COMPLEX AND KÄHLER MANIFOLDS

1. Almost Hermitian geometry

Three subgroups of $\mathrm{GL}(2 n, \mathbb{R})$:

- $\mathrm{GL}(n, \mathbb{C})$: preserves multiplication by i on $\mathbb{R}^{2 n} \simeq \mathbb{C}^{n}$

$$
J_{0}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}, \quad J_{0}=\left(\begin{array}{cc}
0 & -1_{n} \\
1_{n} & 0
\end{array}\right), \quad J_{0}^{2}=-1_{2 n}
$$

- $\operatorname{Sp}(2 n, \mathbb{R})$: preserves the non-degenerate skew-symmetric bilinear form

$$
\omega_{0}=d x_{1} \wedge d y_{1}+\cdots+d x_{n} \wedge d y_{n}
$$

- ω_{0} non-degenerate: $\left.v \mapsto v\right\lrcorner \omega_{0}$ defines isomorphism $V \rightarrow V^{*}$
$-\frac{1}{n!} \omega_{0}^{n}$ standard volume form on $\mathbb{R}^{2 n}$
Recall: differential k-form $\alpha \in \Lambda^{k} V^{*}$ on a vector space $V=k$-multilinear alternating map

$$
\alpha: V \times \cdots \times V \rightarrow \mathbb{R}
$$

Basis $\left\{e_{1}, \ldots, e_{m}\right\}$ of $V \leftrightarrow$ basis $\left\{\varepsilon^{1}, \ldots, \varepsilon^{m}\right\}$ of $V^{*} \leftrightarrow$ basis $\left\{\varepsilon^{i_{1}} \wedge \cdots \wedge \varepsilon^{i_{k}} \mid i_{1}<\cdots<i_{k}\right\}$ of $\Lambda^{k} V^{*}$ defined in terms of minor determinants

- $\mathrm{U}(n)=\mathrm{GL}(n, \mathbb{C}) \cap \mathrm{Sp}(2 n, \mathbb{R})$: preserves compatible $\left(J_{0}, \omega_{0}\right) \leadsto$ positive definite symmetric bilinear form $g_{0}(\cdot, \cdot)=\omega_{0}\left(\cdot, J_{0} \cdot\right)$
Exercise 5.1
Definition 1.1. Let M be a smooth manifold of dimension $2 n$.
(i) A Riemannian metric on M is a smooth section g of $\operatorname{Sym}^{2} T^{*} M$ which is positive definite at every point.
(ii) An almost complex structure on M is a smooth section J of $\operatorname{End}(T M)$ such that $J^{2}=$ $-\mathrm{id}_{T M}$.
(iii) A non-degenerate 2-form on M is a smooth section of $\Lambda^{2} T^{*} M$ that is non-degenerate at every point.
We say that $\left(M^{2 n}, g, J, \omega\right)$ is an almost Hermitian manifold if the Riemannian metric g, almost complex structure J and non-degenerate 2-form ω are related by $g(\cdot, \cdot)=\omega(\cdot, J \cdot)$.

2. Integrable almost complex structures and complex manifolds

$M^{2 n}$ with almost complex structure J

- decomposition $T M \otimes \mathbb{C}=T^{1,0} M \oplus T^{0,1} M$ into $\pm i$-eigenspaces of J
- $T^{*} M \otimes \mathbb{C}=\Lambda^{1,0} T^{*} M \oplus \Lambda^{0,1} T^{*} M \leadsto d u=\partial u+\bar{\partial} u$ for every $u \in C^{\infty}(M ; \mathbb{C})$
- Cauchy-Riemann operator: $u J$-holomorphic if $\bar{\partial} u=0$
- $\Lambda^{2} T^{*} M \otimes \mathbb{C}=\Lambda^{2,0} T^{*} M \oplus \Lambda^{1,1} T^{*} M \oplus \Lambda^{0,2} T^{*} M$
- $\alpha \in \Omega^{0,1}(M) \leadsto d \alpha=d^{2,-1} \alpha+\partial \alpha+\bar{\partial} \alpha$

Recall: exterior differential $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$, the unique \mathbb{R}-linear map such that
(i) for every smooth function $f, d f \in \Omega^{1}(M)$ is the standard differential
(ii) $d(\alpha \wedge \beta)=d \alpha \wedge \beta+(-1)^{\operatorname{deg} \alpha} \alpha \wedge d \beta$
(iii) $d \circ d=0$

- Nijenhuis tensor $N_{J}: \Lambda^{0,1} T^{*} M \rightarrow \Lambda^{2,0} T^{*} M$ such that $d^{2,-1} \alpha=-N_{J}(\alpha)$

[^0]- J integrable if $N_{J} \equiv 0$

Exercise 5.2
Theorem 2.1 (Newlander-Nirenberg, 1957). The almost complex structure J is induced by a holomorphic atlas on M iff it is integrable.

Exercises 5.3 and 5.4

3. Symplectic and Kähler manifolds

$M^{2 n}$ with non-degenerate 2-form ω

- ω symplectic if $d \omega=0$
- Darboux Theorem: existence of coordinate charts $\varphi: U \rightarrow \mathbb{R}^{2 n}$ such that $\left(\varphi^{-1}\right)^{*} \omega=\omega_{0}$
- Moser Stability Theorem: M closed, $\left\{\omega_{t}\right\}_{t \in[0,1]}$ family of cohomologous symplectic forms $\Rightarrow \exists$ family $\left\{\psi_{t}\right\}_{t \in[0,1]}$ of diffeomorphisms with $\psi_{0}=$ id and $\psi_{t}^{*} \omega_{t}=\omega_{0}$.
Exercise 5.5
Recall: $d \circ d=0 \leadsto$ deRham complex of M^{n}

$$
0 \rightarrow \Omega^{0}(M) \xrightarrow{d} \Omega^{1}(M) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^{n}(M) \rightarrow 0
$$

and deRham cohomology $H_{d R}^{k}(M)=\left\{\alpha \in \Omega^{k}(M) \mid d \alpha=0\right\} / d \Omega^{k-1}(M)$.
Definition 3.1. An almost Hermitian manifold $\left(M^{2 n}, g, J, \omega\right)$ is Kähler iff J is integrable and ω is symplectic. In this case ω is often referred to as the Kähler form.

Exercises 5.6, 5.7, 5.8 and 5.9

- $\left(M^{2 n}, J\right)$ complex: $N_{J} \equiv 0 \Rightarrow \bar{\partial} \circ \bar{\partial}=0 \leadsto$
- Dolbeault complex

$$
0 \rightarrow \Omega^{p, 0}(M) \xrightarrow{\bar{\partial}} \Omega^{p, 1}(M) \xrightarrow{\bar{\partial}} \cdots \xrightarrow{\bar{\partial}} \Omega^{p, n}(M) \rightarrow 0
$$

and Dolbeault cohomology $H_{\bar{\partial}}^{p, q}(M)=\left\{\alpha \in \Omega^{p, q}(M) \mid \bar{\partial} \alpha=0\right\} / \bar{\partial} \Omega^{p, q-1}(M)$

- Hodge theory for closed Kähler manifolds: $H_{\bar{\partial}}^{p, q}(M)=\overline{H_{\bar{\partial}}^{q, p}(M)}$ and $H_{d R}^{k}(M ; \mathbb{C})=\bigoplus_{p+q=k} H_{\bar{\partial}}^{p, q}(M)$ Proof. Some global analysis on manifolds needed for this:
- M closed: $H_{d R}^{k}(M) \stackrel{1: 1}{\longleftrightarrow} \mathcal{H}^{k}(M)=\left\{\alpha \in \Omega^{k}(M) \mid \triangle \alpha=\left(d d^{*}+d^{*} d\right) \alpha=0\right\}$
$-(M, g, J, \omega)$ Kähler $\Rightarrow J$ parallell with respect to the Levi-Civita connection of $g \Rightarrow$ \triangle preserves type (p, q)-decomposition

4. Holomorphic bundles and Chern connections

(M, J) complex manifold $+E \rightarrow M$ smooth complex vector bundle of rank k

- connection: \mathbb{C}-linear map $\nabla: C^{\infty}(M ; E) \rightarrow \Omega^{1}(M ; E)=C^{\infty}\left(M ; T^{*} M \otimes E\right)$ such that

$$
\nabla(f s)=d f \otimes s+f \nabla s
$$

for every $s \in C^{\infty}(M ; E)$ and $f \in C^{\infty}(E ; \mathbb{C})$

- in a local trivialisation (or gauge) $\left.E\right|_{\mathcal{U}} \simeq \mathcal{U} \times \mathbb{C}^{k}: \nabla s=d s+A s$ for $A \in \Omega^{1}(\mathcal{U} ; \mathbb{C}) \otimes \mathfrak{g l}(k, \mathbb{C})$
- change of gauge: $g: \mathcal{U} \rightarrow \mathrm{GL}(k, \mathbb{C}) \leadsto g^{*} \nabla=d+g A g^{-1}-(d g) g^{-1}$, i.e. $g^{*} \nabla(s)=g \nabla\left(g^{-1} s\right)$
- (E, h) Hermitian bundle: ∇ unitary if $\nabla h=0 \Longleftrightarrow$ in a local unitary gauge $\nabla=d+A$ with $A \in \Omega^{1}(M) \otimes \mathfrak{u}(k)$
- Cauchy-Riemann operator on E : \mathbb{C}-linear map $\bar{\partial}_{\mathcal{E}}: C^{\infty}(M ; E) \rightarrow \Omega^{0,1}(M ; E)$ such that

$$
\bar{\partial}_{\mathcal{E}}(f s)=\bar{\partial} f \otimes s+f \bar{\partial}_{\mathcal{E}} s
$$

for every $s \in C^{\infty}(M ; E)$ and $f \in C^{\infty}(E ; \mathbb{C})$.

- connection $\nabla \leadsto$ Cauchy-Riemann operator $\bar{\partial}_{\mathcal{E}}=\nabla^{0,1}$
- Chern connection: Hermitian metric $h+$ Cauchy-Riemann operator $\overline{\mathcal{D}}_{\mathcal{E}}$ on $E \Longrightarrow \exists$! unitary connection ∇ with $\bar{\partial}_{\mathcal{E}}=\nabla^{0,1}$
Proof. In a local unitary gauge $(E, h) \mid \mathcal{U} \simeq \mathcal{U} \times \mathbb{C}^{k}$ with standard Hermitian metric on \mathbb{C}^{k}
$-\bar{\partial}_{\mathcal{E}}=\bar{\partial}+\alpha$ for some $\alpha \in \Omega^{0,1}(\mathcal{U} ; \mathbb{C}) \otimes \mathfrak{g l}(k, \mathbb{C})$
- set $\nabla=d+A$ where $A=\alpha-\alpha^{*}$

Recall: curvature $F_{\nabla} \in \Omega^{2}(M$; End $E)$ of connection ∇
(i) locally $F_{\nabla}=d A+A \wedge A$ if $\nabla=d+A$
(ii) $F_{\nabla}=d_{\nabla} \circ d_{\nabla}$ where $d_{\nabla}: \Omega^{k}(M ; E) \rightarrow \Omega^{k+1}(M ; E)$ is the exterior covariant differential
(iii) curvature as obstruction to integrability: $F_{\nabla}=0 \Rightarrow$ locally $\left.E\right|_{\mathcal{U}} \simeq \mathcal{U} \times \mathbb{C}^{k}$ with $\nabla=d$
$\mathcal{E} \rightarrow M$ holomorphic vector bundle with underlying smooth complex vector bundle E

- Cauchy-Riemann operator $\bar{\partial}_{\mathcal{E}}$: in local holomorphic trivialisation $\bar{\partial}_{\mathcal{E}}=\bar{\partial}$
- Cauchy-Riemann operator $\bar{\partial}_{\mathcal{E}} \leadsto$ sheaf of "holomorphic" sections $\mathcal{O}(\mathcal{E})=\operatorname{ker} \bar{\partial}_{\mathcal{E}}$
- $\bar{\partial}_{\mathcal{E}} \circ \bar{\partial}_{\mathcal{E}}=0 \Longleftrightarrow E$ has the structure of a holomorphic bundle \mathcal{E}

Proof. See §2.2.2 in Donaldson-Kronheimer.

Exercise 5.10

5. Exercises

Exercise 5.1 (More linear algebra). Let V be a finite-dimensional vector space endowed with a positive definite symmetric bilinear form g_{0}.
(i) Show that $A \mapsto g_{0}(A \cdot, \cdot)$ defines an isomorphism between the vector space $\mathfrak{s o}\left(V, g_{0}\right)$ of skew-symmetric endomorphisms of $\left(V, g_{0}\right)$ (i.e. endomorphisms $A: V \rightarrow V$ such that $g_{0}(A u, v)=-g_{0}(u, A v)$ for all $\left.u, v \in V\right)$ and $\Lambda^{2} V^{*}$.
(ii) Show that ω_{0} is the image of J_{0} under the isomorphism defined above.
(iii) Deduce that any two of g_{0}, J_{0}, ω_{0} determine the third one and that $\mathrm{U}(n)=\mathrm{SO}(2 n) \cap$ $\mathrm{GL}(n, \mathbb{C})=\mathrm{SO}(2 n) \cap \mathrm{Sp}(2 n, \mathbb{R})$.

Exercise 5.2 (The Nijenhuis tensor). Let J be an almost complex structure on M.
(i) Verify that $d^{2,-1}$ is tensorial, i.e. $d^{2,-1}(f \alpha)=f d^{2,-1} \alpha$ for any function f and $(0,1)$-form α. Deduce the existence of the Nijenhuis tensor N_{J}, i.e. the existence of a section N_{J} of $\operatorname{Hom}\left(\Lambda^{0,1} T^{*} M, \Lambda^{2,0} T^{*} M\right)$ such that $d^{2,-1} \alpha=-N_{J}(\alpha)$ for every $(0,1)$-form α.
(ii) Under the isomorphism

$$
\operatorname{Hom}\left(\Lambda^{0,1} T^{*} M, \Lambda^{2,0} T^{*} M\right) \simeq\left(\Lambda^{0,1} T^{*} M\right)^{*} \otimes \Lambda^{2,0} T^{*} M \simeq T^{0,1} M \otimes \Lambda^{2,0} T^{*} M
$$

identify N_{J} with the skew-symmetric map $N_{J}: T^{1,0} M \times T^{1,0} M \rightarrow T^{0,1} M$ defined by $N_{J}(X, Y)=[X, Y]^{0,1}$.
(Hint: use the fact that $d \alpha(X, Y)=X \cdot \alpha(Y)-Y \cdot \alpha(X)-\alpha([X, Y])$ for every 1-form α and vector fields X, Y.)

Exercise 5.3 (The Newlander-Nirenberg Theorem). In this exercise you discuss some easy aspects of the proof of the Newlander-Nirenberg Theorem 2.1.
(i) Show the easy implication of the Newlander-Nirenber Theorem: if J is induced by a holomorphic atlas then J must be integrable.
(ii) Show that the converse "hard" implication amounts to showing that, assuming J is integrable, for every point $p \in M$ there exists an open set $\mathcal{U} \subset M$ containing p and J-holomorphic functions $z_{1}, \ldots, z_{n}: \mathcal{U} \rightarrow \mathbb{C}$ such that $\left(z_{1}, \ldots, z_{n}\right): \mathcal{U} \rightarrow \mathbb{C}^{n}$ is a diffeomorphism onto its image.

Exercise 5.4 (Almost complex structures on spheres). In this exercise you construct almost complex structures on \mathbb{S}^{2} and \mathbb{S}^{6}. The latter is non-integrable and deciding whether \mathbb{S}^{6} carries an integrable almost complex structure is a famous open problem. It can be shown (Borel-Serre, 1953) that spheres of dimensions $\neq 2,6$ cannot carry almost complex structures.
(i) Let \mathbb{S}^{2} denote the unit sphere $\mathbb{S}^{2}=\left\{x \in \mathbb{R}^{3} \mid\|x\|=1\right\}$ in \mathbb{R}^{3}. Given $x \in \mathbb{S}^{2}$ identify $T_{x} \mathbb{S}^{2}$ with the plane $x^{\perp} \subset \mathbb{R}^{3}$. Show that the formula

$$
J_{x}(u)=x \times u,
$$

where \times denotes the cross product on \mathbb{R}^{3}, defines an almost complex structure on \mathbb{S}^{2}. Show that this almost complex structure is integrable.
(Hint: you can answer the last question without doing any computation.)
(ii) The existence of the octonions \mathbb{O} implies the existence of a cross product on $\mathbb{R}^{7}=\operatorname{Im} \mathbb{O}$, a bilinear alternating map $\times: \mathbb{R}^{7} \times \mathbb{R}^{7} \rightarrow \mathbb{R}^{7}$ with the properties that $u \times v$ is orthogonal to u and v and has norm $|u \times v|^{2}=|u|^{2}|v|^{2}-(u \cdot v)^{2}$. One simply sets $u \times v=\operatorname{Im}(u v)$, where $u v$ is octonionic multiplication. Show that the formula of part (i) defines an almost complex structure J on the 6 -sphere \mathbb{S}^{6} and that the non-associativity of the 7 -dimensional cross product makes J non-integrable.
Exercise 5.5 (Moser's trick). In this exercise you prove the Moser Stability Theorem.
(i) We begin with some observations about time-dependent vector fields. Let $\psi:[0,1] \times M \rightarrow$ M be a smooth map such that $\psi_{t}=\psi(t, \cdot): M \rightarrow M$ is a diffeomorphism for every t. Define a 1-parameter family of vector fields $\left\{X_{t}\right\}_{t \in[0,1]}$ on M by $X_{t}=d_{(t, \cdot)} \psi\left(\frac{d}{d t}\right)$. Conversely, if M is closed (or if the vector fields are compactly supported) a family of vector fields $\left\{X_{t}\right\}_{t \in[0,1]}$ generates a family $\left\{\psi_{t}\right\}_{t \in[0,1]}$ of diffeomorphisms with $\frac{d}{d t} \psi_{t}=X_{t} \circ \psi_{t}$ and $\psi_{0}=\mathrm{id}$. Let $\left\{\alpha_{t}\right\}_{t \in[0,1]}$ be a smooth 1-parameter family of k-forms on M. Show that

$$
\frac{d}{d t} \psi_{t}^{*} \alpha_{t}=\psi_{t}^{*}\left(\frac{d}{d t} \alpha_{t}+\mathcal{L}_{X_{t}} \alpha_{t}\right)
$$

(ii) Let $\left\{\omega_{t}\right\}_{t \in[0,1]}$ be a smooth family of symplectic forms and suppose that $\frac{d}{d t} \omega_{t}=d \mu_{t}$ for a smooth family $\left\{\mu_{t}\right\}_{t \in[0,1]}$ of 1 -forms. Construct a family $\left\{X_{t}\right\}_{t \in[0,1]}$ of vector fields such that $\mathcal{L}_{X_{t}} \omega_{t}+\frac{d}{d t} \omega_{t}=0$.
(Hint: recall Cartan's Magic Formula $\left.\left.\mathcal{L}_{X} \alpha=d(X\lrcorner \alpha\right)+X\right\lrcorner d \alpha$.)
(iii) Deduce Moser's Stability Theorem from parts (i) and (ii).
(iv) Let (M, J) be an almost complex manifold and suppose that ω_{0} and ω_{1} are two symplectic forms on M compatible with J. Show that $\omega_{t}=(1-t) \omega_{0}+t \omega_{1}$ is a family of symplectic forms compatible with J.
(Hint: consider the corresponding family of Riemannian metrics using the fact that the set of positive definite bilinear forms on \mathbb{R}^{n} is convex.)
(v) Let ($M, g_{0}, J_{0}, \omega_{0}$) be an almost Hermitian manifold with ω symplectic (such manifolds are sometimes called almost Kähler). Consider the sets

$$
\mathcal{J}\left(\omega_{0}\right)=\left\{\omega_{0} \text {-compatible almost complex structure } J\right\},
$$

$\mathcal{H}\left(J_{0},\left[\omega_{0}\right]\right)=\left\{J_{0}\right.$-compatible symplectic form ω with $\left.[\omega]=\left[\omega_{0}\right] \in H_{d R}^{2}(M)\right\}$
and the subset $\mathcal{Y}\left(J_{0}, \omega_{0}\right) \subset \operatorname{Diff}_{0}(M) \times \mathcal{H}\left(J_{0},\left[\omega_{0}\right]\right)$ consisting of pairs (f, ω) where f is a diffeomorphism isotopic to the identity such that $f^{*} \omega=\omega_{0}$. Use parts (iii) and (iv) to construct a map $\Phi: \mathcal{Y}\left(J_{0}, \omega_{0}\right) \rightarrow \mathcal{J}\left(\omega_{0}\right)$.

Exercise 5.6 (Projective manifolds). In this exercise you show that complex projective space $\mathbb{C P}^{n}$ and its holomorphic submanifolds are Kähler.
(i) Show that $\omega_{\mathrm{FS}}=i \partial \bar{\partial} \log \left(1+|z|^{2}\right)$ is a Kähler form on \mathbb{C}^{n}. Here $|z|^{2}=\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}$.
(ii) Show that if $\varphi\left(z_{1}, \ldots, z_{n}\right)=z_{1}^{-1}\left(1, z_{2}, \ldots, z_{n}\right)$ then $\varphi^{*} \omega_{\mathrm{FS}}=\omega_{\mathrm{FS}}$.
(iii) Show that the charts $\left(\mathcal{U}_{i}, \varphi_{i}\right)$ defined by

$$
\varphi_{i}: \mathcal{U}_{i}=\left\{\left[z_{0}: \cdots: z_{n}\right] \mid z_{i} \neq 0\right\} \rightarrow \mathbb{C}^{n}, \quad \varphi_{i}\left(\left[z_{0}: \cdots: z_{n}\right]\right)=z_{i}^{-1}\left(z_{0}, \ldots, \check{z}_{i}, \ldots, z_{n}\right)
$$

where \check{z}_{i} means that we drop the i th coordinates, form a holomorphic atlas on $\mathbb{C P}^{n}$.
(iv) Show that the formula $\omega=\varphi_{i}^{*} \omega_{\mathrm{FS}}$ over \mathcal{U}_{i} defines a Kähler form on $\mathbb{C P}^{n}$, called the FubiniStudy Kähler form.
(v) Let M be a complex submanifold of $\mathbb{C P}^{n}$. Show that M is Kähler.
(Hint: consider the restriction of the Fubini-Study Kähler form to M.)
Exercise 5.7 (Hopf surface). In this exercise you show that there are complex manifolds that cannot be Kähler.
(i) Let (M, ω) be a closed symplectic manifold. Show that the deRham cohomology class $[\omega] \in H_{d R}^{2}(M)$ cannot vanish.
(Hint: use Stokes' Theorem and the fact that ω^{n} is a volume form.)
(ii) Fix a real number $s \neq 0$ and let \mathbb{Z} act on $\mathbb{C}^{2} \backslash\{0\}$ by $n \cdot\left(z_{1}, z_{2}\right)=\left(e^{n s} z_{1}, e^{n s} z_{2}\right)$. Define $M^{4}=\mathbb{C}^{2} \backslash\{0\} / \mathbb{Z}$. Show that M is a complex manifold.
(iii) Show that M is diffeomorphic to $S^{1} \times S^{3}$ and conclude that M cannot be Kähler. (Hint: work in spherical coordinates on $\mathbb{C}^{2} \backslash\{0\} \simeq \mathbb{R}^{+} \times \mathbb{S}^{3}$.)

Exercise 5.8 (Kodaira-Thurston manifold). In this exercise you show that there are symplectic manifolds that cannot be Kähler.
(i) Show that if (M, g, J, ω) is a closed Kähler manifold then $H^{1}(M ; \mathbb{R})$ is even dimensional.
(ii) Let $(n, m) \in \mathbb{Z}^{2}$ act on \mathbb{R}^{2} by translation $(x, y) \mapsto(x+n, y+m)$ and on \mathbb{T}^{2} via the matrix $\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z})$. Let M be the 4 -manifold $M=\left(\mathbb{R}^{2} \times \mathbb{T}^{2}\right) / \mathbb{Z}^{2}$. Show that the standard symplectic form on $\mathbb{R}^{2} \times \mathbb{T}^{2}$ descends to M and defines a symplectic form on M.
(iii) Calculate the first deRham cohomology group of M and conclude that M cannot carry any Kähler structure.
(Hint: you can either study \mathbb{Z}^{2}-invariant closed 1 -forms on $\mathbb{R}^{2} \times \mathbb{T}^{2}$ or calculate the fundamental group of M, thus its first homology, and then use the fact that deRham cohomology is dual to homology with real coefficients.)

Exercise 5.9 (Hyperkähler 4-manifolds). A hyperkähler triple on a 4-manifold is a triple $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ of symplectic forms satisfying

$$
\omega_{i} \wedge \omega_{j}=\delta_{i j} \frac{1}{3}\left(\omega_{1}^{2}+\omega_{2}^{2}+\omega_{3}^{2}\right)
$$

(i) Work on \mathbb{R}^{4} with coordinates $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$. Show that the forms

$$
\omega_{i}=d x_{0} \wedge d x_{i}+d x_{j} \wedge d x_{k}
$$

where $(i j k)$ is a cyclic permutation of (123), define a hyperkähler triple. Show also that you can identify \mathbb{R}^{4} with the quaternions \mathbb{H} so that the almost complex structures corresponding to ω_{1}, ω_{2} and ω_{3} using the standard inner product on \mathbb{R}^{4} as in Exercise 5.1 are, respectively, left multiplications by i, j and k.
(ii) Let $\left(M^{4}, \omega_{1}, \omega_{2}, \omega_{3}\right)$ be a manifold endowed with a hyperkähler triple. Write $\omega=\omega_{1}$ and $\omega_{c}=\omega_{2}+i \omega_{3}$. Show that $\omega_{c} \wedge \omega_{c}=0$ and deduce the existence of an almost complex structure J for which a 1-form α is of type $(1,0)$ if and only if $\alpha \wedge \omega_{c}=0$.
(Hint: you can use the fact that $\omega_{c} \wedge \omega_{c}=0$ if and only if ω_{c} is decomposable, i.e. it can locally be written as $\omega_{c}=\theta_{1} \wedge \theta_{2}$ for linearly independent complex 1-forms θ_{1}, θ_{2}.)
(iii) Show that J is integrable.
(Hint: observe that $d \overline{\omega_{c}}=0$ and differentiate the relation $\alpha \wedge \overline{\omega_{c}}=0$ valid for any $(0,1)$-form α to deduce that $d^{2,-1} \alpha=0$.)
(iv) Show that (ω, J) are compatible and that, denoting by g the resulting metric, (M, g, J, ω) is Kähler.
(Hint: show that $\omega \wedge \omega_{c}=0$ and deduce that ω is of type $(1,1)$ with respect to J. Positivity of the resulting metric can be shown by arguing that on each tangent space $\omega_{1}, \omega_{2}, \omega_{3}$ must be linearly equivalent to the hyperkähler triple of part (i).)

Exercise 5.10 (Bundles and connections). This problem is a collection of three separate questions about holomorphic bundles and connections.
(i) Show that any choice of Cauchy-Riemann operator on a complex vector bundle E over a Riemann surface defines a holomorphic structure on E.
(ii) Let (E, h) be a Hermitian vector bundle over a complex manifold and let ∇ be a unitary connection on E. Decompose the bundle-valued 2-form F_{∇} into (p, q)-types: $F_{\nabla}=F_{\nabla}^{2,0}+$ $F_{\nabla}^{1,1}+F_{\nabla}^{0,2}$. Show that $\bar{\partial}_{\mathcal{E}}=\nabla^{0,1}$ satisfies $\bar{\partial}_{\mathcal{E}} \circ \bar{\partial}_{\mathcal{E}}=0$ if and only if $F_{\nabla}=F_{\nabla}^{1,1}$.
(iii) Set $\mathcal{O}_{\mathbb{C P}^{n}}(-1)=\left\{([z], v) \in \mathbb{C P}^{n} \times \mathbb{C}^{n+1} \mid v \in \mathbb{C} z\right\}$.
(a) Show that the projection onto the first factor induces on $\mathcal{O}_{\mathbb{C P}^{n}}(-1)$ the structure of a holomorphic line bundle over $\mathbb{C} \mathbb{P}^{n}$.
(b) Endow \mathbb{C}^{n+1} with its standard Hermitian metric and denote by h the induced Hermitian metric on $\mathcal{O}_{\mathbb{C P}^{n}}(-1)$. Calculate the curvature of its Chern connection.

6. Some references

- J.-P. Demailly, Complex Analytic and Differential Geometry, Sections V.1-7, VIII. 8
- A. Cannas da Silva, Lectures on symplectic geometry, Chapters 6-8 and 12-17
- S. Donaldson and P. Kronheimer, The geometry of 4-manifolds, Sections 2.1.5 and 2.2

[^0]: Date: October 16, 2020. E-mail: 1.foscolo@ucl.ac.uk.

