INTRODUCTION TO EINSTEIN MANIFOLDS

LORENZO FOSCOLO

1. INTRODUCTION

M™: smooth, closed, connected, oriented

Riemannian metric g

Is there a best Riemannian structure on M?

(Cartan, Weyl) local diffeos invariants in terms of curvature and its covariant derivatives

1.1. The case n = 2.

M? surface of genus v > 0

Unique curvature invariant: Gaussian curvature K,: M — R

Uniformization Theorem: existence of g with K, = const

Sign of constant K, constrained by Gauss-Bonnet: [,, K, dvy = 2mx (M) = 27(2 — 27)
For - > 1 such constant curvature g is not unique, but there is a good Teichmiiller/moduli
space, which is a finite dimensional manifold/orbifold

Exercise 6.1

1.2. The Einstein equation. (M",g) with n > 3.

Riemannian curvature: Rm(X,Y)Z =VxVyZ — VyVxZ — Vixy)Z

Sectional curvature: 2-plane II C T, M with o.n. basis ej, ea ~ K(II) = (Rm(ey, e2)ea, 1)
Constant sectional curvature = (M", g) locally isometric to S”, R" or H"

Ricci curvature: Ric(X,Y) =37, (Rm(e;, X)Y, e;)

Einstein equation: Ric = Ag for some A € R

Exercise 6.2
e Scalar curvature: Scal = "1, Ric(e;, €;)
e (Aubin) Every M admits a metric of constant negative scalar curvature
— Can modify any § on M in a neighbourhood of a point so that fM Scalzdvg < 0
— Construct u so that g = e?*§ has unit volume and constant scalar curvature equal to
the Yamabe invariant of conformal class [g]

Scal,, d
Y(M,[3)) = inf S5 v

B 9€(d] Vo](M’g) 2

2. THE HILBERT-EINSTEIN FUNCTIONAL

o Miet(M): space of smooth Riemannian metrics on M; Met; (M ): normalised volume
e Diff(M): diffeomorphisms, acting on Met(M); Diff,(M): diffeos isotopic to the identity
o T, Met(M) = I'(Sym>T*M)
Exercise 6.3
Exercise 6.4
o T, (Diff(M) - g) = im 5"
o T,Met(M) =im 6* @1r2 ker &
o Diff(M)-invariant functional F: Met(M) — R
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o L?gradient: g, with ¢y = g and g, = hat t = 0 ~ L F(g;)|s—0 = (grad,F, h) 2
e Difj(M)-invariance = J(grad,F) =0
Exercise 6.5
e Hilbert-Einstein functional: S(g) = [}, Scalg dv,
e grad,§ = — (Ricg — %Scalg g)
e g € Mety (M) is a critical point of S|ope, (ar) if and only if g is Einstein
Exercise 6.6

3. MobuL1

e Einstein equation elliptic in harmonic coordinates: Ric;; = —% > opg gpqagqgij +l.o.t.
— Finstein metrics real analytic in harmonic coordinates
e Elliptic deformation complex: if Ric(g) = Ag
0 — QL) 2% T(Sym2T* M) N5 p(sym2 T M) P25 QL (M) — 0
where dgRic(h) = SALh — 6*6h — $Vdtrgh and By(h) = 6h+ dtrgh
Exercise 6.7

4. EXAMPLES

Almost all known Einstein metrics either have a large symmetry group (in the closed case the
Einstein constant must then be positive) or have special holonomy (or are related to some holonomy
reduction).

Exercise 6.8

4.1. Homogeneous spaces.

G compact Lie group, K closed subgroup ~ M = G/K
G /K reductive: K—invariant splitting g =€ @ p
TM =G x K9P

. . . 1:1 . . .. . .
G-invariant metrics on M <— K—invariant positive definite inner products on p

4.1.1. Isotropy irreducible homogeneous spaces.

e If p is an irreducible K-representation then there exists a unique K—invariant symmetric
bilinear form on p and therefore there is a unique G-invariant metric on M, which must
be Einstein (see also Exercise 6.5)

e G=8SU(n+1), K=U(n) ~ M = CP" with Fubini-Study metric

4.1.2. The canonical variation.

e KCHCG

e M =G/K — G/H = B fibre bundle with fibre F' = H/K

G/H and H/K reductive isotropy irreducible ~» Einstein metrics gp and gp with scalar
curvature sp and sy respectively

1-p family of G—invariant metrics on M up to scale

9t = 9B +tgr

Restrict normalised Hilbert-Einstein functional
S(gt) dimF

—5 X1 7 (%

VOI(M, gt) n

where curv = curvature of the connection on H—bundle G — B coming from g = ® pp
e Palais’ Principle of Symmetric Criticality: S'(t) = 0 = ¢g; Einstein

SF+sp — t]curv]2> =:5(t)

Exercise 6.9
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4.2. Kahler—Einstein metrics.

M?", J almost complex manifold
J-compatible non-degenerate 2-form w ~ g = w(-,J )
(M, J,w,g) Kdhler & Ny =0and dw =0< VJ=0< Vw =10
Ricci form p, = Ricy(J -, +): dp, = 0 and [p,] = 2me1 (M, J)g € H?*(M,R)
Calabi-Yau Theorem: (M, J,w) Kéhler such that 2mci (M, JJ)r = Aw]| for some A € R<g
= Ju € C%°(M) such that w, := w + i9du is Einstein with Einstein constant .
K3 surfaces
— unique simply connected smooth M* supporting Kéhler structures with ¢, (M, J) = 0
(quartic in CP3, double cover of CP? branched over a sextic, . ..)
— Kahler Ricci-flat metrics on M that are hyperkéhler: triple of parallel g—compatible
(J1, J2, J3) with JyJo = J3 (~ triple of Kédhler forms wy,ws, ws)
— 57-dimensional moduli space of hyperkéhler metrics of unit volume on M

Exercise 6.10

5. OBSTRUCTIONS
Exercise 6.11
en=4 A=At A"
e curvature operator R: A% — A2

%Scal + Wt Ric

Ric 1—1280a1 + W™
Chern—Gauss—Bonnet Theorem: Euler characteristic x(M) = Y=, (—1)%b;(M)

(M) = L, /M (isCaﬁ +[WH2 4 [W? - | Ric y?) dv,

Hirzebruch Signature Theorem: signature 7(M) = by (M) — b_(M)
") = s [ (W= W) a,

Hitchin-Thorpe Inequality: (M*, g) Einstein = 2x (M) > 3|7(M)|
Moreover 2x(M) + 37(M) = 0 iff AT M is flat
Exercise 6.12

6. EXERCISES

Exercise 6.1. You are going to prove that the set of flat 2-tori up to isometries and homotheties
(i.e. change of the metric of the form g — A2g for some A € R\ {0}) is

M ={(z,y) eR*|2*> +y* > 1,z € [0, 3],y > 0}.

Every flat 2-torus can be presented as (R2/A, gy), where A is a lattice of full rank in R? and g, is
the Riemannian metric on R?/A induced by the standard Euclidean metric on R2. It will therefore
suffice to classify lattices A up to the action of O(2) and homotheties.

(i) Let u; be the shortest non-zero vector in A. Up to rotations and homotheties we can
assume that u; = (1,0) (in particular ||ui|| = 1). Let ua be the shortest vectors of A\ Zu;.
Then w; and usy are linearly independent (over R). Show that A = Zuy 4+ Zus. (Hint: if not
there would exist u € A such that u = A\ju; + Aqug with 2|\;| < 1. But then we would have
[l < fluzl].)
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(ii) Write ug = (z,y). Up to reflections along the coordinate axis we can assume that usy lies
in the first quadrant, 7.e. 2,y > 0. Also 22 + y?> > 1 and y > 0 since uy is longer than u;
and uq,us are linearly independent. Prove that z < % (Hint: if not consider ug — uy.)

Exercise 6.2. Show that when n = 3 ¢ Einstein = ¢ has constant sectional curvature. Deduce
that S? x S! does not admit any Einstein metric. (Hint: you might want to consider the curvature
operator R: A? — A? defined by R(zAy) = % > i (Rm(x,y)ej, e;) e; A ej and observe that A% ~ Al
when n = 3.)

Exercise 6.3. Let {g;}ic(—c) C Met(M) be a 1-parameter family of metrics on M depending
smoothly on t and set h = 4 g¢|t—o. Show that Ldv,|i—o = & (tryh) dv,. Deduce that

TyMety (M) = {h € T(Sym*T* M) | / trghdvy = 0}.
M

Exercise 6.4. For a 1-form £ let §*¢ denote the symmetrisation of V&, i.e.

FE(X,Y) = 3((VxEY) + (VyE)(X))
for every pair X,Y of vector fields.
(i) Show that 0*¢ = —%ﬁgﬁg.
(ii) Let d: T(Sym?T*M) — Q' (M) denote the formal L?-adjoint of 6*: QY(M) — I'(Sym?T*M).
Show that §(ug) = —du for every function u.

Exercise 6.5. Let F: Met(M) — R be a Diff(M)-invariant functional and assume that g €
Met(M) is homogeneous, i.e. there exists a Lie group G acting transitively on M and preserving
g. Fix a point p € M and denote by H the stabiliser of p in G. By differentiation, H therefore acts
on T,M as a subgroup of SO(T,M, g,). Assume that the H-representation 7, M is irreducible.
(i) By restricting to the action of H C Diff(M) on Met(M), show that there exists A € R
such that grad,F|, = Agp. (Hint: use Schur Lemma.)
(ii) Use the G—action to deduce that grad,F = Ag everywhere on M.

Exercise 6.6. Assume that n > 3. You are going to show that the critical points of the Hilbert—
Einstein functional restricted to metrics with unit volume are the Einstein metrics.

(i) Show that
grad,§ = — (Ricg — %Scalg g) .
(Hint: you can take for granted the following formula: if g; is a smooth path in DMtet(M)
starting at g in the direction of h then

d
EScalgth:o = A(trgh) + d*(6h) — (Ricg, h).)
(ii) Use the invariance under diffeomorphisms of the Hilbert—Einstein functional to deduce that

oRic + %dScal =0.
(iii) Show that g € Mety (M) is a critical point of S|ope, (ar) if and only if there exists a function

A € C*°(M) such that Ric = Ag.
(iv) Use part (ii) to show that A above is constant and therefore g is Einstein.

Exercise 6.7. Suppose that Ric(g) = Ag and let h € T'(Sym?T*M) be an infinitesimal variation
of g. Show that the symmetric tensor dyRic(h) — Ah lies in the kernel of By, where By(h') =
on' + %dtrgh' is the Bianchi operator. (Hint: differentiate the Bianchi identity dRic + %dScal =0
along a path starting at ¢ in the direction of h.)

Exercise 6.8. Let X be a Killing vector field, i.e. a vector field such that £Lxg = 0. Equivalently
VX is a skew-symmetric (1,1) tensor.
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(i) Show that
A (S1X[) = =|VX[? + Rie(X, X).

(ii) Show that a closed (M, g) does not carry any Killing field if Ric < 0.
(iii) Show that a closed (M, g) does not carry any Killing field if Ric = 0 and b, (M) = 0. (Hint:
show that X” is a harmonic 1-form and use the fact that A = V*V on 1-forms if Ric = 0.)

Exercise 6.9. You are going to apply the formalism introduced in Section 4.1.2 to produce an
Einstein metric on S7 that does not have constant curvature. We consider K ¢ H C G with
K =Sp(1) x Sp(1), H =Sp(1) and G = Sp(2).

(i) Show that M = S7, B = S* and F = S3. (Hint: you might want to use the double covers

Sp(2) — SO(5) and Sp(1) x Sp(1) — SO(4).)

(ii) Verify that B and F are isotropy irreducible homogeneous spaces. Normalise the resulting
Einstein (constant curvature) metrics so that sp = 12 and sp = 6.

(iii) Calculate |curv|?. (Hint: you can use the fact that g; is the standard round metric on S7
with scalar curvature 42.)

(iv) Deduce the existence of a critical point ¢, # 1 of S(t).

(v) Show that the Einstein metric g¢, does not have constant curvature.

(vi) Show that ¢g; and g,, normalised to have the same volume, cannot be connected by a path
of Einstein metrics. (Hint: compare the values of the Hilbert—Einstein functional.)

Exercise 6.10. Recall that the total Chern class of an almost complex manifold X?" is ¢(X) =
1+c1(X) 4+ +cp(X). For example, ¢(CP?) = (14 h)* (modulo h* = 0), where h is the generator
of H2((CIP’3; Z). Now, let M be a quartic surface in CP3.

(i) Consider the exact sequence
0 — TM — TCP?|p; — O(4)|ar — 0.

(a) Taking determinants, show that ¢; (M) = 0.
(b) Show that M has Euler characteristic x(M) = 24. (Hint: the Euler class of M is
ca(M).)
(ii) Show that ba(M) = 22. (Hint: M is simply connected by the Lefschetz Hyperplane The-
orem.)
(iii) Use parts (i.a) and (ii) to show that h**(M) = h%2(M) =1 and h'* (M) = 20.
(iv) Show that b (M) = 3 and b~ (M) = 19. (Hint: use Exercise 6.11 below.)

Exercise 6.11. Let V be a 4-dimensional vector space endowed with a positive definite inner
product and a volume form dv € A*V*.

(i) Using dv and the wedge product define a non-degenerate pairing ¢ on A2V*. Show that ¢
has signature (3,3). Let ATV* be maximal positive/negative subspaces of (A2V*,q).

(ii) Show that the induced action of SL(V') ~ SL(4,R) (i.e. the matrices that preserve dv) on
A2V* defines a double cover SL(4,R) — SO(3,3). Restricting to compact subgroups, we
see that SO(4) — SO(3)" x SO(3)™ is a double-cover; here SO(3)¥ is the induced action
of SO(4) on A*V*.

(iii) Identify V with the quaternions H and SU(2) with the unit sphere S* C H. Define a map
SU(2) x SU(2) x H — H by (q1,92,z) — ¢ixgz. Show that this defines a double cover
SU(2)" x SU(2)~ — SO(4).

(iv) Show that this induces a double cover of U(1) x SU(2)~ — U(2), where U(1) ¢ SU(2)7 is
the subgroup of diagonal matrices.

(v) Show that U(2) acts on A~V* as SO(3)” and on ATV* as the subgroup SO(2) C SO(3)"
preserving the standard Kahler form w on H ~ C2.
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(vi) Deduce that on a Kahler surface (M,w), ATM = [A2°M] @& Rw and A~ M = [Ay' M],
where A(l)’lM is the space of (1, 1)-forms orthogonal to w. Here for a complex vector space
W we denote by [W] the real vector space such that W & W = [W] @ C.

Exercise 6.12. This exercise is about non-existence and uniqueness of Einstein metrics in dimen-
sion 4.

(i) Use the Chern-Gauss-Bonnet Theorem to show that M = S3 x S! does not admit any
Einstein metric. (Hint: by Bieberbach’s Theorem any compact flat manifold is finitely
covered by a flat torus.)

(i) Let My, =k CP24¢ CP2, where CP? denotes CP? with the opposite orientation. For which
(k,0) can’t My, ¢ carry any Einstein metric?

(iii) Let g be an Einstein metric on the smooth 4-manifold underlying a complex K3 surface.
Show that g is hyperkéhler. (Hint: use the fact that every flat bundle on a simply connected
manifold can be trivialised by a basis of orthonormal parallel sections.)



