An algebraic reformulation 0000

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Connections over twisted tensor products of algebras

Javier López Peña

Algebra Department University of Granada (Spain)

"International Colloquium on Integrable Systems and Quantum symmetries (ISQS-16)" Prague, June 14th–16th 2007

An algebraic reformulation 0000

Noncommutative generalization

The results

Slides based on the paper

Connections over twisted tensor products of algebras

arxiv.org: math.QA/0610978

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

An algebraic reformulation

Noncommutative generalization

The results

Outline

2 An algebraic reformulation

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

An algebraic reformulation 0000

Noncommutative generalization

・ロン ・四 と ・ ヨ と ・ ヨ と

The results 0000

Outline

- 2 An algebraic reformulation
- 3 Noncommutative generalization
- 4 The results

Our Aim

An algebraic reformulation 0000

Noncommutative generalization

The results 0000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Goal

Construct a suitable product connection for noncommutative geometry.

An algebraic reformulation 0000

Noncommutative generalization

The results 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Classical Differential Geometry

• A manifold M.

- A (co)tangent bundle TM.
- Vector fields $\mathfrak{X}(M)$ (global sections of *TM*).
- A covariant derivative (or connection):

 $abla : \mathfrak{X}(M) imes \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M)$

Gives notion of *parallel transport*.

• The *curvature* associated to ∇ :

 $R(X,Y) :=
abla_X
abla_Y -
abla_Y
abla_X -
abla_{[X,Y]}$

An algebraic reformulation 0000

Noncommutative generalization

The results 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Classical Differential Geometry

• A manifold *M*.

- A (co)tangent bundle TM.
- Vector fields $\mathfrak{X}(M)$ (global sections of *TM*).
- A covariant derivative (or connection):

 $abla : \mathfrak{X}(M) imes \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M)$

Gives notion of *parallel transport*.

• The *curvature* associated to ∇ :

 $R(X,Y) := \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]}$

An algebraic reformulation 0000

Noncommutative generalization

The results 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Classical Differential Geometry

• A manifold *M*.

- A (co)tangent bundle TM.
- Vector fields $\mathfrak{X}(M)$ (global sections of *TM*).
- A covariant derivative (or connection):

 $abla : \mathfrak{X}(M) imes \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M)$

Gives notion of *parallel transport*.

• The *curvature* associated to ∇ :

 $R(X,Y) :=
abla_X
abla_Y -
abla_Y
abla_X -
abla_{[X,Y]}$

An algebraic reformulation 0000

Noncommutative generalization

The results 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Classical Differential Geometry

• A manifold *M*.

- A (co)tangent bundle TM.
- Vector fields $\mathfrak{X}(M)$ (global sections of *TM*).
- A covariant derivative (or connection):

 $abla : \mathfrak{X}(M) imes \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M)$

Gives notion of *parallel transport*.

• The *curvature* associated to ∇ :

 $R(X,Y) :=
abla_X
abla_Y -
abla_Y
abla_X -
abla_{[X,Y]}$

An algebraic reformulation 0000

Noncommutative generalization

The results 0000

▲□▶▲□▶▲□▶▲□▶ □ のQで

Classical Differential Geometry

- A manifold *M*.
- A (co)tangent bundle TM.
- Vector fields $\mathfrak{X}(M)$ (global sections of *TM*).
- A covariant derivative (or connection):

 $abla : \mathfrak{X}(M) imes \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M)$

Gives notion of *parallel transport*.

• The *curvature* associated to ∇ :

 $R(X,Y) := \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]}$

An algebraic reformulation 0000

Noncommutative generalization

The results 0000

A D F A 同 F A E F A E F A Q A

Classical Differential Geometry

- A manifold *M*.
- A (co)tangent bundle TM.
- Vector fields $\mathfrak{X}(M)$ (global sections of *TM*).
- A covariant derivative (or connection):

 $abla : \mathfrak{X}(M) imes \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M)$

Gives notion of *parallel transport*.

• The *curvature* associated to ∇ :

 $R(X,Y) := \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]}$

An algebraic reformulation

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Physical interpretations

• Manifold *M* corresponds to *spacetime*.

- (co)Tangent bundle corresponds to the phase space.
- The connection ∇ can be used for different things:
 - Gravity theories (linear connections),
 - Electromagnetic potentials (rank one connections),
 - Yang-Mills actions.

An algebraic reformulation

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Manifold *M* corresponds to *spacetime*.
- (co)Tangent bundle corresponds to the *phase space*.
- The connection ∇ can be used for different things:
 - Gravity theories (linear connections),
 - Electromagnetic potentials (rank one connections),
 - Yang-Mills actions.

An algebraic reformulation

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Manifold *M* corresponds to *spacetime*.
- (co)Tangent bundle corresponds to the *phase space*.
- The connection ∇ can be used for different things:
 - Gravity theories (linear connections),
 - Electromagnetic potentials (rank one connections),
 - Yang-Mills actions.

An algebraic reformulation

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Manifold *M* corresponds to *spacetime*.
- (co)Tangent bundle corresponds to the *phase space*.
- The connection ∇ can be used for different things:
 - Gravity theories (linear connections),
 - Electromagnetic potentials (rank one connections),
 - Yang-Mills actions.

An algebraic reformulation

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Manifold *M* corresponds to *spacetime*.
- (co)Tangent bundle corresponds to the *phase space*.
- The connection ∇ can be used for different things:
 - Gravity theories (linear connections),
 - Electromagnetic potentials (rank one connections),
 - Yang-Mills actions.

An algebraic reformulation

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Manifold *M* corresponds to *spacetime*.
- (co)Tangent bundle corresponds to the *phase space*.
- The connection ∇ can be used for different things:
 - Gravity theories (linear connections),
 - Electromagnetic potentials (rank one connections),
 - Yang-Mills actions.

An algebraic reformulation

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Product of manifolds

- Manifold structure on $M \times N$.
 - Product topology.
 - Product differential structure.
- Product tangent bundle $\mathfrak{X}(M \times N)$.
 - Built through *lifting of vector fields*.
- Product connection $\nabla^{M \times N}$
 - On a lifting of a vector field works as ∇^M or ∇^N .
- Product curvature $R^{M \times N}$
 - Only depends on \mathbb{R}^M and \mathbb{R}^N .

An algebraic reformulation

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Product of manifolds

- Manifold structure on $M \times N$.
 - Product topology.
 - Product differential structure.
- Product tangent bundle $\mathfrak{X}(M \times N)$.
 - Built through *lifting of vector fields*.
- Product connection $\nabla^{M \times N}$
 - On a lifting of a vector field works as ∇^M or ∇^N .
- Product curvature *R^{M×N}*
 - Only depends on \mathbb{R}^M and \mathbb{R}^N .

An algebraic reformulation

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Product of manifolds

Start with two manifolds M, and N, as above.

• Manifold structure on $M \times N$.

• Product topology.

- Product differential structure.
- Product tangent bundle $\mathfrak{X}(M \times N)$.
 - Built through *lifting of vector fields*.
- Product connection $\nabla^{M \times N}$
 - On a lifting of a vector field works as ∇^M or ∇^N .
- Product curvature $R^{M \times N}$
 - Only depends on \mathbb{R}^M and \mathbb{R}^N .

An algebraic reformulation

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Product of manifolds

- Manifold structure on $M \times N$.
 - Product topology.
 - Product differential structure.
- Product tangent bundle $\mathfrak{X}(M \times N)$.
 - Built through *lifting of vector fields*.
- Product connection $\nabla^{M \times N}$
 - On a lifting of a vector field works as ∇^M or ∇^N .
- Product curvature $R^{M \times N}$
 - Only depends on \mathbb{R}^M and \mathbb{R}^N .

An algebraic reformulation

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Product of manifolds

- Manifold structure on $M \times N$.
 - Product topology.
 - Product differential structure.
- Product tangent bundle $\mathfrak{X}(M \times N)$.
 - Built through *lifting of vector fields*.
- Product connection $\nabla^{M \times N}$
 - On a lifting of a vector field works as ∇^M or ∇^N .
- Product curvature *R^{M×N}*
 - Only depends on \mathbb{R}^M and \mathbb{R}^N .

An algebraic reformulation

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Product of manifolds

- Manifold structure on $M \times N$.
 - Product topology.
 - Product differential structure.
- Product tangent bundle $\mathfrak{X}(M \times N)$.
 - Built through *lifting of vector fields*.
- Product connection $\nabla^{M \times N}$
 - On a lifting of a vector field works as ∇^M or ∇^N .
- Product curvature $R^{M \times N}$
 - Only depends on \mathbb{R}^M and \mathbb{R}^N .

An algebraic reformulation

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Product of manifolds

- Manifold structure on $M \times N$.
 - Product topology.
 - Product differential structure.
- Product tangent bundle $\mathfrak{X}(M \times N)$.
 - Built through *lifting of vector fields*.
- Product connection $\nabla^{M \times N}$.
 - On a lifting of a vector field works as ∇^M or ∇^N .
- Product curvature $R^{M \times N}$
 - Only depends on \mathbb{R}^M and \mathbb{R}^N .

An algebraic reformulation

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Product of manifolds

- Manifold structure on $M \times N$.
 - Product topology.
 - Product differential structure.
- Product tangent bundle $\mathfrak{X}(M \times N)$.
 - Built through *lifting of vector fields*.
- Product connection $\nabla^{M \times N}$.
 - On a lifting of a vector field works as ∇^M or ∇^N .
- Product curvature $R^{M \times N}$
 - Only depends on \mathbb{R}^M and \mathbb{R}^N .

An algebraic reformulation

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Product of manifolds

- Manifold structure on $M \times N$.
 - Product topology.
 - Product differential structure.
- Product tangent bundle $\mathfrak{X}(M \times N)$.
 - Built through *lifting of vector fields*.
- Product connection $\nabla^{M \times N}$.
 - On a lifting of a vector field works as ∇^M or ∇^N .
- Product curvature $R^{M \times N}$
 - Only depends on \mathbb{R}^M and \mathbb{R}^N .

An algebraic reformulation

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Product of manifolds

- Manifold structure on $M \times N$.
 - Product topology.
 - Product differential structure.
- Product tangent bundle $\mathfrak{X}(M \times N)$.
 - Built through *lifting of vector fields*.
- Product connection $\nabla^{M \times N}$.
 - On a lifting of a vector field works as ∇^M or ∇^N .
- Product curvature $R^{M \times N}$
 - Only depends on \mathbb{R}^M and \mathbb{R}^N .

Outline

An algebraic reformulation $\circ \circ \circ \circ$

Noncommutative generalization

The results 0000

3 Noncommutative generalization

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@

An algebraic reformulation • 0 0 0 Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

How to generalize it?

• To generalize classical geometrical notions, we need an *algebraic reformulation*.

- Given by Jean-Louis Koszul in the 60's.
- Doesn't need coordinates or charts.

An algebraic reformulation • 0 0 0 Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

How to generalize it?

- To generalize classical geometrical notions, we need an *algebraic reformulation*.
 - Given by Jean-Louis Koszul in the 60's.
 - Doesn't need coordinates or charts.

An algebraic reformulation • 0 0 0 Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

How to generalize it?

- To generalize classical geometrical notions, we need an *algebraic reformulation*.
 - Given by Jean-Louis Koszul in the 60's.
 - Doesn't need coordinates or charts.

An algebraic reformulation 0000

Noncommutative generalization

The results 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

- Manifold *M*: replaced by the *algebra* $C^{\infty}(M)$.
- Vector fields: *derivations* on $C^{\infty}(M)$.
- $\mathfrak{X}(M)$: a finite projective $C^{\infty}(M)$ -module.
- $\Omega^1(M) := \mathfrak{X}(M)^*$ the *differential 1–forms*.
 - Can replace vector fields.
 - Give rise to the **exterior algebra** $\Omega(M)$.

An algebraic reformulation 0000

Noncommutative generalization

The results 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Manifold *M*: replaced by the *algebra* $C^{\infty}(M)$.
- Vector fields: *derivations* on $C^{\infty}(M)$.
- $\mathfrak{X}(M)$: a finite projective $C^{\infty}(M)$ -module.
- $\Omega^1(M) := \mathfrak{X}(M)^*$ the differential 1-forms.
 - Can replace vector fields.
 - Give rise to the **exterior algebra** $\Omega(M)$.

An algebraic reformulation 0000

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Manifold *M*: replaced by the *algebra* $C^{\infty}(M)$.
- Vector fields: *derivations* on $C^{\infty}(M)$.
- $\mathfrak{X}(M)$: a finite projective $C^{\infty}(M)$ -module.
- $\Omega^1(M) := \mathfrak{X}(M)^*$ the differential 1-forms.
 - Can replace vector fields.
 - Give rise to the **exterior algebra** $\Omega(M)$.

An algebraic reformulation 0000

Noncommutative generalization

The results 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Manifold *M*: replaced by the *algebra* $C^{\infty}(M)$.
- Vector fields: *derivations* on $C^{\infty}(M)$.
- $\mathfrak{X}(M)$: a finite projective $C^{\infty}(M)$ -module.
- $\Omega^1(M) := \mathfrak{X}(M)^*$ the *differential 1-forms*.
 - Can replace vector fields.
 - Give rise to the *exterior algebra* $\Omega(M)$.

An algebraic reformulation 0000

Noncommutative generalization

The results 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Manifold *M*: replaced by the *algebra* $C^{\infty}(M)$.
- Vector fields: *derivations* on $C^{\infty}(M)$.
- $\mathfrak{X}(M)$: a finite projective $C^{\infty}(M)$ -module.
- $\Omega^1(M) := \mathfrak{X}(M)^*$ the *differential 1-forms*.
 - Can replace vector fields.
 - Give rise to the **exterior algebra** $\Omega(M)$.
An algebraic reformulation 0000

Noncommutative generalization

The results 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Algebraic description of DG (I)

- Manifold *M*: replaced by the *algebra* $C^{\infty}(M)$.
- Vector fields: *derivations* on $C^{\infty}(M)$.
- $\mathfrak{X}(M)$: a finite projective $C^{\infty}(M)$ -module.
- $\Omega^1(M) := \mathfrak{X}(M)^*$ the differential 1-forms.
 - Can replace vector fields.
 - Give rise to the **exterior algebra** $\Omega(M)$.

An algebraic reformulation $\circ \circ \bullet \circ$

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Algebraic description of DG (II)

• Use the Koszul connection:

$abla : \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M) \otimes_{C^{\infty}(M)} \Omega^{1}(M).$

• Replace *R* by the *curvature tensor*:

An algebraic reformulation

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Algebraic description of DG (II)

• Use the Koszul connection:

$abla : \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M) \otimes_{C^{\infty}(M)} \Omega^{1}(M).$

• Replace *R* by the *curvature tensor*:

An algebraic reformulation $\circ \circ \bullet \circ$

Noncommutative generalization

The results

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Algebraic description of DG (II)

• Use the Koszul connection:

$abla : \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M) \otimes_{C^{\infty}(M)} \Omega^{1}(M).$

• Replace *R* by the *curvature tensor*:

An algebraic reformulation $\circ \circ \bullet \circ$

Noncommutative generalization

The results

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Algebraic description of DG (II)

• Use the Koszul connection:

$$abla : \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M) \otimes_{C^{\infty}(M)} \Omega^{1}(M).$$

• Replace *R* by the *curvature tensor*:

An algebraic reformulation 0000

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Algebraic description of DG (III)

- $M \times N$ corresponds to $C^{\infty}(M \times N) \cong C^{\infty}(M) \otimes C^{\infty}(N)$.
- $\mathfrak{X}(M \times N) \cong \mathfrak{X}(M) \otimes C^{\infty}(N) \oplus C^{\infty}(M) \otimes \mathfrak{X}(N).$

• Replace lifting of vector fields by embeddings

 $\mathfrak{X}(M) \hookrightarrow \mathfrak{X}(M) \otimes C^{\infty}(N), \quad \mathfrak{X}(N) \hookrightarrow C^{\infty}(M) \otimes \mathfrak{X}(N).$

• $\Omega^1(M \times N) \cong \Omega^1(M) \otimes C^{\infty}(N) \oplus C^{\infty}(M) \otimes \Omega^1(N).$

An algebraic reformulation

Noncommutative generalization

The results 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Algebraic description of DG (III)

- $M \times N$ corresponds to $C^{\infty}(M \times N) \cong C^{\infty}(M) \otimes C^{\infty}(N)$.
- $\mathfrak{X}(M \times N) \cong \mathfrak{X}(M) \otimes C^{\infty}(N) \oplus C^{\infty}(M) \otimes \mathfrak{X}(N).$

Replace lifting of vector fields by embeddings

 $\mathfrak{X}(M) \hookrightarrow \mathfrak{X}(M) \otimes C^{\infty}(N), \quad \mathfrak{X}(N) \hookrightarrow C^{\infty}(M) \otimes \mathfrak{X}(N).$

• $\Omega^1(M \times N) \cong \Omega^1(M) \otimes C^{\infty}(N) \oplus C^{\infty}(M) \otimes \Omega^1(N).$

An algebraic reformulation 0000

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Algebraic description of DG (III)

- $M \times N$ corresponds to $C^{\infty}(M \times N) \cong C^{\infty}(M) \otimes C^{\infty}(N)$.
- $\mathfrak{X}(M \times N) \cong \mathfrak{X}(M) \otimes C^{\infty}(N) \oplus C^{\infty}(M) \otimes \mathfrak{X}(N).$
 - Replace lifting of vector fields by embeddings

 $\mathfrak{X}(M) \hookrightarrow \mathfrak{X}(M) \otimes C^{\infty}(N), \quad \mathfrak{X}(N) \hookrightarrow C^{\infty}(M) \otimes \mathfrak{X}(N).$

• $\Omega^1(M \times N) \cong \Omega^1(M) \otimes C^{\infty}(N) \oplus C^{\infty}(M) \otimes \Omega^1(N).$

An algebraic reformulation 0000

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ののの

Algebraic description of DG (III)

- $M \times N$ corresponds to $C^{\infty}(M \times N) \cong C^{\infty}(M) \otimes C^{\infty}(N)$.
- $\mathfrak{X}(M \times N) \cong \mathfrak{X}(M) \otimes C^{\infty}(N) \oplus C^{\infty}(M) \otimes \mathfrak{X}(N).$
 - Replace lifting of vector fields by embeddings

 $\mathfrak{X}(M) \hookrightarrow \mathfrak{X}(M) \otimes C^{\infty}(N), \quad \mathfrak{X}(N) \hookrightarrow C^{\infty}(M) \otimes \mathfrak{X}(N).$

• $\Omega^{1}(M \times N) \cong \Omega^{1}(M) \otimes C^{\infty}(N) \oplus C^{\infty}(M) \otimes \Omega^{1}(N).$

An algebraic reformulation 0000

Noncommutative generalization

The results 0000

Outline

③ Noncommutative generalization

4 The results

▲□▶▲@▶▲≣▶▲≣▶ ≣ のQ@

An algebraic reformulation 0000

Noncommutative generalization •0000 The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The framework

• A, B, algebras.

- *E* right *A*-module, *F* right *B*-module.
- $\Omega(A)$, $\Omega(B)$ differential calculi.
- ∇^{E} , ∇^{F} connections over *E*, *F*.

An algebraic reformulation 0000

Noncommutative generalization •0000 The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The framework

- A, B, algebras.
- *E* right *A*-module, *F* right *B*-module.
- $\Omega(A)$, $\Omega(B)$ differential calculi.
- ∇^{E} , ∇^{F} connections over *E*, *F*.

An algebraic reformulation 0000

Noncommutative generalization •0000 The results 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The framework

- A, B, algebras.
- *E* right *A*-module, *F* right *B*-module.
- $\Omega(A), \Omega(B)$ differential calculi.
- ∇^{E} , ∇^{F} connections over *E*, *F*.

An algebraic reformulation 0000

Noncommutative generalization •0000 The results 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The framework

- A, B, algebras.
- *E* right *A*-module, *F* right *B*-module.
- $\Omega(A), \Omega(B)$ differential calculi.
- ∇^{E} , ∇^{F} connections over *E*, *F*.

An algebraic reformulation 0000

Noncommutative generalization 0000

The results

The product

• Tensor product $A \otimes B$ is not good enough:

Elements of A commute with elements of B!
Replace A ⊗ B by a *twisted tensor product* A ⊗_R B.
B: B ⊗ A ⇒ A ⊗ B a *twisting map*

• $R: B \otimes A \longrightarrow A \otimes B$ a twisting map.

An algebraic reformulation 0000

Noncommutative generalization 0000

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ののの

The product

• Tensor product $A \otimes B$ is not good enough:

• Elements of A commute with elements of B!

• Replace $A \otimes B$ by a *twisted tensor product* $A \otimes_R B$.

• $R: B \otimes A \longrightarrow A \otimes B$ a twisting map.

An algebraic reformulation 0000

Noncommutative generalization 0000

The results

The product

- Tensor product $A \otimes B$ is not good enough:
 - Elements of A commute with elements of B!

• Replace $A \otimes B$ by a *twisted tensor product* $A \otimes_R B$.

• $R: B \otimes A \longrightarrow A \otimes B$ a twisting map.

An algebraic reformulation 0000

Noncommutative generalization 0000

The results

The product

- Tensor product $A \otimes B$ is not good enough:
 - Elements of A commute with elements of B!
- Replace $A \otimes B$ by a *twisted tensor product* $A \otimes_R B$.
 - $R: B \otimes A \longrightarrow A \otimes B$ a twisting map.

An algebraic reformulation

Noncommutative generalization 0000

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The product

- Tensor product $A \otimes B$ is not good enough:
 - Elements of A commute with elements of B!
- Replace $A \otimes B$ by a *twisted tensor product* $A \otimes_R B$.
 - $R: B \otimes A \longrightarrow A \otimes B$ a twisting map.

An algebraic reformulation

Noncommutative generalization 0000

The results

The product

- Tensor product $A \otimes B$ is not good enough:
 - Elements of A commute with elements of B!
- Replace $A \otimes B$ by a *twisted tensor product* $A \otimes_R B$.
 - $R: B \otimes A \longrightarrow A \otimes B$ a twisting map.

An algebraic reformulation 0000

Noncommutative generalization 00000

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ののの

Lifting of the twisting map

Theorem (Cap-Schichl-Vanžura)

A twisting map $R : B \otimes A \rightarrow A \otimes B$ extends to a unique twisting map $\tilde{R} : \Omega B \otimes \Omega A \rightarrow \Omega A \otimes \Omega B$ satisfying

$$\ \, \tilde{\mathsf{R}}\circ(\mathsf{d}_{\mathsf{B}}\otimes\Omega\mathsf{A})=(\epsilon_{\mathsf{A}}\otimes\mathsf{d}_{\mathsf{B}})\circ\tilde{\mathsf{R}},$$

$$\widehat{R} \circ (\Omega B \otimes d_A) = (d_A \otimes \epsilon_B) \circ \widetilde{R}.$$

Moreover, $\Omega A \otimes_{\widetilde{R}} \Omega B$ is a DGA with differential

 $d(\varphi\otimes\omega):=d_A\varphi\otimes\omega+(-1)^{|\varphi|}\varphi\otimes d_B\omega.$

Use this product DC for building the noncommutative product connection

An algebraic reformulation 0000

Noncommutative generalization 00000

The results

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lifting of the twisting map

Theorem (Cap-Schichl-Vanžura)

A twisting map $R : B \otimes A \to A \otimes B$ extends to a unique twisting map $\tilde{R} : \Omega B \otimes \Omega A \to \Omega A \otimes \Omega B$ satisfying

$$\ \, \bullet \ \, \tilde{R} \circ (d_B \otimes \Omega A) = (\epsilon_A \otimes d_B) \circ \tilde{R}.$$

$$\widehat{R} \circ (\Omega B \otimes d_A) = (d_A \otimes \epsilon_B) \circ \widetilde{R}.$$

Moreover, $\Omega A \otimes_{\tilde{R}} \Omega B$ is a DGA with differential

 $d(\varphi \otimes \omega) := d_A \varphi \otimes \omega + (-1)^{|\varphi|} \varphi \otimes d_B \omega.$

Use this product DC for building the noncommutative product connection

An algebraic reformulation 0000

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ののの

Lifting of the twisting map

Theorem (Cap-Schichl-Vanžura)

A twisting map $R : B \otimes A \to A \otimes B$ extends to a unique twisting map $\tilde{R} : \Omega B \otimes \Omega A \to \Omega A \otimes \Omega B$ satisfying

$$\ \, \bullet \ \, \tilde{R} \circ (d_B \otimes \Omega A) = (\epsilon_A \otimes d_B) \circ \tilde{R}.$$

$$\widehat{R} \circ (\Omega B \otimes d_A) = (d_A \otimes \epsilon_B) \circ \widetilde{R}.$$

Moreover, $\Omega A \otimes_{\tilde{R}} \Omega B$ is a DGA with differential

$$d(\varphi \otimes \omega) := d_A \varphi \otimes \omega + (-1)^{|\varphi|} \varphi \otimes d_B \omega.$$

Use this product DC for building the noncommutative product connection

An algebraic reformulation

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Construction of our connection (I): The setup

The twisting map R.

2 The DC $\Omega A \otimes_{\widetilde{R}} \Omega B$.

In $A \otimes_R B$ -module structure on $E \otimes B \oplus A \otimes F$.

- Via $\tau_{F,A}: F \otimes A \to A \otimes F$ a module twisting map.
- $\tau_{F,A}$ and ∇^F compatible (tech. condition).

An algebraic reformulation 0000

Noncommutative generalization 00000

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Construction of our connection (I): The setup

The twisting map R.

2 The DC $\Omega A \otimes_{\widetilde{R}} \Omega B$.

In $A \otimes_R B$ -module structure on $E \otimes B \oplus A \otimes F$.

- Via $\tau_{F,A}: F \otimes A \to A \otimes F$ a module twisting map.
- $\tau_{F,A}$ and ∇^F compatible (tech. condition).

An algebraic reformulation

Noncommutative generalization 00000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Construction of our connection (I): The setup

- The twisting map R.
- **2** The DC $\Omega A \otimes_{\widetilde{R}} \Omega B$.
- **3** A A \otimes_R *B*-module structure on $E \otimes B \oplus A \otimes F$.
 - Via $\tau_{F,A}$: $F \otimes A \to A \otimes F$ a module twisting map.
 - $\tau_{F,A}$ and ∇^F compatible (tech. condition).

An algebraic reformulation

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Construction of our connection (I): The setup

- The twisting map R.
- **2** The DC $\Omega A \otimes_{\widetilde{R}} \Omega B$.
- **(a)** A $A \otimes_R B$ -module structure on $E \otimes B \oplus A \otimes F$.
 - Via $\tau_{F,A}: F \otimes A \to A \otimes F$ a module twisting map.
 - $\tau_{F,A}$ and ∇^F compatible (tech. condition).

An algebraic reformulation 0000

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Construction of our connection (I): The setup

- The twisting map R.
- **2** The DC $\Omega A \otimes_{\widetilde{R}} \Omega B$.
- **3** A $A \otimes_R B$ -module structure on $E \otimes B \oplus A \otimes F$.
 - Via $\tau_{F,A}: F \otimes A \to A \otimes F$ a module twisting map.
 - $\tau_{F,A}$ and ∇^F compatible (tech. condition).

An algebraic reformulation

Noncommutative generalization $\circ \circ \circ \circ \bullet$

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Construction of our connection (II): The trade

$abla (e \otimes b, a \otimes f) := abla_1 (e \otimes b) + abla_2 (a \otimes f),$

is a connection in $E \otimes B \oplus A \otimes F$, being

$$\nabla_{1} := (E \otimes u_{B} \otimes \Omega^{1}A \otimes B) \circ (\nabla^{E} \otimes B) + + (E \otimes u_{B} \otimes u_{A} \otimes \Omega^{1}B) \circ (E \otimes d_{B}),$$
$$\nabla_{2} := (A \otimes F \otimes u_{B} \otimes \Omega^{1}B) \circ (A \otimes \nabla^{F}) + + (u_{A} \otimes F \otimes d_{A} \otimes u_{B}) \circ \tau_{F,A}^{-1}.$$

 ∇ is called the **product connection of** ∇^{F} and ∇^{F} .

An algebraic reformulation 0000

Noncommutative generalization $0000 \bullet$

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Construction of our connection (II): The trade

 $abla (e \otimes b, a \otimes f) :=
abla_1(e \otimes b) +
abla_2(a \otimes f),$

is a connection in $E \otimes B \oplus A \otimes F$, being

$$\nabla_{1} := (E \otimes u_{B} \otimes \Omega^{1}A \otimes B) \circ (\nabla^{E} \otimes B) + + (E \otimes u_{B} \otimes u_{A} \otimes \Omega^{1}B) \circ (E \otimes d_{B}),$$
$$\nabla_{2} := (A \otimes F \otimes u_{B} \otimes \Omega^{1}B) \circ (A \otimes \nabla^{F}) + + (u_{A} \otimes F \otimes d_{A} \otimes u_{B}) \circ \tau_{F,A}^{-1}.$$

 ∇ is called the **product connection of** ∇^{F} and ∇^{F} .

An algebraic reformulation 0000

Noncommutative generalization $0000 \bullet$

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Construction of our connection (II): The trade

 $abla (e \otimes b, a \otimes f) :=
abla_1(e \otimes b) +
abla_2(a \otimes f),$

is a connection in $E \otimes B \oplus A \otimes F$, being

$$\begin{aligned} \nabla_1 &:= & (E \otimes u_B \otimes \Omega^1 A \otimes B) \circ (\nabla^E \otimes B) + \\ &+ & (E \otimes u_B \otimes u_A \otimes \Omega^1 B) \circ (E \otimes d_B), \\ \nabla_2 &:= & (A \otimes F \otimes u_B \otimes \Omega^1 B) \circ (A \otimes \nabla^F) + \\ &+ & (u_A \otimes F \otimes d_A \otimes u_B) \circ \tau_{F,A}^{-1}. \end{aligned}$$

 ∇ is called the **product connection of** ∇^{F} and ∇^{F} .

An algebraic reformulation 0000

Noncommutative generalization 0000

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ののの

Construction of our connection (II): The trade

 $abla (e \otimes b, a \otimes f) :=
abla_1(e \otimes b) +
abla_2(a \otimes f),$

is a connection in $E \otimes B \oplus A \otimes F$, being

$$\begin{aligned} \nabla_1 &:= & (E \otimes u_B \otimes \Omega^1 A \otimes B) \circ (\nabla^E \otimes B) + \\ &+ & (E \otimes u_B \otimes u_A \otimes \Omega^1 B) \circ (E \otimes d_B), \\ \nabla_2 &:= & (A \otimes F \otimes u_B \otimes \Omega^1 B) \circ (A \otimes \nabla^F) + \\ &+ & (u_A \otimes F \otimes d_A \otimes u_B) \circ \tau_{F,A}^{-1}. \end{aligned}$$

 ∇ is called the **product connection of** ∇^{E} **and** ∇^{F} .

An algebraic reformulation 0000

Noncommutative generalization

The results

Outline

- 2 An algebraic reformulation
- 3 Noncommutative generalization

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

An algebraic reformulation 0000

Noncommutative generalization

The results •000

The rigidity theorem

Theorem The curvature of the product connection is given by $\theta(e \otimes b, a \otimes f) = i_E(\theta^E(e)) \cdot b + a \cdot i_F(\theta^F(f)).$

▲□▶▲□▶▲目▶▲目▶ 目 のへで

An algebraic reformulation 0000

Noncommutative generalization

The results •000

The rigidity theorem

Theorem The curvature of the product connection is given by $\theta(e \otimes b, a \otimes f) = i_E(\theta^E(e)) \cdot b + a \cdot i_F(\theta^F(f)).$ In particular, it does not depend either on R nor on τ_{FA} .

▲□▶▲圖▶★≣▶★≣▶ ≣ のへで

An algebraic reformulation 0000

Noncommutative generalization

The results 0●00

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The rigidity theorem (consequences)

Corollary

The product of two flat connections is again a flat connection.

 Leaves open the possibility of studying de Rham cohomology with coefficients using a product connection! (cf. Beggs–Brzeziński (1))
An algebraic reformulation 0000

Noncommutative generalization

The results 0●00

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

The rigidity theorem (consequences)

Corollary

The product of two flat connections is again a flat connection.

 Leaves open the possibility of studying de Rham cohomology with coefficients using a product connection! (cf. Beggs–Brzeziński (1))

An algebraic reformulation 0000

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Bimodule connections

Theorem

Under suitable assumptions, the product of bimodule connections is a bimodule connection.

Question

Working on it:

- Do products of linear connections have nice properties?
- What happens with torsion?

An algebraic reformulation 0000

Noncommutative generalization

The results 00●0

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Bimodule connections

Theorem

Under suitable assumptions, the product of bimodule connections is a bimodule connection.

Question

Working on it:

- Do products of linear connections have nice properties?
- What happens with torsion?

An algebraic reformulation 0000

Noncommutative generalization

The results 00●0

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Bimodule connections

Theorem

Under suitable assumptions, the product of bimodule connections is a bimodule connection.

Question

Working on it:

- Do products of linear connections have nice properties?
- What happens with torsion?

An algebraic reformulation 0000

Noncommutative generalization

The results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

References I

The Serre spectral sequence of a noncommutative fibration for de Rham cohomology, *To appear in Acta Math* (2005).

A. Cap, H. Schichl, and J. Vanžura. On twisted tensor products of algebras. Comm. Algebra, 23:4701–4735, 1995.

嗪 J. López Peña

Connections over twisted tensor products of algebras. Preprint, math.QA/0610978.