NON-COMPACT HYPERKAHLER MANIFOLDS

1. REFERENCES

General references are 2], [11] and [16]. They all contain chapters on hyperkéhler manifolds and
of course a lot more. A general reference on hyperkahler manifolds which contains most of what I
talked about is the survey paper [10].

At the beginning of the course I talked about Riemannian holonomy groups: you can find more
about this in |2, Chapter 10], [11, Chapters 2 and 3| and the survey paper [3].

The first examples of hyperkdhler manifolds due to Calabi are described in the seminal paper [4]
and Beauville’s compact examples (together with results about the structure of compact Kéahler
Ricci-flat manifolds) are in [1]. (Unfortunately both these papers are in French!)

For basics on Einstein 4-manifolds and self-duality, read [2, Section 6.D and Chapter 13].

Twistor spaces of hyperkédhler manifolds and the hyperkédhler quotient construction are very
nicely explained in [8].

Kronheimer’s construction and classification of ALE spaces is explained in [10]. I couldn’t find
a nice description of the Taub—NUT metric and the Gibbons—-Hawking construction except maybe
for |7, Construction 2.3 in §2] (this paper discusses a limit of the Ricci-flat Kédhler metric on a K3
different from the orbifold limit of the Kummer construction).

Finally, [6] gives the Kummer construction of the Kéhler Ricci-flat metric on K3.

2. EXERCISES

Exercise 2.1. Let P be the Lie group SU(2) and G the subgroup U(1) embedded in SU(2) as
the diagonal matrices, e — M; = diag (¢!, e~ ). Then P/G ~ S? and SU(2) — S? is a principal
U(1)-bundle.
(i) Identify SU(2) with S3 = {(21, 20) € C?||21]? +|22|? = 1} via g: (21, 22) — < _2;2 2 )
A basis {n1,12,13} of left invariant 1-forms on SU(2) is defined by g~'dg = nio1 + 202 +
1303, where

170 1/ 0 1 1/ 0
a1=5\0 i 0) 2730 -1 0 B3=5\0 —i

is a basis of suy. Calculate 71,7m2,73. (If you prefer, instead of complex coordinates (21, 22)
you can using Euler angles

(21, 22) = (e%’<0+w> cos (g)jegw—w) sin (%)) ’

0 €[0,2m), ¢ € [0,7) and ¢ € [0,47).)

(ii) Prove that n3: TS® — R defines a connection on the principal bundle S3 — S2.

(iii) Let A: U(1) x C — C be the representation of U(1) of weight m € Z, A\(e%,2) = e™™z.
Define the complex line bundle O(m) — S? as O(m) = SU(2) x, C := (P x C)/ ~, where
(A, 2) ~y (A, 2)) iff (A, 2") = (AMy, €™ 2). Describe the space of sections of O(m). (Hint:
interpret a section f of O(m) as a function f: S* — C satisfying a certain U (1)-equivariance
property.)

Exercise 2.2. Prove that the holonomy group of the round sphere (S", ground) is SO(n).
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Exercise 2.3. Construct a metric g on R* with the following properties: g¢ is flat outside the
union of two disjoint balls; each point # € R* has a neighbourhood U, such that the holonomy of
g restricted to U, is contained in U(2); however, globally Hol(g) = SO(4).

Remark. The exercise above shows that in general the holonomy group of a Riemannian metric
cannot be calculated locally. However, if the metric g is real analytic (for example if it is Einstein),
then the holonomy is completely determined by looking at a neighbourhood of a point.

Exercise 2.4. Show that an SU(m) structure (g,w,(2) on manifold M?™ is torsion-free iff dw =
0= dQ.

Exercise 2.5. Show that Sp(m) is a compact, connected and simply connected Lie group. Calcu-
late its dimension. (Hint: use the fact that Sp(1) = SU(2) and S*™~! = Sp(m)/Sp(m — 1).)

Exercise 2.6. Work out all the possibilities for the holonomy group of a simply connected Kéhler
Ricci flat manifold of real dimension 8. (Hint: the only Ricci flat symmetric space is R™.)

Exercise 2.7. Let X be a complex manifold of complex dimension m + 1, m > 2, such that the
anticanonical bundle K)_(1 is ample. Consider a smooth anticanonical divisor M € | — Kx]|.

(i) Show that X has finite fundamental group. (Hint: use Calabi Conjecture to prove that X
admits a Kéhler metric with positive Ricci curvature.)

(ii) Since Ky' is ample, Kodaira Vanishing Theorem says that h?*(X) = 0 for all p > 1
and therefore the holomorphic Euler characteristic x(X,Ox) := Z;”jol (—-1)PROP(X) = 1.
Deduce that X is simply connected. (Hint: look at how the holomorphic characteristic
behaves under finite coverings.)

(iii) Use Lefschetz Hyperplane Theorem to deduce that M is also simply connected.

(iv) Use the Adjunction Formula to show that Ky is trivial.

(v) Use the exact sequence

O—)Kx—>OX—>OM—>0
and the fact that H'(X,Ky) = 0 for all i < m (by Nakano Vanishing Theorem) to show
that hPP(M) = 0 for all 0 < p < m.

(vi) Deduce that M admits a metric g with Hol(g) = SU(m).

(vii) Justify the fact that a hypersurface of degree m+2 in CP™*! admits a metric with holonomy
equal to SU(m).

Exercise 2.8. Let V be a 4-dimensional vector space endowed with a positive definite inner
product and a volume form dv € A*V*.

(i) Using dv and the wedge product define a non-degenerate pairing ¢ on A?V*. Show that ¢
has signature (3,3). Let A¥V* be maximal positive/negative subspaces of (A2V*, q).

(ii) Show that the induced action of SL(V') ~ SL(4,R) (i.e. the matrices that preserve dv) on
A2V* defines a double cover SL(4,R) — SO(3,3). Restricting to compact subgroups, we
see that SO(4) — SO(3)* x SO(3)~ is a double-cover; here SO(3)* is the induced action
of SO(4) on ATV*.

(iii) Identify V with H and SU(2) with the unit sphere S* C H. Define a map SU(2) x SU(2) x H,
by (q1,q2,x) — q12gz (using quaternionic multiplication). Show that this defines a double
cover SU(2)T x SU(2)™ — SO(4).

(iv) Show that this induces a double cover of U(1) x SU(2)~ — U(2), where U(1) C SU(2)"
are the diagonal matrices.

(v) Show that U(2) acts on A~ V* as SO(3)~ and on ATV* as the subgroup SO(2) C SO(3)*
preserving the standard Kahler form w; on H ~ C2.

(vi) Deduce that on a Kéhler surface (M,w), A*M = [A>°M] @ Rw and A~ M = [[A(l)’lM]],
where A(l)’lM are the (1,1)-forms on T, M orthogonal to w. (Hint: use the identifications
A2V* ~ s0(4), [AMV] ~u(2).)
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Exercise 2.9. Let M be a hypersurface of degree d in CP?. Denote with h € H?(CP3,Z) the class
dual to a hyperplane, i.e. h = ¢ (H), where H is the line bundle O(1) over CP?. The total Chern
class ¢ = 1 + ¢; + 3 + ¢3 of CP? is ¢(CP3) = (1 + h)* (where of course h™ = 0 for all n > 4). Use
the exact sequence

0—TM — TCP?| 3y — O(d)|pr — 0

to calculate the total Chern class of M (here T'X is the holomorphic tangent bundle of the complex
manifold X).

Exercise 2.10. Let M be a quartic surface in CP3.

(i) Using the previous exercise, find the top Chern class ca(M).
(ii) Show that M has Euler characteristic x(M) = 24. (Hint: the Euler class e(M) is equal to
ca(M).)
(iii) Show that ba(M) = 22. (Hint: M is simply connected by the Lefschetz Hyperplane The-
orem.)
(iv) Use the fact that M has holonomy SU(2) to calculate h?0(M) = h%2(M) and hb1(M).
(v) Show that b* (M) = 3 and b~ (M) = 19. (Hint: use Exercise 8.)

Exercise 2.11. An oriented Riemannian 4-manifold is called anti-self-dual (ASD) if W+ = 0. Let
M be a compact ASD manifold with Scal = 0.

(i) Use the Weitzenbock formula Aa = V*Va —2W ™ () + %a for « € QT (M), to show that
every harmonic self-dual form on M is parallel.

(ii) Deduce that either b* (M) = 0, or b* (M) = 1 and M is Kéhler, or bt (M) = 3 and M is
hyperkéhler. (Hint: you can use the fact that U(2) is precisely the subgroup of SO(4) that
fixes a self-dual form and the group that fixes a plane in A*(R*)* is precisely SU(2).)

Exercise 2.12. In the lectures we saw that the twistor space of S* is CP?. Deduce from this that
the twistor space of R* is the total space of O(1) ® O(1) — CP'. (Hint: write R* = S*\ {co0} and
use the conformal invariance of the twistor space.)

Exercise 2.13. Fix a positive number A # 1. Think of M = S? x S as (R*\ {0})/Z, where Z acts
via n-x = A"x.
(i) Show that the twistor space Z of R*\ {0} is CP3\ {{g, loo} where £y = {29 =0 = 2} and
loo = {22 = 0 = z3} in homogeneous coordinates [zp : z1 : 22 : z3]. Furthermore, show that
Z admits a holomorphic projection onto CP'. Why does such a projection have to exist?
(ii) Consider the matrix A = diag(1,1,\,A). Show that the action of Z on CP? given by
n - [z] = [A"2] restricts to Z to give a covering of the action of Z on R*\ {0}. Deduce that
the twistor space of S® x S! is Z/Z.
(iii) From part (i) there exists a holomorphic projection 7: Z — CP! whose fibres are complex
manifolds (S® x S, J) (Hopf surfaces). Show that these are never Kihler manifolds.

Exercise 2.14. Let M = T*R? be endowed with the canonical symplectic form w = ;”:1 dx; N\ dy;,
where (x1,x2,x3) are coordinates on R? and y is the 1-form y1dx1 + yodxs + ysdxs.

(i) Show that the moment map for the action of G = R? by translations on R? is u(z,y) = y.
(ii) Show that the moment map for the action of G = SO(3) by rotations on M is p(z,y) = zxy
after identifying s0(3) with R3.

Exercise 2.15. Suppose that M is a (complete non-compact) hyperkéhler manifold and that U(1)
acts freely on M by isometries preserving w; and rotating wo,ws. In other words, if X denotes the
vector field on M generating the U(1)—action, then Lxg = 0 = Lxw1, Lxws = w3 and Lxws = —ws.
Furthermore, assume that there exists a moment map p: M — u(1)* ~ R for the U(1)-action on
(M, wl).

(i) Show that u is a global Kéahler potential for the Kéhler forms ws and ws.
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(ii) Can you apply this to Calabi’s metric on M = T*CP"? Let J; be the standard complex
structure on M (the one that identifies it with the complex manifold T*CP"); can (M, J)
be biholomorphic to (M, J2) or (M, J3)?

Exercise 2.16. Show that the Taub-NUT metric can be obtained as the hyperkéhler quotient of
C? x C* x C with respect to the U(1)-action € - (21, 20, w1, w2) = (21, e 29, ePwy, wy). Here
C? x C* x C is endowed with the hyperkihler structure
. d Jw
wp = 1 (le A dzq +d2’2/\d2’2+wl/\w1+d’u)2/\dw2> R
2 w1 w1

dw
wo +twg = dz ANdzo + bkt A dws.
w1

Exercise 2.17. Consider the multi-Taub-NUT manifold (M, g) obtained by the Gibbons—Hawking
construction with the harmonic function h = ;" ; m. Suppose for simplicity that p; = (a;, 0, 0)
with a; < a;41.
(i) Show that M is simply connected and its second homology is generated by (n — 1) spheres
of self-intersection —2 and which mutually intersect according to the Dynkin diagram A,,_;.
(ii) Show that there exists a complex structure on M compatible with the metric such that all
these spheres are holomorphic (and in particular minimal submanifolds).
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