On inner deformations of algebras

Javier López Peña

Departamento de Álgebra Universidad de Granada (España)

Noncommutative Rings and Geometry, in honour of Freddy Van Oystaeyen Almería, September 21st 2007

クへへ 1/23-

Based upon joint work with Florin Panaite and Freddy Van Oystaeyen

General twisting of algebras, Adv. Math. 212 (1), 315–337 (2007).

The final answer?

 Image: Image

かへで 3/23-

The final answer?

<ロト < 回 > < 回 > < 回 > < 回 >

DQC 4 / 23

1

<ロ> <同> <同> < 同> < 同>

Inner deformations

Concept of inner deformations.

- Start with an algebra A
- Keep the underlying vector space
- Endow it with a new product (related with the old one)
- 2 There are many examples of inner deformations
 - Twisted tensor products
 - Twisted bialgebras
 - Drinfeld twist for an H-module algebra
 - Deformation via neat elements
 - Deformations by *R-matrices*

Inner deformations

Concept of inner deformations.

- Start with an algebra A
- Keep the underlying vector space
- Endow it with a new product (related with the old one)

2 There are many examples of inner deformations

- Twisted tensor products
- Twisted bialgebras
- Drinfeld twist for an H-module algebra
- Deformation via neat elements
- Deformations by *R-matrices*

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > On inner deformations of algebras

5/23

<ロ> <同> <同> <同> < 同> < 同>

Inner deformations

Concept of inner deformations.

- Start with an algebra A
- Keep the underlying vector space
- Endow it with a new product (related with the old one)

2 There are many examples of inner deformations

- Twisted tensor products
- Twisted bialgebras
- Drinfeld twist for an H-module algebra
- Deformation via neat elements
- Deformations by *R-matrices*

Inner deformations

Concept of inner deformations.

- Start with an algebra A
- Keep the underlying vector space
- Endow it with a new product (related with the old one)

2 There are many examples of inner deformations

- Twisted tensor products
- Twisted bialgebras
- Drinfeld twist for an H-module algebra
- Deformation via neat elements
- Deformations by *R-matrices*

5/23

かへで 5/23

<ロ> <同> <同> <同> < 同> < 同>

Inner deformations

Concept of inner deformations.

- Start with an algebra A
- Keep the underlying vector space
- Endow it with a new product (related with the old one)

Ihere are many examples of inner deformations

- Twisted tensor products
- Twisted bialgebras
- Drinfeld twist for an H-module algebra
- Deformation via neat elements
- Deformations by *R-matrices*

かへで 5/23

<ロ> <同> <同> <同> < 同> < 同>

Inner deformations

Concept of inner deformations.

- Start with an algebra A
- Keep the underlying vector space
- Endow it with a new product (related with the old one)
- 2 There are many examples of inner deformations
 - Twisted tensor products
 - Twisted bialgebras
 - Drinfeld twist for an H-module algebra
 - Deformation via neat elements
 - Deformations by *R-matrices*

<ロ> <同> <同> <同> < 同> < 同>

- Start with an algebra A
- Keep the underlying vector space
- Endow it with a new product (related with the old one)
- 2 There are many examples of inner deformations
 - Twisted tensor products
 - Twisted bialgebras
 - Drinfeld twist for an H-module algebra
 - Deformation via neat elements
 - Deformations by *R-matrices*

<ロ> <同> <同> <同> < 同> < 同>

- Start with an algebra A
- Keep the underlying vector space
- Endow it with a new product (related with the old one)
- 2 There are many examples of inner deformations
 - Twisted tensor products
 - Twisted bialgebras
 - Drinfeld twist for an H-module algebra
 - Deformation via *neat elements*
 - Deformations by *R-matrices*

<ロ> <同> <同> <同> < 同> < 同>

- Start with an algebra A
- Keep the underlying vector space
- Endow it with a new product (related with the old one)
- 2 There are many examples of inner deformations
 - Twisted tensor products
 - Twisted bialgebras
 - Drinfeld twist for an H-module algebra
 - Deformation via *neat elements*
 - Deformations by *R-matrices*

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Start with an algebra A
- Keep the underlying vector space
- Endow it with a new product (related with the old one)
- 2 There are many examples of inner deformations
 - Twisted tensor products
 - Twisted bialgebras
 - Drinfeld twist for an H-module algebra
 - Deformation via *neat elements*
 - Deformations by *R-matrices*

Definition (Twisting map)

A linear map $R: B \otimes A \longrightarrow A \otimes B$ is a *twisting map* if it satisfies:

$$\blacksquare \ R \circ (B \otimes \mu_A) = (\mu_A \otimes B) \circ (A \otimes R) \circ (R \otimes A)$$

2 $R \circ (\mu_B \otimes A) = (A \otimes \mu_B) \circ (R \otimes B) \circ (B \otimes R)$

Theorem

The map $\mu_R := (\mu_A \otimes \mu_B) \circ (A \otimes R \otimes B)$ is an associative product in $A \otimes B$ if, and only if, R is a twisting map.

The algebra $A \otimes_R B := (A \otimes B, \mu_R)$ is called a **twisted tensor product** of A and B.

 < □ > < □</td>
 > < □</td>
 > < □</td>
 > < □</td>

 On inner deformations of algebras

Definition (Twisting map)

A linear map $R: B \otimes A \longrightarrow A \otimes B$ is a *twisting map* if it satisfies:

- 2 $R \circ (\mu_B \otimes A) = (A \otimes \mu_B) \circ (R \otimes B) \circ (B \otimes R)$

Theorem

The map $\mu_R := (\mu_A \otimes \mu_B) \circ (A \otimes R \otimes B)$ is an associative product in $A \otimes B$ if, and only if, R is a twisting map.

The algebra $A \otimes_R B := (A \otimes B, \mu_R)$ is called a **twisted tensor product** of A and B.

 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 □ ▶
 <li□ ▶
 □ ▶
 <li

Definition (Twisting map)

A linear map $R: B \otimes A \longrightarrow A \otimes B$ is a *twisting map* if it satisfies:

2
$$R \circ (\mu_B \otimes A) = (A \otimes \mu_B) \circ (R \otimes B) \circ (B \otimes R)$$

Theorem

The map $\mu_R := (\mu_A \otimes \mu_B) \circ (A \otimes R \otimes B)$ is an associative product in $A \otimes B$ if, and only if, R is a twisting map.

The algebra $A \otimes_R B := (A \otimes B, \mu_R)$ is called a **twisted tensor product** of A and B.

□ ▶ < 圕 ▶ < 클 ▶ < 클 ▶ 클
 On inner deformations of algebras

Definition (Twisting map)

A linear map $R: B \otimes A \longrightarrow A \otimes B$ is a *twisting map* if it satisfies:

$$\textcircled{0} \hspace{0.1in} R \circ (B \otimes \mu_{A}) = (\mu_{A} \otimes B) \circ (A \otimes R) \circ (R \otimes A)$$

2
$$R \circ (\mu_B \otimes A) = (A \otimes \mu_B) \circ (R \otimes B) \circ (B \otimes R)$$

Theorem

The map $\mu_R := (\mu_A \otimes \mu_B) \circ (A \otimes R \otimes B)$ is an associative product in $A \otimes B$ if, and only if, R is a twisting map.

The algebra $A \otimes_R B := (A \otimes B, \mu_R)$ is called a *twisted tensor product* of *A* and *B*.

nan

・ロト ・ 戸 ト ・ ヨ ト ・ 日 ト

L-R twisting datum

• A an H-bimodule algebra with actions

$$\pi_l(h \otimes a) = h \cdot a, \qquad \pi_r(a \otimes h) = a \cdot h,$$

and an H-bicomodule algebra, with coactions

$$\psi_l(\boldsymbol{\textit{a}}) := \boldsymbol{\textit{a}}_{[-1]} \otimes \boldsymbol{\textit{a}}_{[0]}, \qquad \psi_l(\boldsymbol{\textit{a}}) := \boldsymbol{\textit{a}}_{<0>} \otimes \boldsymbol{\textit{a}}_{<1>},$$

satisfying some technical compatibility conditions.

• Define a new multiplication on A by

$$a \bullet a' := (a_{[0]} \cdot a'_{<1>})(a_{[-1]} \cdot a'_{<0>})$$

• Then $(A, \bullet, 1)$ is an associative unital algebra.

< □ ト < □ ト < □ ト < 豆 ト < 豆 ト ミ の Q へ n inner deformations of algebras - 7 / 23

L-R twisting datum

• A an H-bimodule algebra with actions

$$\pi_l(h \otimes a) = h \cdot a, \qquad \pi_r(a \otimes h) = a \cdot h,$$

and an H-bicomodule algebra, with coactions

$$\psi_l(\boldsymbol{\textit{a}}) := \boldsymbol{\textit{a}}_{[-1]} \otimes \boldsymbol{\textit{a}}_{[0]}, \qquad \psi_l(\boldsymbol{\textit{a}}) := \boldsymbol{\textit{a}}_{<0>} \otimes \boldsymbol{\textit{a}}_{<1>},$$

satisfying some technical compatibility conditions.

• Define a new multiplication on A by

$$a \bullet a' := (a_{[0]} \cdot a'_{<1>})(a_{[-1]} \cdot a'_{<0>})$$

• Then $(A, \bullet, 1)$ is an associative unital algebra.

n inner deformations of algebras

・ロト ・ 戸 ト ・ ヨ ト ・ 日 ト

うへで 7/23-

L-R twisting datum

• A an H-bimodule algebra with actions

$$\pi_l(h \otimes a) = h \cdot a, \qquad \pi_r(a \otimes h) = a \cdot h,$$

and an H-bicomodule algebra, with coactions

$$\psi_l(\boldsymbol{a}) := \boldsymbol{a}_{[-1]} \otimes \boldsymbol{a}_{[0]}, \qquad \psi_r(\boldsymbol{a}) := \boldsymbol{a}_{<0>} \otimes \boldsymbol{a}_{<1>},$$

satisfying some technical compatibility conditions.

• Define a new multiplication on A by

$$a \bullet a' := (a_{[0]} \cdot a'_{<1>})(a_{[-1]} \cdot a'_{<0>})$$

• Then $(A, \bullet, 1)$ is an associative unital algebra.

Fedosov product for DG algebras

• $(\Omega = \bigoplus_{n>0} \Omega^n, d)$ differential graded algebra.

• The *Fedosov product* is given by

 $\omega \circ \zeta = \omega \zeta - (-1)^{|\omega|} d\omega \, d\zeta$

• Gives a new (\mathbb{Z}_2 -graded) algebra structure on Ω .

 $\langle \Box \rangle \langle B \rangle \langle E \rangle \langle E \rangle \langle E \rangle E$ On inner deformations of algebras |B/23|

Fedosov product for DG algebras

- $(\Omega = \bigoplus_{n>0} \Omega^n, d)$ differential graded algebra.
- The *Fedosov product* is given by

 $\omega \circ \zeta = \omega \zeta - (-1)^{|\omega|} d\omega \, d\zeta$

• Gives a new (\mathbb{Z}_2 -graded) algebra structure on Ω .

イロトイ命トイミトイミト ミークへの On inner deformations of algebras 8 / 23

Fedosov product for DG algebras

- $(\Omega = \bigoplus_{n>0} \Omega^n, d)$ differential graded algebra.
- The *Fedosov product* is given by

 $\omega \circ \zeta = \omega \zeta - (-1)^{|\omega|} d\omega \, d\zeta$

• Gives a new (\mathbb{Z}_2 -graded) algebra structure on Ω .

< □ ト < □ ト < □ ト < 豆 ト < 豆 ト ミ ク Q (*) n inner deformations of algebras 8 / 23

First approach

The final answer?

<ロト < 回 > < 回 > < 回 > < 回 >

DQC 9/23

1

• All these deformations are built in the same way:

- Start with an algebra (A, μ)
- Define some map $T : A \otimes A \to A \otimes A$
- Define a new product by $\mu_T := \mu \circ T$.

Question

Is it possible to obtain the associativity just out of some properties of the map T?

• All these deformations are built in the same way:

- Start with an algebra (A, μ)
- Define some map $T : A \otimes A \to A \otimes A$
- Define a new product by $\mu_T := \mu \circ T$.

Question

Is it possible to obtain the associativity just out of some properties of the map T?

• All these deformations are built in the same way:

- Start with an algebra (A, μ)
- Define some map $T: A \otimes A \to A \otimes A$
- Define a new product by $\mu_T := \mu \circ T$.

Question

Is it possible to obtain the associativity just out of some properties of the map T?

• All these deformations are built in the same way:

- Start with an algebra (A, μ)
- Define some map $T: A \otimes A \to A \otimes A$
- Define a new product by $\mu_T := \mu \circ T$.

Question

Is it possible to obtain the associativity just out of some properties of the map T?

• All these deformations are built in the same way:

- Start with an algebra (A, μ)
- Define some map $T : A \otimes A \to A \otimes A$
- Define a new product by $\mu_T := \mu \circ T$.

Question

Is it possible to obtain the associativity just out of some properties of the map T?

First approach: R-matrices

Definition (Borcherds)

An *R*-matrix for an algebra A is a map $T : A \otimes A \rightarrow A \otimes A$ such that

$$T(1 \otimes a) = 1 \otimes a, \quad T(a \otimes 1) = a \otimes 1,$$

$$\mu_{23} \circ T_{12} \circ T_{13} = T \circ \mu_{23},$$

$$\mu_{12} \circ T_{23} \circ T_{13} = T \circ \mu_{12},$$

$$T_{12} \circ T_{13} \circ T_{23} = T_{23} \circ T_{13} \circ T_{12},$$

Theorem (Borcherds)

If T is an R–matrix for A, then $\mu_A \circ T$ is an associative product.

First approach: R-matrices

Definition (Borcherds)

An *R*-matrix for an algebra A is a map $T : A \otimes A \rightarrow A \otimes A$ such that

$$T(1 \otimes a) = 1 \otimes a, \quad T(a \otimes 1) = a \otimes 1,$$

$$\mu_{23} \circ T_{12} \circ T_{13} = T \circ \mu_{23},$$

$$\mu_{12} \circ T_{23} \circ T_{13} = T \circ \mu_{12},$$

$$T_{12} \circ T_{13} \circ T_{23} = T_{23} \circ T_{13} \circ T_{12},$$

Theorem (Borcherds)

If T is an R–matrix for A, then $\mu_A \circ T$ is an associative product.

ペロト < 母 ト < 注 ト 4 注 ト 注 少 Q ペ On inner deformations of algebras 11 / 23

The need for something else

- R-matrices provide a set of sufficient conditions for building inner deformations
- But they are not enough
- Twisted tensor product are **NOT** R-matrices.

Question

Is possible to find an approach similar to R-matrices that includes twisted tensor products?

かへで 12/23

The need for something else

- R-matrices provide a set of sufficient conditions for building inner deformations
- But they are not enough
- Twisted tensor product are **NOT** R-matrices.

Question

Is possible to find an approach similar to R-matrices that includes twisted tensor products?

かへで 12/23

かへで 12/23

The need for something else

- R-matrices provide a set of sufficient conditions for building inner deformations
- But they are not enough
- Twisted tensor product are **NOT** R-matrices.

Question

Is possible to find an approach similar to R-matrices that includes twisted tensor products?

The need for something else

- R-matrices provide a set of sufficient conditions for building inner deformations
- But they are not enough
- Twisted tensor product are **NOT** R-matrices.

Question

Is possible to find an approach similar to R-matrices that includes twisted tensor products?

 Image: Image

12 / 23

<ロト < 回 > < 回 > < 回 > < 回 >

990

13 / 23

• (D, μ) an algebra

• $T: D \otimes D \rightarrow D \otimes D$ linear map satisfying:

$\begin{array}{l} f(1 \otimes d) = 1 \otimes d, \quad I(d \otimes 1) = d \otimes 1, \\ \mu_{23} \circ T_{13} \circ T_{12} = T \circ \mu_{23} \\ \mu_{12} \circ T_{13} \circ T_{23} = T \circ \mu_{12} \\ T_{12} \circ T_{23} = T_{23} \circ T_{12} \end{array}$

Theorem

The map $\mu \circ T$ is associative, with the same unit 1.

T is called a *twistor* for *D*.

 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

うへで 14/23

- (D, μ) an algebra
- $T: D \otimes D \rightarrow D \otimes D$ linear map satisfying:

・ロト ・四ト ・ヨト ・ヨト

nar 14 / 23

э

- (D, μ) an algebra
- $T: D \otimes D \rightarrow D \otimes D$ linear map satisfying:

$$T(1 \otimes d) = 1 \otimes d, \quad T(d \otimes 1) = d \otimes 1,$$

$$\mu_{23} \circ T_{13} \circ T_{12} = T \circ \mu_{23}$$

$$\mu_{12} \circ T_{13} \circ T_{23} = T \circ \mu_{12}$$

$$T_{12} \circ T_{23} = T_{23} \circ T_{12}$$

Iheorem

The map $\mu \circ T$ **is associative**, with the same unit 1.

T is called a *twistor* for *D*.

うへで 14/23

- (D, μ) an algebra
- $T: D \otimes D \rightarrow D \otimes D$ linear map satisfying:

$$T(1 \otimes d) = 1 \otimes d, \quad T(d \otimes 1) = d \otimes 1,$$

$$\mu_{23} \circ T_{13} \circ T_{12} = T \circ \mu_{23}$$

$$\mu_{12} \circ T_{13} \circ T_{23} = T \circ \mu_{12}$$

$$T_{12} \circ T_{23} = T_{23} \circ T_{12}$$

Theorem

The map $\mu \circ T$ is associative, with the same unit 1.

T is called a *twistor* for *D*.

うへで 14/23

- (D, μ) an algebra
- $T: D \otimes D \rightarrow D \otimes D$ linear map satisfying:

$$T(1 \otimes d) = 1 \otimes d, \quad T(d \otimes 1) = d \otimes 1,$$

$$\mu_{23} \circ T_{13} \circ T_{12} = T \circ \mu_{23}$$

$$\mu_{12} \circ T_{13} \circ T_{23} = T \circ \mu_{12}$$

$$T_{12} \circ T_{23} = T_{23} \circ T_{12}$$

Theorem

The map $\mu \circ T$ is associative, with the same unit 1.

T is called a *twistor* for D.

□ ▶ < @ ▶ < 글 ▶ < 글 ▶ < 글
 On inner deformations of algebras

っへで 14/23

Examples of Twistors

• Twisted tensor products

- Product achieved via L–R–twisting datum
- Drinfeld cocycle twist of a module algebra
- Deformation of a bialgebra via neat elements
- Deformation of algebras with a differential

イロトイ伊トイミトイミト ミークへで On inner deformations of algebras 15 / 23

Examples of Twistors

- Twisted tensor products
- Product achieved via L-R-twisting datum
- Drinfeld cocycle twist of a module algebra
- Deformation of a bialgebra via neat elements
- Deformation of algebras with a differential

イロトイ伊トイミトイミト ミークへで On inner deformations of algebras 15 / 23

かへで 15/23

イロト イポト イヨト イヨト

Examples of Twistors

- Twisted tensor products
- Product achieved via L-R-twisting datum
- Drinfeld cocycle twist of a module algebra
- Deformation of a bialgebra via neat elements
- Deformation of algebras with a differential

かへで 15/23

イロト イポト イヨト イヨト

Examples of Twistors

- Twisted tensor products
- Product achieved via L-R-twisting datum
- Drinfeld cocycle twist of a module algebra
- Deformation of a bialgebra via neat elements
- Deformation of algebras with a differential

Examples of Twistors

- Twisted tensor products
- Product achieved via L-R-twisting datum
- Drinfeld cocycle twist of a module algebra
- Deformation of a bialgebra via neat elements
- Deformation of algebras with a differential

nar

Э

<ロト < 回 > < 回 > < 回 > < 回 >

シへで 16/23

Examples of Non-Twistors

Most R–matrices

- Fedosov product on DG algebras
- Braided quantum groups
- The square of a ribbon operator

Question

Can we find something more general, containing twistors and all the above things?

Examples of Non-Twistors

- Most R–matrices
- Fedosov product on DG algebras
- Braided quantum groups
- The square of a ribbon operator

Question

Can we find something more general, containing twistors and all the above things?

かへで 16/23

Examples of Non-Twistors

- Most R-matrices
- Fedosov product on DG algebras
- Braided quantum groups
- The square of a ribbon operator

Question

Can we find something more general, containing twistors and all the above things?

かへで 16/23

かへで 16/23

Examples of Non-Twistors

- Most R–matrices
- Fedosov product on DG algebras
- Braided quantum groups
- The square of a ribbon operator

Question

Can we find something more general, containing twistors and all the above things?

Examples of Non-Twistors

- Most R-matrices
- Fedosov product on DG algebras
- Braided quantum groups
- The square of a ribbon operator

Question

Can we find something more general, containing twistors and all the above things?

- The problem
- **First approach**

<ロト < 回 > < 回 > < 回 > < 回 >

990

17 / 23

Braiding knotation for twistors

• Twistor conditions are written as

Braiding knotation for twistors

Twistor conditions are written as

うへで 19/23

イロト イポト イヨト イヨト

- Braiding notation gives us a "general shape" for twistor conditions
- Makes easy to spot points where axioms can be weakened
- Allows a categorical formulation
- Leads to the "correct" definition

nar

19/23

Э

- Braiding notation gives us a "general shape" for twistor conditions
- Makes easy to spot points where axioms can be weakened
- Allows a categorical formulation
- Leads to the "correct" definition

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

nar

19/23

3

- Braiding notation gives us a "general shape" for twistor conditions
- Makes easy to spot points where axioms can be weakened
- Allows a categorical formulation
- Leads to the "correct" definition

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

nar

19/23

э

- Braiding notation gives us a "general shape" for twistor conditions
- Makes easy to spot points where axioms can be weakened
- Allows a categorical formulation
- Leads to the "correct" definition

Pseudotwistors (I)

$\bullet \ {\cal C}$ a (strict) monoidal category,

- (A, μ, u) an algebra in C,
- $T : A \otimes A \rightarrow A \otimes A$ morphism in C such that $T \circ (u \otimes A) = u \otimes A$ and $T \circ (A \otimes u) = A \otimes u$.
- $\widetilde{T}_1, \widetilde{T}_2 : A \otimes A \otimes A \rightarrow A \otimes A \otimes A$ morphisms in C such that

 $(A \otimes \mu) \circ \widetilde{T}_{1} \circ (T \otimes A) = T \circ (A \otimes \mu),$ $(\mu \otimes A) \circ \widetilde{T}_{2} \circ (A \otimes T) = T \circ (\mu \otimes A),$ $\widetilde{T}_{1} \circ (T \otimes A) \circ (A \otimes T) = \widetilde{T}_{2} \circ (A \otimes T) \circ (T \otimes A).$

• Then $(A, \mu \circ T, u)$ is also an algebra in C.

inner deformations of algebras

nan

イロト イポト イヨト イヨト

Pseudotwistors (I)

- $\bullet \ {\cal C}$ a (strict) monoidal category,
- (A, μ , u) an algebra in C,
- $T : A \otimes A \to A \otimes A$ morphism in C such that $T \circ (u \otimes A) = u \otimes A$ and $T \circ (A \otimes u) = A \otimes u$.
- $\widetilde{T}_1, \widetilde{T}_2 : A \otimes A \otimes A \rightarrow A \otimes A \otimes A$ morphisms in C such that

 $(A \otimes \mu) \circ \widetilde{T}_{1} \circ (T \otimes A) = T \circ (A \otimes \mu),$ $(\mu \otimes A) \circ \widetilde{T}_{2} \circ (A \otimes T) = T \circ (\mu \otimes A),$ $\widetilde{T}_{1} \circ (T \otimes A) \circ (A \otimes T) = \widetilde{T}_{2} \circ (A \otimes T) \circ (T \otimes A).$

• Then $(A, \mu \circ T, u)$ is also an algebra in C.

<ロ ▶ < 団 ▶ < 注 ▶ < 注 ▶ 注 少 Q ペ n inner deformations of algebras 20 / 23

Pseudotwistors (I)

- $\bullet \ {\cal C}$ a (strict) monoidal category,
- (A, μ , u) an algebra in C,
- $T : A \otimes A \rightarrow A \otimes A$ morphism in C such that $T \circ (u \otimes A) = u \otimes A$ and $T \circ (A \otimes u) = A \otimes u$.
- $\tilde{T}_1, \tilde{T}_2 : A \otimes A \otimes A \rightarrow A \otimes A \otimes A$ morphisms in C such that

$$(A \otimes \mu) \circ \widetilde{T}_{1} \circ (T \otimes A) = T \circ (A \otimes \mu),$$

$$(\mu \otimes A) \circ \widetilde{T}_{2} \circ (A \otimes T) = T \circ (\mu \otimes A),$$

$$\widetilde{T}_{1} \circ (T \otimes A) \circ (A \otimes T) = \widetilde{T}_{2} \circ (A \otimes T) \circ (T \otimes A).$$

• Then $(A, \mu \circ T, u)$ is also an algebra in C.

<ロ ▶ < 団 ▶ < 臣 ▶ < 臣 ▶ 臣 の Q ペ n inner deformations of algebras 20 / 23

Pseudotwistors (I)

- $\bullet \ {\cal C}$ a (strict) monoidal category,
- (A, μ, u) an algebra in C,
- $T : A \otimes A \rightarrow A \otimes A$ morphism in C such that $T \circ (u \otimes A) = u \otimes A$ and $T \circ (A \otimes u) = A \otimes u$.
- $\widetilde{T}_1, \widetilde{T}_2: A \otimes A \otimes A \to A \otimes A \otimes A$ morphisms in C such that

$$(A \otimes \mu) \circ \widetilde{T}_1 \circ (T \otimes A) = T \circ (A \otimes \mu),$$

$$(\mu \otimes A) \circ \widetilde{T}_2 \circ (A \otimes T) = T \circ (\mu \otimes A),$$

$$\widetilde{T}_1 \circ (T \otimes A) \circ (A \otimes T) = \widetilde{T}_2 \circ (A \otimes T) \circ (T \otimes A).$$

• Then $(A, \mu \circ T, u)$ is also an algebra in C.

On inner deformations of algebras

nan

・ロト ・ 同ト ・ ヨト・

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

20 / 23

Pseudotwistors (I)

- $\bullet \ {\cal C}$ a (strict) monoidal category,
- (A, μ, u) an algebra in \mathcal{C} ,
- $T : A \otimes A \rightarrow A \otimes A$ morphism in C such that $T \circ (u \otimes A) = u \otimes A$ and $T \circ (A \otimes u) = A \otimes u$.
- $\widetilde{T}_1, \widetilde{T}_2: A \otimes A \otimes A \to A \otimes A \otimes A$ morphisms in C such that

$$(A \otimes \mu) \circ \widetilde{T}_1 \circ (T \otimes A) = T \circ (A \otimes \mu),$$

$$(\mu \otimes A) \circ \widetilde{T}_2 \circ (A \otimes T) = T \circ (\mu \otimes A),$$

$$\widetilde{T}_1 \circ (T \otimes A) \circ (A \otimes T) = \widetilde{T}_2 \circ (A \otimes T) \circ (T \otimes A).$$

• Then $(A, \mu \circ T, u)$ is also an algebra in C.

The motivation

The problem

First approach

The final answer?

Pseudotwistors (II)

Definition

- The morphism T is called a *pseudotwistor*,
- The morphisms T_1 , T_2 are called the *companions* of *T*.

The motivation

The problem

First approach

The final answer?

Pseudotwistors (II)

Definition

- The morphism T is called a *pseudotwistor*,
- The morphisms \tilde{T}_1 , \tilde{T}_2 are called the *companions* of *T*.

Examples of pseudotwistors

- Every twistor 7 is a pseudotwistor, with companions $\widetilde{T}_1 = \widetilde{T}_2 = T_{13}$
- Twistors in a braided category, with companions $\widetilde{T}_1 = \widetilde{T}_2 = T_{13}(c)$
 - This case includes Fedosov products for DGA's
- $G = (A, \mu, \Delta, \varepsilon, S, \sigma)$ a braided quantum group
 - All maps $\sigma_n^{-1} \circ \sigma$ are pseudotwistors, with companions $\tilde{T}_1(\sigma_n), \tilde{T}_2(\sigma_n)$.
 - The multiplications associated to these pseudotwistors are the μn's defined by Durdevich
- *T* a *bijective R-matrix*, then *T* is a pseudotwistor, with companions $\tilde{T}_1 = T_{12} \circ T_{13} \circ T_{12}^{-1}$ and $\tilde{T}_2 = T_{23} \circ T_{13} \circ T_{23}^{-1}$.

n inner deformations of algebras

Sac

イロト イポト イヨト イヨト

Examples of pseudotwistors

- Every twistor 7 is a pseudotwistor, with companions $\widetilde{T}_1 = \widetilde{T}_2 = T_{13}$
- Twistors in a braided category, with companions $\widetilde{T}_1 = \widetilde{T}_2 = T_{13}(c)$
 - This case includes Fedosov products for DGA's
- $G = (A, \mu, \Delta, \varepsilon, S, \sigma)$ a braided quantum group
 - All maps $\sigma_n^{-1} \circ \sigma$ are pseudotwistors, with companions $\widetilde{T}_1(\sigma_n), \widetilde{T}_2(\sigma_n)$.
 - The multiplications associated to these pseudotwistors are the μn's defined by Durdevich
- *T* a *bijective R-matrix*, then *T* is a pseudotwistor, with companions $\tilde{T}_1 = T_{12} \circ T_{13} \circ T_{12}^{-1}$ and $\tilde{T}_2 = T_{23} \circ T_{13} \circ T_{23}^{-1}$.

n inner deformations of algebras

Sac

イロト イポト イヨト イヨト

Examples of pseudotwistors

- Every twistor T is a pseudotwistor, with companions $\widetilde{T}_1 = \widetilde{T}_2 = T_{13}$
- Twistors in a braided category, with companions $\widetilde{T}_1 = \widetilde{T}_2 = T_{13}(c)$
 - This case includes Fedosov products for DGA's
- $G = (A, \mu, \Delta, \varepsilon, S, \sigma)$ a braided quantum group
 - All maps $\sigma_n^{-1} \circ \sigma$ are pseudotwistors, with companions $\widetilde{T}_1(\sigma_n), \widetilde{T}_2(\sigma_n)$.
 - The multiplications associated to these pseudotwistors are the μ_n's defined by Durdevich
- *T* a *bijective R-matrix*, then *T* is a pseudotwistor, with companions $\tilde{T}_1 = T_{12} \circ T_{13} \circ T_{12}^{-1}$ and $\tilde{T}_2 = T_{23} \circ T_{13} \circ T_{23}^{-1}$.

n inner deformations of algebras

Sac

・ロト ・ 同ト ・ ヨト・

Examples of pseudotwistors

- Every twistor 7 is a pseudotwistor, with companions $\widetilde{T}_1 = \widetilde{T}_2 = T_{13}$
- Twistors in a braided category, with companions $\widetilde{T}_1 = \widetilde{T}_2 = T_{13}(c)$
 - This case includes Fedosov products for DGA's
- $G = (A, \mu, \Delta, \varepsilon, S, \sigma)$ a braided quantum group
 - All maps $\sigma_n^{-1} \circ \sigma$ are pseudotwistors, with companions $\tilde{T}_1(\sigma_n), \tilde{T}_2(\sigma_n).$
 - The multiplications associated to these pseudotwistors are the μ_n's defined by Durdevich
- *T* a *bijective R-matrix*, then *T* is a pseudotwistor, with companions $\tilde{T}_1 = T_{12} \circ T_{13} \circ T_{12}^{-1}$ and $\tilde{T}_2 = T_{23} \circ T_{13} \circ T_{23}^{-1}$.

Examples of pseudotwistors

- Every twistor 7 is a pseudotwistor, with companions $\widetilde{T}_1 = \widetilde{T}_2 = T_{13}$
- Twistors in a braided category, with companions $\widetilde{T}_1 = \widetilde{T}_2 = T_{13}(c)$
 - This case includes Fedosov products for DGA's
- $G = (A, \mu, \Delta, \varepsilon, S, \sigma)$ a braided quantum group
 - All maps $\sigma_n^{-1} \circ \sigma$ are pseudotwistors, with companions $\tilde{T}_1(\sigma_n), \tilde{T}_2(\sigma_n).$
 - The multiplications associated to these pseudotwistors are the μ_n's defined by Durdevich
- *T* a *bijective R-matrix*, then *T* is a pseudotwistor, with companions $\tilde{T}_1 = T_{12} \circ T_{13} \circ T_{12}^{-1}$ and $\tilde{T}_2 = T_{23} \circ T_{13} \circ T_{23}^{-1}$.

୬ < ଙ 22 / 23

୬ < ଙ 22 / 23

Examples of pseudotwistors

- Every twistor T is a pseudotwistor, with companions $\widetilde{T}_1 = \widetilde{T}_2 = T_{13}$
- Twistors in a braided category, with companions $\widetilde{T}_1 = \widetilde{T}_2 = T_{13}(c)$
 - This case includes Fedosov products for DGA's
- $G = (A, \mu, \Delta, \varepsilon, S, \sigma)$ a braided quantum group
 - All maps $\sigma_n^{-1} \circ \sigma$ are pseudotwistors, with companions $\tilde{T}_1(\sigma_n), \tilde{T}_2(\sigma_n).$
 - The multiplications associated to these pseudotwistors are the μ_n 's defined by Durdevich
- *T* a *bijective R-matrix*, then *T* is a pseudotwistor, with companions $\tilde{T}_1 = T_{12} \circ T_{13} \circ T_{12}^{-1}$ and $\tilde{T}_2 = T_{23} \circ T_{13} \circ T_{23}^{-1}$.

Examples of pseudotwistors

- Every twistor T is a pseudotwistor, with companions $\widetilde{T}_1 = \widetilde{T}_2 = T_{13}$
- Twistors in a braided category, with companions $\widetilde{T}_1 = \widetilde{T}_2 = T_{13}(c)$
 - This case includes Fedosov products for DGA's
- $G = (A, \mu, \Delta, \varepsilon, S, \sigma)$ a braided quantum group
 - All maps $\sigma_n^{-1} \circ \sigma$ are pseudotwistors, with companions $\tilde{T}_1(\sigma_n), \tilde{T}_2(\sigma_n).$
 - The multiplications associated to these pseudotwistors are the μ_n 's defined by Durdevich
- *T* a *bijective R-matrix*, then *T* is a pseudotwistor, with companions $\tilde{T}_1 = T_{12} \circ T_{13} \circ T_{12}^{-1}$ and $\tilde{T}_2 = T_{23} \circ T_{13} \circ T_{23}^{-1}$.

うへで 22/23

Happy birthday, Fred!