INTRODUCTION TO EINSTEIN MANIFOLDS

LORENZO FOSCOLO

1. INTRODUCTION

- M^n : smooth, closed, connected, oriented
- Riemannian metric g
- Is there a *best* Riemannian structure on M?
- (Cartan, Weyl) local diffeos invariants in terms of curvature and its covariant derivatives

1.1. The case
$$n = 2$$
.

- M^2 surface of genus $\gamma \ge 0$
- Unique curvature invariant: Gaussian curvature $K_g: M \to \mathbb{R}$
- Uniformization Theorem: existence of g with $K_g \equiv const$
- Sign of constant K_g constrained by Gauss-Bonnet: $\int_M K_g dv_g = 2\pi \chi(M) = 2\pi (2-2\gamma)$
- For $\gamma \ge 1$ such constant curvature g is not unique, but there is a good Teichmüller/moduli space, which is a finite dimensional manifold/orbifold

Exercise 6.1

1.2. The Einstein equation. (M^n, g) with $n \ge 3$.

- Riemannian curvature: $\operatorname{Rm}(X, Y)Z = \nabla_X \nabla_Y Z \nabla_Y \nabla_X Z \nabla_{[X,Y]} Z$
- Sectional curvature: 2-plane $\Pi \subset T_m M$ with o.n. basis $e_1, e_2 \rightsquigarrow K(\Pi) = \langle \operatorname{Rm}(e_1, e_2)e_2, e_1 \rangle$
- Constant sectional curvature $\implies (M^n, g)$ locally isometric to $\mathbb{S}^n, \mathbb{R}^n$ or \mathbb{H}^n
- Ricci curvature: $\operatorname{Ric}(X, Y) = \sum_{i=1}^{n} \langle \operatorname{Rm}(e_i, X) Y, e_i \rangle$
- Einstein equation: $\operatorname{Ric} = \lambda g$ for some $\lambda \in \mathbb{R}$

Exercise 6.2

- Scalar curvature: Scal = $\sum_{i=1}^{n} \operatorname{Ric}(e_i, e_i)$
- (Aubin) Every M admits a metric of constant negative scalar curvature
 - Can modify any \tilde{g} on M in a neighbourhood of a point so that $\int_M \operatorname{Scal}_{\tilde{g}} \operatorname{dv}_{\tilde{g}} < 0$
 - Construct u so that $g = e^{2u}\tilde{g}$ has unit volume and constant scalar curvature equal to the Yamabe invariant of conformal class $[\tilde{g}]$

$$Y(M, [\tilde{g}]) = \inf_{g \in [\tilde{g}]} \frac{\int_M \operatorname{Scal}_g \operatorname{dv}_g}{\operatorname{Vol}(M, g)^{\frac{n-2}{2}}} < 0$$

2. The Hilbert-Einstein functional

- $\mathfrak{Met}(M)$: space of smooth Riemannian metrics on M; $\mathfrak{Met}_1(M)$: normalised volume
- $\mathfrak{Diff}(M)$: diffeomorphisms, acting on $\mathfrak{Met}(M)$; $\mathfrak{Diff}_0(M)$: diffeos isotopic to the identity
- $T_q \mathfrak{Met}(M) = \Gamma(\mathrm{Sym}^2 T^* M)$

Exercise 6.3

Exercise 6.4

- $T_g(\mathfrak{Diff}(M) \cdot g) = \operatorname{im} \delta^*$
- $T_q \mathfrak{Met}(M) = \operatorname{im} \delta^* \oplus^{\perp_{L^2}} \ker \delta$
- $\mathfrak{Diff}(M)$ -invariant functional $\mathcal{F}: \mathfrak{Met}(M) \to \mathbb{R}$

Date: January 30, 2020.

LORENZO FOSCOLO

- L^2 -gradient: g_t with $g_t = g$ and $\dot{g}_t = h$ at $t = 0 \rightsquigarrow \frac{d}{dt} \mathcal{F}(g_t)|_{t=0} = \langle \operatorname{grad}_q \mathcal{F}, h \rangle_{L^2}$
- $\mathfrak{Diff}(M)$ -invariance $\Longrightarrow \delta(\operatorname{grad}_g \mathcal{F}) = 0$

Exercise 6.5

- Hilbert–Einstein functional: $\mathcal{S}(g) = \int_M \operatorname{Scal}_g \operatorname{dv}_g$
- $\operatorname{grad}_{g} \mathcal{S} = -\left(\operatorname{Ric}_{g} \frac{1}{2}\operatorname{Scal}_{g} g\right)$
- $g \in \mathfrak{Met}_1(M)$ is a critical point of $\mathcal{S}|_{\mathfrak{Met}_1(M)}$ if and only if g is Einstein

Exercise 6.6

3. Moduli

- Einstein equation elliptic in harmonic coordinates: $\operatorname{Ric}_{ij} = -\frac{1}{2} \sum_{p,q} g^{pq} \partial_{pq}^2 g_{ij} + l.o.t.$ \implies Einstein metrics real analytic in harmonic coordinates
- Elliptic deformation complex: if $\operatorname{Ric}(g) = \lambda g$

$$0 \to \Omega^1(M) \xrightarrow{\delta^*} \Gamma(\operatorname{Sym}^2 T^* M) \xrightarrow{d_g \operatorname{Ric} - \lambda} \Gamma(\operatorname{Sym}^2 T^* M) \xrightarrow{B_g} \Omega^1(M) \to 0$$

where $d_g \operatorname{Ric}(h) = \frac{1}{2} \triangle_L h - \delta^* \delta h - \frac{1}{2} \nabla d \operatorname{tr}_g h$ and $B_g(h) = \delta h + \frac{1}{2} d \operatorname{tr}_g h$

Exercise 6.7

4. Examples

Almost all known Einstein metrics either have a large symmetry group (in the closed case the Einstein constant must then be positive) or have special holonomy (or are related to some holonomy reduction).

Exercise 6.8

4.1. Homogeneous spaces.

- G compact Lie group, K closed subgroup $\rightsquigarrow M = G/K$
- G/K reductive: K-invariant splitting $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$
- $TM = G \times_K \mathfrak{p}$
- G-invariant metrics on $M \stackrel{1:1}{\longleftrightarrow} K$ -invariant positive definite inner products on \mathfrak{p}
- 4.1.1. Isotropy irreducible homogeneous spaces.
 - If \mathfrak{p} is an irreducible K-representation then there exists a unique K-invariant symmetric bilinear form on \mathfrak{p} and therefore there is a unique G-invariant metric on M, which must be Einstein (see also Exercise 6.5)
 - $G = \mathrm{SU}(n+1), K = \mathrm{U}(n) \rightsquigarrow M = \mathbb{CP}^n$ with Fubini-Study metric
- 4.1.2. The canonical variation.
 - $K \subset H \subset G$
 - $M = G/K \rightarrow G/H = B$ fibre bundle with fibre F = H/K
 - G/H and H/K reductive isotropy irreducible \rightsquigarrow Einstein metrics g_B and g_F with scalar curvature s_B and s_F respectively
 - 1-p family of G-invariant metrics on M up to scale

$$g_t = g_B + tg_F$$

• Restrict normalised Hilbert–Einstein functional

$$\frac{\mathcal{S}(g_t)}{\operatorname{Vol}(M, g_t)^{\frac{n-2}{n}}} \propto t^{\frac{\dim F}{n}} \left(\frac{1}{t} \mathbf{s}_F + \mathbf{s}_B - t |\operatorname{curv}|^2\right) =: \mathcal{S}(t)$$

where curv = curvature of the connection on *H*-bundle $G \to B$ coming from $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{p}_B$ • Palais' Principle of Symmetric Criticality: $\mathcal{S}'(t) = 0 \Longrightarrow g_t$ Einstein

Exercise 6.9

4.2. Kähler–Einstein metrics.

- M^{2n}, J almost complex manifold
- J-compatible non-degenerate 2-form $\omega \rightsquigarrow g = \omega(\cdot, J \cdot)$
- (M, J, ω, g) Kähler $\Leftrightarrow N_J = 0$ and $d\omega = 0 \Leftrightarrow \nabla J = 0 \Leftrightarrow \nabla \omega = 0$
- Ricci form $\rho_{\omega} = \operatorname{Ric}_q(J \cdot, \cdot)$: $d\rho_{\omega} = 0$ and $[\rho_{\omega}] = 2\pi c_1(M, J)_{\mathbb{R}} \in H^2(M, \mathbb{R})$
- Calabi–Yau Theorem: (M, J, ω) Kähler such that $2\pi c_1(M, J)_{\mathbb{R}} = \lambda[\omega]$ for some $\lambda \in \mathbb{R}_{\leq 0}$ $\implies \exists u \in C^{\infty}(M)$ such that $\omega_u := \omega + i\partial\overline{\partial}u$ is Einstein with Einstein constant λ .
- K3 surfaces
 - unique simply connected smooth M^4 supporting Kähler structures with $c_1(M, J) = 0$ (quartic in \mathbb{CP}^3 , double cover of \mathbb{CP}^2 branched over a sextic, ...)
 - Kähler Ricci-flat metrics on M that are hyperkähler: triple of parallel g-compatible (J_1, J_2, J_3) with $J_1J_2 = J_3$ (\rightsquigarrow triple of Kähler forms $\omega_1, \omega_2, \omega_3$)
 - 57-dimensional moduli space of hyperkähler metrics of unit volume on M

Exercise 6.10

5. Obstructions

Exercise 6.11

- n = 4: $\Lambda^2 = \Lambda^+ \oplus \Lambda^-$
- curvature operator $\mathcal{R} \colon \Lambda^2 \to \Lambda^2$

$$\mathcal{R} = \begin{pmatrix} \frac{1}{12} \operatorname{Scal} + W^+ & \overset{\circ}{\operatorname{Ric}} \\ & & \\ & \\ & \\ & & \\ &$$

• Chern-Gauss-Bonnet Theorem: Euler characteristic $\chi(M) = \sum_i (-1)^i b_i(M)$

$$\chi(M) = \frac{1}{8\pi^2} \int_M \left(\frac{1}{24} \operatorname{Scal}^2 + |\mathbf{W}^+|^2 + |\mathbf{W}^-|^2 - \frac{1}{2} | \operatorname{Ric}^{\circ} |^2 \right) \, \mathrm{dv}_g$$

• Hirzebruch Signature Theorem: signature $\tau(M) = b_+(M) - b_-(M)$

$$\tau(M) = \frac{1}{12\pi^2} \int_M \left(|\mathbf{W}^+|^2 - |\mathbf{W}^-|^2 \right) \, \mathrm{dv}_g$$

- Hitchin–Thorpe Inequality: (M^4, g) Einstein $\Longrightarrow 2\chi(M) \ge 3|\tau(M)|$
- Moreover $2\chi(M) \pm 3\tau(M) = 0$ iff $\Lambda^{\pm}M$ is flat

Exercise 6.12

6. Exercises

Exercise 6.1. You are going to prove that the set of flat 2-tori up to isometries and homotheties (*i.e.* change of the metric of the form $g \mapsto \lambda^2 g$ for some $\lambda \in \mathbb{R} \setminus \{0\}$) is

$$\mathcal{M} = \{(x, y) \in \mathbb{R}^2 \,|\, x^2 + y^2 \ge 1, x \in [0, \frac{1}{2}], y > 0\}$$

Every flat 2-torus can be presented as $(\mathbb{R}^2/\Lambda, g_\Lambda)$, where Λ is a lattice of full rank in \mathbb{R}^2 and g_Λ is the Riemannian metric on \mathbb{R}^2/Λ induced by the standard Euclidean metric on \mathbb{R}^2 . It will therefore suffice to classify lattices Λ up to the action of O(2) and homotheties.

(i) Let u_1 be the shortest non-zero vector in Λ . Up to rotations and homotheties we can assume that $u_1 = (1,0)$ (in particular $||u_1|| = 1$). Let u_2 be the shortest vectors of $\Lambda \setminus \mathbb{Z}u_1$. Then u_1 and u_2 are linearly independent (over \mathbb{R}). Show that $\Lambda = \mathbb{Z}u_1 + \mathbb{Z}u_2$. (Hint: if not there would exist $u \in \Lambda$ such that $u = \lambda_1 u_1 + \lambda_2 u_2$ with $2|\lambda_i| < 1$. But then we would have $||u|| < ||u_2||$.)

LORENZO FOSCOLO

(ii) Write $u_2 = (x, y)$. Up to reflections along the coordinate axis we can assume that u_2 lies in the first quadrant, *i.e.* $x, y \ge 0$. Also $x^2 + y^2 \ge 1$ and y > 0 since u_2 is longer than u_1 and u_1, u_2 are linearly independent. Prove that $x \le \frac{1}{2}$. (Hint: if not consider $u_2 - u_1$.)

Exercise 6.2. Show that when n = 3 g Einstein $\implies g$ has constant sectional curvature. Deduce that $S^2 \times S^1$ does not admit any Einstein metric. (Hint: you might want to consider the curvature operator $\mathcal{R}: \Lambda^2 \to \Lambda^2$ defined by $\mathcal{R}(x \wedge y) = \frac{1}{2} \sum_{i,j} \langle \operatorname{Rm}(x, y) e_j, e_i \rangle e_i \wedge e_j$ and observe that $\Lambda^2 \simeq \Lambda^1$ when n = 3.)

Exercise 6.3. Let $\{g_t\}_{t \in (-\epsilon,\epsilon)} \subset \mathfrak{Met}(M)$ be a 1-parameter family of metrics on M depending smoothly on t and set $h = \frac{d}{dt}g_t|_{t=0}$. Show that $\frac{d}{dt} \mathrm{dv}_{g_t}|_{t=0} = \frac{1}{2}(\mathrm{tr}_g h) \mathrm{dv}_g$. Deduce that

$$T_g\mathfrak{Met}_1(M) = \{h \in \Gamma(\mathrm{Sym}^2 T^*M) \mid \int_M \mathrm{tr}_g h \, \mathrm{dv}_g = 0\}$$

Exercise 6.4. For a 1-form ξ let $\delta^* \xi$ denote the symmetrisation of $\nabla \xi$, *i.e.*

$$\delta^* \xi(X, Y) = \frac{1}{2} \left((\nabla_X \xi)(Y) + (\nabla_Y \xi)(X) \right)$$

for every pair X, Y of vector fields.

- (i) Show that $\delta^* \xi = -\frac{1}{2} \mathcal{L}_{\xi^{\sharp}} g$.
- (ii) Let δ : $\Gamma(\operatorname{Sym}^2 T^* M) \to \Omega^1(M)$ denote the formal L^2 -adjoint of δ^* : $\Omega^1(M) \to \Gamma(\operatorname{Sym}^2 T^* M)$. Show that $\delta(ug) = -du$ for every function u.

Exercise 6.5. Let $\mathcal{F}: \mathfrak{Met}(M) \to \mathbb{R}$ be a $\mathfrak{Diff}(M)$ -invariant functional and assume that $g \in \mathfrak{Met}(M)$ is homogeneous, *i.e.* there exists a Lie group G acting transitively on M and preserving g. Fix a point $p \in M$ and denote by H the stabiliser of p in G. By differentiation, H therefore acts on T_pM as a subgroup of $\mathrm{SO}(T_pM, g_p)$. Assume that the H-representation T_pM is irreducible.

- (i) By restricting to the action of $H \subset \mathfrak{Diff}(M)$ on $\mathfrak{Met}(M)$, show that there exists $\lambda \in \mathbb{R}$ such that $\operatorname{grad}_q \mathcal{F}|_p = \lambda g_p$. (Hint: use Schur Lemma.)
- (ii) Use the *G*-action to deduce that $\operatorname{grad}_{q}\mathcal{F} = \lambda g$ everywhere on *M*.

Exercise 6.6. Assume that $n \ge 3$. You are going to show that the critical points of the Hilbert– Einstein functional restricted to metrics with unit volume are the Einstein metrics.

(i) Show that

$$\operatorname{grad}_g \mathcal{S} = -\left(\operatorname{Ric}_g - \frac{1}{2}\operatorname{Scal}_g g\right).$$

(Hint: you can take for granted the following formula: if g_t is a smooth path in $\mathfrak{Met}(M)$ starting at g in the direction of h then

$$\frac{d}{dt}\operatorname{Scal}_{g_t}|_{t=0} = \triangle(\operatorname{tr}_g h) + d^*(\delta h) - \langle \operatorname{Ric}_g, h \rangle.)$$

(ii) Use the invariance under diffeomorphisms of the Hilbert-Einstein functional to deduce that

$$\delta \text{Ric} + \frac{1}{2}d\text{Scal} = 0$$

- (iii) Show that $g \in \mathfrak{Met}_1(M)$ is a critical point of $\mathcal{S}|_{\mathfrak{Met}_1(M)}$ if and only if there exists a function $\lambda \in C^{\infty}(M)$ such that $\operatorname{Ric} = \lambda g$.
- (iv) Use part (ii) to show that λ above is constant and therefore g is Einstein.

Exercise 6.7. Suppose that $\operatorname{Ric}(g) = \lambda g$ and let $h \in \Gamma(\operatorname{Sym}^2 T^*M)$ be an infinitesimal variation of g. Show that the symmetric tensor $d_g \operatorname{Ric}(h) - \lambda h$ lies in the kernel of B_g , where $B_g(h') = \delta h' + \frac{1}{2}d\operatorname{tr}_g h'$ is the Bianchi operator. (Hint: differentiate the Bianchi identity $\delta \operatorname{Ric} + \frac{1}{2}d\operatorname{Scal} = 0$ along a path starting at g in the direction of h.)

Exercise 6.8. Let X be a Killing vector field, *i.e.* a vector field such that $\mathcal{L}_X g = 0$. Equivalently ∇X is a skew-symmetric (1, 1) tensor.

(i) Show that

$$\triangle\left(\frac{1}{2}|X|^2\right) = -|\nabla X|^2 + \operatorname{Ric}(X,X).$$

- (ii) Show that a closed (M, g) does not carry any Killing field if Ric < 0.
- (iii) Show that a closed (M, g) does not carry any Killing field if $\operatorname{Ric} = 0$ and $b_1(M) = 0$. (Hint: show that X^{\flat} is a harmonic 1-form and use the fact that $\Delta = \nabla^* \nabla$ on 1-forms if $\operatorname{Ric} = 0$.)

Exercise 6.9. You are going to apply the formalism introduced in Section 4.1.2 to produce an Einstein metric on S^7 that does not have constant curvature. We consider $K \subset H \subset G$ with $K = \text{Sp}(1) \times \text{Sp}(1)$, H = Sp(1) and G = Sp(2).

- (i) Show that $M = S^7$, $B = S^4$ and $F = S^3$. (Hint: you might want to use the double covers $Sp(2) \rightarrow SO(5)$ and $Sp(1) \times Sp(1) \rightarrow SO(4)$.)
- (ii) Verify that B and F are isotropy irreducible homogeneous spaces. Normalise the resulting Einstein (constant curvature) metrics so that $s_B = 12$ and $s_F = 6$.
- (iii) Calculate $|\text{curv}|^2$. (Hint: you can use the fact that g_1 is the standard round metric on \mathbb{S}^7 with scalar curvature 42.)
- (iv) Deduce the existence of a critical point $t_* \neq 1$ of $\mathcal{S}(t)$.
- (v) Show that the Einstein metric g_{t_*} does not have constant curvature.
- (vi) Show that g_1 and g_{t_*} , normalised to have the same volume, cannot be connected by a path of Einstein metrics. (Hint: compare the values of the Hilbert–Einstein functional.)

Exercise 6.10. Recall that the total Chern class of an almost complex manifold X^{2n} is $c(X) = 1 + c_1(X) + \cdots + c_n(X)$. For example, $c(\mathbb{CP}^3) = (1+h)^4$ (modulo $h^4 = 0$), where h is the generator of $H^2(\mathbb{CP}^3;\mathbb{Z})$. Now, let M be a quartic surface in \mathbb{CP}^3 .

(i) Consider the exact sequence

$$0 \to TM \to T\mathbb{CP}^3|_M \to \mathcal{O}(4)|_M \to 0.$$

- (a) Taking determinants, show that $c_1(M) = 0$.
- (b) Show that M has Euler characteristic $\chi(M) = 24$. (Hint: the Euler class of M is $c_2(M)$.)
- (ii) Show that $b_2(M) = 22$. (Hint: *M* is simply connected by the Lefschetz Hyperplane Theorem.)
- (iii) Use parts (i.a) and (ii) to show that $h^{2,0}(M) = h^{0,2}(M) = 1$ and $h^{1,1}(M) = 20$.
- (iv) Show that $b^+(M) = 3$ and $b^-(M) = 19$. (Hint: use Exercise 6.11 below.)

Exercise 6.11. Let V be a 4-dimensional vector space endowed with a positive definite inner product and a volume form $dv \in \Lambda^4 V^*$.

- (i) Using dv and the wedge product define a non-degenerate pairing q on $\Lambda^2 V^*$. Show that q has signature (3,3). Let $\Lambda^{\pm} V^*$ be maximal positive/negative subspaces of $(\Lambda^2 V^*, q)$.
- (ii) Show that the induced action of $SL(V) \simeq SL(4, \mathbb{R})$ (*i.e.* the matrices that preserve dv) on $\Lambda^2 V^*$ defines a double cover $SL(4, \mathbb{R}) \to SO(3, 3)$. Restricting to compact subgroups, we see that $SO(4) \to SO(3)^+ \times SO(3)^-$ is a double-cover; here $SO(3)^{\pm}$ is the induced action of SO(4) on $\Lambda^{\pm} V^*$.
- (iii) Identify V with the quaternions \mathbb{H} and SU(2) with the unit sphere $\mathbb{S}^3 \subset \mathbb{H}$. Define a map $SU(2) \times SU(2) \times \mathbb{H} \to \mathbb{H}$ by $(q_1, q_2, x) \mapsto q_1 x \overline{q_2}$. Show that this defines a double cover $SU(2)^+ \times SU(2)^- \to SO(4)$.
- (iv) Show that this induces a double cover of $U(1) \times SU(2)^- \to U(2)$, where $U(1) \subset SU(2)^+$ is the subgroup of diagonal matrices.
- (v) Show that U(2) acts on $\Lambda^- V^*$ as SO(3)⁻ and on $\Lambda^+ V^*$ as the subgroup SO(2) \subset SO(3)⁺ preserving the standard Kähler form ω on $\mathbb{H} \simeq \mathbb{C}^2$.

LORENZO FOSCOLO

(vi) Deduce that on a Kähler surface (M, ω) , $\Lambda^+ M = \llbracket \Lambda^{2,0} M \rrbracket \oplus \mathbb{R} \omega$ and $\Lambda^- M = \llbracket \Lambda^{1,1}_0 M \rrbracket$, where $\Lambda^{1,1}_0 M$ is the space of (1, 1)-forms orthogonal to ω . Here for a complex vector space W we denote by $\llbracket W \rrbracket$ the real vector space such that $W \oplus \overline{W} = \llbracket W \rrbracket \otimes_{\mathbb{R}} \mathbb{C}$.

Exercise 6.12. This exercise is about non-existence and uniqueness of Einstein metrics in dimension 4.

- (i) Use the Chern–Gauss–Bonnet Theorem to show that $M = S^3 \times S^1$ does not admit any Einstein metric. (Hint: by Bieberbach's Theorem any compact flat manifold is finitely covered by a flat torus.)
- (ii) Let $M_{k,\ell} = k \mathbb{CP}^2 \sharp \ell \overline{\mathbb{CP}^2}$, where $\overline{\mathbb{CP}^2}$ denotes \mathbb{CP}^2 with the opposite orientation. For which (k,ℓ) can't $M_{k,\ell}$ carry any Einstein metric?
- (iii) Let g be an Einstein metric on the smooth 4-manifold underlying a complex K3 surface. Show that g is hyperkähler. (Hint: use the fact that every flat bundle on a simply connected manifold can be trivialised by a basis of orthonormal parallel sections.)