Connections over twisted tensor products of algebras

Javier López Peña

"International Colloquium on Integrable Systems and Quantum symmetries (ISQS-16)" Prague, June 14th-16th 2007

Slides based on the paper

Connections over twisted tensor products of algebras
arxiv.org: math.QA/0610978

Outline

(2) An algebraic reformulation
(3) Noncommutative generalization

4 The results

Outline

(2) An algebraic reformulation

3 Noncommutative generalization

4 The results

Our Aim

Goal

Construct a suitable product connection for noncommutative geometry.

Classical Differential Geometry

- A manifold M.
- A (co)tangent bundle TM.
- Vector fields $\mathfrak{X}(M)$ (global sections of $T M$).
- A covariant derivative (or connection):

Gives notion of parallel transport.

- The curvature associated to ∇ :

Classical Differential Geometry

- A manifold M.
- A (co)tangent bundle TM.
- Vector fields $\mathfrak{X}(M)$ (global sections of TM).
- A covariant derivative (or connection):

Gives notion of parallel transport.

- The curvature associated to ∇ :

Classical Differential Geometry

- A manifold M.
- A (co)tangent bundle TM.
- Vector fields $\mathfrak{X}(M)$ (global sections of $T M$).
- A covariant derivative (or connection):

Gives notion of parallel transport.

- The curvature associated to ∇ :

Classical Differential Geometry

- A manifold M.
- A (co)tangent bundle $T M$.
- Vector fields $\mathfrak{X}(M)$ (global sections of $T M$).
- A covariant derivative (or connection):

$$
\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M)
$$

Gives notion of parallel fransport.

- The curvature associated to ∇ :

Classical Differential Geometry

- A manifold M.
- A (co)tangent bundle $T M$.
- Vector fields $\mathfrak{X}(M)$ (global sections of $T M$).
- A covariant derivative (or connection):

$$
\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M)
$$

Gives notion of parallel transport.

- The curvature associated to ∇ :

Classical Differential Geometry

- A manifold M.
- A (co)tangent bundle TM.
- Vector fields $\mathfrak{X}(M)$ (global sections of $T M$).
- A covariant derivative (or connection):

$$
\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M)
$$

Gives notion of parallel transport.

- The curvature associated to ∇ :

$$
R(X, Y):=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}
$$

Physical interpretations

- Manifold M corresponds to spacetime.
- (co)Tangent bundle corresponds to the phase space.
- The connection ∇ can be used for different things:
- Gravity theories (linear connections),
- Electromagnetic potentials (rank one connections),
- Yang-Mills actions.

Physical interpretations

- Manifold M corresponds to spacetime.
- (co)Tangent bundle corresponds to the phase space.
- The connection ∇ can be used for different things:
- Gravity theories (linear connections),
- Electromagnetic potentials (rank one connections),
- Yang-Mills actions.

Physical interpretations

- Manifold M corresponds to spacetime.
- (co)Tangent bundle corresponds to the phase space.
- The connection ∇ can be used for different things:
- Gravity theories (linear connections),
- Electromagnetic potentials (rank one connections),
- Yang-Mills actions.

Physical interpretations

- Manifold M corresponds to spacetime.
- (co)Tangent bundle corresponds to the phase space.
- The connection ∇ can be used for different things:
- Gravity theories (linear connections),
- Electromagnetic potentials (rank one connections),
- Yang-Mills actions.

Physical interpretations

- Manifold M corresponds to spacetime.
- (co)Tangent bundle corresponds to the phase space.
- The connection ∇ can be used for different things:
- Gravity theories (linear connections),
- Electromagnetic potentials (rank one connections),

Physical interpretations

- Manifold M corresponds to spacetime.
- (co)Tangent bundle corresponds to the phase space.
- The connection ∇ can be used for different things:
- Gravity theories (linear connections),
- Electromagnetic potentials (rank one connections),
- Yang-Mills actions.

Product of manifolds

Start with two manifolds M, and N, as above.

- Manifold structure on $M \times N$.
- Product topology.
- Product differential structure.
- Product tangent bundle $\mathfrak{X}(M \times N)$.
- Built through liffing of vector fields.
- Product connection $\nabla^{M \times N}$
- On a lifting of a vector field works as ∇^{M} or ∇^{N}
- Product curvature $R^{M \times N}$
- Only depends on R^{M} and R^{N}

Product of manifolds

Start with two manifolds M, and N, as above.

- Manifold structure on $M \times N$.
- Product differential structure.
- Product tangent bundle $\mathfrak{X}(M \times N)$.
- Built through lifting of vector fields.
- Product connection $\nabla^{M \times N}$
- On a lifting of a vector field works as ∇^{M} or ∇^{N}
- Product curvature $R^{M \times N}$
- Only depends on R^{M} and R^{N}

Product of manifolds

Start with two manifolds M, and N, as above.

- Manifold structure on $M \times N$.
- Product topology.
- Product tangent bundle $\mathfrak{X}(M \times N)$.
- Built through liffing of vector fields.
- Product connection $\nabla^{M \times N}$
- On a lifting of a vector field works as ∇^{M} or ∇^{N}
- Product curvature $R^{M \times N}$
- Only depends on R^{M} and R^{N}

Product of manifolds

Start with two manifolds M, and N, as above.

- Manifold structure on $M \times N$.
- Product topology.
- Product differential structure.
- Product tangent bundle $\mathfrak{X}(M \times N)$.
- Built through lifting of vector fields.
- Product connection $\nabla M \times N$
- On a lifting of a vector field works as ∇^{M} or ∇^{N}
- Product curvature $R^{M \times N}$
- Only depends on R^{M} and R^{N}

Product of manifolds

Start with two manifolds M, and N, as above.

- Manifold structure on $M \times N$.
- Product topology.
- Product differential structure.
- Product tangent bundle $\mathfrak{X}(M \times N)$.

Product of manifolds

Start with two manifolds M, and N, as above.

- Manifold structure on $M \times N$.
- Product topology.
- Product differential structure.
- Product tangent bundle $\mathfrak{X}(M \times N)$.
- Built through lifting of vector fields.
- Product connection $\nabla^{M \times N}$.
- On a lifting of a vector field works as ∇^{M} or ∇^{N}
- Product curvature $R^{M \times N}$
- Only depends on R^{M} anc R^{N}

Product of manifolds

Start with two manifolds M, and N, as above.

- Manifold structure on $M \times N$.
- Product topology.
- Product differential structure.
- Product tangent bundle $\mathfrak{X}(M \times N)$.
- Built through lifting of vector fields.
- Product connection $\nabla^{M \times N}$.
- Product curvature $R^{M \times N}$
- Only depends on R^{M} ancl R^{N}

Product of manifolds

Start with two manifolds M, and N, as above.

- Manifold structure on $M \times N$.
- Product topology.
- Product differential structure.
- Product tangent bundle $\mathfrak{X}(M \times N)$.
- Built through lifting of vector fields.
- Product connection $\nabla^{M \times N}$.
- On a lifting of a vector field works as ∇^{M} or ∇^{N}.
- Product curvature $R^{M \times N}$
- Only depends on R^{M} and R^{N}

Product of manifolds

Start with two manifolds M, and N, as above.

- Manifold structure on $M \times N$.
- Product topology.
- Product differential structure.
- Product tangent bundle $\mathfrak{X}(M \times N)$.
- Built through lifting of vector fields.
- Product connection $\nabla^{M \times N}$.
- On a lifting of a vector field works as ∇^{M} or ∇^{N}.
- Product curvature $R^{M \times N}$

Product of manifolds

Start with two manifolds M, and N, as above.

- Manifold structure on $M \times N$.
- Product topology.
- Product differential structure.
- Product tangent bundle $\mathfrak{X}(M \times N)$.
- Built through lifting of vector fields.
- Product connection $\nabla^{M \times N}$.
- On a lifting of a vector field works as ∇^{M} or ∇^{N}.
- Product curvature $R^{M \times N}$
- Only depends on R^{M} and R^{N}.

Outline

(2) An algebraic reformulation

3 Noncommutative generalization

4 The results

How to generalize it?

- To generalize classical geometrical notions, we need an algebraic reformulation.
- Given by Jean-Louis Koszul in the 60's.
- Doesn't need coordinates or charts.

How to generalize it?

- To generalize classical geometrical notions, we need an algebraic reformulation.
- Given by Jean-Louis Koszul in the 60's.
- Doesn't need coordinates or charts.

How to generalize it?

- To generalize classical geometrical notions, we need an algebraic reformulation.
- Given by Jean-Louis Koszul in the 60's.
- Doesn'† need coordinates or charts.

Algebraic description of DG (I)

- Manifold M : replaced by the algebra $C^{\infty}(M)$.
- Vector fields: derivations on $C^{\infty}(M)$.
- $\mathfrak{X}(M)$: a finite projective $C^{\infty}(M)$-module.
- $\Omega^{1}(M):=\mathfrak{X}(M)^{*}$ the differential 1-forms.
- Can replace vector fields.
- Give rise to the exterior algebra $\Omega(M)$.

Algebraic description of DG (I)

- Manifold M : replaced by the algebra $C^{\infty}(M)$.
- Vector fields: derivations on $C^{\infty}(M)$.
- X(M) : a finite projective $C^{\infty}(M)$-module.
- $\Omega^{1}(M):=\mathfrak{X}(M)^{*}$ the differential 1-forms.
- Can replace vector fields.
- Give rise to the exterior algebra $\Omega(M)$.

Algebraic description of DG (I)

- Manifold M : replaced by the algebra $C^{\infty}(M)$.
- Vector fields: derivations on $C^{\infty}(M)$.
- $\mathfrak{X}(M)$: a finite projective $C^{\infty}(M)$-module.

Algebraic description of DG (I)

- Manifold M : replaced by the algebra $C^{\infty}(M)$.
- Vector fields: derivations on $C^{\infty}(M)$.
- $\mathfrak{X}(M)$: a finite projective $C^{\infty}(M)$-module.
- $\Omega^{1}(M):=\mathfrak{X}(M)^{*}$ the differential 1 -forms.
- Can replace vector fields.
- Give rise to the exterior algebra $\Omega(M)$.

Algebraic description of DG (I)

- Manifold M : replaced by the algebra $C^{\infty}(M)$.
- Vector fields: derivations on $C^{\infty}(M)$.
- $\mathfrak{X}(M)$: a finite projective $C^{\infty}(M)$-module.
- $\Omega^{1}(M):=\mathfrak{X}(M)^{*}$ the differential 1 -forms.
- Can replace vector fields.
- Give rise to the exterior algebra $\Omega(M)$.

Algebraic description of DG (I)

- Manifold M : replaced by the algebra $C^{\infty}(M)$.
- Vector fields: derivations on $C^{\infty}(M)$.
- $\mathfrak{X}(M)$: a finite projective $C^{\infty}(M)$-module.
- $\Omega^{1}(M):=\mathfrak{X}(M)^{*}$ the differential 1 -forms.
- Can replace vector fields.
- Give rise to the exterior algebra $\Omega(M)$.

Algebraic description of DG (II)

- Use the Koszul connection:
- Replace R by the curvature tensor:

Algebraic description of DG (II)

- Use the Koszul connection:

$$
\nabla: \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M) \otimes_{C^{\infty}(M)} \Omega^{1}(M)
$$

- Replace R by the curvature tensor:

Algebraic description of DG (II)

- Use the Koszul connection:

$$
\nabla: \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M) \otimes_{C^{\infty}(M)} \Omega^{1}(M) .
$$

- Replace R by the curvature tensor:

Algebraic description of DG (II)

- Use the Koszul connection:

$$
\nabla: \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M) \otimes_{C^{\infty}(M)} \Omega^{1}(M) .
$$

- Replace R by the curvature tensor:

$$
R: \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M) \otimes_{C_{\infty}(M)} \Omega^{1}(M) \otimes_{C^{\infty}(M)} \Omega^{1}(M) .
$$

Algebraic description of DG (III)

- $M \times N$ corresponds to $C^{\infty}(M \times N) \cong C^{\infty}(M) \otimes C^{\infty}(N)$.
- Replace lifting of vector fields by embeddings

Algebraic description of DG (III)

- $M \times N$ corresponds to $C^{\infty}(M \times N) \cong C^{\infty}(M) \otimes C^{\infty}(N)$.
- $\mathfrak{X}(M \times N) \cong \mathfrak{X}(M) \otimes C^{\infty}(N) \oplus C^{\infty}(M) \otimes \mathfrak{X}(N)$.
- Replace lifting of vector fields by embeddings

Algebraic description of DG (III)

- $M \times N$ corresponds to $C^{\infty}(M \times N) \cong C^{\infty}(M) \otimes C^{\infty}(N)$.
- $\mathfrak{X}(M \times N) \cong \mathfrak{X}(M) \otimes C^{\infty}(N) \oplus C^{\infty}(M) \otimes \mathfrak{X}(N)$.
- Replace lifting of vector fields by embeddings

$$
\mathfrak{X}(M) \hookrightarrow \mathfrak{X}(M) \otimes C^{\infty}(N), \quad \mathfrak{X}(N) \hookrightarrow C^{\infty}(M) \otimes \mathfrak{X}(N) .
$$

Algebraic description of DG (III)

- $M \times N$ corresponds to $C^{\infty}(M \times N) \cong C^{\infty}(M) \otimes C^{\infty}(N)$.
- $\mathfrak{X}(M \times N) \cong \mathfrak{X}(M) \otimes C^{\infty}(N) \oplus C^{\infty}(M) \otimes \mathfrak{X}(N)$.
- Replace lifting of vector fields by embeddings

$$
\mathfrak{X}(M) \hookrightarrow \mathfrak{X}(M) \otimes C^{\infty}(N), \quad \mathfrak{X}(N) \hookrightarrow C^{\infty}(M) \otimes \mathfrak{X}(N) .
$$

- $\Omega^{1}(M \times N) \cong \Omega^{1}(M) \otimes C^{\infty}(N) \oplus C^{\infty}(M) \otimes \Omega^{1}(N)$.

Outline

(2) An algebraic reformulation

(3) Noncommutative generalization

4 The results

The framework

- A, B, algebras.
- E right A-module, F right B-module.
- $\Omega(A), \Omega(B)$ differential calculi.
- ∇^{E}, ∇^{F} connections over E, F.

The framework

- A, B, algebras.
- E right A-module, F right B-module.
- $\Omega(A), \Omega(B)$ differential calculi.
- ∇^{E}, ∇^{F} connections over E, F

The framework

- A, B, algebras.
- E right A-module, F right B-module.
- $\Omega(A), \Omega(B)$ differential calculi.
- ∇^{E}, ∇^{F} connections over E, F.

The framework

- A, B, algebras.
- E right A-module, F right B-module.
- $\Omega(A), \Omega(B)$ differential calculi.
- ∇^{E}, ∇^{F} connections over E, F.

The product

- Tensor product $A \otimes B$ is not good enough:
- Elements of A commute with elements of B !
- Replace $A \otimes B$ by a twisted tensor product $A \otimes_{R} B$. - $R: B \otimes A \longrightarrow A \otimes B$ a twisting map.

Ensure that $\left(\mu_{A} \otimes \mu_{B}\right) \circ(A \otimes R \otimes B)$ is an associative product.

The product

- Tensor product $A \otimes B$ is not good enough:
- Elements of A commute with elements of B !
- Replace $A \otimes B$ by a twisted tensor product $A \otimes_{R} B$. - $R: B \otimes A \longrightarrow A \otimes B$ a twisting map.

Ensure that $\left(\mu_{A} \otimes \mu_{B}\right) \circ(A \otimes R \otimes B)$ is an associative product.

The product

- Tensor product $A \otimes B$ is not good enough:
- Elements of A commute with elements of B !
- Replace $A \otimes B$ by a twisted tensor product $A \otimes_{R} B$.
- $R: B \otimes A \longrightarrow A \otimes B$ a twisting map.

Ensure that $\left(\mu_{A} \otimes \mu_{B}\right) \circ(A \otimes R \otimes B)$ is an associative product.

The product

- Tensor product $A \otimes B$ is not good enough:
- Elements of A commute with elements of B !
- Replace $A \otimes B$ by a twisted tensor product $A \otimes_{R} B$.
- $R: B \otimes A \longrightarrow A \otimes B$ a twisting map.

Ensure that $\left(\mu_{A} \otimes \mu_{B}\right) \circ(A \otimes R \otimes B)$ is an associative product.

The product

- Tensor product $A \otimes B$ is not good enough:
- Elements of A commute with elements of B !
- Replace $A \otimes B$ by a twisted tensor product $A \otimes_{R} B$.
- $R: B \otimes A \longrightarrow A \otimes B$ a twisting map.

Ensure that $\left(\mu_{A}\right.$ product.

The product

- Tensor product $A \otimes B$ is not good enough:
- Elements of A commute with elements of B !
- Replace $A \otimes B$ by a twisted tensor product $A \otimes_{R} B$.
- $R: B \otimes A \longrightarrow A \otimes B$ a twisting map.

Ensure that $\left(\mu_{A} \otimes \mu_{B}\right) \circ(A \otimes R \otimes B)$ is an associative product.

Lifting of the twisting map

Theorem (Cap-Schichl-Vanžura)

A twisting map $R: B \otimes A \rightarrow A \otimes B$ extends to a unique twisting map $\tilde{R}: \Omega B \otimes \Omega A \rightarrow \Omega A \otimes \Omega B$ satisfying
(1) $\tilde{R} \circ\left(d_{B} \otimes \Omega A\right)=\left(\epsilon_{A} \otimes d_{B}\right) \circ \tilde{R}$,
(2) $\tilde{R} \circ\left(\Omega B \otimes d_{A}\right)=\left(d_{A} \otimes \epsilon_{B}\right) \circ \tilde{R}$.

Moreover, $\Omega A \otimes_{\tilde{R}} \Omega B$ is a $D G A$ with differential

Use this product DC for building the noncommutative product connection

Lifting of the twisting map

Theorem (Cap-Schichl-Vanžura)

A twisting map $R: B \otimes A \rightarrow A \otimes B$ extends to a unique twisting map $\tilde{R}: \Omega B \otimes \Omega A \rightarrow \Omega A \otimes \Omega B$ satisfying
(1) $\tilde{R} \circ\left(d_{B} \otimes \Omega A\right)=\left(\epsilon_{A} \otimes d_{B}\right) \circ \tilde{R}$,
(2) $\tilde{R} \circ\left(\Omega B \otimes d_{A}\right)=\left(d_{A} \otimes \epsilon_{B}\right) \circ \tilde{R}$.

Moreover, $\Omega A \otimes_{\tilde{R}} \Omega B$ is a $D G A$ with differential

$$
d(\varphi \otimes \omega):=d_{A} \varphi \otimes \omega+(-1)^{|\varphi|} \varphi \otimes d_{B} \omega
$$

Use this product DC for building the noncommutative product connection

Lifting of the twisting map

Theorem (Cap-Schichl-Vanžura)

A twisting map $R: B \otimes A \rightarrow A \otimes B$ extends to a unique twisting map $\tilde{R}: \Omega B \otimes \Omega A \rightarrow \Omega A \otimes \Omega B$ satisfying
(1) $\tilde{R} \circ\left(d_{B} \otimes \Omega A\right)=\left(\epsilon_{A} \otimes d_{B}\right) \circ \tilde{R}$,
(2) $\tilde{R} \circ\left(\Omega B \otimes d_{A}\right)=\left(d_{A} \otimes \epsilon_{B}\right) \circ \tilde{R}$.

Moreover, $\Omega A \otimes_{\tilde{R}} \Omega B$ is a $D G A$ with differential

$$
d(\varphi \otimes \omega):=d_{A} \varphi \otimes \omega+(-1)^{|\varphi|} \varphi \otimes d_{B} \omega
$$

Use this product DC for building the noncommutative product connection

Construction of our connection (I): The setup

(0) The twisting map R.
(3) The $D C \Omega A \otimes_{\tilde{R}} \Omega B$.
(0) A $A \otimes_{R} B$-module structure on $E \otimes B \oplus A \otimes F$.

- Via $\tau_{F, A}: F \otimes A \rightarrow A \otimes F$ a module twisting map.
- $\tau_{F, A}$ and ∇^{F} compaliblie (tech. condilition).

Construction of our connection (I): The setup

(0) The twisting map R.
(2) The $D C \Omega A \otimes_{\tilde{R}} \Omega B$.

- Via $\tau_{F, A}: F \otimes A \rightarrow A \otimes F$ a module twisting map. - $\tau_{F, \mathrm{~A}}$ and ∇^{F} compatible (tech. condition).

Construction of our connection (I): The setup

(0) The twisting map R.
(2) The $D C \Omega A \otimes_{\tilde{R}} \Omega B$.
(3) A $A \otimes_{R} B$-module structure on $E \otimes B \oplus A \otimes F$.

Construction of our connection (I): The setup

(0) The twisting map R.
(2) The $D C \Omega A \otimes_{\tilde{R}} \Omega B$.
(3) A $A \otimes_{R} B$-module structure on $E \otimes B \oplus A \otimes F$.

- Via $\tau_{F, A}: F \otimes A \rightarrow A \otimes F$ a module twisting map.

Construction of our connection (I): The setup

(0) The twisting map R.
(2) The $D C \Omega A \otimes_{\tilde{R}} \Omega B$.
(3) A $A \otimes_{R} B$-module structure on $E \otimes B \oplus A \otimes F$.

- Via $\tau_{F, A}: F \otimes A \rightarrow A \otimes F$ a module twisting map.
- $\tau_{F, A}$ and ∇^{F} compatible (tech. condition).

Construction of our connection (II): The trade

$$
\nabla(e \otimes b, a \otimes f):=\nabla_{1}(e \otimes b)+\nabla_{2}(a \otimes f)
$$

is a connection in $E \otimes B \oplus A \otimes F$, being

∇ is called the product connection of ∇^{E} and ∇^{F}

Construction of our connection (II): The trade

$$
\nabla(e \otimes b, a \otimes f):=\nabla_{1}(e \otimes b)+\nabla_{2}(a \otimes f)
$$

is a connection in $E \otimes B \oplus A \otimes F$, being

$$
\begin{aligned}
\nabla_{1}:= & \left(E \otimes u_{B} \otimes \Omega^{1} A \otimes B\right) \circ\left(\nabla^{E} \otimes B\right)+ \\
& +\left(E \otimes u_{B} \otimes u_{A} \otimes \Omega^{\prime} B\right) \circ\left(E \otimes d_{B}\right),
\end{aligned}
$$

∇ is called the product connection of ∇^{E} and ∇^{F}.

Construction of our connection (II): The trade

$$
\nabla(e \otimes b, a \otimes f):=\nabla_{1}(e \otimes b)+\nabla_{2}(a \otimes f)
$$

is a connection in $E \otimes B \oplus A \otimes F$, being

$$
\begin{aligned}
\nabla_{1}:= & \left(E \otimes u_{B} \otimes \Omega^{1} A \otimes B\right) \circ\left(\nabla^{E} \otimes B\right)+ \\
& +\left(E \otimes u_{B} \otimes u_{A} \otimes \Omega^{1} B\right) \circ\left(E \otimes d_{B}\right), \\
\nabla_{2}:= & \left(A \otimes F \otimes u_{B} \otimes \Omega^{1} B\right) \circ\left(A \otimes \nabla^{F}\right)+ \\
& +\left(u_{A} \otimes F \otimes d_{A} \otimes u_{B}\right) \circ \tau_{F, A}^{-1} .
\end{aligned}
$$

Construction of our connection (II): The trade

$$
\nabla(e \otimes b, a \otimes f):=\nabla_{1}(e \otimes b)+\nabla_{2}(a \otimes f)
$$

is a connection in $E \otimes B \oplus A \otimes F$, being

$$
\begin{aligned}
\nabla_{1}:= & \left(E \otimes u_{B} \otimes \Omega^{1} A \otimes B\right) \circ\left(\nabla^{E} \otimes B\right)+ \\
& +\left(E \otimes u_{B} \otimes u_{A} \otimes \Omega^{1} B\right) \circ\left(E \otimes d_{B}\right), \\
\nabla_{2}:= & \left(A \otimes F \otimes u_{B} \otimes \Omega^{1} B\right) \circ\left(A \otimes \nabla^{F}\right)+ \\
& +\left(u_{A} \otimes F \otimes d_{A} \otimes u_{B}\right) \circ \tau_{F, A}^{-1} .
\end{aligned}
$$

∇ is called the product connection of ∇^{E} and ∇^{F}.

Outline

(2) An algebraic reformulation

3 Noncommutative generalization
(4) The results

The rigidity theorem

Theorem

The curvature of the product connection is given by

$$
\theta(e \otimes b, a \otimes f)=i_{E}\left(\theta^{E}(e)\right) \cdot b+a \cdot i_{F}\left(\theta^{F}(f)\right) .
$$

The rigidity theorem

Theorem

The curvature of the product connection is given by

$$
\theta(e \otimes b, a \otimes f)=i_{E}\left(\theta^{E}(e)\right) \cdot b+a \cdot i_{F}\left(\theta^{F}(f)\right) .
$$

In particular, it does not depend either on R nor on $\tau_{F, A}$.

The rigidity theorem (consequences)

Corollary
The product of two flat connections is again a flat connection.

- Leaves open the possibility of studying de Rham cohomology with coefficients using a product connection! (cf. Beggs-Brzeziński (1))

The rigidity theorem (consequences)

Corollary
 The product of two flat connections is again a flat connection.

- Leaves open the possibility of studying de Rham cohomology with coefficients using a product connection! (cf. Beggs-Brzeziński (1))

Bimodule connections

Theorem

Under suitable assumptions, the product of bimodule connections is a bimodule connection.

```
Question
Working on it:
    - Do products of linear connections have nice
    properties?
    - What happens with torsion?
```


Bimodule connections

Theorem

Under suitable assumptions, the product of bimodule connections is a bimodule connection.

Question
Working on it:

- Do products of linear connections have nice properties?
- What happens with torsion?

Bimodule connections

Theorem

Under suitable assumptions, the product of bimodule connections is a bimodule connection.

Question
Working on it:

- Do products of linear connections have nice properties?
- What happens with torsion?

References I

E. J. Beggs and T. Brzezinski,

The Serre spectral sequence of a noncommutative fibration for de Rham cohomology,
To appear in Acta Math (2005).
A. Cap, H. Schichl, and J. Vanžura.

On twisted tensor products of algebras. Comm. Algebra, 23:4701-4735, 1995.

- J. López Peña

Connections over twisted tensor products of algebras.
Preprint, math.QA/0610978.

