On the classification of factorization structures of low dimension

Javier López Peña

Algebra Department University of Granada (Spain)

ICRA XII
Toruń, August 20th 2007

Based upon joint works with Gabriel Navarro

- On the classification and properties of noncommutative duplicates, arXiv:math/0612188v1,
- Quantum duplicates of Algebras, (proceedings of the XVIth Integrable Systems and Quantum Symmetries symposium).
and works in progress with Gabriel Navarro and Óscar
Cortadellas

Outline

(2) The problem
(3) The solution

Outline

2 The problem

3) The solution

Factorization structures

Definition (Majid et al.)

We say that X is a factorization structure of the algebras A and B if:

- We have $i_{A}: A \hookrightarrow X$ and $i_{B}: B \hookrightarrow X$ injective algebra maps.

Factorization structures are also called twisted tensor products.

Factorization structures

Definition (Majid et al.)

We say that X is a factorization structure of the algebras A and B if:

- We have $i_{A}: A \hookrightarrow X$ and $i_{B}: B \hookrightarrow X$ injective algebra maps.
- The linear map $a \otimes b \longmapsto i_{A}(a) \cdot i_{B}(B)$ is a linear isomorphism.

Factorization structures are also called twisted tensor products.

Factorization structures

Definition (Majid et al.)

We say that X is a factorization structure of the algebras A and B if:

- We have $i_{A}: A \hookrightarrow X$ and $i_{B}: B \hookrightarrow X$ injective algebra maps.
- The linear map $a \otimes b \longmapsto i_{A}(a) \cdot i_{B}(B)$ is a linear isomorphism.

Factorization structures are also called twisted tensor products.

Twisting maps

Definition (Twisting map)

We say that a linear map $R: B \otimes A \longrightarrow A \otimes B$ is a twisting map if it satisfies:
(1) $R \circ\left(B \otimes \mu_{A}\right)=\left(\mu_{A} \otimes B\right) \circ(A \otimes R) \circ(R \otimes A)$
(2) $R \circ\left(\mu_{B} \otimes A\right)=\left(A \otimes \mu_{B}\right) \circ(R \otimes B) \circ(B \otimes R)$

Theorem
The $\operatorname{map} \mu_{R}:=\left(\mu_{A} \otimes \mu_{B}\right) \circ(A \otimes R \otimes B)$ is an associative
product in $A \otimes B$ if, and only if, R is a twisting map.
We write $A \otimes_{R} B$ to denote the algebra $\left(A \otimes B, \mu_{R}\right)$.

Twisting maps

Definition (Twisting map)

We say that a linear map $R: B \otimes A \longrightarrow A \otimes B$ is a twisting map if it satisfies:
(1) $R \circ\left(B \otimes \mu_{A}\right)=\left(\mu_{A} \otimes B\right) \circ(A \otimes R) \circ(R \otimes A)$
(2) $R \circ\left(\mu_{B} \otimes A\right)=\left(A \otimes \mu_{B}\right) \circ(R \otimes B) \circ(B \otimes R)$

Theorem
The $\operatorname{map} \mu_{R}:=\left(\mu_{A} \otimes \mu_{B}\right) \circ(A \otimes R \otimes B)$ is an associative
product in $A \otimes B$ if, and only if, R is a twisting map.
We write $A \otimes_{R} B$ to denote the algebra $\left(A \otimes B, \mu_{R}\right)$.

Twisting maps

Definition (Twisting map)

We say that a linear map $R: B \otimes A \longrightarrow A \otimes B$ is a twisting map if it satisfies:
(1) $R \circ\left(B \otimes \mu_{A}\right)=\left(\mu_{A} \otimes B\right) \circ(A \otimes R) \circ(R \otimes A)$
(2) $R \circ\left(\mu_{B} \otimes A\right)=\left(A \otimes \mu_{B}\right) \circ(R \otimes B) \circ(B \otimes R)$

Theorem

The $\operatorname{map} \mu_{R}:=\left(\mu_{A} \otimes \mu_{B}\right) \circ(A \otimes R \otimes B)$ is an associative product in $A \otimes B$ if, and only if, R is a twisting map.

We write $A \otimes_{R} B$ to denote the algebra $\left(A \otimes B, \mu_{R}\right)$.

Twisting maps

Definition (Twisting map)

We say that a linear map $R: B \otimes A \longrightarrow A \otimes B$ is a twisting map if it satisfies:
(1) $R \circ\left(B \otimes \mu_{A}\right)=\left(\mu_{A} \otimes B\right) \circ(A \otimes R) \circ(R \otimes A)$
(2) $R \circ\left(\mu_{B} \otimes A\right)=\left(A \otimes \mu_{B}\right) \circ(R \otimes B) \circ(B \otimes R)$

Theorem

The $\operatorname{map} \mu_{R}:=\left(\mu_{A} \otimes \mu_{B}\right) \circ(A \otimes R \otimes B)$ is an associative product in $A \otimes B$ if, and only if, R is a twisting map.

We write $A \otimes_{R} B$ to denote the algebra $\left(A \otimes B, \mu_{R}\right)$.

Why twisting maps?

Theorem (Tambara, Majid, Cap-Schichl-Vanžura, ...)

Let $\left(X, i_{A}, i_{B}\right)$ a factorization structure of A and B, then there is a unique twisting map $R: B \otimes A \rightarrow A \otimes B$ such that X is isomorphic to $A \otimes_{R} B$ as a twisted tensor product.

So, studying factorization structures is equivalent to study
twisting maps.

Why twisting maps?

Theorem (Tambara, Majid, Cap-Schichl-Vanžura, ...)

Let $\left(X, i_{A}, i_{B}\right)$ a factorization structure of A and B, then there is a unique twisting map $R: B \otimes A \rightarrow A \otimes B$ such that X is isomorphic to $A \otimes_{R} B$ as a twisted tensor product.

So, studying factorization structures is equivalent to study twisting maps.

Outline

(1) The basics

2 The problem

3 The solution

Classifying factorization structures

Question

When are ttp's given by different twisting maps isomorphic?

Question

- Given algebras, A and B, may we classify all twisting maps $R: B \otimes A \rightarrow A \otimes B$?
- And describe the algebras $A \otimes_{R} B$, up to isomorphism?

Classifying factorization structures

Question

When are ttp's given by different twisting maps isomorphic?

Question

- Given algebras, A and B, may we classify all twisting maps $R: B \otimes A \rightarrow A \otimes B$?
- And describe the algebras $A \otimes_{R} B$, up to isomorphism?

Classifying factorization structures

Question

When are ttp's given by different twisting maps isomorphic?

Question

- Given algebras, A and B, may we classify all twisting maps $R: B \otimes A \rightarrow A \otimes B$?
- And describe the algebras $A \otimes_{R} B$, up to isomorphism?

The twisting variety

- A, B (f. dim) algebras
- $\mathcal{T}(A, B):=\{R: B \otimes A \rightarrow A \otimes B \mid R$ twisting map $\}$ is an affine variety
- Isoclasses of tip $A \otimes_{R} B \Longleftrightarrow$ "Points" in an orbitspace of $\tau(A, B)$.
- Classify these points: very difficult problem in general!

The twisting variety

- A, B (f. dim) algebras
- $\mathcal{T}(A, B):=\{R: B \otimes A \rightarrow A \otimes B \mid R$ twisting map $\}$ is an affine variety $\mathcal{T}(A, B)$.
- Classify these points: very difficult problem in generall

The łwisting variety

- A, B (f. dim) algebras
- $\mathcal{T}(A, B):=\{R: B \otimes A \rightarrow A \otimes B \mid R$ twisting map $\}$ is an affine variety
- Isoclasses of ttp $A \otimes_{R} B \quad \Longleftrightarrow \quad$ "Points" in an orbitspace of $\mathcal{T}(A, B)$.

The łwisting variety

- A, B (f. dim) algebras
- $\mathcal{T}(A, B):=\{R: B \otimes A \rightarrow A \otimes B \mid R$ twisting map $\}$ is an affine variety
- Isoclasses of ttp $A \otimes_{R} B \Longleftrightarrow$ "Points" in an orbitspace of $\mathcal{T}(A, B)$.
- Classify these points: very difficult problem in general!

> No general methods are known, even without taking into account isomorphism classes.
> Each particular case has to be studied on its own.

The łwisting variety

- A, B (f. dim) algebras
- $\mathcal{T}(A, B):=\{R: B \otimes A \rightarrow A \otimes B \mid R$ twisting map $\}$ is an affine variety
- Isoclasses of ttp $A \otimes_{R} B \Longleftrightarrow$ "Points" in an orbitspace of $\mathcal{T}(A, B)$.
- Classify these points: very difficult problem in general!
- No general methods are known, even without taking into account isomorphism classes.
- Each particular case has to be studied on its own.

The łwisting variety

- A, B (f. dim) algebras
- $\mathcal{T}(A, B):=\{R: B \otimes A \rightarrow A \otimes B \mid R$ twisting map $\}$ is an affine variety
- Isoclasses of ttp $A \otimes_{R} B \Longleftrightarrow$ "Points" in an orbitspace of $\mathcal{T}(A, B)$.
- Classify these points: very difficult problem in general!
- No general methods are known, even without taking into account isomorphism classes.
- Each particular case has to be studied on its own.

Our Aim

Goal

Classify all existing factorization structures of dimension 4.
For starters, restrict to working over an algebraically closed field k

Our Aim

Goal

Classify all existing factorization structures of dimension 4.
For starters, restrict to working over an algebraically closed field k

Outline

(1) The basics

2 The problem

(3) The solution

The framework

- k an algebraically closed field,
- X a 4-dimensional algebra over k.

Question

Do exist $k-a / g e b r a s ~ A, B$, and a twisting map R such that $X \cong A \otimes_{R} B$?

The framework

- k an algebraically closed field,
- X a 4-dimensional algebra over k.

The framework

- k an algebraically closed field,
- X a 4-dimensional algebra over k.

Question

Do exist k-algebras A, B, and a twisting map R such that $X \cong A \otimes_{R} B$?

The approach

We take a bottom to top approach:

- If X factorizes in a nontrivial way, both A and B must have dimension 2.
- Over an algebraically closed field, there are only two k-algebras of dimension 2 :
- Thus, X must be of one of the three following types:

The approach

We take a bottom to top approach:

- If X factorizes in a nontrivial way, both A and B must have dimension 2.
- Over an algebraically closed field, there are only two k-algebras of dimension 2 :
- The semisimple algebra k^{2}
- The algebra of dual numbers, $k[\xi]:=k[x] /\left(x^{2}\right)$
- Thus, X must be of one of the three following types:

The approach

We take a bottom to top approach:

- If X factorizes in a nontrivial way, both A and B must have dimension 2.
- Over an algebraically closed field, there are only two k-algebras of dimension 2 :
- The semisimple algebra k^{2},
- Thus, X must be of one of the three following types:

The approach

We take a bottom to top approach:

- If X factorizes in a nontrivial way, both A and B must have dimension 2.
- Over an algebraically closed field, there are only two k-algebras of dimension 2 :
- The semisimple algebra k^{2},
- The algebra of dual numbers, $k[\xi]:=k[x] /\left(x^{2}\right)$.
- Thus, X must be of one of the three following types:

The approach

We take a bottom to top approach:

- If X factorizes in a nontrivial way, both A and B must have dimension 2.
- Over an algebraically closed field, there are only two k-algebras of dimension 2 :
- The semisimple algebra k^{2},
- The algebra of dual numbers, $k[\xi]:=k[x] /\left(x^{2}\right)$.
- Thus, X must be of one of the three following types:

The approach

We take a bottom to top approach:

- If X factorizes in a nontrivial way, both A and B must have dimension 2.
- Over an algebraically closed field, there are only two k-algebras of dimension 2 :
- The semisimple algebra k^{2},
- The algebra of dual numbers, $k[\xi]:=k[x] /\left(x^{2}\right)$.
- Thus, X must be of one of the three following types:
(1) $k^{2} \otimes_{R} k^{2}$,

The approach

We take a bottom to top approach:

- If X factorizes in a nontrivial way, both A and B must have dimension 2.
- Over an algebraically closed field, there are only two k-algebras of dimension 2 :
- The semisimple algebra k^{2},
- The algebra of dual numbers, $k[\xi]:=k[x] /\left(x^{2}\right)$.
- Thus, X must be of one of the three following types:
(1) $k^{2} \otimes_{R} k^{2}$,
(2) $k^{2} \otimes_{R} k[\xi]$,

The approach

We take a bottom to top approach:

- If X factorizes in a nontrivial way, both A and B must have dimension 2.
- Over an algebraically closed field, there are only two k-algebras of dimension 2 :
- The semisimple algebra k^{2},
- The algebra of dual numbers, $k[\xi]:=k[x] /\left(x^{2}\right)$.
- Thus, X must be of one of the three following types:
(1) $k^{2} \otimes_{R} k^{2}$,
(2) $k^{2} \otimes_{R} k[\xi]$,
(3) $k[\xi] \otimes_{R} k[\xi]$.

$k^{2} \otimes_{R} k^{2}$. Noncommutative duplicates of k^{2}

- Ttps $k^{n} \otimes_{R} k^{2}$ are called noncommutative duplicates.
- Classified by Cibils (2006) with combinatorial techniques.

> Theorem (Cibils (2006) + López-Navarro (2007))
> Any ttp $k^{2} \otimes_{R} k^{2}$ is isomorphic to one of the following:

$k^{2} \otimes_{R} k^{2}$. Noncommutative duplicates of k^{2}

- Ttps $k^{n} \otimes_{R} k^{2}$ are called noncommutative duplicates.
- Classified by Cibils (2006) with combinatorial techniques.

Theorem (Cibils (2006) + López-Navarro (2007))
Anv tto $k^{2} \otimes_{n} k^{2}$ is isomornhic to one of the following:

$k^{2} \otimes_{R} k^{2}$. Noncommutative duplicates of k^{2}

- Ttps $k^{n} \otimes_{R} k^{2}$ are called noncommutative duplicates.
- Classified by Cibils (2006) with combinatorial techniques.

Theorem (Cibils (2006) + López-Navarro (2007))

Any ttp $k^{2} \otimes_{R} k^{2}$ is isomorphic to one of the following:

- The quotient $k Q /\left(Q_{\geq 2}\right)$, where $Q \equiv$
- The algebra of matrices $\mathcal{M}_{2}(k)$,
- The path algebra of the quiver

$k^{2} \otimes_{R} k^{2}$. Noncommutative duplicates of k^{2}

- Ttps $k^{n} \otimes_{R} k^{2}$ are called noncommutative duplicates.
- Classified by Cibils (2006) with combinatorial techniques.

Theorem (Cibils (2006) + López-Navarro (2007))

Any ttp $k^{2} \otimes_{R} k^{2}$ is isomorphic to one of the following:

- k^{4},
- The quotient $k Q /\left(Q_{\geq 2}\right)$, where $Q \equiv$
- The algebra of matrices $\mathcal{M}_{2}(k)$,
- The path algebra of the quiver

$k^{2} \otimes_{R} k^{2}$. Noncommutative duplicates of k^{2}

- Ttps $k^{n} \otimes_{R} k^{2}$ are called noncommutative duplicates.
- Classified by Cibils (2006) with combinatorial techniques.

Theorem (Cibils (2006) + López-Navarro (2007))

Any ttp $k^{2} \otimes_{R} k^{2}$ is isomorphic to one of the following:

- k^{4},
- The quotient $k Q /\left(Q_{\geq 2}\right)$, where $Q \equiv \stackrel{\longrightarrow}{\circ}$ 。
- The algebra of matrices $\mathcal{M}_{2}(k)$,
- The path algebra of the quiver

$k^{2} \otimes_{R} k^{2}$. Noncommutative duplicates of k^{2}

- Ttps $k^{n} \otimes_{R} k^{2}$ are called noncommutative duplicates.
- Classified by Cibils (2006) with combinatorial techniques.

Theorem (Cibils (2006) + López-Navarro (2007))

Any ttp $k^{2} \otimes_{R} k^{2}$ is isomorphic to one of the following:

- k^{4},
- The quotient $k Q /\left(Q_{\geq 2}\right)$, where $Q \equiv \circ \cdots$ 。
- The algebra of matrices $\mathcal{M}_{2}(k)$,
- The path algebra of the quiver

$k^{2} \otimes_{R} k^{2}$. Noncommutative duplicates of k^{2}

- Ttps $k^{n} \otimes_{R} k^{2}$ are called noncommutative duplicates.
- Classified by Cibils (2006) with combinatorial techniques.

Theorem (Cibils (2006) + López-Navarro (2007))

Any ttp $k^{2} \otimes_{R} k^{2}$ is isomorphic to one of the following:

- k^{4},
- The quotient $k Q /\left(Q_{\geq 2}\right)$, where $Q \equiv \cdots$
- The algebra of matrices $\mathcal{M}_{2}(k)$,
- The path algebra of the quiver

$$
0
$$

\qquad

$k^{2} \otimes_{R} k[\xi]$. Quantum duplicates of k^{2}

- Ttps $k^{n} \otimes_{R} k[\xi]$ can be classified by an extension of Cibils' techniques.

Theorem (López-Navarro (2007))
Any $+n k^{2} \otimes_{n} k[\xi]$ is isomornhic to one of the following:

$k^{2} \otimes_{R} k[\xi]$. Quantum duplicates of k^{2}

- Ttps $k^{n} \otimes_{R} k[\xi]$ can be classified by an extension of Cibils' techniques.

Theorem (López-Navarro (2007))
Any ttp $k^{2} \otimes_{R} k[\xi]$ is isomorphic to one of the following:

- The quotient $k Q /\left(Q_{2}\right)$, where $Q \equiv$
- The quotient $k Q /\left(Q_{\geq 2}\right)$, where $Q \equiv$
- The algebra of matrices $\mathcal{M}_{2}(\mathrm{k})$,

$k^{2} \otimes_{R} k[\xi]$. Quantum duplicates of k^{2}

- Ttps $k^{n} \otimes_{R} k[\xi]$ can be classified by an extension of Cibils' techniques.

Theorem (López-Navarro (2007))

Any ttp $k^{2} \otimes_{R} k[\xi]$ is isomorphic to one of the following:

- The commutative ring $(k[\xi])^{2}$,
- The quotient $k Q /(Q>2)$, where $Q \equiv$
- The quotient $k Q /\left(Q_{\geq 2}\right)$, where $Q \equiv$
- The algebra of matrices $\mathcal{M}_{2}(k)$.

$k^{2} \otimes_{R} k[\xi]$. Quantum duplicates of k^{2}

- Ttps $k^{n} \otimes_{R} k[\xi]$ can be classified by an extension of Cibils' techniques.

Theorem (López-Navarro (2007))

Any ttp $k^{2} \otimes_{R} k[\xi]$ is isomorphic to one of the following:

- The commutative ring $(k[\xi])^{2}$,
- The quotient $k Q /\left(Q_{\geq 2}\right)$, where $Q \equiv \circ$

- The algebra of matrices $\mathcal{M}_{2}(\mathrm{k})$.

$k^{2} \otimes_{R} k[\xi]$. Quantum duplicates of k^{2}

- Ttps $k^{n} \otimes_{R} k[\xi]$ can be classified by an extension of Cibils' techniques.

Theorem (López-Navarro (2007))

Any ttp $k^{2} \otimes_{R} k[\xi]$ is isomorphic to one of the following:

- The commutative ring $(k[\xi])^{2}$,
- The quotient $k Q /\left(Q_{\geq 2}\right)$, where $Q \equiv 0$

- The quotient $k Q /\left(Q_{\geq 2}\right)$, where $Q \equiv \circ$ 。

$k^{2} \otimes_{R} k[\xi]$. Quantum duplicates of k^{2}

- Ttps $k^{n} \otimes_{R} k[\xi]$ can be classified by an extension of Cibils' techniques.

Theorem (López-Navarro (2007))

Any ttp $k^{2} \otimes_{R} k[\xi]$ is isomorphic to one of the following:

- The commutative ring $(k[\xi])^{2}$,
- The quotient $k Q /\left(Q_{\geq 2}\right)$, where $Q \equiv 0$

- The quotient $k Q /\left(Q_{\geq 2}\right)$, where $Q \equiv \circ$ 。
- The algebra of matrices $\mathcal{M}_{2}(k)$,

$k[\xi] \otimes_{R} k[\xi]$. Quantum duplicates of $k[\xi]$

- In this case combinatorial techniques do not work.
- Some brute-force computations are required.
- The variety $\mathcal{T}(k[\xi], k[\xi])$ has two irreducible components.

> Theorem (López-Navarro-Cortadellas (2007))
> Any ttp $k[\xi] \otimes_{R} k[\xi]$ is isomorphic to one of the following:

$k[\xi] \otimes_{R} k[\xi]$. Quantum duplicates of $k[\xi]$

- In this case combinatorial techniques do not work.
- Some brute-force computations are required.
- The variety $\mathcal{T}(k[\xi], k[\xi])$ has two irreducible components.

Theorem (López-Navarro-Cortadellas (2007))
Any ttp $k[\xi] \otimes_{R} k[\xi]$ is isomorphic to one of the following:

$k[\xi] \otimes_{R} k[\xi]$. Quantum duplicates of $k[\xi]$

- In this case combinatorial techniques do not work.
- Some brute-force computations are required.
- The variety $\mathcal{T}(k[\xi], k[\xi])$ has two irreducible components.

Theorem (López-Navarro-Cortadellas (2007))
Any ttp $k[\xi] \otimes_{R} k[\xi]$ is isomorphic to one of the following:

$k[\xi] \otimes_{R} k[\xi]$. Quantum duplicates of $k[\xi]$

- In this case combinatorial techniques do not work.
- Some brute-force computations are required.
- The variety $\mathcal{T}(k[\xi], k[\xi])$ has two irreducible components.

Theorem (López-Navarro-Cortadellas (2007))

Any ttp $k[\xi] \otimes_{R} k[\xi]$ is isomorphic to one of the following:

- The commutative ring $k[\xi] \otimes k[\xi] \cong \frac{k(x, y]}{\left(x^{2}, y^{2}\right)}$
- An algebra of the 1-parameter family X_{a}, where
- The algebra of matrices $\mathcal{M}_{2}(k)$,

$k[\xi] \otimes_{R} k[\xi]$. Quantum duplicates of $k[\xi]$

- In this case combinatorial techniques do not work.
- Some brute-force computations are required.
- The variety $\mathcal{T}(k[\xi], k[\xi])$ has two irreducible components.

Theorem (López-Navarro-Cortadellas (2007))

Any ttp $k[\xi] \otimes_{R} k[\xi]$ is isomorphic to one of the following:

- The commutative ring $k[\xi] \otimes k[\xi] \cong \frac{k[x, y]}{\left(x^{2}, y^{2}\right)}$,
- An algebra of the 1-parameter family $X_{\text {q }}$, where
- The algebra of matrices $\mathcal{M}_{2}(k)$.

$k[\xi] \otimes_{R} k[\xi]$. Quantum duplicates of $k[\xi]$

- In this case combinatorial techniques do not work.
- Some brute-force computations are required.
- The variety $\mathcal{T}(k[\xi], k[\xi])$ has two irreducible components.

Theorem (López-Navarro-Cortadellas (2007))

Any ttp $k[\xi] \otimes_{R} k[\xi]$ is isomorphic to one of the following:

- The commutative ring $k[\xi] \otimes k[\xi] \cong \frac{k[x, y]}{\left(x^{2}, y^{2}\right)}$,
- An algebra of the 1-parameter family X_{q}, where $X_{q}:=\left\langle x, y \mid x^{2}=y^{2}=0, y x=q x y\right\rangle$, for $q \in[-1,1)$.

$k[\xi] \otimes_{R} k[\xi]$. Quantum duplicates of $k[\xi]$

- In this case combinatorial techniques do not work.
- Some brute-force computations are required.
- The variety $\mathcal{T}(k[\xi], k[\xi])$ has two irreducible components.

Theorem (López-Navarro-Cortadellas (2007))

Any ttp $k[\xi] \otimes_{R} k[\xi]$ is isomorphic to one of the following:

- The commutative ring $k[\xi] \otimes k[\xi] \cong \frac{k[x, y]}{\left(x^{2}, y^{2}\right)}$,
- An algebra of the 1-parameter family X_{q}, where $X_{q}:=\left\langle x, y \mid x^{2}=y^{2}=0, y x=q x y\right\rangle$, for $q \in[-1,1)$.
- The algebra of matrices $\mathcal{M}_{2}(k)$,

The algebras of dimension 4

The factorization structures of dimension 4

Final remarks

- No apparent pattern relates algebras that can be factorized.
- For any 2-dim. algebra A, there is a twisting map R such that $A \otimes_{R} A \cong \mathcal{M}_{2}(k)$ simple.

Final remarks

- No apparent pattern relates algebras that can be factorized.
- For any 2-dim. algebra A, there is a twisting map R such that $A \otimes_{R} A \cong \mathcal{M}_{2}(k)$ simple.

Conjecture (F. Van Oystaeyen, J. Gómez-Torrecillas)
For any algebra A there exist a twisting map R such that $A \otimes_{R} A$ is simple.

Remark (Corładellas-López-Navarro)
If it exists, the resulting algebra is not necesscrily unique:

Final remarks

- No apparent pattern relates algebras that can be factorized.
- For any 2-dim. algebra A, there is a twisting map R such that $A \otimes_{R} A \cong \mathcal{M}_{2}(k)$ simple.

Conjecture (F. Van Oystaeyen, J. Gómez-Torrecillas)

For any algebra A there exist a twisting map R such that $A \otimes_{R} A$ is simple.

Remark (Cortadellas-López-Navarro)
If it exists, the resulting algebra is not necessarily unique:

Final remarks

- No apparent pattern relates algebras that can be factorized.
- For any 2-dim. algebra A, there is a twisting map R such that $A \otimes_{R} A \cong \mathcal{M}_{2}(k)$ simple.

Conjecture (F. Van Oystaeyen, J. Gómez-Torrecillas)

For any algebra A there exist a twisting map R such that $A \otimes_{R} A$ is simple.

Remark (Cortadellas-López-Navarro)

If it exists, the resulting algebra is not necessarily unique:

$$
\mathbb{C} \otimes_{R} \mathbb{C} \cong \mathcal{M}_{2}(\mathbb{R}), \quad \mathbb{C} \otimes_{S} \mathbb{C} \cong \mathbb{H}
$$

What if k is not algebraically closed?

- Even if k is not alg. closed, all the above are valid factorizations.
- However, there may be more valid factors.
- We have to consider all \bar{k} quadratic field extensions of k.
- New cases to consider:
- Work in progress going along these lines.

What if k is not algebraically closed?

- Even if k is not alg. closed, all the above are valid factorizations.
- However, there may be more valid factors.
- We have to consider all k quadratic field extensions of k
- New cases to consider:
- Work in progress going along these lines.

What if k is not algebraically closed?

- Even if k is not alg. closed, all the above are valid factorizations.
- However, there may be more valid factors.
- We have to consider all \bar{k} quadratic field extensions of k.
- New cases to consider:
- Work in progress going along these lines.

What if k is not algebraically closed?

- Even if k is not alg. closed, all the above are valid factorizations.
- However, there may be more valid factors.
- We have to consider all \bar{k} quadratic field extensions of k.
- New cases to consider:
- $k^{2} \otimes_{R} \bar{k}$ (nc. duplicates of quadratic extensions),
- $k[\xi] \otimes_{R} \bar{k}$ (quantum duplicates of quad. extensions),
- $\bar{k} \otimes_{R} \bar{k}^{\prime}$ (products of two quad. extensions).
- Work in progress going along these lines.

What if k is not algebraically closed?

- Even if k is not alg. closed, all the above are valid factorizations.
- However, there may be more valid factors.
- We have to consider all \bar{k} quadratic field extensions of k.
- New cases to consider:
- $k^{2} \otimes_{R} \bar{k}$ (nc. duplicates of quadratic extensions),
- $\bar{k} \otimes_{R} \bar{k}^{\prime}$ (products of two quad. extensions).
- Work in progress going along these lines.

What if k is not algebraically closed?

- Even if k is not alg. closed, all the above are valid factorizations.
- However, there may be more valid factors.
- We have to consider all \bar{k} quadratic field extensions of k.
- New cases to consider:
- $k^{2} \otimes_{R} \bar{k}$ (nc. duplicates of quadratic extensions),
- $k[\xi] \otimes_{R} \bar{k}$ (quantum duplicates of quad. extensions),
- Work in progress going along these lines.

What if k is not algebraically closed?

- Even if k is not alg. closed, all the above are valid factorizations.
- However, there may be more valid factors.
- We have to consider all \bar{k} quadratic field extensions of k.
- New cases to consider:
- $k^{2} \otimes_{R} \bar{k}$ (nc. duplicates of quadratic extensions),
- $k[\xi] \otimes_{R} \bar{k}$ (quantum duplicates of quad. extensions),
- $\bar{k} \otimes_{R} \bar{k}^{\prime}$ (products of two quad. extensions).
- Work in progress going along these lines.

What if k is not algebraically closed?

- Even if k is not alg. closed, all the above are valid factorizations.
- However, there may be more valid factors.
- We have to consider all \bar{k} quadratic field extensions of k.
- New cases to consider:
- $k^{2} \otimes_{R} \bar{k}$ (nc. duplicates of quadratic extensions),
- $k[\xi] \otimes_{R} \bar{k}$ (quantum duplicates of quad. extensions),
- $\bar{k} \otimes_{R} \bar{k}^{\prime}$ (products of two quad. extensions).
- Work in progress going along these lines.

Thanks for your attention!

