On inner deformations of algebras

Javier López Peña

Noncommutative Rings and Geometry, in honour of Freddy Van Oystaeyen

Almería, September 21 st 2007

Based upon joint work with Florin Panaite and Freddy Van Oystaeyen

- General twisting of algebras, Adv. Math. 212 (1), 315-337 (2007).

Outline

(1) The motivation
(2) The problem
(3) First approach

4 The final answer?

Outline

2 The problem

3 First approach

4 The final answer?

Inner deformations

(1) Concept of inner deformations.

- Start with an algebra A
- Keep the underlying vector space
- Endow it with a new product (related with the old one)
(2) There are many examples of inner deformations

Inner deformations

(1) Concept of inner deformations.

- Start with an algebra A
- Keep the underlying vector space
- Endow it with a new product (related with the old one)
(2) There are many examples of inner deformations

Inner deformations

(1) Concept of inner deformations.

- Start with an algebra A
- Keep the underlying vector space
- Endow it with a new product (related with the old one)

2 There are many examples of inner deformations

Inner deformations

(1) Concept of inner deformations.

- Start with an algebra A
- Keep the underlying vector space
- Endow it with a new product (related with the old one)
(2) There are many examples of inner deformations

Inner deformations

(1) Concept of inner deformations.

- Start with an algebra A
- Keep the underlying vector space
- Endow it with a new product (related with the old one)
(2) There are many examples of inner deformations
- Twisted tensor products
- Twisted bialgebras
- Drinfeld twist for an H-module algebra
- Deformation via neat elements
- Deformations by R-matrices

Inner deformations

(1) Concept of inner deformations.

- Start with an algebra A
- Keep the underlying vector space
- Endow it with a new product (related with the old one)
(2) There are many examples of inner deformations
- Twisted tensor products
- Twisted bialgebras
- Drinfeld twist for an H-module algebra
- Deformation via neat elements
- Deformations by R-matrices

Inner deformations

(1) Concept of inner deformations.

- Start with an algebra A
- Keep the underlying vector space
- Endow it with a new product (related with the old one)
(2) There are many examples of inner deformations
- Twisted tensor products
- Twisted bialgebras
- Drinfeld fwist for an H-module algebra
- Deformation via neat elements
- Deformations by R-matrices

Inner deformations

(0) Concept of inner deformations.

- Start with an algebra A
- Keep the underlying vector space
- Endow it with a new product (related with the old one)
(2) There are many examples of inner deformations
- Twisted tensor products
- Twisted bialgebras
- Drinfeld twist for an H-module algebra
- Deformation via neat elements
- Deformations by R-matrices

Inner deformations

(0) Concept of inner deformations.

- Start with an algebra A
- Keep the underlying vector space
- Endow it with a new product (related with the old one)
(2) There are many examples of inner deformations
- Twisted tensor products
- Twisted bialgebras
- Drinfeld twist for an H-module algebra
- Deformation via neat elements
- Deformations by R-matrices

Inner deformations

(1) Concept of inner deformations.

- Start with an algebra A
- Keep the underlying vector space
- Endow it with a new product (related with the old one)
(2) There are many examples of inner deformations
- Twisted tensor products
- Twisted bialgebras
- Drinfeld twist for an H-module algebra
- Deformation via neat elements
- Deformations by R-matrices

Twisted tensor products

Definition (Twisting map)

A linear map $R: B \otimes A \longrightarrow A \otimes B$ is a fwisting map if it satisfies:
(1) $R \circ\left(B \otimes \mu_{A}\right)=\left(\mu_{A} \otimes B\right) \circ(A \otimes R) \circ(R \otimes A)$

Theorem
The $\operatorname{map} \mu_{R}:=\left(\mu_{A} \otimes \mu_{B}\right) \circ(A \otimes R \otimes B)$ is an associative product in $A \otimes B$ if, and only if, R is a twisting map.

The algebra $A \otimes_{R} B:=\left(A \otimes B, \mu_{R}\right)$ is called a twisted tensor product of A and B.

Twisted tensor products

Definition (Twisting map)

A linear map $R: B \otimes A \longrightarrow A \otimes B$ is a twisting map if it satisfies:
(1) $R \circ\left(B \otimes \mu_{A}\right)=\left(\mu_{A} \otimes B\right) \circ(A \otimes R) \circ(R \otimes A)$
(2) $R \circ\left(\mu_{B} \otimes A\right)=\left(A \otimes \mu_{B}\right) \circ(R \otimes B) \circ(B \otimes R)$

Theorem
The map $\mu_{R}:=\left(\mu_{A} \otimes \mu_{B}\right) \circ(A \otimes R \otimes B)$ is an associative product in $A \otimes B$ if, and only if, R is a twisting map.

The algebra $A \otimes_{R} B:=\left(A \otimes B, \mu_{R}\right)$ is called a twisted tensor
product of A and B.

Twisted tensor products

Definition (Twisting map)

A linear map $R: B \otimes A \longrightarrow A \otimes B$ is a twisting map if it satisfies:
(1) $R \circ\left(B \otimes \mu_{A}\right)=\left(\mu_{A} \otimes B\right) \circ(A \otimes R) \circ(R \otimes A)$
(2) $R \circ\left(\mu_{B} \otimes A\right)=\left(A \otimes \mu_{B}\right) \circ(R \otimes B) \circ(B \otimes R)$

Theorem

The map $\mu_{R}:=\left(\mu_{A} \otimes \mu_{B}\right) \circ(A \otimes R \otimes B)$ is an associative product in $A \otimes B$ if, and only if, R is a twisting map.

The algebra $A \otimes_{R} B:=\left(A \otimes B, \mu_{R}\right)$ is called a twisted tensor product of A and B.

Twisted tensor products

Definition (Twisting map)

A linear map $R: B \otimes A \longrightarrow A \otimes B$ is a twisting map if it satisfies:
(1) $R \circ\left(B \otimes \mu_{A}\right)=\left(\mu_{A} \otimes B\right) \circ(A \otimes R) \circ(R \otimes A)$
(2) $R \circ\left(\mu_{B} \otimes A\right)=\left(A \otimes \mu_{B}\right) \circ(R \otimes B) \circ(B \otimes R)$

Theorem

The map $\mu_{R}:=\left(\mu_{A} \otimes \mu_{B}\right) \circ(A \otimes R \otimes B)$ is an associative product in $A \otimes B$ if, and only if, R is a twisting map.

The algebra $A \otimes_{R} B:=\left(A \otimes B, \mu_{R}\right)$ is called a twisted tensor product of A and B.

L-R twisting datum

- A an H-bimodule algebra with actions

$$
\pi_{l}(h \otimes a)=h \cdot a, \quad \pi_{r}(a \otimes h)=a \cdot h
$$

and an H -bicomodule algebra, with coactions

$$
\psi_{l}(a):=a_{[-1]} \otimes a_{[0]}, \quad \psi_{r}(a):=a_{<0>} \otimes a_{<1>}
$$

satisfying some technical compatibility conditions.

- Define a new multiplication on A by
- Then $(A, \bullet, 1)$ is an associative unital algebra.

L-R twisting datum

- A an H-bimodule algebra with actions

$$
\pi_{l}(h \otimes a)=h \cdot a, \quad \pi_{r}(a \otimes h)=a \cdot h
$$

and an H -bicomodule algebra, with coactions

$$
\psi_{l}(a):=a_{[-1]} \otimes a_{[0]}, \quad \psi_{r}(a):=a_{<0>} \otimes a_{<1>}
$$

satisfying some technical compatibility conditions.

- Define a new multiplication on A by

$$
a \bullet a^{\prime}:=\left(a_{[0]} \cdot a_{<1>}^{\prime}\right)\left(a_{[-1]} \cdot a_{<0>}^{\prime}\right)
$$

- Then $(A, \bullet, 1)$ is an associative unital algebra.

L-R twisting datum

- A an H-bimodule algebra with actions

$$
\pi_{l}(h \otimes a)=h \cdot a, \quad \pi_{r}(a \otimes h)=a \cdot h
$$

and an H -bicomodule algebra, with coactions

$$
\psi_{l}(a):=a_{[-1]} \otimes a_{[0]}, \quad \psi_{r}(a):=a_{<0>} \otimes a_{<1>}
$$

satisfying some technical compatibility conditions.

- Define a new multiplication on A by

$$
a \bullet a^{\prime}:=\left(a_{[0]} \cdot a_{<1>}^{\prime}\right)\left(a_{[-1]} \cdot a_{<0>}^{\prime}\right)
$$

- Then $(A, \bullet, 1)$ is an associative unital algebra.

Fedosov product for DG algebras

- $\left(\Omega=\bigoplus_{n \geq 0} \Omega^{n}, d\right)$ differential graded algebra.
- The Fedosov product is given by

- Gives a new (\mathbb{Z}_{2}-graded) algebra structure on Ω.

Fedosov product for DG algebras

- $\left(\Omega=\bigoplus_{n \geq 0} \Omega^{n}, d\right)$ differential graded algebra.
- The Fedosov product is given by

$$
\omega \circ \zeta=\omega \zeta-(-1)^{|\omega|} d \omega d \zeta
$$

- Gives a new (\mathbb{Z}_{2}-graded) algebra structure on Ω.

Fedosov product for DG algebras

- $\left(\Omega=\bigoplus_{n \geq 0} \Omega^{n}, d\right)$ differential graded algebra.
- The Fedosov product is given by

$$
\omega \circ \zeta=\omega \zeta-(-1)^{|\omega|} d \omega d \zeta
$$

- Gives a new (\mathbb{Z}_{2}-graded) algebra structure on Ω.

Outline

(1) The motivation

(2) The problem
(3) First approach

4 The final answer?

The common points

- All these deformations are built in the same way:
- Start with an algebra (A, μ)
- Define some map $T: A \otimes A \rightarrow A \otimes A$
- Define a new product by $\mu_{T}:=\mu \circ T$.

Question
 Is it nossible to obtain the associativity just out of some properties of the map T?

The common points

- All these deformations are built in the same way:
- Start with an algebra (A, μ)
- Define some map $T: A \otimes A \rightarrow A \otimes A$
- Define a new product by $\mu_{T}:=\mu \circ T$.

Question
 Is it possible to obtain the associativity just out of some properties of the map T?

The common points

- All these deformations are built in the same way:
- Start with an algebra (A, μ)
- Define some map $T: A \otimes A \rightarrow A \otimes A$

Question
 Is it possible to obtain the associativity just out of some properties of the map T?

The common points

- All these deformations are built in the same way:
- Start with an algebra (A, μ)
- Define some map $T: A \otimes A \rightarrow A \otimes A$
- Define a new product by $\mu_{T}:=\mu \circ T$.

Question
 Is it possible to obtain the associativity just out of some properties of the map T?

The common points

- All these deformations are built in the same way:
- Start with an algebra (A, μ)
- Define some map $T: A \otimes A \rightarrow A \otimes A$
- Define a new product by $\mu_{T}:=\mu \circ T$.

Question

Is it possible to obtain the associativity just out of some properties of the map T ?

First approach: R-matrices

Definition (Borcherds)

An R-matrix for an algebra A is a map $T: A \otimes A \rightarrow A \otimes A$ such that

$$
\begin{gathered}
T(1 \otimes a)=1 \otimes a, \quad T(a \otimes 1)=a \otimes 1, \\
\mu_{23} \circ T_{12} \circ T_{13}=T \circ \mu_{23}, \\
\mu_{12} \circ T_{23} \circ T_{13}=T \circ \mu_{12}, \\
T_{12} \circ T_{13} \circ T_{23}=T_{23} \circ T_{13} \circ T_{12},
\end{gathered}
$$

Theorem (Borcherds)
If T is an R-matrix for A, then $\mu_{A} \circ T$ is an associative product.

First approach: R-matrices

Definition (Borcherds)

An R-matrix for an algebra A is a map $T: A \otimes A \rightarrow A \otimes A$ such that

$$
\begin{gathered}
T(1 \otimes a)=1 \otimes a, \quad T(a \otimes 1)=a \otimes 1, \\
\mu_{23} \circ T_{12} \circ T_{13}=T \circ \mu_{23}, \\
\mu_{12} \circ T_{23} \circ T_{13}=T \circ \mu_{12}, \\
T_{12} \circ T_{13} \circ T_{23}=T_{23} \circ T_{13} \circ T_{12},
\end{gathered}
$$

Theorem (Borcherds)

If T is an R-matrix for A, then $\mu_{A} \circ T$ is an associative product.

The need for something else

- R-matrices provide a set of sufficient conditions for building inner deformations
- But they are not enough
- Twisted tensor product are NOT R-matrices.

Question
 Is possible to find an approach similar to R-matrices that
 includes twisted tensor products?

The need for something else

- R-matrices provide a set of sufficient conditions for building inner deformations
- But they are not enough
- Twisted tensor product are NOT R-matrices.

Question
Is possible to find an approach similar to R-matrices that
includes twisted tensor products?

The need for something else

- R-matrices provide a set of sufficient conditions for building inner deformations
- But they are not enough
- Twisted tensor product are NOT R-matrices.

Question
 Is possible to find an approach similar to R-matrices that
 includes twisted tensor products?

The need for something else

- R-matrices provide a set of sufficient conditions for building inner deformations
- But they are not enough
- Twisted tensor product are NOT R-matrices.

Question

Is possible to find an approach similar to R-matrices that includes twisted tensor products?

Outline

(1) The motivation

(2) The problem

3 First approach

4 The final answer?

Twistors

- (D, μ) an algebra
- $T: D \otimes D \rightarrow D \otimes D$ linear map satisfying:

> Theorem
> The map $\mu \circ T$ is associative, with the same unit 1.

T is called a twistor for D.

Twistors

- (D, μ) an algebra
- $T: D \otimes D \rightarrow D \otimes D$ linear map satisfying:

Theorem
The map uc Tis associative, with the same unit 7.
T is called a twistor for D.

Twistors

- (D, μ) an algebra
- $T: D \otimes D \rightarrow D \otimes D$ linear map satisfying:

$$
\begin{gathered}
T(1 \otimes d)=1 \otimes d, \quad T(d \otimes 1)=d \otimes 1, \\
\mu_{23} \circ T_{13} \circ T_{12}=T \circ \mu_{23} \\
\mu_{12} \circ T_{13} \circ T_{23}=T \circ \mu_{12} \\
T_{12} \circ T_{23}=T_{23} \circ T_{12}
\end{gathered}
$$

Theorem
The map uc Tis associalive, with the same unit 7.
T is called a twistor for D.

Twistors

- (D, μ) an algebra
- $T: D \otimes D \rightarrow D \otimes D$ linear map satisfying:

$$
\begin{gathered}
T(1 \otimes d)=1 \otimes d, \quad T(d \otimes 1)=d \otimes 1, \\
\mu_{23} \circ T_{13} \circ T_{12}=T \circ \mu_{23} \\
\mu_{12} \circ T_{13} \circ T_{23}=T \circ \mu_{12} \\
T_{12} \circ T_{23}=T_{23} \circ T_{12}
\end{gathered}
$$

Theorem

The map $\mu \circ T$ is associative, with the same unit 1.
T is called a twistor for D.

Twistors

- (D, μ) an algebra
- $T: D \otimes D \rightarrow D \otimes D$ linear map satisfying:

$$
\begin{gathered}
T(1 \otimes d)=1 \otimes d, \quad T(d \otimes 1)=d \otimes 1, \\
\mu_{23} \circ T_{13} \circ T_{12}=T \circ \mu_{23} \\
\mu_{12} \circ T_{13} \circ T_{23}=T \circ \mu_{12} \\
T_{12} \circ T_{23}=T_{23} \circ T_{12}
\end{gathered}
$$

Theorem

The map $\mu \circ T$ is associative, with the same unit 1.
T is called a twistor for D.

Examples of Twistors

- Twisted tensor products
- Product achieved via L-R-†wisting datum
- Drinfeld cocycle twist of a module algebra
- Deformation of a bialgebra via neat elements
- Deformation of algebras with a differential

Examples of Twistors

- Twisted tensor products
- Product achieved via L-R-twisting datum
- Drinfeld cocycle twist of a module algebra
- Deformation of a bialgebra via neat elements
- Deformation of algebras with a differential

Examples of Twistors

- Twisted tensor products
- Product achieved via L-R-twisting datum
- Drinfeld cocycle twist of a module algebra
- Deformation of a bialgebra via neat elements
- Deformation of algebras with a differential

Examples of Twistors

- Twisted tensor products
- Product achieved via L-R-twisting datum
- Drinfeld cocycle twist of a module algebra
- Deformation of a bialgebra via neat elements
- Deformation of algebras with a differential

Examples of Twistors

- Twisted tensor products
- Product achieved via L-R-twisting datum
- Drinfeld cocycle twist of a module algebra
- Deformation of a bialgebra via neat elements
- Deformation of algebras with a differential

Examples of Non-Twistors

- Most R-matrices
- Fedosov product on DG algebras
- Braided quantum groups
- The square of a ribbon onerator

Question
Can we finc something more general, containing twistors and all the above things?

Examples of Non-Twistors

- Most R-matrices
- Fedosov product on DG algebras
- Braided quantum groups
- The square of a ribbon operator

Question
Can we finc something more general, containing twistors and all the above things?

Examples of Non-Twistors

- Most R-matrices
- Fedosov product on DG algebras
- Braided quantum groups
- The square of a ribbon operator

Question

Can we find something more general, containing twistors and all the above things?

Examples of Non-Twistors

- Most R-matrices
- Fedosov product on DG algebras
- Braided quantum groups
- The square of a ribbon operator

Question
 Can we finc something more general, containing twistors and all the above things?

Examples of Non-Twistors

- Most R-matrices
- Fedosov product on DG algebras
- Braided quantum groups
- The square of a ribbon operator

Question

Can we find something more general, containing twistors and all the above things?

Outline

(1) The motivation

2 The problem

3 First approach

4 The final answer?

Braiding knotation for twistors

- A twistor is represented by

- Twistor conditions are written as

Braiding knotation for twistors

- A twistor is represented by

- Twistor conditions are written as

How this notation works

- Braiding notation gives us a "general shape" for twistor conditions
- Makes easy to spot points where axioms can be weakened
- Allows a categorical formulation
- Leads to the "correct" definition

How this notation works

- Braiding notation gives us a "general shape" for twistor conditions
- Makes easy to spot points where axioms can be weakened
- Allows a categorical formulation
- Leads to the "correct" definition

How this notation works

- Braiding notation gives us a "general shape" for twistor conditions
- Makes easy to spot points where axioms can be weakened
- Allows a categorical formulation
- Leads to the "correct" definition

How this notation works

- Braiding notation gives us a "general shape" for twistor conditions
- Makes easy to spot points where axioms can be weakened
- Allows a categorical formulation
- Leads to the "correct" definition

Pseudotwistors (I)

- \mathcal{C} a (strict) monoidal category,
- (A, μ, U) an algebra in \mathcal{C}.
- $T: A \otimes A \rightarrow A \otimes A$ morphism in \mathcal{C} such that $T \circ(u \otimes A)=u \otimes A$ and $T \circ(A \otimes u)=A \otimes u$.
- $\widetilde{T}_{1}, \widetilde{T}_{2}: A \otimes A \otimes A \rightarrow A \otimes A \otimes A$ morphisms in \mathcal{C} such that

- Then $(A, \mu \circ T, U)$ is also an algebra in \mathcal{C}.

Pseudotwistors (I)

- \mathcal{C} a (strict) monoidal category,
- (A, μ, u) an algebra in \mathcal{C},

- $\widetilde{T}_{1}, \widetilde{T}_{2}: A \otimes A \otimes A \rightarrow A \otimes A \otimes A$ morphisms in \mathcal{C} such that

- Then $(A, \mu \circ T, U)$ is also an algebra in \mathcal{C}.

Pseudotwistors (I)

- \mathcal{C} a (strict) monoidal category,
- (A, μ, U) an algebra in \mathcal{C},
- $T: A \otimes A \rightarrow A \otimes A$ morphism in \mathcal{C} such that

$$
T \circ(u \otimes A)=u \otimes A \text { and } T \circ(A \otimes u)=A \otimes u .
$$

- $\widetilde{T}_{1}, \widetilde{T}_{2}: A \otimes A \otimes A \rightarrow A \otimes A \otimes A$ morphisms in \mathcal{C} such that

- Then $(A, \mu \circ T, U)$ is also an algebra in \mathcal{C}.

Pseudotwistors (I)

- \mathcal{C} a (strict) monoidal category,
- (A, μ, U) an algebra in \mathcal{C},
- $T: A \otimes A \rightarrow A \otimes A$ morphism in \mathcal{C} such that
$T \circ(u \otimes A)=u \otimes A$ and $T \circ(A \otimes u)=A \otimes u$.
- $\widetilde{T}_{1}, \widetilde{T}_{2}: A \otimes A \otimes A \rightarrow A \otimes A \otimes A$ morphisms in \mathcal{C} such that

$$
\begin{gathered}
(A \otimes \mu) \circ \widetilde{T}_{1} \circ(T \otimes A)=T \circ(A \otimes \mu), \\
(\mu \otimes A) \circ \widetilde{T}_{2} \circ(A \otimes T)=T \circ(\mu \otimes A), \\
\widetilde{T}_{1} \circ(T \otimes A) \circ(A \otimes T)=\widetilde{T}_{2} \circ(A \otimes T) \circ(T \otimes A) .
\end{gathered}
$$

Pseudotwistors (I)

- \mathcal{C} a (strict) monoidal category,
- (A, μ, U) an algebra in \mathcal{C},
- $T: A \otimes A \rightarrow A \otimes A$ morphism in \mathcal{C} such that

$$
T \circ(u \otimes A)=u \otimes A \text { and } T \circ(A \otimes u)=A \otimes u .
$$

- $\tilde{T}_{1}, \tilde{T}_{2}: A \otimes A \otimes A \rightarrow A \otimes A \otimes A$ morphisms in \mathcal{C} such that

$$
\begin{gathered}
(A \otimes \mu) \circ \widetilde{T}_{1} \circ(T \otimes A)=T \circ(A \otimes \mu), \\
(\mu \otimes A) \circ \widetilde{T}_{2} \circ(A \otimes T)=T \circ(\mu \otimes A), \\
\widetilde{T}_{1} \circ(T \otimes A) \circ(A \otimes T)=\widetilde{T}_{2} \circ(A \otimes T) \circ(T \otimes A) .
\end{gathered}
$$

- Then $(A, \mu \circ T, u)$ is also an algebra in \mathcal{C}.

Pseudotwistors (II)

Definition

- The morphism T is called a pseudotwistor,
- The morphisms $\widetilde{T}_{1}, \widetilde{T}_{2}$ are called the companions of T.

Pseudotwistors (II)

Definition

- The morphism T is called a pseudotwistor,
- The morphisms $\widetilde{T}_{1}, \widetilde{T}_{2}$ are called the companions of T.

Examples of pseudołwistors

- Every twistor T is a pseudotwistor, with companions $\widetilde{T}_{1}=\widetilde{T}_{2}=T_{13}$
- Twistors in a braided category, with companions $\widetilde{T}_{1}=\widetilde{T}_{2}=T_{13}(c)$
- $G=(A, \mu, \Delta, \varepsilon, S, \sigma)$ a braided quantum group
- T a bijective R-matrix, then T is a pseudotwistor, with companions $\tilde{T}_{1}=T_{12} \circ T_{13} \circ T_{12}^{-1}$ and $\tilde{T}_{2}=T_{23} \circ T_{13} \circ T_{23}^{-1}$

Examples of pseudołwistors

- Every twistor T is a pseudotwistor, with companions $\widetilde{T}_{1}=\widetilde{T}_{2}=T_{13}$
- Twistors in a braided category, with companions $\widetilde{T}_{1}=\widetilde{T}_{2}=T_{13}(c)$
- This case includes Fedosov products for DGA's
- $G=(A, \mu, \Delta, \varepsilon, S, \sigma)$ a braided quantum group
- T a bijective R-matrix, then T is a pseudotwistor, with companions $\tilde{T}_{1}=T_{12} \circ T_{13} \circ T_{12}^{-1}$ and $\tilde{T}_{2}=T_{23} \circ T_{13} \circ T_{23}^{-1}$

Examples of pseudołwistors

- Every twistor T is a pseudotwistor, with companions $\widetilde{T}_{1}=\widetilde{T}_{2}=T_{13}$
- Twistors in a braided category, with companions $\widetilde{T}_{1}=\widetilde{T}_{2}=T_{13}(c)$
- This case includes Fedosov products for DGA's

- T a bijective R-matrix, then T is a pseudotwistor, with companions $\tilde{T}_{1}=T_{12} \circ T_{13} \circ T_{12}^{-1}$ and $\tilde{T}_{2}=T_{23} \circ T_{13} \circ T_{23}^{-1}$

Examples of pseudotwistors

- Every twistor T is a pseudotwistor, with companions $\widetilde{T}_{1}=\widetilde{T}_{2}=T_{13}$
- Twistors in a braided category, with companions $\widetilde{T}_{1}=\widetilde{T}_{2}=T_{13}(c)$
- This case includes Fedosov products for DGA's
- $G=(A, \mu, \Delta, \varepsilon, S, \sigma)$ a braided quantum group
- All maps $\sigma_{n}^{-1} \circ \sigma$ are pseudotwistors, with companions
- The multiplications associated to these pseudotwistors are the μ_{n} 's defined by Durdevich
- T a bijective R-matrix, then T is a pseudotwistor, with companions $T_{1}=T_{12} \circ T_{13} \circ T_{12}^{-1}$ and $T_{2}=T_{23} \circ T_{13} \circ T_{23}^{-1}$

Examples of pseudotwistors

- Every twistor T is a pseudotwistor, with companions $\widetilde{T}_{1}=\widetilde{T}_{2}=T_{13}$
- Twistors in a braided category, with companions $\widetilde{T}_{1}=\widetilde{T}_{2}=T_{13}(c)$
- This case includes Fedosov products for DGA's
- $G=(A, \mu, \Delta, \varepsilon, S, \sigma)$ a braided quantum group
- All maps $\sigma_{n}^{-1} \circ \sigma$ are pseudotwistors, with companions $\widetilde{T}_{1}\left(\sigma_{n}\right), \widetilde{T}_{2}\left(\sigma_{n}\right)$.
- The multiplications associated to these pseudotwistors are the μ_{n} 's defined by Durdevich
- T a bijective R-matrix, then T is a pseudotwistor, with companions $T_{1}=T_{12} \circ T_{13} \circ T_{12}^{-1}$ and $T_{2}=T_{23} \circ T_{13} \circ T_{23}^{-1}$

Examples of pseudotwistors

- Every twistor T is a pseudotwistor, with companions $\widetilde{T}_{1}=\widetilde{T}_{2}=T_{13}$
- Twistors in a braided category, with companions $\widetilde{T}_{1}=\widetilde{T}_{2}=T_{13}(c)$
- This case includes Fedosov products for DGA's
- $G=(A, \mu, \Delta, \varepsilon, S, \sigma)$ a braided quantum group
- All maps $\sigma_{n}^{-1} \circ \sigma$ are pseudotwistors, with companions $\widetilde{T}_{1}\left(\sigma_{n}\right), \widetilde{T}_{2}\left(\sigma_{n}\right)$.
- The multiplications associated to these pseudotwistors are the μ_{n} 's defined by Durdevich

Examples of pseudotwistors

- Every twistor T is a pseudotwistor, with companions $\widetilde{T}_{1}=\widetilde{T}_{2}=T_{13}$
- Twistors in a braided category, with companions $\widetilde{T}_{1}=\widetilde{T}_{2}=T_{13}(\mathrm{c})$
- This case includes Fedosov products for DGA's
- $G=(A, \mu, \Delta, \varepsilon, S, \sigma)$ a braided quantum group
- All maps $\sigma_{n}^{-1} \circ \sigma$ are pseudotwistors, with companions $\widetilde{T}_{1}\left(\sigma_{n}\right), \widetilde{T}_{2}\left(\sigma_{n}\right)$.
- The multiplications associated to these pseudotwistors are the μ_{n} 's defined by Durdevich
- T a bijective R-matrix, then T is a pseudotwistor, with companions $\tilde{T}_{1}=T_{12} \circ T_{13} \circ T_{12}^{-1}$ and $\tilde{T}_{2}=T_{23} \circ T_{13} \circ T_{23}^{-1}$.

Happy birthday, Fred!

