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Our Aim

Goal
Construct a suitable product connection for
noncommutative geometry.
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Classical Differential Geometry

A manifold M.
A (co)tangent bundle TM.
Vector fields X(M) (global sections of TM).
A covariant derivative (or connection):

∇ : X(M)× X(M) −→ X(M)

Gives notion of parallel transport.
The curvature associated to ∇:

R(X , Y ) := ∇X∇Y −∇Y∇X −∇[X ,Y ]
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Physical interpretations

Manifold M corresponds to spacetime.
(co)Tangent bundle corresponds to the phase space.
The connection ∇ can be used for different things:

Gravity theories (linear connections),
Electromagnetic potentials (rank one connections),
Yang-Mills actions.
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Product of manifolds

Start with two manifolds M, and N, as above.
Manifold structure on M ×N.

Product topology.
Product differential structure.

Product tangent bundle X(M ×N).
• Built through lifting of vector fields.

Product connection ∇M×N .
• On a lifting of a vector field works as ∇M or ∇N .

Product curvature RM×N

• Only depends on RM and RN .
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To generalize classical geometrical notions, we need
an algebraic reformulation.

Given by Jean–Louis Koszul in the 60’s.
Doesn’t need coordinates or charts.
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Algebraic description of DG (I)

Manifold M: replaced by the algebra C∞(M).
Vector fields: derivations on C∞(M).
X(M): a finite projective C∞(M)–module.

Ω1(M) := X(M)∗ the differential 1–forms.
Can replace vector fields.
Give rise to the exterior algebra Ω(M).
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Use the Koszul connection:
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Replace R by the curvature tensor:
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The product

Tensor product A⊗ B is not good enough:
Elements of A commute with elements of B!

Replace A⊗ B by a twisted tensor product A⊗R B.
R : B ⊗A −→ A⊗ B a twisting map.

B A A

R

A B

≡

B A A

R

R

A B

B B A

R

A B

≡

B B A

R

R

A B

Ensure that (µA ⊗ µB) ◦ (A⊗ R ⊗ B) is an associative
product.
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Lifting of the twisting map

Theorem (Cap-Schichl-Vanžura)

A twisting map R : B ⊗ A → A⊗ B extends to a unique
twisting map R̃ : ΩB ⊗ ΩA → ΩA⊗ ΩB satisfying

1 R̃ ◦ (dB ⊗ ΩA) = (εA ⊗ dB) ◦ R̃,
2 R̃ ◦ (ΩB ⊗ dA) = (dA ⊗ εB) ◦ R̃.

Moreover, ΩA⊗R̃ ΩB is a DGA with differential

d(ϕ⊗ ω) := dAϕ⊗ ω + (−1)|ϕ|ϕ⊗ dBω.

Use this product DC for building the noncommutative
product connection



Introduction An algebraic reformulation Noncommutative generalization The results

Lifting of the twisting map

Theorem (Cap-Schichl-Vanžura)

A twisting map R : B ⊗ A → A⊗ B extends to a unique
twisting map R̃ : ΩB ⊗ ΩA → ΩA⊗ ΩB satisfying

1 R̃ ◦ (dB ⊗ ΩA) = (εA ⊗ dB) ◦ R̃,
2 R̃ ◦ (ΩB ⊗ dA) = (dA ⊗ εB) ◦ R̃.

Moreover, ΩA⊗R̃ ΩB is a DGA with differential

d(ϕ⊗ ω) := dAϕ⊗ ω + (−1)|ϕ|ϕ⊗ dBω.

Use this product DC for building the noncommutative
product connection



Introduction An algebraic reformulation Noncommutative generalization The results

Lifting of the twisting map

Theorem (Cap-Schichl-Vanžura)

A twisting map R : B ⊗ A → A⊗ B extends to a unique
twisting map R̃ : ΩB ⊗ ΩA → ΩA⊗ ΩB satisfying

1 R̃ ◦ (dB ⊗ ΩA) = (εA ⊗ dB) ◦ R̃,
2 R̃ ◦ (ΩB ⊗ dA) = (dA ⊗ εB) ◦ R̃.

Moreover, ΩA⊗R̃ ΩB is a DGA with differential

d(ϕ⊗ ω) := dAϕ⊗ ω + (−1)|ϕ|ϕ⊗ dBω.

Use this product DC for building the noncommutative
product connection



Introduction An algebraic reformulation Noncommutative generalization The results

Construction of our connection (I): The setup

1 The twisting map R.
2 The DC ΩA⊗

eR ΩB.
3 A A⊗R B–module structure on E ⊗ B ⊕A⊗ F .

Via τF,A : F ⊗A → A⊗ F a module twisting map.
τF,A and ∇F compatible (tech. condition).
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Construction of our connection (II): The trade

∇(e ⊗ b, a ⊗ f ) := ∇1(e ⊗ b) +∇2(a ⊗ f ),

is a connection in E ⊗ B ⊕ A⊗ F , being

∇1 := (E ⊗ uB ⊗ Ω1A⊗ B) ◦ (∇E ⊗ B) +

+ (E ⊗ uB ⊗ uA ⊗ Ω1B) ◦ (E ⊗ dB),

∇2 := (A⊗ F ⊗ uB ⊗ Ω1B) ◦ (A⊗∇F) +

+ (uA ⊗ F ⊗ dA ⊗ uB) ◦ τ−1
F ,A.

∇ is called the product connection of ∇E and ∇F .
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∇(e ⊗ b, a ⊗ f ) := ∇1(e ⊗ b) +∇2(a ⊗ f ),

is a connection in E ⊗ B ⊕ A⊗ F , being

∇1 := (E ⊗ uB ⊗ Ω1A⊗ B) ◦ (∇E ⊗ B) +

+ (E ⊗ uB ⊗ uA ⊗ Ω1B) ◦ (E ⊗ dB),

∇2 := (A⊗ F ⊗ uB ⊗ Ω1B) ◦ (A⊗∇F) +

+ (uA ⊗ F ⊗ dA ⊗ uB) ◦ τ−1
F ,A.

∇ is called the product connection of ∇E and ∇F .
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The rigidity theorem

Theorem
The curvature of the product connection is given by

θ(e ⊗ b, a ⊗ f ) = iE(θE(e)) · b + a · iF(θF(f )).

In particular, it does not depend either on R nor on τF ,A.
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The rigidity theorem (consequences)

Corollary

The product of two flat connections is again a flat
connection.

Leaves open the possibility of studying de Rham
cohomology with coefficients using a product
connection! (cf. Beggs–Brzeziński [1])
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Bimodule connections

Theorem
Under suitable assumptions, the product of bimodule
connections is a bimodule connection.

Question
Working on it:

Do products of linear connections have nice
properties?

What happens with torsion?
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