
NON-COMPACT HYPERKÄHLER MANIFOLDS

1. References

General references are [2], [11] and [16]. They all contain chapters on hyperkähler manifolds and
of course a lot more. A general reference on hyperkähler manifolds which contains most of what I
talked about is the survey paper [10].

At the beginning of the course I talked about Riemannian holonomy groups: you can find more
about this in [2, Chapter 10], [11, Chapters 2 and 3] and the survey paper [3].

The first examples of hyperkähler manifolds due to Calabi are described in the seminal paper [4]
and Beauville’s compact examples (together with results about the structure of compact Kähler
Ricci-flat manifolds) are in [1]. (Unfortunately both these papers are in French!)

For basics on Einstein 4–manifolds and self-duality, read [2, Section 6.D and Chapter 13].
Twistor spaces of hyperkähler manifolds and the hyperkähler quotient construction are very

nicely explained in [8].
Kronheimer’s construction and classification of ALE spaces is explained in [10]. I couldn’t find

a nice description of the Taub–NUT metric and the Gibbons–Hawking construction except maybe
for [7, Construction 2.3 in §2] (this paper discusses a limit of the Ricci-flat Kähler metric on a K3
different from the orbifold limit of the Kummer construction).

Finally, [6] gives the Kummer construction of the Kähler Ricci-flat metric on K3.

2. Exercises

Exercise 2.1. Let P be the Lie group SU(2) and G the subgroup U(1) embedded in SU(2) as
the diagonal matrices, eit 7→ Mt = diag (eit, e−it). Then P/G ' S2 and SU(2) → S2 is a principal
U(1)–bundle.

(i) Identify SU(2) with S3 = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1} via g : (z1, z2) 7−→
(

z1 z2
−z2 z1

)
.

A basis {η1, η2, η3} of left invariant 1–forms on SU(2) is defined by g−1dg = η1σ1 + η2σ2 +
η3σ3, where

σ1 = 1
2

(
0 i
i 0

)
σ2 = 1

2

(
0 1
−1 0

)
σ3 = 1

2

(
i 0
0 −i

)
is a basis of su2. Calculate η1, η2, η3. (If you prefer, instead of complex coordinates (z1, z2)
you can using Euler angles

(z1, z2) =
(
e

i
2 (θ+ψ) cos

(
φ
2

)
, e

i
2 (θ−ψ) sin

(
φ
2

))
,

θ ∈ [0, 2π), φ ∈ [0, π) and ψ ∈ [0, 4π).)
(ii) Prove that η3 : TS3 → R defines a connection on the principal bundle S3 → S2.
(iii) Let λ : U(1) × C → C be the representation of U(1) of weight m ∈ Z, λ(eit, z) = eimtz.

Define the complex line bundle O(m)→ S2 as O(m) = SU(2)×λ C := (P ×C)/ ∼λ, where
(A, z) ∼λ (A′, z′) iff (A′, z′) = (AMt, e

imtz). Describe the space of sections of O(m). (Hint:
interpret a section f ofO(m) as a function f : S3 → C satisfying a certain U(1)–equivariance
property.)

Exercise 2.2. Prove that the holonomy group of the round sphere (Sn, ground) is SO(n).
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Exercise 2.3. Construct a metric g on R4 with the following properties: g is flat outside the
union of two disjoint balls; each point x ∈ R4 has a neighbourhood Ux such that the holonomy of
g restricted to Ux is contained in U(2); however, globally Hol(g) = SO(4).

Remark. The exercise above shows that in general the holonomy group of a Riemannian metric
cannot be calculated locally. However, if the metric g is real analytic (for example if it is Einstein),
then the holonomy is completely determined by looking at a neighbourhood of a point.

Exercise 2.4. Show that an SU(m) structure (g, ω,Ω) on manifold M2m is torsion-free iff dω =
0 = dΩ.

Exercise 2.5. Show that Sp(m) is a compact, connected and simply connected Lie group. Calcu-
late its dimension. (Hint: use the fact that Sp(1) = SU(2) and S4m−1 = Sp(m)/Sp(m− 1).)

Exercise 2.6. Work out all the possibilities for the holonomy group of a simply connected Kähler
Ricci flat manifold of real dimension 8. (Hint: the only Ricci flat symmetric space is Rn.)

Exercise 2.7. Let X be a complex manifold of complex dimension m + 1, m ≥ 2, such that the
anticanonical bundle K−1

X is ample. Consider a smooth anticanonical divisor M ∈ | −KX |.
(i) Show that X has finite fundamental group. (Hint: use Calabi Conjecture to prove that X

admits a Kähler metric with positive Ricci curvature.)
(ii) Since K−1

X is ample, Kodaira Vanishing Theorem says that hp,0(X) = 0 for all p > 1
and therefore the holomorphic Euler characteristic χ(X,OX) :=

∑m+1
p=0 (−1)ph0,p(X) = 1.

Deduce that X is simply connected. (Hint: look at how the holomorphic characteristic
behaves under finite coverings.)

(iii) Use Lefschetz Hyperplane Theorem to deduce that M is also simply connected.
(iv) Use the Adjunction Formula to show that KM is trivial.
(v) Use the exact sequence

0→ KX → OX → OM → 0
and the fact that H i(X,KX) = 0 for all i ≤ m (by Nakano Vanishing Theorem) to show
that hp,0(M) = 0 for all 0 < p < m.

(vi) Deduce that M admits a metric g with Hol(g) = SU(m).
(vii) Justify the fact that a hypersurface of degreem+2 in CPm+1 admits a metric with holonomy

equal to SU(m).

Exercise 2.8. Let V be a 4–dimensional vector space endowed with a positive definite inner
product and a volume form dv ∈ Λ4V ∗.

(i) Using dv and the wedge product define a non-degenerate pairing q on Λ2V ∗. Show that q
has signature (3, 3). Let Λ±V ∗ be maximal positive/negative subspaces of (Λ2V ∗, q).

(ii) Show that the induced action of SL(V ) ' SL(4,R) (i.e. the matrices that preserve dv) on
Λ2V ∗ defines a double cover SL(4,R) → SO(3, 3). Restricting to compact subgroups, we
see that SO(4)→ SO(3)+ × SO(3)− is a double-cover; here SO(3)± is the induced action
of SO(4) on Λ±V ∗.

(iii) Identify V with H and SU(2) with the unit sphere S3 ⊂ H. Define a map SU(2)×SU(2)×H,
by (q1, q2, x) 7→ q1xq2 (using quaternionic multiplication). Show that this defines a double
cover SU(2)+ × SU(2)− → SO(4).

(iv) Show that this induces a double cover of U(1) × SU(2)− → U(2), where U(1) ⊂ SU(2)+

are the diagonal matrices.
(v) Show that U(2) acts on Λ−V ∗ as SO(3)− and on Λ+V ∗ as the subgroup SO(2) ⊂ SO(3)+

preserving the standard Kähler form ω1 on H ' C2.
(vi) Deduce that on a Kähler surface (M,ω), Λ+M = JΛ2,0MK ⊕ Rω and Λ−M = JΛ1,1

0 MK,
where Λ1,1

0 M are the (1, 1)-forms on TxM orthogonal to ω. (Hint: use the identifications
Λ2V ∗ ' so(4), JΛ1,1V K ' u(2).)
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Exercise 2.9. Let M be a hypersurface of degree d in CP3. Denote with h ∈ H2(CP3,Z) the class
dual to a hyperplane, i.e. h = c1(H), where H is the line bundle O(1) over CP3. The total Chern
class c = 1 + c1 + c2 + c3 of CP3 is c(CP3) = (1 + h)4 (where of course hn = 0 for all n ≥ 4). Use
the exact sequence

0→ TM → TCP3|M → O(d)|M → 0
to calculate the total Chern class ofM (here TX is the holomorphic tangent bundle of the complex
manifold X).

Exercise 2.10. Let M be a quartic surface in CP3.
(i) Using the previous exercise, find the top Chern class c2(M).
(ii) Show that M has Euler characteristic χ(M) = 24. (Hint: the Euler class e(M) is equal to

c2(M).)
(iii) Show that b2(M) = 22. (Hint: M is simply connected by the Lefschetz Hyperplane The-

orem.)
(iv) Use the fact that M has holonomy SU(2) to calculate h2,0(M) = h0,2(M) and h1,1(M).
(v) Show that b+(M) = 3 and b−(M) = 19. (Hint: use Exercise 8.)

Exercise 2.11. An oriented Riemannian 4–manifold is called anti-self-dual (ASD) if W+ = 0. Let
M be a compact ASD manifold with Scal = 0.

(i) Use the Weitzenböck formula 4α = ∇∗∇α−2W+(α) + Scal
3 α for α ∈ Ω+(M), to show that

every harmonic self-dual form on M is parallel.
(ii) Deduce that either b+(M) = 0, or b+(M) = 1 and M is Kähler, or b+(M) = 3 and M is

hyperkähler. (Hint: you can use the fact that U(2) is precisely the subgroup of SO(4) that
fixes a self-dual form and the group that fixes a plane in Λ+(R4)∗ is precisely SU(2).)

Exercise 2.12. In the lectures we saw that the twistor space of S4 is CP3. Deduce from this that
the twistor space of R4 is the total space of O(1)⊕O(1)→ CP1. (Hint: write R4 = S4 \ {∞} and
use the conformal invariance of the twistor space.)

Exercise 2.13. Fix a positive number λ 6= 1. Think of M = S3×S1 as (R4 \ {0})/Z, where Z acts
via n · x = λnx.

(i) Show that the twistor space Z̃ of R4 \ {0} is CP3 \ {`0, `∞} where `0 = {z0 = 0 = z1} and
`∞ = {z2 = 0 = z3} in homogeneous coordinates [z0 : z1 : z2 : z3]. Furthermore, show that
Z̃ admits a holomorphic projection onto CP1. Why does such a projection have to exist?

(ii) Consider the matrix A = diag (1, 1, λ, λ). Show that the action of Z on CP3 given by
n · [z] = [Anz] restricts to Z̃ to give a covering of the action of Z on R4 \ {0}. Deduce that
the twistor space of S3 × S1 is Z̃/Z.

(iii) From part (i) there exists a holomorphic projection π : Z → CP1 whose fibres are complex
manifolds (S3 × S1, J) (Hopf surfaces). Show that these are never Kähler manifolds.

Exercise 2.14. LetM = T ∗R3 be endowed with the canonical symplectic form ω =
∑3
i=1 dxi ∧ dyi,

where (x1, x2, x3) are coordinates on R3 and y is the 1–form y1dx1 + y2dx2 + y3dx3.
(i) Show that the moment map for the action of G = R3 by translations on R3 is µ(x, y) = y.
(ii) Show that the moment map for the action of G = SO(3) by rotations onM is µ(x, y) = x×y

after identifying so(3) with R3.

Exercise 2.15. Suppose thatM is a (complete non-compact) hyperkähler manifold and that U(1)
acts freely on M by isometries preserving ω1 and rotating ω2, ω3. In other words, if X denotes the
vector field onM generating the U(1)–action, then LXg = 0 = LXω1, LXω2 = ω3 and LXω3 = −ω2.
Furthermore, assume that there exists a moment map µ : M → u(1)∗ ' R for the U(1)–action on
(M,ω1).

(i) Show that µ is a global Kähler potential for the Kähler forms ω2 and ω3.
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(ii) Can you apply this to Calabi’s metric on M = T ∗CPn? Let J1 be the standard complex
structure on M (the one that identifies it with the complex manifold T ∗CPn); can (M,J1)
be biholomorphic to (M,J2) or (M,J3)?

Exercise 2.16. Show that the Taub–NUT metric can be obtained as the hyperkähler quotient of
C2 × C∗ × C with respect to the U(1)–action eiθ · (z1, z2, w1, w2) = (eiθz1, e

−iθz2, e
iθw1, w2). Here

C2 × C∗ × C is endowed with the hyperkähler structure

ω1 = i

2

(
dz1 ∧ dz1 + dz2 ∧ dz2 + dw1

w1
∧ dw1
w1

+ dw2 ∧ dw2

)
,

ω2 + iω3 = dz1 ∧ dz2 + dw1
w1
∧ dw2.

Exercise 2.17. Consider the multi-Taub-NUT manifold (M, g) obtained by the Gibbons–Hawking
construction with the harmonic function h =

∑n
i=1

1
2|x−pi| . Suppose for simplicity that pi = (ai, 0, 0)

with ai < ai+1.
(i) Show that M is simply connected and its second homology is generated by (n− 1) spheres

of self-intersection −2 and which mutually intersect according to the Dynkin diagram An−1.
(ii) Show that there exists a complex structure on M compatible with the metric such that all

these spheres are holomorphic (and in particular minimal submanifolds).
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