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Based upon joint work with Florin Panaite and
Freddy Van Oystaeyen

General twisting of algebras, Adv. Math. 212 (1), 315–337
(2007).
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Inner deformations

1 Concept of inner deformations.

Start with an algebra A
Keep the underlying vector space
Endow it with a new product (related with the old one)

2 There are many examples of inner deformations

Twisted tensor products
Twisted bialgebras
Drinfeld twist for an H–module algebra
Deformation via neat elements
Deformations by R–matrices
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Twisted tensor products

Definition (Twisting map)

A linear map R : B ⊗A −→ A⊗ B is a twisting map if it
satisfies:

1 R ◦ (B ⊗ µA) = (µA ⊗ B) ◦ (A⊗ R) ◦ (R ⊗A)

2 R ◦ (µB ⊗A) = (A⊗ µB) ◦ (R ⊗ B) ◦ (B ⊗ R)

Theorem
The map µR := (µA ⊗ µB) ◦ (A⊗ R ⊗ B) is an associative
product in A⊗ B if, and only if, R is a twisting map.

The algebra A⊗R B := (A⊗ B, µR) is called a twisted tensor
product of A and B.
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L-R twisting datum

A an H-bimodule algebra with actions

πl(h⊗ a) = h · a, πr(a ⊗ h) = a · h,

and an H-bicomodule algebra, with coactions

ψl(a) := a[−1] ⊗ a[0], ψr(a) := a<0> ⊗ a<1>,

satisfying some technical compatibility conditions.

Define a new multiplication on A by

a • a′ := (a[0] · a′
<1>)(a[−1] · a′

<0>)

Then (A, •, 1) is an associative unital algebra.
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Fedosov product for DG algebras

(Ω =
⊕

n≥0 Ωn,d) differential graded algebra.

The Fedosov product is given by

ω ◦ ζ = ωζ − (−1)|ω|dωdζ

Gives a new (Z2–graded) algebra structure on Ω.
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The common points

All these deformations are built in the same way:

Start with an algebra (A, µ)
Define some map T : A⊗ A → A⊗ A
Define a new product by µT := µ ◦ T .

Question
Is it possible to obtain the associativity just out of some
properties of the map T?
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First approach: R–matrices

Definition (Borcherds)
An R–matrix for an algebra A is a map T : A⊗A → A⊗A
such that

T (1⊗ a) = 1⊗ a, T (a ⊗ 1) = a ⊗ 1,
µ23 ◦ T12 ◦ T13 = T ◦ µ23,

µ12 ◦ T23 ◦ T13 = T ◦ µ12,

T12 ◦ T13 ◦ T23 = T23 ◦ T13 ◦ T12,

Theorem (Borcherds)
If T is an R–matrix for A, then µA ◦ T is an associative
product.
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The motivation The problem First approach The final answer?

The need for something else

R–matrices provide a set of sufficient conditions for building
inner deformations

But they are not enough

Twisted tensor product are NOT R–matrices.

Question
Is possible to find an approach similar to R–matrices that
includes twisted tensor products?
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Twistors

(D, µ) an algebra

T : D ⊗D → D ⊗D linear map satisfying:

T (1⊗ d) = 1⊗ d, T (d ⊗ 1) = d ⊗ 1,
µ23 ◦ T13 ◦ T12 = T ◦ µ23

µ12 ◦ T13 ◦ T23 = T ◦ µ12

T12 ◦ T23 = T23 ◦ T12

Theorem
The map µ ◦ T is associative, with the same unit 1.

T is called a twistor for D.
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Examples of Twistors

Twisted tensor products

Product achieved via L–R–twisting datum

Drinfeld cocycle twist of a module algebra

Deformation of a bialgebra via neat elements

Deformation of algebras with a differential
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The motivation The problem First approach The final answer?

Examples of Non-Twistors

Most R–matrices

Fedosov product on DG algebras

Braided quantum groups

The square of a ribbon operator

Question
Can we find something more general, containing twistors
and all the above things?
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Braiding knotation for twistors

A twistor is represented by

T

Twistor conditions are written as

A A A

c

c

A A

≡

A A A

A A

,

A A A

c

c

A A

≡

A A A

A A

,

A A A

A A A

≡
A A A

A A A
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How this notation works

Braiding notation gives us a “general shape” for twistor
conditions

Makes easy to spot points where axioms can be weakened

Allows a categorical formulation

Leads to the “correct” definition

19 / 23
On inner deformations of algebras



The motivation The problem First approach The final answer?

How this notation works

Braiding notation gives us a “general shape” for twistor
conditions

Makes easy to spot points where axioms can be weakened

Allows a categorical formulation

Leads to the “correct” definition

19 / 23
On inner deformations of algebras



The motivation The problem First approach The final answer?

How this notation works

Braiding notation gives us a “general shape” for twistor
conditions

Makes easy to spot points where axioms can be weakened

Allows a categorical formulation

Leads to the “correct” definition

19 / 23
On inner deformations of algebras



The motivation The problem First approach The final answer?

How this notation works

Braiding notation gives us a “general shape” for twistor
conditions

Makes easy to spot points where axioms can be weakened

Allows a categorical formulation

Leads to the “correct” definition

19 / 23
On inner deformations of algebras



The motivation The problem First approach The final answer?

Pseudotwistors (I)

C a (strict) monoidal category,

(A, µ,u) an algebra in C,

T : A⊗ A → A⊗ A morphism in C such that
T ◦ (u ⊗A) = u ⊗A and T ◦ (A⊗ u) = A⊗ u.

T̃1, T̃2 : A⊗A⊗A → A⊗A⊗A morphisms in C such that

(A⊗ µ) ◦ T̃1 ◦ (T ⊗A) = T ◦ (A⊗ µ),

(µ⊗A) ◦ T̃2 ◦ (A⊗ T ) = T ◦ (µ⊗A),

T̃1 ◦ (T ⊗A) ◦ (A⊗ T ) = T̃2 ◦ (A⊗ T ) ◦ (T ⊗A).

Then (A, µ ◦ T ,u) is also an algebra in C.
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Pseudotwistors (II)

Definition

The morphism T is called a pseudotwistor,

The morphisms T̃1, T̃2 are called the companions of T .
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Examples of pseudotwistors

Every twistor T is a pseudotwistor, with companions
T̃1 = T̃2 = T13

Twistors in a braided category, with companions
T̃1 = T̃2 = T13(c)

This case includes Fedosov products for DGA’s

G = (A, µ,∆, ε, S, σ) a braided quantum group

All maps σ−1
n ◦ σ are pseudotwistors, with companions

eT1(σn),eT2(σn).
The multiplications associated to these pseudotwistors are
the µn’s defined by Durdevich

T a bijective R-matrix, then T is a pseudotwistor, with
companions T̃1 = T12 ◦ T13 ◦ T−1

12 and T̃2 = T23 ◦ T13 ◦ T−1
23 .
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Happy birthday, Fred!
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