
INTRODUCTION TO EINSTEIN MANIFOLDS

LORENZO FOSCOLO

1. Introduction

• Mn: smooth, closed, connected, oriented
• Riemannian metric g
• Is there a best Riemannian structure on M?
• (Cartan, Weyl) local diffeos invariants in terms of curvature and its covariant derivatives

1.1. The case n = 2.
• M2 surface of genus γ ≥ 0
• Unique curvature invariant: Gaussian curvature Kg : M → R
• Uniformization Theorem: existence of g with Kg ≡ const
• Sign of constant Kg constrained by Gauss–Bonnet:

´

M Kg dvg = 2πχ(M) = 2π(2 − 2γ)
• For γ ≥ 1 such constant curvature g is not unique, but there is a good Teichmüller/moduli

space, which is a finite dimensional manifold/orbifold
Exercise 6.1

1.2. The Einstein equation. (Mn, g) with n ≥ 3.
• Riemannian curvature: Rm(X, Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z
• Sectional curvature: 2-plane Π ⊂ TmM with o.n. basis e1, e2 ❀ K(Π) = 〈Rm(e1, e2)e2, e1〉
• Constant sectional curvature =⇒ (Mn, g) locally isometric to Sn,Rn or Hn

• Ricci curvature: Ric(X, Y ) =
󰁓n

i=1 〈Rm(ei, X)Y, ei〉
• Einstein equation: Ric = λg for some λ ∈ R

Exercise 6.2
• Scalar curvature: Scal =

󰁓n
i=1 Ric(ei, ei)

• (Aubin) Every M admits a metric of constant negative scalar curvature
– Can modify any g̃ on M in a neighbourhood of a point so that

´

M Scalg̃ dvg̃ < 0
– Construct u so that g = e2ug̃ has unit volume and constant scalar curvature equal to

the Yamabe invariant of conformal class [g̃]

Y (M, [g̃]) = inf
g∈[g̃]

´

M Scalg dvg

Vol(M, g)
n−2

2
< 0

2. The Hilbert–Einstein functional

• Met(M): space of smooth Riemannian metrics on M ; Met1(M): normalised volume
• Diff(M): diffeomorphisms, acting on Met(M); Diff0(M): diffeos isotopic to the identity
• TgMet(M) = Γ(Sym2T ∗M)

Exercise 6.3
Exercise 6.4

• Tg (Diff(M) · g) = im δ∗

• TgMet(M) = im δ∗ ⊕⊥L2 ker δ
• Diff(M)–invariant functional F : Met(M) → R
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• L2–gradient: gt with gt = g and ġt = h at t = 0 ❀ d
dtF(gt)|t=0 = 〈gradgF , h〉L2

• Diff(M)–invariance =⇒ δ(gradgF) = 0
Exercise 6.5

• Hilbert–Einstein functional: S(g) =
´

M Scalg dvg

• gradgS = −
󰀓
Ricg − 1

2Scalg g
󰀔

• g ∈ Met1(M) is a critical point of S|Met1(M) if and only if g is Einstein
Exercise 6.6

3. Moduli

• Einstein equation elliptic in harmonic coordinates: Ricij = −1
2

󰁓
p,q gpq∂2

pqgij + l.o.t.
=⇒ Einstein metrics real analytic in harmonic coordinates

• Elliptic deformation complex: if Ric(g) = λg

0 → Ω1(M) δ∗
−→ Γ(Sym2T ∗M) dgRic−λ−→ Γ(Sym2T ∗M) Bg−→ Ω1(M) → 0

where dgRic(h) = 1
2△Lh − δ∗δh − 1

2∇d trgh and Bg(h) = δh + 1
2d trgh

Exercise 6.7

4. Examples

Almost all known Einstein metrics either have a large symmetry group (in the closed case the
Einstein constant must then be positive) or have special holonomy (or are related to some holonomy
reduction).

Exercise 6.8

4.1. Homogeneous spaces.
• G compact Lie group, K closed subgroup ❀ M = G/K
• G/K reductive: K–invariant splitting g = k ⊕ p
• TM = G ×K p

• G–invariant metrics on M
1:1←→ K–invariant positive definite inner products on p

4.1.1. Isotropy irreducible homogeneous spaces.
• If p is an irreducible K–representation then there exists a unique K–invariant symmetric

bilinear form on p and therefore there is a unique G–invariant metric on M , which must
be Einstein (see also Exercise 6.5)

• G = SU(n + 1), K = U(n) ❀ M = CPn with Fubini-Study metric

4.1.2. The canonical variation.
• K ⊂ H ⊂ G
• M = G/K → G/H = B fibre bundle with fibre F = H/K
• G/H and H/K reductive isotropy irreducible ❀ Einstein metrics gB and gF with scalar

curvature sB and sF respectively
• 1-p family of G–invariant metrics on M up to scale

gt = gB + tgF

• Restrict normalised Hilbert–Einstein functional
S(gt)

Vol(M, gt)
n−2

n

∝ t
dimF

n

󰀓
1
t sF + sB − t|curv|2

󰀔
=: S(t)

where curv = curvature of the connection on H–bundle G → B coming from g = h ⊕ pB

• Palais’ Principle of Symmetric Criticality: S ′(t) = 0 =⇒ gt Einstein
Exercise 6.9
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4.2. Kähler–Einstein metrics.
• M2n, J almost complex manifold
• J-compatible non-degenerate 2-form ω ❀ g = ω( · , J · )
• (M, J, ω, g) Kähler ⇔ NJ = 0 and dω = 0 ⇔ ∇J = 0 ⇔ ∇ω = 0
• Ricci form ρω = Ricg(J · , · ): dρω = 0 and [ρω] = 2πc1(M, J)R ∈ H2(M,R)
• Calabi–Yau Theorem: (M, J, ω) Kähler such that 2πc1(M, J)R = λ[ω] for some λ ∈ R≤0

=⇒ ∃ u ∈ C∞(M) such that ωu := ω + i∂∂u is Einstein with Einstein constant λ.
• K3 surfaces

– unique simply connected smooth M4 supporting Kähler structures with c1(M, J) = 0
(quartic in CP3, double cover of CP2 branched over a sextic, . . . )

– Kähler Ricci-flat metrics on M that are hyperkähler: triple of parallel g–compatible
(J1, J2, J3) with J1J2 = J3 (❀ triple of Kähler forms ω1, ω2, ω3)

– 57-dimensional moduli space of hyperkähler metrics of unit volume on M

Exercise 6.10

5. Obstructions

Exercise 6.11
• n = 4: Λ2 = Λ+ ⊕ Λ−

• curvature operator R : Λ2 → Λ2

R =

󰀳

󰁅󰁅󰁅󰁅󰁃

1
12Scal + W+ ◦

Ric

◦
Ric 1

12Scal + W−

󰀴

󰁆󰁆󰁆󰁆󰁄

• Chern–Gauss–Bonnet Theorem: Euler characteristic χ(M) =
󰁓

i (−1)ibi(M)

χ(M) = 1
8π2

ˆ

M

󰀕
1
24Scal2 + |W+|2 + |W−|2 − 1

2 |
◦

Ric |2
󰀖

dvg

• Hirzebruch Signature Theorem: signature τ(M) = b+(M) − b−(M)

τ(M) = 1
12π2

ˆ

M

󰀓
|W+|2 − |W−|2

󰀔
dvg

• Hitchin–Thorpe Inequality: (M4, g) Einstein =⇒ 2χ(M) ≥ 3|τ(M)|
• Moreover 2χ(M) ± 3τ(M) = 0 iff Λ±M is flat

Exercise 6.12

6. Exercises

Exercise 6.1. You are going to prove that the set of flat 2-tori up to isometries and homotheties
(i.e. change of the metric of the form g 󰀁→ λ2g for some λ ∈ R \ {0}) is

M = {(x, y) ∈ R2 | x2 + y2 ≥ 1, x ∈ [0, 1
2 ], y > 0}.

Every flat 2-torus can be presented as (R2/Λ, gΛ), where Λ is a lattice of full rank in R2 and gΛ is
the Riemannian metric on R2/Λ induced by the standard Euclidean metric on R2. It will therefore
suffice to classify lattices Λ up to the action of O(2) and homotheties.

(i) Let u1 be the shortest non-zero vector in Λ. Up to rotations and homotheties we can
assume that u1 = (1, 0) (in particular 󰀂u1󰀂 = 1). Let u2 be the shortest vectors of Λ \Zu1.
Then u1 and u2 are linearly independent (over R). Show that Λ = Zu1 +Zu2. (Hint: if not
there would exist u ∈ Λ such that u = λ1u1 +λ2u2 with 2|λi| < 1. But then we would have
󰀂u󰀂 < 󰀂u2󰀂.)
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(ii) Write u2 = (x, y). Up to reflections along the coordinate axis we can assume that u2 lies
in the first quadrant, i.e. x, y ≥ 0. Also x2 + y2 ≥ 1 and y > 0 since u2 is longer than u1
and u1, u2 are linearly independent. Prove that x ≤ 1

2 . (Hint: if not consider u2 − u1.)

Exercise 6.2. Show that when n = 3 g Einstein =⇒ g has constant sectional curvature. Deduce
that S2 × S1 does not admit any Einstein metric. (Hint: you might want to consider the curvature
operator R : Λ2 → Λ2 defined by R(x∧y) = 1

2
󰁓

i,j 〈Rm(x, y)ej , ei〉 ei ∧ ej and observe that Λ2 ≃ Λ1

when n = 3.)

Exercise 6.3. Let {gt}t∈(−󰂃,󰂃) ⊂ Met(M) be a 1-parameter family of metrics on M depending
smoothly on t and set h = d

dtgt|t=0. Show that d
dtdvgt |t=0 = 1

2(trgh) dvg. Deduce that

TgMet1(M) = {h ∈ Γ(Sym2T ∗M) |
ˆ

M
trgh dvg = 0}.

Exercise 6.4. For a 1-form ξ let δ∗ξ denote the symmetrisation of ∇ξ, i.e.
δ∗ξ(X, Y ) = 1

2
󰀃
(∇Xξ)(Y ) + (∇Y ξ)(X)

󰀄

for every pair X, Y of vector fields.
(i) Show that δ∗ξ = −1

2Lξ󰂒g.
(ii) Let δ : Γ(Sym2T ∗M) → Ω1(M) denote the formal L2–adjoint of δ∗ : Ω1(M) → Γ(Sym2T ∗M).

Show that δ(ug) = −du for every function u.

Exercise 6.5. Let F : Met(M) → R be a Diff(M)–invariant functional and assume that g ∈
Met(M) is homogeneous, i.e. there exists a Lie group G acting transitively on M and preserving
g. Fix a point p ∈ M and denote by H the stabiliser of p in G. By differentiation, H therefore acts
on TpM as a subgroup of SO(TpM, gp). Assume that the H–representation TpM is irreducible.

(i) By restricting to the action of H ⊂ Diff(M) on Met(M), show that there exists λ ∈ R
such that gradgF|p = λgp. (Hint: use Schur Lemma.)

(ii) Use the G–action to deduce that gradgF = λg everywhere on M .

Exercise 6.6. Assume that n ≥ 3. You are going to show that the critical points of the Hilbert–
Einstein functional restricted to metrics with unit volume are the Einstein metrics.

(i) Show that
gradgS = −

󰀓
Ricg − 1

2Scalg g
󰀔

.

(Hint: you can take for granted the following formula: if gt is a smooth path in Met(M)
starting at g in the direction of h then

d

dt
Scalgt |t=0 = △(trgh) + d∗(δh) − 〈Ricg, h〉.)

(ii) Use the invariance under diffeomorphisms of the Hilbert–Einstein functional to deduce that
δRic + 1

2dScal = 0.

(iii) Show that g ∈ Met1(M) is a critical point of S|Met1(M) if and only if there exists a function
λ ∈ C∞(M) such that Ric = λg.

(iv) Use part (ii) to show that λ above is constant and therefore g is Einstein.

Exercise 6.7. Suppose that Ric(g) = λg and let h ∈ Γ(Sym2T ∗M) be an infinitesimal variation
of g. Show that the symmetric tensor dgRic(h) − λh lies in the kernel of Bg, where Bg(h′) =
δh′ + 1

2d trgh′ is the Bianchi operator. (Hint: differentiate the Bianchi identity δRic + 1
2dScal = 0

along a path starting at g in the direction of h.)

Exercise 6.8. Let X be a Killing vector field, i.e. a vector field such that LXg = 0. Equivalently
∇X is a skew-symmetric (1, 1) tensor.
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(i) Show that

△
󰀓

1
2 |X|2

󰀔
= −|∇X|2 + Ric(X, X).

(ii) Show that a closed (M, g) does not carry any Killing field if Ric < 0.
(iii) Show that a closed (M, g) does not carry any Killing field if Ric = 0 and b1(M) = 0. (Hint:

show that X󰂐 is a harmonic 1-form and use the fact that △ = ∇∗∇ on 1-forms if Ric = 0.)

Exercise 6.9. You are going to apply the formalism introduced in Section 4.1.2 to produce an
Einstein metric on S7 that does not have constant curvature. We consider K ⊂ H ⊂ G with
K = Sp(1) × Sp(1), H = Sp(1) and G = Sp(2).

(i) Show that M = S7, B = S4 and F = S3. (Hint: you might want to use the double covers
Sp(2) → SO(5) and Sp(1) × Sp(1) → SO(4).)

(ii) Verify that B and F are isotropy irreducible homogeneous spaces. Normalise the resulting
Einstein (constant curvature) metrics so that sB = 12 and sF = 6.

(iii) Calculate |curv|2. (Hint: you can use the fact that g1 is the standard round metric on S7

with scalar curvature 42.)
(iv) Deduce the existence of a critical point t∗ ∕= 1 of S(t).
(v) Show that the Einstein metric gt∗ does not have constant curvature.
(vi) Show that g1 and gt∗ , normalised to have the same volume, cannot be connected by a path

of Einstein metrics. (Hint: compare the values of the Hilbert–Einstein functional.)

Exercise 6.10. Recall that the total Chern class of an almost complex manifold X2n is c(X) =
1 + c1(X) + · · · + cn(X). For example, c(CP3) = (1 + h)4 (modulo h4 = 0), where h is the generator
of H2(CP3;Z). Now, let M be a quartic surface in CP3.

(i) Consider the exact sequence

0 → TM → TCP3|M → O(4)|M → 0.

(a) Taking determinants, show that c1(M) = 0.
(b) Show that M has Euler characteristic χ(M) = 24. (Hint: the Euler class of M is

c2(M).)
(ii) Show that b2(M) = 22. (Hint: M is simply connected by the Lefschetz Hyperplane The-

orem.)
(iii) Use parts (i.a) and (ii) to show that h2,0(M) = h0,2(M) = 1 and h1,1(M) = 20.
(iv) Show that b+(M) = 3 and b−(M) = 19. (Hint: use Exercise 6.11 below.)

Exercise 6.11. Let V be a 4-dimensional vector space endowed with a positive definite inner
product and a volume form dv ∈ Λ4V ∗.

(i) Using dv and the wedge product define a non-degenerate pairing q on Λ2V ∗. Show that q
has signature (3, 3). Let Λ±V ∗ be maximal positive/negative subspaces of (Λ2V ∗, q).

(ii) Show that the induced action of SL(V ) ≃ SL(4,R) (i.e. the matrices that preserve dv) on
Λ2V ∗ defines a double cover SL(4,R) → SO(3, 3). Restricting to compact subgroups, we
see that SO(4) → SO(3)+ × SO(3)− is a double-cover; here SO(3)± is the induced action
of SO(4) on Λ±V ∗.

(iii) Identify V with the quaternions H and SU(2) with the unit sphere S3 ⊂ H. Define a map
SU(2) × SU(2) × H → H by (q1, q2, x) 󰀁→ q1xq2. Show that this defines a double cover
SU(2)+ × SU(2)− → SO(4).

(iv) Show that this induces a double cover of U(1) × SU(2)− → U(2), where U(1) ⊂ SU(2)+ is
the subgroup of diagonal matrices.

(v) Show that U(2) acts on Λ−V ∗ as SO(3)− and on Λ+V ∗ as the subgroup SO(2) ⊂ SO(3)+

preserving the standard Kähler form ω on H ≃ C2.



6 LORENZO FOSCOLO

(vi) Deduce that on a Kähler surface (M, ω), Λ+M = 󰌻Λ2,0M󰌼 ⊕ Rω and Λ−M = 󰌻Λ1,1
0 M󰌼,

where Λ1,1
0 M is the space of (1, 1)-forms orthogonal to ω. Here for a complex vector space

W we denote by 󰌻W 󰌼 the real vector space such that W ⊕ W = 󰌻W 󰌼 ⊗R C.

Exercise 6.12. This exercise is about non-existence and uniqueness of Einstein metrics in dimen-
sion 4.

(i) Use the Chern–Gauss–Bonnet Theorem to show that M = S3 × S1 does not admit any
Einstein metric. (Hint: by Bieberbach’s Theorem any compact flat manifold is finitely
covered by a flat torus.)

(ii) Let Mk,ℓ = k CP2󰂒ℓCP2, where CP2 denotes CP2 with the opposite orientation. For which
(k, ℓ) can’t Mk,ℓ carry any Einstein metric?

(iii) Let g be an Einstein metric on the smooth 4-manifold underlying a complex K3 surface.
Show that g is hyperkähler. (Hint: use the fact that every flat bundle on a simply connected
manifold can be trivialised by a basis of orthonormal parallel sections.)


