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Classical Lie Theory

• Lie groups = Groups with a differentiable structure
• Tangent space = Lie algebra
• Lie algebra invariants tell us things about the group

Question
Can we use similar techniques for finite groups?



Lie Theory for finite groups?

• Finite groups are discrete, topological dimension 0!
• We cannot get any non-trivial differential structure!
• So this should be the end of the story!

Question
Can we just ignore this problem and use differential
geometry anyway?



The Hopf algebra approach

• Hopf algebras unify
• Function ring of the group
• Enveloping algebra of the Lie algebra

• Differential structure given in algebraic terms



The Noncommutative geometry approach

• Classical Lie algebra = Left-invariant vector fields
• Noncommutative differential structures on k(G) =

bicovariant differential calculi

Theorem (Woronowicz)
Bicovariant differential calculi in H are classified by
ad-stable right ideals I ⊆ H+

• Each calculus L comes equipped with a Killing form
K : L ⊗ L → C defined as the braided-trace of
[ , ](Id⊗[ , ])



The case H = C(G)

• G finite group, H = C(G)

• Calculi classified by subsets C ⊆ G \ {e} satisfying
• C generates G (calculus is connected)
• C is closed for inverses
• C is ad-stable (bicovariance)

• Killing form K (a,b) = |Z(ab) ∩ C| ∀a,b ∈ C.
i.e. the trace of the conjugation rep. of G in C(C)



Nondegeneracy of the Killing form

Cartan criterion: L is semisimple⇔ KL is nondegenerate
In the noncommutative case we have many Killing forms

Definition
G finite group. If KC is nondegenerate

1 for C = G \ {e} (univ. calculus), G is nondegenerate
2 for C conjguacy class, G is class nondegenerate
3 for all C, we say that G is strongly nondegenerate



Results on nondegeneracy

For C = G \ {e}, K (a,b) = |Z(ab)| − 1

Theorem
If G nondegenerate (with |G| > 2), then Z(G) = {e}

i.e. nondegenerate groups are necessarily centreless



The Roth property

Definition
We say that G has the Roth property if the conjugation
representation of G contains every irrep of G.

Theorem
If G has the Roth property, then G is nondegenerate.



The Roth property

Theorem
If the conjugation representation on G is missing two or
more distinct irreps then G is degenerate.

Question
What happens when there is exactly one missing irrep?

Answer: Nondegeneracy can go either way



Effective computations

Theorem (Passman)
The character of the conjugation representation of G is

χconj =
∑

χ irred

χχ

• Effective way of telling how many irreps are missing
• When one irrep is missing, further work is needed!



Summary on nondegeneracy

Most simples ( Roth ( Nondegenerate ( Centerless

• All inclussions are strict
• Many centerless but degenerate
• Nondegenerate but not Roth (small group (400,207))

(((Z5 × Z5)o Z4)o Z2)o Z2

• PSU(3, 4) is not Roth (don’t know if nondegenerate)



Conjugacy classes

Lemma
If G simple, every notrivial conjugacy class generates G.

• So, every conjugacy class gives a calculus
• These are the smallest possible calculi
• Killing form KC defines a representation of G



Conjugacy classes

Question
Can we use KC to single out an irrep associated to the
conjugacy class C?

Answer: Not in general

• Eigenspace decomposition of KC suggest an
assignation that kind of works

• More work is needed to make this precise



Thanks for your attention!


