On Iterated Twisted Tensor Product of Algebras

Javier López Peña

Algebra Department University of Granada (Spain)

El Cairo "Algebras and Coalgebras", March 24-30th 2006

Join work with:

- Pascual Jara,
- Florin Panaite,
- Fred Van Oystaeyen arxiv.org: math.QA/0511280

Outline

-

The origin of our problem

- Algebra-Geometry dualities
- Objectives

(2)The Twisted Tensor Product

- Definition and Properties
- The braiding knotation
(3) Iterating the Twisted Tensor Products
- The construction
- The results
- Examples

Outline

-

The origin of our problem

- Algebra-Geometry dualities
- Objectives
(2) The Twisted Tensor Product
- Definition and Properties
- The braiding knotation
(3) Iterating the Twisted Tensor Products
- The construction
- The results
- Examples

Outline

-

The origin of our problem

- Algebra-Geometry dualities
- Objectives
(2) The Twisted Tensor Product
- Definition and Properties
- The braiding knotation
(3) Iterating the Twisted Tensor Products
- The construction
- The results
- Examples

Outline

The origin of our problem

- Algebra-Geometry dualities
- Objectives
(2) The Twisted Tensor Product
- Definition and Properties
- The braiding knotation
(3) Iterating the Twisted Tensor Products
- The construction
- The results
- Examples

The Twisted Tensor Product 00000000000

Dualities

The Geometry-Algebra Dictionary

- Manifolds \Longleftrightarrow (Commutative) algebras

Topological Manifolds \Longleftrightarrow Commutative C^{*}-algebras - Algebraic Varieties \Longleftrightarrow Affine algebras

- Fibre Bundles \Longleftrightarrow Projective Modules
- Product Space \Longleftrightarrow "Tensor Product"

Noncommutative Geometry:

Remove commutativity from the (algebraic part) of the former list.

Dualities

The Geometry-Algebra Dictionary

- Manifolds \Longleftrightarrow (Commutative) algebras
- Topological Manifolds \Longleftrightarrow Commutative C^{*}-algebras - Algebraic Varieties \Longleftrightarrow Affine algebras
- Fibre Bundles \Longleftrightarrow Projective Modules
- Product Space \Longleftrightarrow "Tensor Product"

Noncommutative Geometry:
Remove commutativity from the (algebraic part) of the former list.

Dualities

The Geometry-Algebra Dictionary

- Manifolds \Longleftrightarrow (Commutative) algebras
- Topological Manifolds \Longleftrightarrow Commutative C^{*}-algebras
- Algebraic Varieties \Longleftrightarrow Affine algebras
- Fibre Bundles \Longleftrightarrow Projective Modules
- Product Space \Longleftrightarrow "Tensor Product"

Noncommutative Geometry:
Remove commutativity from the (algebraic part) of the former list.

Dualities

The Geometry-Algebra Dictionary

- Manifolds \Longleftrightarrow (Commutative) algebras
- Topological Manifolds \Longleftrightarrow Commutative C^{*}-algebras
- Algebraic Varieties \Longleftrightarrow Affine algebras
- Fibre Bundles \Longleftrightarrow Projective Modules

Noncommutative Geometry:
Remove commutativity from the (algebraic part) of the former list.

Dualities

The Geometry-Algebra Dictionary

- Manifolds \Longleftrightarrow (Commutative) algebras
- Topological Manifolds \Longleftrightarrow Commutative C^{*}-algebras
- Algebraic Varieties \Longleftrightarrow Affine algebras
- Fibre Bundles \Longleftrightarrow Projective Modules
- Product Space \Longleftrightarrow "Tensor Product"

Noncommutative Geometry:
Remove commutativity from the (algebraic part) of the
former list.

Dualities

The Geometry-Algebra Dictionary

- Manifolds \Longleftrightarrow (Commutative) algebras
- Topological Manifolds \Longleftrightarrow Commutative C^{*}-algebras
- Algebraic Varieties \Longleftrightarrow Affine algebras
- Fibre Bundles \Longleftrightarrow Projective Modules
- Product Space \Longleftrightarrow "Tensor Product"

Noncommutative Geometry:
Remove commutativity from the (algebraic part) of the former list.

Dualities

The Geometry-Algebra Dictionary

- Manifolds \Longleftrightarrow (Commutative) algebras
- Topological Manifolds \Longleftrightarrow Commutative C^{*}-algebras
- Algebraic Varieties \Longleftrightarrow Affine algebras
- Fibre Bundles \Longleftrightarrow Projective Modules
- Product Space \Longleftrightarrow "Tensor Product"

Noncommutative Geometry:
Remove commutativity from the (algebraic part) of the former list.

The product space

Why the tensor product is not enough

- For $a \in A, b \in B$, in $A \otimes B$ we have that

$$
(a \otimes 1)(1 \otimes b)=(1 \otimes b)(a \otimes 1)
$$

That is, the elements of each factor of a tensor product commute to each other.

- To avoid this commutativity, we replace the tensor product by another object.

The product space

Why the tensor product is not enough

- For $a \in A, b \in B$, in $A \otimes B$ we have that

$$
(a \otimes 1)(1 \otimes b)=(1 \otimes b)(a \otimes 1)
$$

That is, the elements of each factor of a tensor product commute to each other.

- To avoid this commutativity, we replace the tensor product by another object.

The product space

Why the tensor product is not enough

- For $a \in A, b \in B$, in $A \otimes B$ we have that

$$
(a \otimes 1)(1 \otimes b)=(1 \otimes b)(a \otimes 1)
$$

That is, the elements of each factor of a tensor product commute to each other.

- To avoid this commutativity, we replace the tensor product by another object.

Outline

The origin of our problem

- Algebra-Geometry dualities
- Objectives
(2) The Twisted Tensor Product
- Definition and Properties
- The braiding knotation
(3) Iterating the Twisted Tensor Products
- The construction
- The results
- Examples

Our goals

- Find out a better notion of product space.
- Extend geometrical invariants from the factors to the product.
- Show that some old examples fits into this framework.

Our goals

- Find out a better notion of product space.
- Extend geometrical invariants from the factors to the product.
- Show that some old examples fits into this framework.

Our goals

- Find out a better notion of product space.
- Extend geometrical invariants from the factors to the product.
- Show that some old examples fits into this framework.

Outline

(1) The origin of our problem

- Algebra-Geometry dualities
- Objectives
(2) The Twisted Tensor Product
- Definition and Properties
- The braiding knotation
(3) Iterating the Twisted Tensor Products
- The construction
- The results
- Examples

Properties we want in a "product space"

- Each of the factors embedds canonically in the product space.
- The "linear size" of the product space is the product of the linear sizes of the factor
\qquad

Properties we want in a "product space"

- Each of the factors embedds canonically in the product space.
- The "linear size" of the product space is the product of the linear sizes of the factor

Properties we want in a "product space"

- Each of the factors embedds canonically in the product space.
- The "linear size" of the product space is the product of the linear sizes of the factor
- The dimension of the product space is the sum of the dimensions of the factors.

Construction of the product

Definition

We say that X is a twisted tensor product of the algebras A and B if:

- We have $i_{A}: A \hookrightarrow X$ and $i_{B}: B \hookrightarrow X$ injective algebra maps.
- The associated linear map $a \otimes b \longmapsto i_{A}(a) \cdot i_{B}(B)$ is a linear isomorphism.

Construction of the product

Definition

We say that X is a twisted tensor product of the algebras A and B if:

- We have $i_{A}: A \hookrightarrow X$ and $i_{B}: B \hookrightarrow X$ injective algebra maps.
- The associated linear map $a \otimes b \longmapsto i_{A}(a) \cdot i_{B}(B)$ is a linear isomorphism.

Twisting maps

Definition (Twisting map)

We say that a linear map $R: B \otimes A \longrightarrow A \otimes B$ is a twisting map if it satisfies:
(1) $R \circ\left(B \otimes \mu_{A}\right)=\left(\mu_{A} \otimes B\right) \circ(A \otimes R) \circ(R \otimes A)$
(2) $R \circ\left(\mu_{B} \otimes A\right)=\left(A \otimes \mu_{B}\right) \circ(R \otimes B) \circ(B \otimes R)$
\square
The map $\mu_{R}:=\left(\mu_{A} \otimes \mu_{B}\right) \circ(A \otimes R \otimes B)$ is an associative product in $A \otimes B$ if, and only if, R is a twisting map.

We write $A \otimes_{R} B$ to denote the algebra $\left(A \otimes B, \mu_{R}\right)$

Twisting maps

Definition (Twisting map)

We say that a linear map $R: B \otimes A \longrightarrow A \otimes B$ is a twisting map if it satisfies:
(1) $R \circ\left(B \otimes \mu_{A}\right)=\left(\mu_{A} \otimes B\right) \circ(A \otimes R) \circ(R \otimes A)$
(2) $R \circ\left(\mu_{B} \otimes A\right)=\left(A \otimes \mu_{B}\right) \circ(R \otimes B) \circ(B \otimes R)$
\square
The map $\mu_{R}:=\left(\mu_{A} \otimes \mu_{B}\right) \circ(A \otimes R \otimes B)$ is an associative product in $A \otimes B$ if, and only if, R is a twisting map.

We write $A \otimes_{R} B$ to denote the algebra $\left(A \otimes B, \mu_{R}\right)$

Twisting maps

Definition (Twisting map)

We say that a linear map $R: B \otimes A \longrightarrow A \otimes B$ is a twisting map if it satisfies:
(0) $R \circ\left(B \otimes \mu_{A}\right)=\left(\mu_{A} \otimes B\right) \circ(A \otimes R) \circ(R \otimes A)$
(2) $R \circ\left(\mu_{B} \otimes A\right)=\left(A \otimes \mu_{B}\right) \circ(R \otimes B) \circ(B \otimes R)$

Theorem

The map $\mu_{R}:=\left(\mu_{A} \otimes \mu_{B}\right) \circ(A \otimes R \otimes B)$ is an associative product in $A \otimes B$ if, and only if, R is a twisting map.

We write $A \otimes_{R} B$ to denote the algebra $\left(A \otimes B, \mu_{R}\right)$.

Twisting maps

Definition (Twisting map)

We say that a linear map $R: B \otimes A \longrightarrow A \otimes B$ is a twisting map if it satisfies:
(1) $R \circ\left(B \otimes \mu_{A}\right)=\left(\mu_{A} \otimes B\right) \circ(A \otimes R) \circ(R \otimes A)$
(2) $R \circ\left(\mu_{B} \otimes A\right)=\left(A \otimes \mu_{B}\right) \circ(R \otimes B) \circ(B \otimes R)$

Theorem

The $\operatorname{map} \mu_{R}:=\left(\mu_{A} \otimes \mu_{B}\right) \circ(A \otimes R \otimes B)$ is an associative product in $A \otimes B$ if, and only if, R is a twisting map.

We write $A \otimes_{R} B$ to denote the algebra $\left(A \otimes B, \mu_{R}\right)$.

Equivalence theorem

Theorem (Cap-Schichl-Vanžura, 1995)
Let $\left(X, i_{A}, i_{B}\right)$ a twisted tensor product of A and B, then there is a unique twisting map $R: B \otimes A \rightarrow A \otimes B$ such that X is isomorphic to $A \otimes_{R} B$ as a twisted tensor product.

So, studying twisted tensor products is equivalent to study twisting maps.

Equivalence theorem

Theorem (Cap-Schichl-Vanžura, 1995)
Let $\left(X, i_{A}, i_{B}\right)$ a twisted tensor product of A and B, then there is a unique twisting map $R: B \otimes A \rightarrow A \otimes B$ such that X is isomorphic to $A \otimes_{R} B$ as a twisted tensor product.

So, studying twisted tensor products is equivalent to study twisting maps.

Properties of twisting maps (I)

Theorem (Extension to differential forms)
Any twisting map $R: B \otimes A \rightarrow A \otimes B$ extends to a unique twisting map $\tilde{R}: \Omega B \otimes \Omega A \rightarrow \Omega A \otimes \Omega B$ satisfying
(1) $\tilde{R} \circ\left(d_{B} \otimes \Omega A\right)=\left(\varepsilon_{A} \otimes d_{B}\right) \circ \tilde{R}$,

Moreover, $\Omega A \otimes_{\tilde{R}} \Omega B$ is a graded differential algebra with differential $d(\varphi \otimes \omega):=d_{A} \varphi \otimes \omega+(-1)^{|\varphi|} \varphi \otimes d_{B} \omega$.

Properties of twisting maps (I)

Theorem (Extension to differential forms)
Any twisting map $R: B \otimes A \rightarrow A \otimes B$ extends to a unique twisting map $\tilde{R}: \Omega B \otimes \Omega A \rightarrow \Omega A \otimes \Omega B$ satisfying
(1) $\tilde{R} \circ\left(d_{B} \otimes \Omega A\right)=\left(\varepsilon_{A} \otimes d_{B}\right) \circ \tilde{R}$,
(2) $\tilde{R} \circ\left(\Omega B \otimes d_{A}\right)=\left(d_{A} \otimes \varepsilon_{B}\right) \circ \tilde{R}$.

Moreover, $\Omega A \otimes_{\tilde{R}} \Omega B$ is a graded differential algebra with differential $d(\varphi \otimes \omega):=d_{A} \varphi \otimes \omega+(-1)^{|\varphi|} \varphi \otimes d_{B} \omega$.

Properties of twisting maps (I)

Theorem (Extension to differential forms)
Any twisting map $R: B \otimes A \rightarrow A \otimes B$ extends to a unique twisting map $\tilde{R}: \Omega B \otimes \Omega A \rightarrow \Omega A \otimes \Omega B$ satisfying
(1) $\tilde{R} \circ\left(d_{B} \otimes \Omega A\right)=\left(\varepsilon_{A} \otimes d_{B}\right) \circ \tilde{R}$,
(2) $\tilde{R} \circ\left(\Omega B \otimes d_{A}\right)=\left(d_{A} \otimes \varepsilon_{B}\right) \circ \tilde{R}$.

Moreover, $\Omega A \otimes_{\tilde{R}} \Omega B$ is a graded differential algebra with differential $d(\varphi \otimes \omega):=d_{A} \varphi \otimes \omega+(-1)^{|\varphi|} \varphi \otimes d_{B} \omega$.

Properties of twisting maps (II)

Theorem (Lifting of involutions)

A and $B *$-algebras, $R: B \otimes A \rightarrow A \otimes B$ twisting map such that

$$
\left(R \circ\left(j_{B} \otimes j_{A}\right) \circ \tau\right) \circ\left(R \circ\left(j_{B} \otimes j_{A}\right) \circ \tau\right)=A \otimes B,
$$

then $A \otimes_{R} B$ is a $*$-algebra with involution $R \circ\left(j_{B} \otimes j_{A}\right) \circ \tau$.

Properties of twisting maps (II)

Theorem (Lifting of involutions)

A and $B *$-algebras, $R: B \otimes A \rightarrow A \otimes B$ twisting map such that

$$
\left(R \circ\left(j_{B} \otimes j_{A}\right) \circ \tau\right) \circ\left(R \circ\left(j_{B} \otimes j_{A}\right) \circ \tau\right)=A \otimes B,
$$

then $A \otimes_{R} B$ is a $*$-algebra with involution $R \circ\left(j_{B} \otimes j_{A}\right) \circ \tau$.

Outline

(1) The origin of our problem

- Algebra-Geometry dualities
- Objectives
(2) The Twisted Tensor Product
- Definition and Properties
- The braiding knotation
(3) Iterating the Twisted Tensor Products
- The construction
- The results
- Examples

Braiding knotation

- Composition gof:
- Tensor product, $f \otimes g: A \otimes B \rightarrow C \otimes D$:
- Algebra product:

Braiding knotation

- Linear map $f: A \rightarrow B: \stackrel{A}{\stackrel{A}{\mid},}$
- Composition $g \circ f$: A
1
(fl.
1
9
9
C
- Tensor product, $f \otimes g: A \otimes B \rightarrow C \otimes D$:
- Algebra product:

Braiding knotation

- Linear map $f: A \rightarrow B: \begin{gathered}A \\ \underset{B}{\mid}, ~ \\ { }_{B}\end{gathered}$

- Algebra product:

Braiding knotation

- Linear map $f: A \rightarrow B: \begin{gathered}\stackrel{A}{\oplus} \\ \underset{B}{\mid}\end{gathered}$

- Algebra product: \underbrace{A}_{A}.

Braiding knotation

- unit map on $A: \underset{A}{\underset{A}{A}} \underset{\substack{\text {. } \\ \hline}}{ }$

Braiding knotation

- unit map on A : $\underset{A}{\text { A. }}$.
- Algebra map $f: A \rightarrow B$:

Braiding knotation

- unit map on A : $\underset{A}{\text { A. }}$.
- Algebra map $f: A \rightarrow B$:

Braiding knotation

- Twisting map $R: B \otimes A \rightarrow A \otimes B$:

- Twisting conditions:

Braiding knotation

- Twisting map $R: B \otimes A \rightarrow A \otimes B$:

- Twisting conditions:

Braiding knotation

- Twisting map $R: B \otimes A \rightarrow A \otimes B$:

- Twisting conditions:

Iterating the Twisted Tensor Products

Outline

(1) The origin of our problem

- Algebra-Geometry dualities
- Objectives
(2) The Twisted Tensor Product
- Definition and Properties
- The braiding knotation
(3) Iterating the Twisted Tensor Products
- The construction
- The results
- Examples

Iterated version of the Twisted Tensor Product

- A product of spaces should allow to multiply any number of them.
- Every single factor should be embedded in a canonical way.
- The product should be recovered from two-terms products.

Iterated version of the Twisted Tensor Product

- A product of spaces should allow to multiply any number of them.
- Every single factor should be embedded in a canonical way.
- The product should be recovered from two-terms products.

Iterated version of the Twisted Tensor Product

- A product of spaces should allow to multiply any number of them.
- Every single factor should be embedded in a canonical way.
- The product should be recovered from two-terms products.

Framework for this section

(1) A, B and C algebras,
(3) Twisting maps
(0) $T_{1}: C \otimes\left(A \otimes_{R_{1}} B\right) \longrightarrow\left(A \otimes_{R_{1}} B\right) \otimes C$ given by $T_{1}:=\left(A \otimes R_{2}\right) \circ\left(R_{3} \otimes B\right)$.

- $T_{2}:\left(B \otimes R_{2} C\right) \otimes A \longrightarrow A \otimes\left(B \otimes_{R_{2}} C\right)$ given by $T_{2}=\left(R_{1} \otimes C\right) \circ\left(B \otimes R_{3}\right)$.

Are T_{1} and T_{2} twisting maps?

Framework for this section

(1) A, B and C algebras,
(2) Twisting maps

$$
\begin{aligned}
& R_{1}: B \otimes A \longrightarrow A \otimes B, \\
& R_{2}: C \otimes B \longrightarrow B \otimes C, \\
& R_{3}: C \otimes A \longrightarrow A \otimes C
\end{aligned}
$$

Framework for this section

(1) A, B and C algebras,
(2) Twisting maps

$$
\begin{aligned}
& R_{1}: B \otimes A \longrightarrow A \otimes B, \\
& R_{2}: C \otimes B \longrightarrow B \otimes C, \\
& R_{3}: C \otimes A \longrightarrow A \otimes C
\end{aligned}
$$

(3) $T_{1}: C \otimes\left(A \otimes_{R_{1}} B\right) \longrightarrow\left(A \otimes_{R_{1}} B\right) \otimes C$ given by $T_{1}:=\left(A \otimes R_{2}\right) \circ\left(R_{3} \otimes B\right)$.

Are T_{1} and T_{2} twisting maps?

Framework for this section

- A, B and C algebras,
(2) Twisting maps

$$
\begin{aligned}
& R_{1}: B \otimes A \longrightarrow A \otimes B, \\
& R_{2}: C \otimes B \longrightarrow B \otimes C, \\
& R_{3}: C \otimes A \longrightarrow A \otimes C
\end{aligned}
$$

(3) $T_{1}: C \otimes\left(A \otimes_{R_{1}} B\right) \longrightarrow\left(A \otimes_{R_{1}} B\right) \otimes C$ given by $T_{1}:=\left(A \otimes R_{2}\right) \circ\left(R_{3} \otimes B\right)$.
(1) $T_{2}:\left(B \otimes_{R_{2}} C\right) \otimes A \longrightarrow A \otimes\left(B \otimes_{R_{2}} C\right)$ given by $T_{2}=\left(R_{1} \otimes C\right) \circ\left(B \otimes R_{3}\right)$.
Are T_{1} and T_{2} twisting maps?

The hexagon equation

Theorem
The following conditions are equivalent:
(1) T_{1} is a twisting map.
(2) T_{2} is a twisting map.
(3) The maps R_{1}, R_{2} and R_{3} satisfy the hexagon equation:
$\left(A \otimes R_{2}\right) \circ\left(R_{3} \otimes B\right) \circ\left(C \otimes R_{7}\right)=\left(R_{1} \otimes C\right) \circ\left(B \otimes R_{3}\right) \circ\left(R_{2} \otimes A\right)$,
If all the are satisfied, then $A \otimes_{T_{2}}\left(B \otimes_{R_{2}} C\right)=\left(A \otimes_{R_{1}} B\right)$ In this case, we will denote this algebra by $A \otimes_{R_{1}} B \otimes_{R_{2}} C$.

The hexagon equation

Theorem
The following conditions are equivalent:
(0) T_{1} is a twisting map.
(2) T_{2} is a twisting map.

- The maps R_{1}, R_{2} and R_{3} satisfy the hexagon equation:
$\left(A \otimes R_{2}\right) \circ\left(R_{3} \otimes B\right) \circ\left(C \otimes R_{1}\right)=\left(R_{1} \otimes C\right) \circ\left(B \otimes R_{3}\right) \circ\left(R_{2} \otimes A\right)$,
If all the are satisfied, then $A \otimes_{T_{2}}\left(B \otimes_{R_{2}} C\right)=\left(A \otimes_{R_{1}} B\right)$ In this case, we will denote this algebra by $A \otimes_{R_{1}} B \otimes_{R_{2}} C$.

The hexagon equation

Theorem

The following conditions are equivalent:
(1) T_{1} is a twisting map.
(2) T_{2} is a twisting map.
(3) The maps R_{1}, R_{2} and R_{3} satisfy the hexagon equation:

$$
\left(A \otimes R_{2}\right) \circ\left(R_{3} \otimes B\right) \circ\left(C \otimes R_{1}\right)=\left(R_{1} \otimes C\right) \circ\left(B \otimes R_{3}\right) \circ\left(R_{2} \otimes A\right),
$$

If all the are satisfied, then $A \otimes_{T_{2}}\left(B \otimes_{R_{2}} C\right)=\left(A \otimes_{R_{1}} B\right)$ In this case, we will denote this algebra by $A \otimes_{R_{1}} B \otimes_{R_{2}} C$.

The hexagon equation

Theorem

The following conditions are equivalent:
(1) T_{1} is a twisting map.
(2) T_{2} is a twisting map.
(0) The maps R_{1}, R_{2} and R_{3} satisfy the hexagon equation:

$$
\left(A \otimes R_{2}\right) \circ\left(R_{3} \otimes B\right) \circ\left(C \otimes R_{1}\right)=\left(R_{1} \otimes C\right) \circ\left(B \otimes R_{3}\right) \circ\left(R_{2} \otimes A\right),
$$

If all the are satisfied, then $A \otimes_{T_{2}}\left(B \otimes_{R_{2}} C\right)=\left(A \otimes_{R_{1}} B\right) \otimes_{T_{1}} C$. In this case, we will denote this algebra by $A \otimes_{R_{1}} B \otimes_{R_{2}} C$.

The hexagon equation

In braiding knotation, the hexagon equation is written as:

that is, it is one of the Reidmeister's moves for link
diagrams.

The hexagon equation

In braiding knotation, the hexagon equation is written as:

that is, it is one of the Reidmeister's moves for link diagrams.

Outline

(1) The origin of our problem

- Algebra-Geometry dualities
- Objectives
(2) The Twisted Tensor Product
- Definition and Properties
- The braiding knotation
(3) Iterating the Twisted Tensor Products
- The construction
- The results
- Examples

Splitting of twisting maps

Theorem (Right splitting)
A, B, C be algebras, $R_{1}: B \otimes A \rightarrow A \otimes B$ and
$T: C \otimes\left(A \otimes_{R_{1}} B\right) \rightarrow\left(A \otimes_{R_{1}} B\right) \otimes C$ twisting maps. TFAE:

Splitting of twisting maps

Theorem (Right splitting)
A, B, C be algebras, $R_{1}: B \otimes A \rightarrow A \otimes B$ and
$T: C \otimes\left(A \otimes_{R_{1}} B\right) \rightarrow\left(A \otimes_{R_{1}} B\right) \otimes C$ twisting maps. TFAE:
(0) There exist $R_{2}: C \otimes B \rightarrow B \otimes C$ and $R_{3}: C \otimes A \rightarrow A \otimes C$ twisting maps such that $T=\left(A \otimes R_{2}\right) \circ\left(R_{3} \otimes B\right)$.
(2) The map T satisfies the (right) splitting conditions:

Splitting of twisting maps

Theorem (Right splitting)

A, B, C be algebras, $R_{1}: B \otimes A \rightarrow A \otimes B$ and
$T: C \otimes\left(A \otimes_{R_{1}} B\right) \rightarrow\left(A \otimes_{R_{1}} B\right) \otimes C$ twisting maps. TFAE:
(0) There exist $R_{2}: C \otimes B \rightarrow B \otimes C$ and $R_{3}: C \otimes A \rightarrow A \otimes C$ t wisting maps such that $T=\left(A \otimes R_{2}\right) \circ\left(R_{3} \otimes B\right)$.
(2) The map T satisfies the (right) splitting conditions:

$$
\begin{aligned}
T(C \otimes(A \otimes 1)) & \subseteq(A \otimes 1) \otimes C, \\
T(C \otimes(1 \otimes B)) & \subseteq(1 \otimes B) \otimes C .
\end{aligned}
$$

The Coherence Theorem

Theorem (Coherence Theorem)

The twisting map conditions, together with the hexagon conditions, are the only ones we need to build a product of any number of factors.

Differential Forms

Theorem

A, B, C be algebras, R_{1}, R_{2}, R_{3} compatible twisting maps. Then the extended twisting maps R_{1}, \mathbb{R}_{2} and \mathbb{R}_{3} also satisfy the hexagon equation.
Moreover, $\Omega A \otimes_{\tilde{R}_{1}} \Omega B \otimes_{\tilde{R}_{2}} \Omega C$ is a d.g.a., with differential

Differential Forms

Theorem

A, B, C be algebras, R_{1}, R_{2}, R_{3} compatible twisting maps. Then the extended twisting maps $\widetilde{R}_{1}, \widetilde{R}_{2}$ and \widetilde{R}_{3} also satisfy the hexagon equation.
Moreover, $\Omega A \otimes_{\bar{R}} \Omega B \theta_{\bar{R}_{2}} \Omega C$ is a d.g.a., with differential

Differential Forms

Theorem

A, B, C be algebras, R_{1}, R_{2}, R_{3} compatible twisting maps. Then the extended twisting maps $\widetilde{R}_{1}, \widetilde{R}_{2}$ and \widetilde{R}_{3} also satisfy the hexagon equation.
Moreover, $\Omega A \otimes_{\tilde{R}_{1}} \Omega B \otimes_{\tilde{R}_{2}} \Omega C$ is a d.g.a., with differential

$$
d=d_{A} \otimes \Omega B \otimes \Omega C+\varepsilon_{A} \otimes d_{B} \otimes \Omega C+\varepsilon_{A} \otimes \varepsilon_{B} \otimes d_{C} .
$$

Involutions

Theorem

A, B, C be *-algebras, R_{1}, R_{2}, R_{3} compatible twisting maps such that

$$
\begin{aligned}
\left(R_{1} \circ\left(j_{B} \otimes j_{A}\right) \circ \tau_{A B}\right) \circ\left(R_{1} \circ\left(j_{B} \otimes j_{A}\right) \circ \tau_{A B}\right) & =A \otimes B, \\
\left(R_{2} \circ\left(j_{C} \otimes j_{B}\right) \circ \tau_{B C}\right) \circ\left(R_{2} \circ\left(j_{C} \otimes j_{B}\right) \circ \tau_{B C}\right) & =B \otimes C, \\
\left(R_{3} \circ\left(j_{C} \otimes j_{A}\right) \circ \tau_{A C}\right) \circ\left(R_{3} \circ\left(j_{C} \otimes j_{A}\right) \circ \tau_{A C}\right) & =A \otimes C .
\end{aligned}
$$

Then $A \otimes_{R_{1}} B \otimes_{R_{2}} C$ is $a *$-algebra with involution

Involutions

Theorem

A, B, C be *-algebras, R_{1}, R_{2}, R_{3} compatible twisting maps such that

$$
\begin{aligned}
\left(R_{1} \circ\left(j_{B} \otimes j_{A}\right) \circ \tau_{A B}\right) \circ\left(R_{1} \circ\left(j_{B} \otimes j_{A}\right) \circ \tau_{A B}\right) & =A \otimes B, \\
\left(R_{2} \circ\left(j_{C} \otimes j_{B}\right) \circ \tau_{B C}\right) \circ\left(R_{2} \circ\left(j_{C} \otimes j_{B}\right) \circ \tau_{B C}\right) & =B \otimes C, \\
\left(R_{3} \circ\left(j_{C} \otimes j_{A}\right) \circ \tau_{A C}\right) \circ\left(R_{3} \circ\left(j_{C} \otimes j_{A}\right) \circ \tau_{A C}\right) & =A \otimes C .
\end{aligned}
$$

Then $A \otimes_{R_{1}} B \otimes_{R_{2}} C$ is a $*$-algebra with involution

$$
\begin{aligned}
j= & \left(R_{1} \otimes C\right) \circ\left(B \otimes R_{3}\right) \circ\left(R_{2} \otimes A\right) \circ\left(j_{C} \otimes j_{B} \otimes j_{A}\right) \circ \\
& \circ\left(C \otimes \tau_{A B}\right) \circ\left(\tau_{A C} \otimes B\right) \circ\left(A \otimes \tau_{B C}\right),
\end{aligned}
$$

Outline

(1) The origin of our problem

- Algebra-Geometry dualities
- Objectives
(2) The Twisted Tensor Product
- Definition and Properties
- The braiding knotation
(3) Iterating the Twisted Tensor Products
- The construction
- The results
- Examples

Examples

- Connes' noncommutative plane associated to an antisymmetric matrix, $\theta=\left(\theta_{\mu \nu}\right) \in M_{n}(\mathbb{R})$, can be realized as an iterated twisted tensor product.

Examples

- Connes' noncommutative plane associated to an antisymmetric matrix, $\theta=\left(\theta_{\mu \nu}\right) \in M_{n}(\mathbb{R})$, can be realized as an iterated twisted tensor product.
(2) The Algebra of Observables of Nill-Szlachányi, associated to a finite-dimensional Hopf algebra H can be recovered as a direct limit of iterated twisted tensor products.

References I

A. Cap, H. Schichl, and J. Vanžura.

On twisted tensor products of algebras.
Comm. Algebra, 23:4701-4735, 1995.
A. Connes and M. Dubois-Violette.

Noncommutative finite-dimensional manifolds I. Spherical manifolds and related examples.
Comm. Math. Phys., 230:539-579, 2002.
F. Nill and K. Szlachányi.

Quantum chains of Hopf algebras with quantum double cosymmetry.
Comm. Math. Phys., 187:159-200, 1997.

