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The basics The problem The solution

Based upon joint works with Galbriel Navarro

@ On the classification and properties of noncommutative
duplicates, arXiv:.math/0612188v1,

@ Quantum duplicates of Algebras, (proceedings of the
XVIth Integrable Systems and Quantum Symmetries
symposium).

and works in progress with Gabriel Navarro and Oscar
Cortadellas
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We say that X is a factorization sfructure of the algebras A
and Bif:

@ We have iy : A— X and iz : B— X injective algebra maps.

@ Thelinear map a® b — ia(Q) - ig(B) is a linear isomorphism.

Factorization structures are also called twisted tensor
products.
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map if it satisfies:

Q@ Ro(Boua) = (1a® B)o (A®R) o (R A)
@ Ro(us®A) = (A® ug) o (R B) o (B&R)

Theorem

The map up = (ua ® ug) o (A® R® B) is an associative
productin A® B if, and only if, R is a twisting map.

We write A ®p B to denote the algebra (A ® B, up).
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Why twisting maps?

Theorem (Tambara, Majid, Cap-Schichl-Vanzurq, ...)

Let (X, ia, ig) a factorization structure of A and B, then
there is a unique twisting map R : B&® A — A® B such that
X is isomorphic to A®p B as a twisted fensor product.
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Why twisting maps?

Theorem (Tambara, Majid, Cap-Schichl-Vanzurq, ...)

Let (X, ia, ig) a factorization structure of A and B, then
there is a unique twisting map R : B&® A — A® B such that
X is isomorphic to A®p B as a twisted fensor product.

So, studying factorization structures is equivalent to study
twisting maps.
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Classifying factorization structures

Question

When are ttp’s given by different twisting mayps
isomorphic?

Question

@ Given algebras, A and B, may we classify all twisting mayps
R:BA— A®B?

@ And describe the algebras A @5 B, up to isomorphism?
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The basics The solution
The twisting variety

@ A, B(f dim) algebras

@ T(A B):={R:B®A— A® B| Rtwisting map} is an affine
variety

@ Isoclasses of ttp ARpr B <= “Points” in an orbitspace of
T(A,B).
@ Classify these points: very difficult problem in general!

@ No general methods are known, even without taking info
account isomorphism classes.
@ Each particular case has to be studied on its own.
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Classify all existing factorization structures of dimension 4. l
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The basics The problem

The framework

@ k an algebraically closed field,

@ X a4-dimensional algebra over k.

Question

Do exist k-algebras A, B, and a twisting map R such that
X=A®prB?
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@ If X factorizes in a nontrivial way, both A and B must have
dimension 2.

@ Over an algebraically closed field, there are only two
k-algebras of dimension 2:

@ The semisimple algebra k2,
@ The algebra of dual numbers, k[¢] := k[x]/(x?).

@ Thus, X must be of one of the three following types:
o k? () k2,
Q K2 e K[,
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@ Classified by Cibils (2006) with combinatorial techniques.

Theorem (Cibils (2006) + Lopez-Navarro (2007))
Any tto k? @p k? is isomorphic to one of the following:
@ K4,

@ The quotient kQ/(Q>,), where Q = o o

~—

@ The algebra of matrices Ma(k).

(e]
@ The path algebra of the quiver

O —>20
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The basics The problem
Final remarks

@ No apparent pattern relates algebras that can be
factorized.

@ For any 2-dim. algebra A, there is a twisting map R such
that Az A = My(k) simple.
Conjecture (F. Van Oystaeyen, J. Gomez-Torrecillas)

For any algebra A there exist a twisting map R such that A®p A
is simple.

Remark (Cortadellas-Lépez-Navarro)
If it exists, the resulting algebra is not necessarily unique:

CoprC=MyR), C®sC=H
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What if k is not algebraically closed?

@ Even if kis not alg. closed, all the above are valid
factorizations.

@ However, there may be more valid factors.
@ We have to consider all k quadratic field extensions of k.

@ New cases to consider:

° KkK2®p l?_(nc. duplicates of quadratic extensions),
@ K[¢] ®r k (quantum duplicates of quad. extensions),
@ k®p k' (products of two quad. extensions).

@ Work in progress going along these lines.
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Thanks for your attention!
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