
INTRODUCTION TO GAUGE THEORY

LORENZO FOSCOLO

1. Bundles, connections and curvature

• M smooth manifold + G Lie group with Lie algebra g
• principal G–bundle P over M

– smooth manifold P
– free right G–action R : P × G → P
– smooth projection to orbit space π : P → M = P/G
– local G-equivariant trivialisations π−1(U) ≃ U × G

• gauge group G = Aut(P )
• principal bundles and vector bundles

– representation ρ : G → GL(V ) ❀ vector bundle E = P ×ρ V
e.g. ρ = Ad ❀ adjoint bundle ad P

– G = stabiliser of φ0 ∈
r V ⊗

s V ∗, (E, φ) modelled on (V, φ0) ❀ principal G–bundle
of φ–adapted frames

• Examples: Hopf circle bundle S3 → S1, quaternionic Hopf bundle S7 → S4, frame bundle
Exercise 5.1

• A connection on π : P → M is a G–invariant splitting TP = ker π∗ ⊕ H of
0 → ker π∗ → TP → π∗TM → 0

H is called the horizontal subspace
• Since ker π∗ ≃ P × g, a connection is a 1-form A : TP → g such that R∗

gA = Ad(g−1)A
– Product/trivial connection on M × G induced from identification TG ≃ G × g
– loc. trivialisation P |U ≃ U × G: A = trivial + a for a g-valued 1-form a on U
– change trivialisation given by u : U → G ❀ A = trivial + u−1du + u−1au

• infinite-dimensional affine space A of connections on P modelled on Ω1(M ; ad P )
Note: action of gauge group G on A by pull-back

Exercise 5.2

• horizontal lift XH of a vector field X on M : the unique G–invariant vector field on P such
that XH ∈ H ⊂ TP at every point of P and π∗XH = X

• parallel transport of A
– hor. lift of path γ in M : path γ in P such that π ◦ γ = γ and γ′(t) ∈ Hγ(t) ∀t

– ∀ h ∈ π−1(γ(0)) ∃! hor. lift ❀ parallel transport Πγ : π−1(γ(0)) → π−1(γ(1))
– γ loop ❀ Πγ = Rg for some g ∈ G

• curvature FA ∈ Ω2(M ; ad P ) of A
– π∗FA(X, Y ) = [X, Y ]H − [XH , Y H ]
– FA = dA ◦ dA

– ∇A = d + a ❀ FA = da + a ∧ a
• A ∈ A, a ∈ Ω1(M ; ad P ): FA+a = FA + dAa + a ∧ a
• Bianchi identity: dAFA = 0
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– G–invariant polynomial p : g → R ❀ closed (2 deg p)–form p(FA) on M

– characteristic class [p(FA)] ∈ Hdeg p
dR (M ;R) independent of A

e.g. G = U(k): pi(X) = Tr(Xi) ❀ Chern classes ci(E) of complex vector bundle E

M complex manifold, E → M complex vector bundle with Hermitian metric h

• Cauchy–Riemann operator on E: C-linear map ∂E : Ω0(M ; E) → Ω0,1(M ; E) such that
∂E(fs) = ∂f ⊗ s + f ∂Es

– space of Cauchy–Riemann operators: affine space modelled on Ω0,1(M ; End E)
• connection ∇ ❀ Cauchy–Riemann operator ∂E = ∇0,1

• Chern connection: h + ∂E =⇒ ∃! unitary connection ∇ with ∂E = ∇0,1

• E → M holomorphic vector bundle with underlying smooth complex vector bundle E
– Cauchy–Riemann operator ∂E : in local holomorphic trivialisation ∂E = ∂
– Cauchy–Riemann operator ∂E ❀ sheaf of “holomorphic” sections O(E) = ker ∂E
– ∂E ◦ ∂E = 0 ⇐⇒ E has the structure of a holomorphic bundle E

Exercise 5.3

2. Flat connections

• G compact Lie group, e.g. G = U(k)
• P → M principal G–bundle
• moduli space of flat connections M = {A ∈ A | FA = 0}/G
• as sets M = Hom(π1(M), G)/G

Exercise 5.4

• fix A ∈ M and understand local structure of M near A
• introduce Banach spaces, e.g. Hölder spaces: Ak,α, Gk+1,α

• deformation complex of a flat connection A

0 → Ω0(M ; ad P ) dA−→ Ω1(M ; ad P ) dA−→ Ω2(M ; ad P ) dA−→ . . .

and cohomology groups H0
A, H1

A, H2
A

• fix metric on M ❀ Ω1(M ; ad P )k,α = im dA ⊕ ker d∗
A

– im dA: tangent space to the orbit G · A
– H0

A: Lie algebra of stabiliser G2,α
A of A

e.g. G = U(k), SU(k): Gk+1,α
A = {1} iff H0

A = 0
– Slice Theorem ❀ local structure of Ak,α/G2,α near A

Sk,α
A, /Gk+1,α

A = {A + a | a ∈ Ω1(M ; ad P )k,α, aCk,α < , d∗
Aa = 0}/Gk+1,α

A

• H1
A = {a ∈ Ω1(M ; ad P )k,α | dAa = 0 = d∗

Aa}: gauge-fided infinitesimal deformations of A
as a flat connection

• A is irreducible + H2
A = 0: Mk+1,α is a smooth manifold near A with tangent space H1

A
(smooth structure independent of α ∈ (0, 1), k ≥ 1)

Exercises 5.5, 5.6

3. The Yang–Mills functional

(M, g, vol) oriented Riemannian manifold, P → M principal G–bundle with G compact Lie group
• Yang–Mills functional on A: YM(A) =

´

M |FA|2 vol
• critical points: d∗

AFA = 0 (where d∗
A = ± ∗ dA∗)

Exercises 5.9, 5.10
Compactness:
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• Strong Uhlenbeck Compactness: Mn closed, n
2 < p < ∞ (p ≥ 4

3 if n = 2), Ai sequence
of YM connections w/ uniformly bounded FAiLp ⇒ after passing subsequence ∃ W 2,p

gauge transformations gi s.t. g∗
i Ai

C∞
−→ A∞ smooth YM connection

• Monotonicity Formula: ∃ c = c(M) s.t. ecr2
r4−n

´

Br(po) |FA|2 is increasing in r

• ❀ smooth convergence of YM connections with unformly bounded energy away from a set
of finite (n − 4)–dimensional Hausdorff measure (Uhlenbeck)

– in 4d convergence outside finitely many points
Exercise 5.11

4. Instantons

Exercise 5.12
• (M4, g) ❀ Λ2T ∗M = Λ2

+T ∗M ⊕ Λ2
−T ∗M (eingenspaces of ∗)

• A instanton/ASD connection if F +
A = 0

• YM(A) = −
´

〈FA ∧ FA〉g + 2
´

|F +
A |2 ⇒ instantons are absolute minima of YM

• moduli space M: 0 → Ω0(M ; ad P ) dA−→ Ω1(M ; ad P )
d+

A−→ Ω2
+(M ; ad P ) → 0

Exercises 5.13, 5.14
Donaldson’s Diagonalisation Theorem:

• M4 closed, smooth, oriented, simply connected w/ negative definite intersection form q
2m = {α ∈ H2(M ;Z) | q(α, α) = 1}

• P → M4 SU(2)–bundle with c2(P ) = 1
• moduli space M of instantons on P

– for generic metric g, H2,+
A = 0 for all A ∈ M and Mirr smooth

– if M ∕= ∅ then dim M = 5
– reducibles ❀ singularities p1, . . . , pm ∈ M modelled on cones CP2 over
– Mirr non-empty: ∀p ∈ M and  ≪ 1 ∃ instanton Ap, “concentrated” in B(p)

• Mirr non-empty manifold with boundary M ⊔


m CP2

• M smoothly cobordant to


m CP2 =⇒ q = −id
Exercises 5.15, 5.16

5. Exercises

Exercise 5.1. In this exercise we study principal bundles on spheres.
(i) Show/convince yourself that isomorphism classes of principal G–bundles on the sphere Sn

are in 1:1 correspondence with πn−1(G). (Hint: trivialise the bundle over two hemispheres
and consider the gluing map over the equator.)

(ii) Describe principal U(1)–bundles on S2.
(iii) Show that there are only two non-trivial SO(3)–bundles on S2. Can you describe the non-

trivial one? (Hint: think about rank 3 real vector bundles of the form R ⊕ L, where R is
the trivial real line bundle and L is a complex line bundle.)

(iv) Show that every SU(2)–bundle on S3 is trivial and that SU(2)–bundles on S4 are classified
by an integer.

(v) Show that there are only two principal SU(2)–bundles on S5. Can you describe the non-
trivial SU(2)–bundle on S5? (Hint: use the homogeneous space presentation S5 = SU(3)/SU(2).)

Exercise 5.2. Let π : P → M be a principal G–bundle with connection A and let E = P ×ρ V be
an associated vector bundle of rank k.

(i) Show that there is a 1:1 correspondence between sections s ∈ C∞(M ; E) of E and G–
equivariant V –valued functions s ∈ C∞(P ; V ) on P .
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(ii) Show that the formula s → ds|H defines a covariant derivative on E, i.e. an R–linear map
∇A : C∞(M ; E) → C∞(M ; T ∗M ⊗ E) satisfying the Leibniz rule ∇A(fs) = df ⊗ s + f∇As
for all f ∈ C∞(M) and s ∈ C∞(M ; E).

(iii) Work in a local trivialisation P |U ≃ U × G where A is given in terms of a Lie algebra
valued 1-form a on U . Note that since G is a subgroup of GL(k), a is simply a matrix
of 1-forms. Similarly, a section s of E|U is simply a smooth map s : U → Rk. Show that
∇As = ds+as, where d denotes the usual differential and as simply denotes the point-wise
action of the matrix a on the vector s.

(iv) In the same way one extends the differential d : C∞(M) → Ω1(M) of functions to the exter-
ior differential d : Ωp(M) → Ωp+1(M) of differential forms, show that the covariant derivat-
ive ∇A extends to a covariant exterior differential operator dA : Ωp(M ; E) → Ωp+1(M ; E)
for any p. Here Ωp(M ; E) denotes the space of smooth section of the vector bundle
ΛpT ∗M ⊗ E.

Exercise 5.3. This exercise is about connections and Cauchy–Riemann operators on complex
vector bundles over a complex manifold.

(i) Show the existence and uniqueness of the Chern connection. (Hint: in a unitary gauge, i.e.
one where the Hermitian metric h is standard, write ∂E = ∂ + α for some k × k–matrix of
(0, 1)–forms α, and decompose α into is Hermitian and skew-Hermitian parts.)

(ii) Show that any choice of Cauchy–Riemann operator on a complex vector bundle E over a
Riemann surface defines a holomorphic structure on E.

(iii) Let (E, h) be a Hermitian vector bundle over a complex manifold and let ∇ be a unitary
connection on E. Decompose the bundle-valued 2-form F∇ into (p, q)–types: F∇ = F 2,0

∇ +
F 1,1

∇ + F 0,2
∇ . Show that ∂E = ∇0,1 satisfies ∂E ◦ ∂E = 0 if and only if F∇ = F 1,1

∇ .

Exercise 5.4. Let π : P → M be a principal G–bundle. Denote by M the moduli space of flat con-
nections on P . You are going to show the existence of a bijection between M and Hom (π1(M), G) /G.

(i) Let γ0 and γ1 be smooth paths with same endpoints and suppose that there is a smooth
homotopy ϕ : [0, 1]2 → M between γ0 and γ1 with fixed endpoints, i.e. {φ(s, ·) : [0, 1] →
M}s is a smooth family of smooth paths in M with fixed endpoints and φ(i, ·) = γi for
i = 0, 1. Show that the parallel transports Πγ0 and Πγ1 of a flat connection A coincide.
(Hint: consider the commuting vector fields X = ϕ∗

∂
∂s and Y = ϕ∗

∂
∂t and their horizontal

lifts, and use the fact that the flows of two commuting vector fields commute.)
(ii) Deduce that there is a map Ψ : M → Hom (π1(M), G) /G.
(iii) Show that Ψ is a bijection. (Hint: for the surjectivity, let p : M → M be the universal cover

of M and consider the standard action of π1(M) on M ; for a homomorphism ρ : π1(M) →
G consider ( M × G)/π1(M), where π1(M) acts on G via ρ.)

(iv) Set G = U(1) and let M be a torus T = V/Λ for Λ a lattice in a finite-dimensional vector
space V . Let P be the trivial principal U(1)–bundle on T. By making explicit the abstract
result of part (iii), prove that flat connections on P are parametrised by the dual torus
T∨ = V ∨/Λ∨, where V ∨ is the dual vector space and Λ∨ = {α ∈ V ∨ | α(v) ∈ Z, ∀ v ∈ Λ}.

Exercise 5.5. Let (Σ, gΣ, ωΣ, jΣ) be a Riemann surface with Riemannian metric gΣ, area form ωΣ
and complex structure jΣ related by ωΣ( · , · ) = gΣ(jΣ · , · ). Let G be a compact Lie group (say,
G = SU(2)) and let P be a principal G–bundle on Σ. You are going to show that the moduli space
Mirr of irreducible flat connections on P is a Kähler manifold, as explained in a seminal paper by
Atiyah–Bott (Philos. Trans. Roy. Soc. London Ser. A, 1983).

(i) Show that if A is an irreducible flat connection then H2
A = 0, so that the moduli space

Mirr is a smooth manifold. (Hint: use Poincaré Duality.)



INTRODUCTION TO GAUGE THEORY 5

(ii) Let 〈 · , · 〉g be an Ad–invariant positive definite inner product on g (it exists by compactness
of G). For all a, b ∈ Ω1(Σ; ad P ) define

ω(a, b) =
ˆ

Σ
〈a ∧ b〉g.

Let A an irreducible flat connection. Show that restring ω to elements of H1
A = T[A]Mirr

induces a symplectic form on Mirr. (Hint: formally, the point is that Mirr is the infinite
dimensional symplectic quotient of (Airr, ω) by the action of G; indeed, the moment map
for this action is µ : Airr → Ω2(Σ; ad P ) ≃ Ω0(Σ; ad P )∗, µ(A) = FA.)

(iii) Show that ∗Σ : Ω1(Σ; ad P ) → Ω1(Σ; ad P ) preserves H1
A and defines a complex structure

on Mirr compatible with the symplectic form ω of part (i).
When G is a unitary group, a famous theorem of Narasimhan–Seshadri (cf. Donaldson, J. Differ-
ential Geom., 1983) shows that the map ∇A → ∇0,1

A identifies the complex manifold Mirr with a
moduli space of stable holomorphic vector bundles on Σ.
Exercise 5.6. Let (M, gM , volM ) be an oriented Riemannian manifold, let G be a compact Lie
group and π : P → M a principal G–bundle. Consider the complexification Gc of G with Lie algebra
gc = g⊕ ig. For example, if G = SU(2) then Gc = SL(2,C). Let P c = P ×G Gc, where G acts on Gc

by left multiplication, and observe that P c is a principal Gc–bundle. We consider flat connections
Ac on P c. The condition FAc = 0 is now preserved by the complex gauge group Gc. As the theory
of quotients in complex geometry indicates, we can only hope to define a moduli space of complex
flat connections Mc if we impose a stability condition: Mc = {Ac ∈ Ac | FAc = 0, Ac “stable”}/Gc.

(i) The construction of Mc was given by Corlette (J. Differential Geom., 1988) exploiting an
infinite dimensional Kähler quotient construction.
(a) Observe that any connection Ac on P c can be written as Ac = A+ iφ for a connection

A on P and φ ∈ Ω1(Σ; ad P c). Show that Ac is flat if and only if
FA − φ ∧ φ = 0 = dAφ.

(b) Let Ac be the infinite dimensional complex affine space of connections on P c. Use an
Ad–invariant inner product 〈 · , · 〉g on g and the complex structure on gc = g ⊕ ig to
endow Ac with a Kähler structure with Kähler form

ω(a, b) =
ˆ

M
Re 〈ia ∧ ∗M b〉g.

(Here for x = x1 + ix2 ∈ gc we define ix = −x2 + ix1 and x = x1 − ix2.)
(c) Show that G acts on Ac preserving ω and with moment map µ(Ac) = d∗

Aφ, where
Ac = A + iφ.

When G is a unitary group and we work with a complex vector bundle E, a complex
connection Ac ∈ Ac is said “stable” if there is no complex sub-bundle of E preserved by
∇Ac (in general stability is defined in terms of Ac–parallel reductions of structure group
of P c to a strict parabolic subgroup of Gc). Corlette has shown that for every stable flat
connection Ac there exists g ∈ Gc, unique up to an element of G, such that g∗Ac = A + iφ
with

(5.7) FA − φ ∧ φ = 0, dAφ = 0, d∗
Aφ = 0.

We can therefore construct Mc as the space of (irreducible) solutions to (5.7) modulo the
action of the gauge group G.

(ii) Consider the special case where (M, gM , volM ) = (Σ, gΣ, ωΣ) is a Riemann surface.
(a) Using the complex structure on Σ, write φ = Φ + Φ with Φ ∈ Ω1,0(Σ; ad P c) and Φ

its complex conjugate (using the complex structure on Σ and gc = g⊕ ig). Show that
(5.7) are then equivalent to Hitchin equations

(5.8) FA − [Φ, Φ] = 0, ∂AΦ = 0.
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(b) Show that the complex structure of Σ induces a different complex structure on Mc.
(Hint: see part (ii) of Exercise 5.5.)

In fact Mc is a hyperkähler manifold, first studied by Hitchin (Proc. London Math. Soc.,
1987). In the complex structure of part (ii).(b) it is known as the moduli space of Higgs
bundles.

Exercise 5.9. Show that an irreducible Yang–Mills connection on a 2-dimensional manifold must
be flat. (Hint: if A is a Yang–Mills connection on a surface, ∗FA is a parallel section of the adjoint
bundle.)

Exercise 5.10. Let A be a Yang–Mills connection on a principal G–bundle P over a closed manifold
(Mn, g). We say that A is stable if for every non-zero infinitesimal variation a ∈ Ω1(M ; ad P )
satisfying the gauge fixing condition d∗

Aa = 0 one has

d2

dt2 |t=0YM(At) ≥ 0,

where At is any smooth 1-parameter family of connections on P with A0 = A and d
dt |t=0At = a.

(i) Show that
d2

dt2 |t=0YM(At) = 2
ˆ

M
〈J a, a〉T ∗M⊗g volM ,

where J is the operator J a = △Aa + FA ∗ a. Here △A = dAd∗
A + d∗

AdA is the covariant
Hodge Laplacian and FA ∗a denotes the adjoint-valued 1-form given by


i [FA(ei, · ), a(ei)]

in any orthonormal frame {e1, . . . , en} on M . (Hint: for any Ad–invariant inner product
on g one has 〈X, [Y, Z]〉 = 〈[X, Y ], Z〉.)

(ii) Suppose that ω ∈ Ω2(M ; ad P ) satisfies dAω = 0 = d∗
Aω, let X be a vector field on M and

consider the adjoint-valued 1-form a = X┘ω. Show that if X = ∇f is of gradient type then

d∗
Aa = 0,

and that if X is a gradient conformal Killing field, i.e. X is of gradient type and there is
a function λ such that ∇X = λ id, then

J a = (∇∗∇X)┘ω + X┘(∇∗
A∇Aω) + a ◦ Ric + 2FA ∗ a.

(Hint: you can use the Weitzenböck formula △Aa = ∇∗
A∇Aa + a ◦ Ric + FA ∗ a. Also, as

usual in Riemannian geometry it is convenient to work in an orthonormal frame in which
Christoffel symbols vanish at a given point in M .)

(iii) If (Mn, g) is the standard round sphere Sn of unit radius in Rn+1, any ω as in part (ii)
satisfies

∇∗
A∇Aω + 2(n − 2)ω + FA ∗ ω = 0,

where (FA ∗ ω)(u, v) =


i [FA(ei, u), ω(ei, v)] − [FA(ei, v), ω(ei, u)]. Also note that the re-
striction X of a constant vector field on Rn+1 to Sn is a gradient conformal Killing field.
Apply part (ii) to ω = FA and any such X: show that

J (X┘FA) = −(n − 4) X┘FA

and conclude that there are no stable Yang–Mills connections on any round sphere of
dimension n ≥ 5.

This last result is due to Simons, and the proof you have given is due to Bourguignon–Lawson
(Comm. Math. Phys., 1981).

Exercise 5.11. The exercise is about the monotonicity formula for Yang–Mills connections on Rn.
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(i) Fix a connection A on a principal G–bundle π : P → M over a manifold M . Let X be a
vector field on M and denote by ϕt its flow. Consider the horizontal lift XH on P and its
flow ϕH

t , which is a G–equivariant diffeomorphism of P such that π ◦ ϕH
t = ϕt. Consider

the 1-parameter family of connections on P defined by At = (ϕH
t )∗A. Here we think of

connections as G–equivariant 1-forms on P with values in g. Show that d
dt |t=0At = X┘FA.

(Hint: use the interpretation of curvature in terms of Lie bracket of horizontal vector fields.)
(ii) In the same notation of part (i), let now Ω ⊂ M be a domain with smooth boundary and

assume that X|∂Ω is a unit outward normal for ∂Ω. Show that if A (and therefore At) is a
Yang–Mills connection then

d

dt
|t=0

ˆ

Ω
|FAt |2 =

ˆ

∂Ω
|X┘FA|2.

(Hint: apply the first variation of the Yang–Mills energy and calculate explicitly the bound-
ary term. For the latter calculation it is convenient to fix a boundary defining function ρ
for ∂Ω such that X = ∂ρ. At points of ∂Ω we can then write FA = FA|∂Ω + dρ ∧ X┘FA,
and observe that ∗FA|∂Ω vanishes along ∂Ω.)

(iii) Use part (ii) to conclude that if A is a Yang–Mills connection on Rn and Br = Br(p) is a
ball of radius r centred at a point p, then

d

dr



r4−n

ˆ

Br

|FA|2


= 2r4−n

ˆ

∂Br

|∂ρ┘FA|2

where ρ is the radial coordinate on Rn centred at p. (Hint: use scaling, i.e. the flow of the
Euler vector field, to replace the fixed connection A on the varying domains Br with a
family of Yang–Mills connections Ar on the fix domain B1.)

(iv) Deduce from part (iii) that for n ≥ 5 there is no non-flat Yang–Mills connection with finite
Yang–Mills energy on Rn. (Hint: what happens as r → ∞?)

(v) Suppose that A is a Yang–Mills connection on Rn\{0} such that the energy ratio r4−n
´

Br(0) |FA|2

is constant in r. Show that A is the radial extension of a Yang–Mills connection on Sn−1.
(Hint: first observe that the principal bundle on Rn \ {0} must be the radial extension of a
fixed bundle on Sn−1 and show that there exists a gauge such that A has no dρ–component.)

Exercise 5.12. Let V be a 4-dimensional vector space endowed with a positive definite inner
product and a volume form dv ∈ Λ4V ∗.

(i) Using dv and the wedge product define a non-degenerate pairing q on Λ2V ∗. Show that q
has signature (3, 3). Let Λ±V ∗ be maximal positive/negative subspaces of (Λ2V ∗, q).

(ii) Show that the induced action of SL(V ) ≃ SL(4,R) (i.e. the matrices that preserve dv) on
Λ2V ∗ defines a double cover SL(4,R) → SO(3, 3). Restricting to compact subgroups, we
see that SO(4) → SO(3)+ × SO(3)− is a double-cover; here SO(3)± is the induced action
of SO(4) on Λ±V ∗.

(iii) Identify V with the quaternions H and SU(2) with the unit sphere S3 ⊂ H. Define a map
SU(2) × SU(2) × H → H by (q1, q2, x) → q1xq2. Show that this defines a double cover
SU(2)+ × SU(2)− → SO(4).

(iv) Show that this induces a double cover of U(1) × SU(2)− → U(2), where U(1) ⊂ SU(2)+ is
the subgroup of diagonal matrices.

(v) Show that U(2) acts on Λ−V ∗ as SO(3)− and on Λ+V ∗ as the subgroup SO(2) ⊂ SO(3)+

preserving the standard Kähler form ω on H ≃ C2.
(vi) Deduce that on a Kähler surface (M, ω), Λ+M = Λ2,0M ⊕ Rω and Λ−M = Λ1,1

0 M,
where Λ1,1

0 M is the space of (1, 1)-forms orthogonal to ω. Here for a complex vector space
W we denote by W  the real vector space such that W ⊕ W = W  ⊗R C.



8 LORENZO FOSCOLO

Exercise 5.13. Let (M4, g) be a closed, smooth, oriented, simply connected manifold and let
E → M be a rank 2 Hermitian complex vector bundle with c1(E) = 0 (so E has structure group
SU(2)) and c2(E) = 1. For any instanton A on E the Atiyah–Singer Index Theorem yields

dim H0
A − dim H1

A + dim H2,+
A = −5.

Here H•
A are the comohomology groups of the instanton deformation complex. We also assume that

H2,+
A = 0 for any instanton A on E.

(i) Show that topological splittings E = L⊕L−1 for a line bundle L are in 1 : 1 correspondence
with half the classes α ∈ H2(M ; L) such that q(α, α) = −1. (Hint: take ±α = c1(L) and
calculate c2(L ⊕ L−1).)

(ii) Show that for any class α as in part (i) there exists a unique U(1) instantons Aα on the
line bundle Lα with c1(Lα) = α (and therefore a unique reducible instanton Aα ⊕ A−α on
the split bundle E = Lα ⊕ L−1

α ).
(iii) Show that the stabiliser GA of A = Aα ⊕ A−α in G is the subgroup U(1) of constant

gauge transformations that are diagonal in the decomposition E = Lα ⊕ L−1
α . Deduce that

H0
A = R.

(iv) Show that su(E) = R ⊕ L2
α and correspondingly H1

A = H1(R) ⊕ H1(L2
α).

(v) Show that H1(R) = 0 and H1
A = H1(L2

α) is 6-dimensional.
(vi) Show that the action of GA on H1(L2

α) is the diagonal action of U(1) on C3 with weight 2,
i.e. eiθ · (z1, z2, z3) = (e2iθz1, e2iθz2, e2iθz3). Deduce that a neighbourhood of the reducible
connection [A] in the moduli space of instantons on E is modelled on C3/U(1), i.e. , up to
a choice of orientation, a cone over CP2.

Exercise 5.14. Identify R4 with the quaternions H via x = x0 + x1i + x2j + x3k and su2 with
ImH endowed with the Lie bracket [x, y] = xy − yx.

(i) Show that 1
2dx ∧ dx = ω1i + ω2j + ω3k, where, for any cyclic permutation (ijk) of (123),

ωi = dx0 ∧ dxi − dxj ∧ dxk is an anti-self-dual 2-form.
(ii) Show that

A = d + 1
2

x dx − dx x
1 + xx

defines an SU(2) instanton on the trivial bundle over R4.
(iii) Show that for |x| ≫ 0, we have A ∼ d + u−1du with u(x) = x

|x| .
(iv) By a change of variable x = y−1 near x = ∞ and composing with the gauge transformation

u−1 from part (iii), show that A extends to an instanton on a bundle E on the conformal
compactification S4 = R4 ∪ {∞} of R4.

(v) Calculate YM(A) and deduce that c2(E) = 1.
(vi) By pulling back A by scalings, for every  > 0 construct an instanton A on the same

bundle with curvature
F = 2 dx ∧ dx

(2 + |x|2)2 .

(vii) Study the behaviour of A as  → 0: show that A converges smoothly to the trivial
connection on compact subsets of H \ {0}, while |F|2 dvR4 converges to a multiple of the
Dirac delta at the origin in the sense of currents.

Exercise 5.15. Let (M3, g) be a closed oriented Riemannian 3-manifold, fix a principal G–bundle
P and consider the spaces A and G of connections on P and gauge transformations. We consider
instantons on Rt × M on the pull-back of P .

(i) Show that up to gauge equivalence any connection A on R × M can be put in “temporal
gauge” A = At for a 1-parameter family of connections on M depending smoothly on
t. Deduce that gauge equivalence classes of connections on R × M can be interpreted as
curves in A/G.
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(ii) Show that the curvature of A = At is FA = FAt + dt ∧ ∂tAt (for a suitable interpretation
of the last term).

(iii) Show that A = At is an instanton if and only if the curve t → At ∈ A satisfies the “flow”
equation ∂tAt = − ∗ FAt .

(iv) Consider the 1-form γ on A defined by γA(a) =
´

M 〈a ∧ FA〉g. Show that γ is closed.
(Hint: for any a, b ∈ Ω1(M ; ad P ), thought of as constant vector fields on A, one has
(dγ)A(a, b) = a · (γA(b)) − b · (γA(a)).)

(v) Fix a based point A0 ∈ A and define the function (Chern–Simons functional) on A

CSA0(A) =
ˆ

M
〈dA0a ∧ a + 2

3a ∧ a ∧ a〉g,

where a = A − A0. Show that dCSA0 = γ.
(vi) Introduce the Riemannian metric (a, b) →

´

M 〈a ∧ ∗b〉g on A. Show that γ
A = − ∗ FA

and therefore the flow equations in (iii) can be interpreted as the gradient flow of the
Chern–Simons functional.

Exercise 5.16. Identify C3\{0} with (0, ∞)×S5 with coordinate r on the first factor. Regard S5 as
a principal U(1)–bundle π : S5 → CP2 and fix the connection η : TS5 → u(1) = iR with curvature
dη = 2iπ∗ωFS a multiple of the Fubini–Study Kähler form ωFS on CP2. Consider the Levi-Civita
connection A′ of (CP2, gFS) on E′ = TCP2: since the Fubini–Study metric is Kähler, the structure
group of A′ is U(2). Since the Fubini–Study metric has constant scalar curvature, identities for
the curvature of constant scalar curvature Kähler metric imply that FA′ = 2iλ idE ⊗ ωFS + F −

A′

for a constant λ ∈ R. Thus A′ is not an instanton, but its self-dual part is constrained to be a
constant multiple of idE ⊗ ωFS; such connections on Kähler surfaces, and generalisations to higher
dimensional Kähler manifolds, are called Hermitian Yang–Mills connections.

(i) Show that E = π∗E′ → S5 is the unique non-trivial rank 2 complex vector bundle. (Hint:
you can think about the principal bundle P ′ = SU(3) → SU(3)/U(2) = CP2 of unitary
frames of E and its lift to S5 = SU(3)/SU(2).)

(ii) Fix the connection A := π∗A′ − λ idE ⊗ η on E. By abuse of notation, denote by (E, A)
the radial extension of E and A to C3 \ {0}. You are going to show that A is a Yang–Mills
connection on C3 \ {0}.
(a) Show that FA = F 1,1

A . (Hint: use the fact that FA′ and ωFS are both of type (1, 1) on
CP2 and that C3 \ {0} → CP2 = C3 \ {0}/C∗ is a holomorphic projection.)

(b) Show that FA ∧ ω2
0 = 0, where ω0 = d


1
2r2η


is the standard Kähler form on C3.

(Connections satisfying the conditions of part (a) and (c) are sometimes called Calabi–
Yau instantons.)

(c) It is know that if κ is a (1, 1)-form on C3 satisfying κ ∧ ω2
0 = 0 then ∗κ = −κ ∧ ω0.

Use this fact to show that A is a Yang–Mills connection.
Note that A yields an example of a Yang-Mills connection with a singularity of codimension 6
(|FA| = O(r−2) and the bundle E does not even extend topologically to 0 ∈ C3), showing that in
general there are higher codimension singularities beyond the codimension-4 “bubbling” set.


