

# Network theory and analysis of football strategies

Javier López Peña

Department of Mathematics University College London

Physics of Sports, Paris 2012

#### **Disclaimer**



- Joint work with Hugo Touchette
- ((Very) Pure) Mathematician speaking
- For any Americans in the audience:

Football = Soccer

# What can maths say about football?



Mathematicians are good at two things:

- Finding patterns
- Turning easy things intro abstract nonsense

(Normally we do it the other way around)

#### Question

Can the abstract nonsense tell us something useful?

#### The Fundamental Theorem of football



#### Theorem (Fundamental Theorem of football)

Good football teams have a recognizable style

But not necessarily the same for all teams!

#### Question

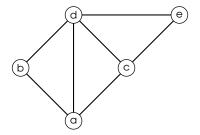
- Can we describe the "style" mathematically?
- And then say something about the team?

#### What to focus on?



Many aspects of football one might look at!

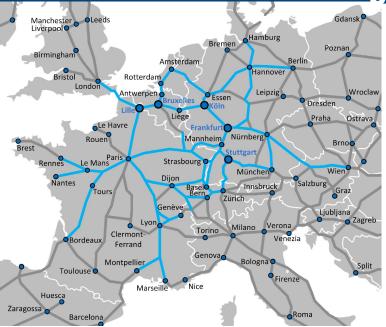
- Goals
- Fouls
- Percentage of victories
- Ball possession
- Passing information


We'll focus on the last one

#### A bit of abstract nonsense: Networks



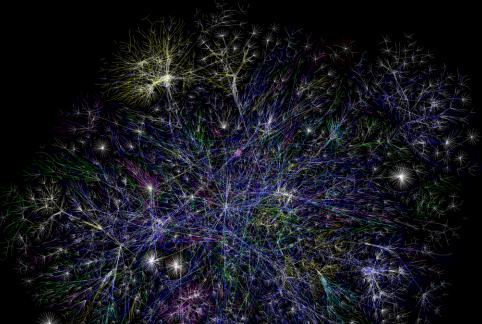
#### A network consists of:


- A collection of nodes (or vertices)
- Some edges connecting the nodes



- Nodes can have a clear physical meaning.
- But they don't have to.

### **Example: High speed train network**

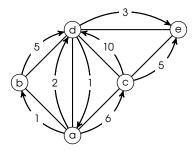





# **Example: North America power grid UCL**

# Example: The Internet






#### Oriented networks



Not all edges are created equal!

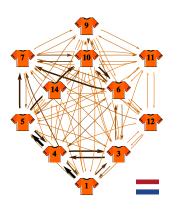
- We can use directed edges (or arrows)
- Perhaps pointing in both directions
- Or attach weights to them



# The passing network of a football team



We associate a network to each football team

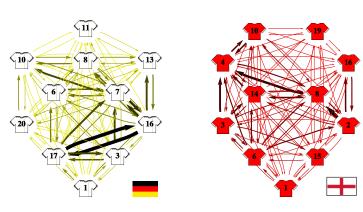

- Nodes are the team players
- Arrows represent passes between the players
- Weights given by the number of passes


In the drawing, represent the weight as arrow thickness

# The passing network of a football team



#### Netherlands vs. Spain






# The passing network of a football team



Germany vs. England



# Extracting information from the network



Mathematical representation of the network

 $\odot$  Use the adjacency matrix  $(A_{ij})$ 

 $A_{ij} =$ Number of passes from i to j

- Matrix is bad for visualization
- But good for computations

## How an adjacency matrix looks like



### About the players: centrality



#### Question

How to measure the importance of a node in a network?

**Answer: Centrality measures** 

- There are different ways of measuring importance
- Different types of centrality to address them!

# Closeness centrality



- Mean distance from a node to the other ones
- Distance is the inverse of the number of passes

$$C_i = \frac{20}{\sum_{j \neq i} \frac{1}{A_{ij}+1} + \sum_{j \neq i} \frac{1}{A_{jj}+1}} - 1$$

- $\bullet$  w and 1 w are weights to passing/receiving
- There is some normalization going on
- Actual value is not important
- Just focus on the relative order

# Pagerank centrality



- Recursive notion of "popularity"
- A node is popular if linked by other popular nodes

$$x_i = p \sum_j A_{ji} \frac{x_j}{k_j^{\text{out}}} + (1 - p)$$

- $k_i^{\text{out}} = \sum_i A_{ji} = \text{total number of passes made by } j$
- $\circ$  p is the (estimated) probability of passing the ball
- Estimate made by heuristics
- p = 0.85 normally works well

# Betweenness centrality



- How the network suffers when a node is removed
- A node is popular if linked by other popular nodes

$$C_B(i) = \frac{1}{10^2} \sum_{j,k \neq i} \frac{d_{jk}(i)}{d_{jk}}$$

- $d_{jk} = distance from j to k$
- $\circ$   $d_{jk}(i)$  = distance without going through i
- $\circ$  Nodes with high  $C_B$  are dangerous for the network

# Centralities for Spanish players



|    | Player     | Closeness | Pagerank | Betweenness |
|----|------------|-----------|----------|-------------|
| 1  | Casillas   | 0.672     | 5.47%    | 0           |
| 3  | Piqué      | 3.347     | 8.96%    | 1.19        |
| 5  | Puyol      | 1.849     | 8.89%    | 0.92        |
| 6  | Iniesta    | 1.889     | 8.35%    | 0.12        |
| 7  | Villa      | 1.798     | 10.17%   | 1.19        |
| 8  | Xavi       | 4.358     | 10.26%   | 2.49        |
| 9  | Torres     | 0.578     | 8.30%    | 0           |
| 11 | Capdevilla | 2.975     | 8.96%    | 1.19        |
| 14 | Alonso     | 3.742     | 10.26%   | 2.49        |
| 15 | Ramos      | 2.251     | 10.17%   | 1.19        |
| 16 | Busquets   | 3.239     | 10.17%   | 1.19        |

#### What do network tell us?



- Different teams have very different networks
- Quick overview of a team style
  - Most used areas of the court
  - Short distance or long distance passes
  - Players not participating enough
  - Problems between players
- Centrality measures give information about players
- Plenty of useful information for a coach!

#### The limits of the tool



#### Network analysis is not a silver bullet

- Not for all sports
- Only tracks successful passes
  - Add a probability to the weight!
- Doesn't account for shots and goals
  - Add an extra node for the opponent's gate!
- What happens when a player gets changed?
- Passing data is hard to obtain!



Thanks for your attention!