Inequality $2 \chi(M) \geq 3|\tau(M)|$.
(ii) Let $M_{k, l}=k \mathbb{C P}^{2} \sharp \overline{\mathbb{C P}^{2}}$, where $\overline{\mathbb{C P}^{2}}$ denotes $\mathbb{C P}^{2}$ with the opposite orientation. For which (k, l) can't $M_{k, l}$ admit an Einstein metric?
(iii) Let g be an Einstein metric on the K3 manifold. Show that g is hyperkähler. (Hint: use the fact that every flat metric bundle on a simply connected manifold can be trivialised by a basis of orthonormal parallel sections.)
2.5. Bibliographical notes. See [1] for background in Kähler geometry. There, as well as in [9], you will find a complete account of Yau's Theorem and the Calabi Conjecture. For a reference on background in complex geometry (perhaps needed to solve a couple of exercises) see [8].

Beauville's original paper [3] (in French) on the Beauville-Bogomolov Decomposition Theorem is quite readable. A complete proof of the Cheeger-Gromoll Splitting Theorem is contained in [12].

For the deformation theory of CY 3-folds we have followed the approach pioneered by [7], see also [11]. The notion of definite triples is discussed in [6].

3. Examples of complete non-compact manifolds with special holonomy, SINGULARITIES AND DEGENERATIONS

In this section we discuss some examples of complete non-compact KRF manifolds. In contrast to the abstract existence theorem of Corollary 2.3 , the non-compact setting will allow us to describe various (almost) explicit examples. As we will discuss later, complete non-compact examples are also important to understand formation of singularities in sequence of compact manifolds with special holonomy.

3.1. Volume growth.

$\left(M^{n}, g\right)$ complete non-compact with $\operatorname{Hol}(g)$ one of the Ricci-flat holonomy groups Theorem $2.4 \Longrightarrow M$ has only one end unless reducible

Theorem 3.1 (Bishop-Gromov volume comparison). Let $\left(M^{n}, g\right)$ be a complete Riemannian manifold with $\operatorname{Ric}(g) \geq 0$. Then the function

$$
r \longmapsto \frac{\operatorname{Vol}_{g}(B(p, r))}{r^{n}}
$$

is decreasing.
Proof. (sketch) Ignoring issues with the cut-locus (which has anyway measure zero), we work in normal coordinates around p : consider $T_{p} M \simeq \mathbb{R}^{n}$ endowed with the Riemannian metric $\exp _{p}^{*} g=$ $d r^{2}+g_{r}$, for a 1-parameter family of metrics g_{r} on S^{n-1} depending smoothly on r and with $g_{r} \approx r^{2} g_{S^{n-1}}$ as $r \rightarrow 0$.

For each $r>0$ define a function μ_{r} on \mathbb{S}^{n-1} by $\mathrm{dv}_{g_{r}}=\mu_{r} \mathrm{dv}_{S^{n-1}}$. Then $\operatorname{Vol}_{g}(B(p, R))=$ $\int_{0}^{R}\left(\int_{S^{n-1}} \mu_{r} \operatorname{dv}_{S^{n-1}}\right) d r$. The shape operator $S=\nabla \partial_{r}$ of the hypersurfaces $\{r=$ const $\}$ satisfies

$$
\frac{1}{2} \partial_{r} g_{r}=g_{r}(S \cdot, \cdot)
$$

and therefore $\partial_{r} \log \mu_{r}=\operatorname{tr}_{g_{r}} S$.
The shape operator satisfies the Riccati equation $\partial_{r} S+S^{2}+\operatorname{Rm}_{g}\left(\cdot, \partial_{r}\right) \partial_{r}=0$. Using Gauss' equations to express the Ricci curvature of g in terms of S and the Ricci curvature of g_{r}, taking traces one then finds

$$
\partial_{r}\left(\operatorname{tr}_{g_{r}} S\right)+|S|_{g_{r}}^{2} \leq 0
$$

Since $|S|_{g_{r}}^{2}=\frac{1}{n-1}\left(\operatorname{tr}_{g_{r}} S\right)^{2}+|\stackrel{\circ}{S}|_{g_{r}}^{2}$, where $\stackrel{\circ}{S}$ denotes the trace-less part of S, one deduces $\operatorname{tr}_{g_{r}} S \leq$ $(n-1) r^{-1}$ from ODE comparison theory. A further integration yields the result.

Exercise 30

Corollary 3.2. Let $\left(M^{n}, g\right)$ be a complete Riemannian manifold with $\operatorname{Ric}(g) \geq 0$.
(i) For all $p \in M$ and $r \geq 0$ we have

$$
\operatorname{Vol}_{g}(B(p, r)) \leq \omega_{n} r^{n}
$$

where $n \omega_{n}$ is the volume of the unit $(n-1)$-sphere.
(ii) Fix $p \in M$ and $r_{0}>1$. Then there exists $c=c\left(g, p, r_{0}\right)$ such that

$$
c r \leq \operatorname{Vol}_{g}(B(p, r))
$$

for all $r \geq r_{0}$.
Proof. Since $\lim _{r \rightarrow 0} \operatorname{Vol}_{g}(B(p, r))=\omega_{n} r^{n}$, the first part of the Corollary is an immediate consequence of Theorem 3.1.

In order to prove the second part, fix a point $q \in \partial B(p, r)$, so that $B(p, 1)$ is contained in the annulus $B(q, r+1) \backslash B(q, r-1)$. Since $B(q, r) \subset B(p, 2 r)$ it suffices to show that $\operatorname{Vol}_{g}(B(q, r))$
grows at least linearly in $r \geq r_{0}$, with a constant that depends only on r_{0} and $\operatorname{Vol}_{g}(B(p, 1))$. We calculate

$$
\begin{aligned}
\frac{\operatorname{Vol}_{g}(B(p, 1))}{\operatorname{Vol}_{g}(B(q, r))} \leq \frac{\operatorname{Vol}_{g}(B(p, 1))}{\operatorname{Vol}_{g}(B(q, r-1))} & \leq \frac{\operatorname{Vol}_{g}(B(q, r+1) \backslash B(q, r-1))}{\operatorname{Vol}_{g}(B(q, r-1))} \\
& =\frac{\operatorname{Vol}_{g}(B(q, r+1))}{\operatorname{Vol}_{g}(B(q, r-1))}-1 \leq \frac{(r+1)^{n}}{(r-1)^{n}}-1 \leq \frac{C}{r}
\end{aligned}
$$

by Theorem 3.1 and Taylor's Theorem applied to the function $x \mapsto \frac{(1+x)^{n}}{(1-x)^{n}}-1$ for $x \leq r_{0}^{-1}$.
Exercise 31

3.2. 4-dimensional hyperkähler ALE spaces.

Theorem 3.3 (Bando-Kasue-Nakajima, 1989). Let $\left(M^{4}, g\right)$ be a complete Ricci-flat manifold. Suppose that there exists $p \in M, v, C>0$ such that

$$
\operatorname{Vol}_{g}(B(p, r)) \geq v r^{4} \text { for all } r \geq 0 \quad \text { and } \quad\left\|\operatorname{Rm}_{g}\right\|_{L^{2}} \leq C
$$

Then (M, g) is $A L E$ of order $\tau=4$: there exists a compact set $K \subset M$, a finite group $\Gamma \subset \mathrm{O}(4)$ acting freely on S^{3}, a ball $B_{R} \subset \mathbb{R}^{4}$ and a diffeomorphism $f:\left(\mathbb{R}^{4} \backslash B_{R}\right) / \Gamma \rightarrow M \backslash K$ such that

$$
\left|\nabla^{k}\left(g_{f l a t}-f^{*} g\right)\right|_{g_{f l a t}}=O\left(r^{-\tau-k}\right) \text { for all } k \geq 0
$$

Remark. There is a similar statement in any dimension, but the necessary condition $\left\|\operatorname{Rm}_{g}\right\|_{L^{\frac{n}{2}}}<\infty$ is less geometrically natural for $n>4$.

All known simply connected examples are hyperkähler and in particular $\Gamma \subset \mathrm{SU}(2) \subset \mathrm{O}(4)$; Nakajima (1990) asks whether there are no further examples

Exercise 32

- $X=\mathbb{C}^{2} / \Gamma$ with $\Gamma \subset \mathrm{SU}(2)$ acting freely on $\mathbb{C}^{2} \backslash\{0\}$
$A_{n}: \Gamma=\mathbb{Z}_{n}, x y+z^{n+1}=0$
$D_{n}: \Gamma$ binary dihedral group of order $4(n-2), n \geq 4: x^{2}+y^{2} z+z^{n-1}=0$
$E_{n}: \Gamma$ binary tetrahedral, octahedral, icosahedral group $(n=6,7,8)$
- existence of minimal resolution $\pi: \widetilde{X} \rightarrow X$
$-\operatorname{Exc}(\pi)=\Sigma_{1}, \ldots, \Sigma_{n}$ union of rational curves
- $\left(\Sigma_{i} \cdot \Sigma_{j}\right)_{1 \leq i, j \leq n}=-$ Cartan matrix of root system of ADE type (in particular $\Sigma_{i} \cdot \Sigma_{i}=$ -2)
- $\pi: \widetilde{X} \rightarrow X$ is a crepant resolution: $K_{\widetilde{X}}=\pi^{*} K_{X}$ trivial $\Longleftrightarrow \pi^{*} \omega_{c}$ extends to holomorphic symplectic form on \widetilde{X}
Exercise 33
Theorem 3.4 (Kronheimer, 1989). Let M be the smooth 4-manifold underlying the minimal resolution of \mathbb{C}^{2} / Γ for Γ a finite subgroup of $\mathrm{SU}(2)$ acting freely on S^{3}. Let $\boldsymbol{\alpha} \in H^{2}(M) \otimes \mathbb{R}^{3}$ be a triple of cohomology classes such that

$$
\begin{equation*}
\boldsymbol{\alpha}(\Sigma) \neq 0 \text { for all } \Sigma \in H_{2}(M ; \mathbb{Z}) \text { with } \Sigma \cdot \Sigma=-2 \tag{3.5}
\end{equation*}
$$

Then there exists an ALE hyperkähler structure $\boldsymbol{\omega}$ on M with $[\boldsymbol{\omega}]=\boldsymbol{\alpha}$.
Furthermore, every ALE hyperkähler 4-manifold $(M, \boldsymbol{\omega})$ is diffeomorphic to the minimal resolution of \mathbb{C}^{2} / Γ for Γ as above and $[\boldsymbol{\omega}]$ satisfies (3.5). Finally, if $\left(M_{1}, \boldsymbol{\omega}^{1}\right)$ and $\left(M_{2}, \boldsymbol{\omega}^{2}\right)$ are two $A L E$ hyperkähler 4-manifolds and there exists a diffeomorphism $f: M_{1} \rightarrow M_{2}$ such that $\left[f^{*} \boldsymbol{\omega}^{2}\right]=\left[\boldsymbol{\omega}^{1}\right]$ then $\left(M_{1}, \boldsymbol{\omega}^{1}\right)$ and $\left(M_{2}, \boldsymbol{\omega}^{2}\right)$ are isomorphic.

Proof. (sketch) We illustrate Kronheimer's construction with the simplest example $\Gamma=\mathbb{Z}_{2}$.
Let \mathbb{H}^{2} be endowed with the flat hyperkähler structure $\boldsymbol{\omega}$ and consider the action of $\mathrm{U}(1) \subset \mathrm{Sp}(2)$ on \mathbb{H} defined by $e^{i \theta} \cdot\left(q_{1}, q_{2}\right)=\left(e^{i \theta} q_{1}, e^{i \theta} q_{2}\right)$.

Let ξ be the vector field generating this $\mathrm{U}(1)$-action. Then $\boldsymbol{\mu}: \mathbb{H}^{2} \rightarrow \operatorname{Im} \mathbb{H}$ defined by $\boldsymbol{\mu}\left(q_{1}, q_{2}\right)=$ $\bar{q}_{1} i q_{1}+\bar{q}_{2} i q_{2}$ is a hyperkähler moment map for the $\mathrm{U}(1)$-action, i.e. $d \boldsymbol{\mu}=\boldsymbol{\omega}(\xi, \cdot)$.

The hyperkähler quotient construction endows (the smooth part of) $M_{\zeta}=\boldsymbol{\mu}^{-1}(\boldsymbol{\zeta}) / \mathrm{U}(1)$ with a hyperkähler structure $\boldsymbol{\omega}_{\boldsymbol{\zeta}}$ uniquely determined by the relation $\iota_{\zeta}^{*} \boldsymbol{\omega}=\pi_{\zeta}^{*} \boldsymbol{\omega}_{\boldsymbol{\zeta}}$, where $\iota_{\zeta}: \boldsymbol{\mu}^{-1}(\boldsymbol{\zeta}) \rightarrow \mathbb{H}^{2}$ is the inclusion and $\pi_{\zeta}: \mu^{-1}(\boldsymbol{\zeta}) \rightarrow M_{\zeta}$ the projection.

One can identify ($M_{\mathbf{0}}, \boldsymbol{\omega}_{\mathbf{0}}$) with $\mathbb{H} / \mathbb{Z}_{2}$ endowed with its flat hyperkähler structure, while for $\boldsymbol{\zeta} \neq \mathbf{0}\left(M_{\zeta}, \boldsymbol{\omega}_{\zeta}\right)$ is a smooth hyperkähler manifold. In order to show that $\boldsymbol{\omega}_{\zeta}$ is ALE of order 4:
(i) identify M_{ζ} with $M_{\mathbf{0}}$ outside a compact set by identifying $\boldsymbol{\mu}^{-1}(\boldsymbol{\zeta})$ and $\boldsymbol{\mu}^{-1}(\mathbf{0})$ outside a compact set using the exponential map of \mathbb{H}^{2};
(ii) use the homogeneity of the moment map to observe that $\boldsymbol{\omega}_{\left.\zeta\right|_{r \hat{x}}}=\boldsymbol{\omega}_{r^{-2} \zeta \mid \hat{x}}$, where we work in polar coordinates $x=r \hat{x}$ on $\mathbb{H} / \mathbb{Z}_{2}=\mathbb{R}_{+} \times\left(S^{3} / \mathbb{Z}_{2}\right)$;
(iii) identify $\left.\partial_{s} \boldsymbol{\omega}_{s \zeta}\right|_{s=0}$ with the curvature of the connection on the circle bundle $\boldsymbol{\mu}^{-1}(\mathbf{0}) \rightarrow M_{\mathbf{0}}$ induced by the Riemannian metric on $\mu^{-1}(\mathbf{0}) \subset \mathbb{H}^{2}$;
(iv) observe that $\boldsymbol{\mu}^{-1}(\mathbf{0})=\mathbb{H}^{2} \times \mathrm{U}(1) \rightarrow \mathbb{H}^{2} / \mathbb{Z}_{2}$ is the flat non-trivial circle bundle.

Then under the identification in (i) we have an expansion

$$
\boldsymbol{\omega}_{\left.\zeta\right|_{r \hat{x}}}=\boldsymbol{\omega}_{\left.r^{-2} \zeta\right|_{\hat{x}}}=\omega_{\mathbf{0}}+O\left(r^{-4}\right)
$$

as $r \rightarrow \infty$.

Exercise 34

3.3. Remarks on complete CY 3-folds with maximal volume growth.

Theorem 3.6 (Calabi, 1979). Let (D, g_{D}) be a Kähler Einstein metric with positive scalar curvature. The the total space K_{D} of the canonical line bundle over D carries a complete Calabi-Yau metric.

Proof. We only prove the case where $\operatorname{dim} K_{D}=3$. The general case is similar up to changing dimensional constants.

- $\pi: \Sigma^{5} \rightarrow D^{4}$ unit circle bundle in K_{D}
- Kähler Einstein metric ω_{1} on $D, \operatorname{Ric}\left(\omega_{1}\right)=\lambda \omega_{1}, \lambda>0 \Longrightarrow\left[\omega_{1}\right] \propto c_{1}\left(K_{D}\right)$
- $2 \pi^{*} \omega_{1}=d \eta$ for connection 1-form $\eta: T \Sigma \rightarrow \mathbb{R} \leadsto$ horizontal subspace ker $\eta \simeq \pi^{*} T D$
- tautological $(2,0)$-form $\omega_{2}+i \omega_{3}$ with $d\left(\omega_{2}+i \omega_{3}\right)=3 \eta \wedge\left(\omega_{2}+i \omega_{3}\right)$
\Rightarrow conical CY structure

$$
\omega_{\mathrm{C}}=r d r \wedge \eta+r^{2} \pi^{*} \omega_{1}=d\left(\frac{1}{2} r^{2} \eta\right), \quad \Omega_{\mathrm{C}}=(d r+i r \eta) \wedge r^{2}\left(\omega_{2}+i \omega_{3}\right)
$$

on $\mathrm{C}=\mathbb{R}_{+} \times \Sigma$ with induced metric $g_{\mathrm{C}}=d r^{2}+r^{2}\left(\eta^{2}+\pi^{*} g_{D}\right)$

- crepant resolution $p: K_{D} \rightarrow \mathrm{C}=K_{D}^{\times}: p^{*} \Omega_{\mathrm{C}}$ extends to holomorphic volume form Ω
- look for Kähler Ricci-flat metric $\omega=d\left(\frac{1}{2} u^{2} \eta\right)$ for $u=u(r)$

$$
2 \omega^{3}=3 \operatorname{Re} \Omega \wedge \operatorname{Im} \Omega \quad \Longleftrightarrow \quad u^{6}=r^{6}+a^{3}, \quad a>0
$$

- $[\omega]=a\left[\omega_{1}\right]$ under $H^{2}\left(K_{D}\right) \simeq H^{2}(D)$
- $D=\mathbb{C P}^{1}$ is the Eguchi-Hanson metric, i.e. the metric of Theorem 3.4 with $\Gamma=\mathbb{Z}_{2}$
- $D=\mathbb{C P}^{2} \Longrightarrow\left(\mathrm{C}, g_{\mathrm{C}}\right)=\left(\mathbb{C}^{3} / \mathbb{Z}_{3}, g_{f l a t}\right)$ and $\left(K_{D}, g_{\omega, \Omega}\right)$ is ALE
- $D=\mathbb{C P}^{1} \times \mathbb{C P}^{1} \Longrightarrow\left(\mathrm{C}, g_{\mathrm{C}}\right)$ non-flat CY cone (the \mathbb{Z}_{2}-quotient of the conifold) and ($K_{D}, g_{\omega, \Omega}$) is asymptotically conical (AC)
- $D=\mathrm{Bl}_{k} \mathbb{C P}^{2}$ with $4 \leq k \leq 8 \Longrightarrow$ families of AC CY metrics (parametrised by variation of complex structure)
Exercise 35
- Note: ALE and AC asymptotic geometries don't exhaust possible asymptotic geometries of CY metrics with maximal volume growth
- Joyce (2000): QALE CY metrics on resolutions of \mathbb{C}^{n} / Γ where $\Gamma \subset \operatorname{SU}(n)$ does not act freely on $S^{2 n-1}$
- Li, Conlon-Rochon, Székelyhidi (2017): even on \mathbb{C}^{3} there exists a complete CY metric with maximal volume growth asymptotic to $\mathbb{C} \times \mathbb{C}^{2} / \mathbb{Z}_{2}$; qualitative description as a fibration of A_{1} ALE spaces via

$$
\left(z_{1}, z_{2}, z_{3}\right) \longmapsto z_{1}^{2}+z_{2}^{2}+z_{3}^{2}
$$

3.4. Kummer-type constructions.

See $\S 2$ of my survey paper "Gravitational instatons and degenerations of Ricci-flat metrics on the K3 surface", available at http://www.homepages.ucl.ac.uk/~ucahlfo/Publications_ files/Survey_K3.pdf.

3.5. Exercises.

Exercise 30. Fix $\kappa \in \mathbb{R}$. Consider separately the three cases $\kappa>0, \kappa=0$ and $\kappa<0$.
(i) Find the solution $\mathrm{sn}_{\kappa}(r)$ of the IVP

$$
f^{\prime \prime}=-f, \quad f(0)=0, \quad f^{\prime}(0)=1 .
$$

(ii) Show that the unique solution of

$$
\lambda^{\prime}+\lambda^{2}+\kappa=0
$$

with $\lambda \sim \frac{1}{r}$ as $r \rightarrow 0$ is $\operatorname{ct}_{\kappa}(r)=\frac{\operatorname{sn}_{\kappa}^{\prime}(r)}{\mathrm{sh}_{\kappa}(r)}$.
(iii) Identify the complete Riemannian manifold (M_{κ}, g_{κ}) which contains ($0, R_{\kappa}$) $\times S^{n-1}$ endowed with the metric $d r^{2}+\operatorname{sn}_{\kappa}^{2}(r) g_{S^{n-1}}$ as a dense open set. Here $R_{\kappa}=\frac{\pi}{\sqrt{\kappa}}$ if $\kappa>0$ and $R_{\kappa}=\infty$ otherwise.

Exercise 31. Let (M^{n}, g) be a complete Riemannian manifold with non-negative Ricci curvature. Show that if there exists $p \in M$ such that

$$
\lim _{r \rightarrow \infty} \frac{\operatorname{Vol}_{g}(B(p, r))}{\omega_{n} r^{n}}=1
$$

then $\left(M^{n}, g\right)$ is isometric to flat space $\left(\mathbb{R}^{n}, g_{E u c l}\right)$. (Hint: what can you say about S in the proof of Theorem 3.1?)
Exercise 32. Let $\left(M^{n}, g\right)$ be an ALE manifold asymptotic to \mathbb{R}^{n} / Γ with $\operatorname{Ric}(g) \geq 0$. You are going to show that M has finite fundamental group.
(i) Show that either M is isometric to \mathbb{R}^{n} or it does not carry parallel 1-forms. (Hint: use Exercise 31 to show that either M is isometric to \mathbb{R}^{n} or $\Gamma \neq\{1\}$; in the latter case use the fact that Γ cannot preserve any vector in \mathbb{R}^{n}.)
(ii) Observe that $\pi_{1}(M \backslash K)$ is finite for every large enough compact set $K \subset M$.
(iii) Show that $\pi_{1}(M \backslash K) \rightarrow \pi_{1}(M)$ is surjective. (Hint: if not construct a finite cover of M with at least two ALE ends and use Theorem 2.4 and part (a).)
Exercise 33. In this exercise we construct the minimal resolution of $\mathbb{C}^{2} / \mathbb{Z}_{2}$ and compare it with its smoothing.
(i) Identify $\mathbb{C}^{2} / \mathbb{Z}_{2}$ with the hypersurface X of equation $x y+z^{2}=0$ in \mathbb{C}^{3}. (Hint: consider invariant polynomials.)
(ii) Define \widetilde{X} as the strict transform of X in the blow-up of \mathbb{C}^{3} at the origin. Show that \tilde{X} is smooth and that the exceptional locus of the resolution $\pi: \widetilde{X} \rightarrow X$ is a rational curve Σ.
(iii) Let $\mathrm{Bl}_{0} \mathbb{C}^{2}$ denote the blow-up of \mathbb{C}^{2} at the origin. Show that $\mathrm{Bl}_{0} \mathbb{C}^{2} \rightarrow \widetilde{X}$ is a double cover branched along the exceptional curve Σ.
(iv) Deduce that $\Sigma \cdot \Sigma=-2$ and therefore that $\widetilde{X}=T^{*} \mathbb{C P}^{1}$. (Hint: $\mathrm{Bl}_{0} \mathbb{C}^{2}$ and $T^{*} \mathbb{C P}^{1}$ are the holomorphic line bundles $\mathcal{O}(-1)$ and, respectively, $\mathcal{O}(-2)$ over $\mathbb{C P}^{1}$.)
(v) A different way to desingularise X is to consider the smooth hypersurface X_{t} for $t \in \mathbb{C}^{*}$ defined by the equation $x y+z^{2}=t$ in \mathbb{C}^{3}. You are going to show that X_{1} is diffeomorphic to \tilde{X}.

- Show that there exists a linear change of variables in \mathbb{C}^{3} such that X_{1} is defined by the equation $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=1$.
- Writing $z_{a}=x_{a}+i y_{a}, a=1,2,3$, identify X_{1} with $T S^{2}$, the tangent bundle of the unit 2 -sphere in \mathbb{R}^{3}.
- Deduce that X_{1} is diffeomorphic to \widetilde{X}.

Exercise 34. Let \mathbb{H}^{2} be endowed with the flat hyperkähler structure $\boldsymbol{\omega}$ and consider the action of $\mathrm{U}(1) \subset \mathrm{Sp}(2)$ on \mathbb{H} defined by $e^{i \theta} \cdot\left(q_{1}, q_{2}\right)=\left(e^{i \theta} q_{1}, e^{i \theta} q_{2}\right)$. Denote by ξ the vector field generating this $\mathrm{U}(1)$-action and define $\boldsymbol{\mu}: \mathbb{H}^{2} \rightarrow \operatorname{Im} \mathbb{H}$ by $\boldsymbol{\mu}\left(q_{1}, q_{2}\right)=\bar{q}_{1} i q_{1}+\bar{q}_{2} i q_{2}$.
(i) Show that $d \boldsymbol{\mu}=\boldsymbol{\omega}(\xi, \cdot)$.
(ii) Fix a direction, say i, in $\operatorname{Im} \mathbb{H}$ and split $\boldsymbol{\mu}=\mu_{\mathbb{R}} \oplus \mu_{c}$ according to the decomposition $\operatorname{Im} \mathbb{H}=\mathbb{R} \oplus \mathbb{C}$. Show that for every $\left(\zeta_{\mathbb{R}}, \zeta_{c}\right) \in \mathbb{R} \oplus \mathbb{C}$ there is a bijection $\mu_{c}^{-1}\left(\zeta_{c}\right) / \mathbb{C}^{*} \simeq$ $\mu_{\mathbb{R}}^{-1}\left(\zeta_{\mathbb{R}}\right) \cap \mu_{c}^{-1}\left(\zeta_{c}\right) / \mathrm{U}(1)$. Here the action of \mathbb{C}^{*} on \mathbb{H}^{2} extends in the obvious way the action of $\mathrm{U}(1)$, i.e. if we identify \mathbb{H}^{2} with \mathbb{C}^{4} by writing $q_{a}=z_{a}+\bar{w}_{a} j$ for $a=1,2$ then $t \cdot\left(z_{1}, w_{1}, z_{2}, w_{2}\right)=\left(t z_{1}, t^{-1} w_{1}, t z_{2}, t^{-1} w_{2}\right)$.
(iii) Use part (b) to identify $\boldsymbol{\mu}^{-1}\left(0, \zeta_{c}\right) / \mathrm{U}(1)$ with the affine variety of equation $x y+z\left(z-\zeta_{c}\right)=0$ in \mathbb{C}^{3}.
(iv) Identify $\boldsymbol{\mu}^{-1}(\zeta, 0) / \mathrm{U}(1)$ with $T^{*} \mathbb{C P}^{1}$ and relate the parameter ζ to the area of the zerosection.

Exercise 35. In this exercise we work with the notation introduced in the proof of Theorem 3.6. Let $D=\mathbb{C P}^{1} \times \mathbb{C P}^{1}$ be endowed with its standard Kähler Einstein metric ω_{1}, i.e. ω_{1} is the sum of (appropriate multiples) of the area forms of the two factors. Observe that D carries a closed primitive $(1,1)$-form ω_{0}, the difference between the area forms of the two factors. Normalise ω_{0} so that $\omega_{0}^{2}=-\omega_{1}^{2}$.
(i) Show that $\pi^{*} \omega_{0} \wedge \pi^{*} \omega_{1}=0=\pi^{*} \omega_{0} \wedge\left(\omega_{2}+i \omega_{3}\right)$.
(ii) Show that for every $-a<b<a$ there exists a complete CY metric $\omega_{a, b}$ on K_{D} with $[\omega]=a\left[\omega_{1}\right]+b\left[\omega_{0}\right]$ under the isomorphism $H^{2}\left(K_{D}\right) \simeq H^{2}(D)$. (Hint: try $\omega_{a, b}=a \pi^{*} \omega_{1}+$ $b \pi^{*} \omega_{0}+d\left(\frac{1}{2} u^{2} \eta\right)$ with $u=u(r)$ satisfying $u(0)=0$.)
(iii) Show that $\omega_{a, b}$ is AC asymptotic to C with rate 6 if $b=0$ and rate 2 otherwise. Here we say that (M, g) is asymptotic to $\left(\mathrm{C}, g_{\mathrm{C}}\right)$ with rate $\tau>0$ if there exists a compact set $K \subset M, R>0$ and a diffeomorphism $f:(R, \infty) \times \Sigma \rightarrow M$ such that

$$
\left|\nabla^{k}\left(g_{\mathrm{C}}-f^{*} g\right)\right|_{g_{\mathrm{C}}}=O\left(r^{-\tau-k}\right) \text { for all } k \geq 0
$$

References

[1] Werner Ballmann. Lectures on Kähler manifolds. ESI Lectures in Mathematics and Physics. European Mathematical Society (EMS), Zürich, 2006.
[2] Helga Baum, Thomas Friedrich, Ralf Grunewald, and Ines Kath. Twistors and Killing spinors on Riemannian manifolds, volume 124 of Teubner-Texte zur Mathematik [Teubner Texts in Mathematics]. B. G. Teubner Verlagsgesellschaft mbH, Stuttgart, 1991. With German, French and Russian summaries.
[3] Arnaud Beauville. Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differential Geom., 18(4):755-782 (1984), 1983.
[4] Arthur L. Besse. Einstein manifolds. Classics in Mathematics. Springer-Verlag, Berlin, 2008. Reprint of the 1987 edition.
[5] Robert Bryant. Recent advances in the theory of holonomy. Astérisque, (266):Exp. No. 861, 5, 351-374, 2000. Séminaire Bourbaki, Vol. 1998/99.
[6] S. K. Donaldson. Two-forms on four-manifolds and elliptic equations. In Inspired by S. S. Chern, volume 11 of Nankai Tracts Math., pages 153-172. World Sci. Publ., Hackensack, NJ, 2006.
[7] Nigel Hitchin. The geometry of three-forms in six dimensions. J. Differential Geom., 55(3):547-576, 2000.
[8] Daniel Huybrechts. Complex geometry. Universitext. Springer-Verlag, Berlin, 2005. An introduction.
[9] Dominic D. Joyce. Riemannian holonomy groups and calibrated geometry, volume 12 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, 2007.
[10] H. Blaine Lawson, Jr. and Marie-Louise Michelsohn. Spin geometry, volume 38 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1989.
[11] Johannes Nordström. Deformations and gluing of asymptotically cylindrical manifolds with exceptional holonomy. PhD thesis, University of Cambridge, Cambridge, 2008.
[12] Peter Petersen. Riemannian geometry, volume 171 of Graduate Texts in Mathematics. Springer, Cham, third edition, 2016.
[13] Simon Salamon. Riemannian geometry and holonomy groups, volume 201 of Pitman Research Notes in Mathematics Series. Longman Scientific \& Technical, Harlow; copublished in the United States with John Wiley \& Sons, Inc., New York, 1989.

[^0]: Date: 24th January 2022.

