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Drinfeld twist

H bialgebra, F ∈ H ⊗ H a 2–cocycle.
HF new bialgebra:

Same algebra structure as H,
Comultiplication ∆F (h) := F∆(h)F−1.

A an H–module algebra.
AF−1 new algebra with a ∗a′ := (G1 ·a)(G2 ·a′) (being
F−1 := G1 ⊗G2).

Theorem (Majid, 1997)

AF−1 is an HF–module algebra, and

AF−1#HF
∼= A#H
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Drinfeld Double

(H, r = r1 ⊗ r2) a f. dim. quasitriangular Hopf algebra.
D(H) the Drinfeld double of H:

D(H) = H∗coop ⊗ H as a coalgebra.
Product (p ⊗ h)(p′ ⊗ h′) := p(h1 ⇀ p′ ↼ S−1(h3))⊗ h2h′

(where ⇀ and ↼ are the regular actions)

H∗ a left H–module algebra structure in H∗ given by

h · ϕ := h1 ⇀ ϕ ↼ S−1(h2)

ϕ ∗ ϕ′ := (ϕ ↼ S−1(r1))(r2
1 ⇀ ϕ′ ↼ S−1(r2

2 ))

Theorem (Majid, 1991)

The Drinfeld double is isomorphic to an smash product:

D(H) ∼= H∗#H
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“Unbraiding” of braid product

(H, r) a quasitriangular Hopf algebra
H+, H− ≤ H Hopf subalgebras with r ∈ H+ ⊗ H−

B a right H+–mod alg. C a right H−–mod alg.
B⊗C their braided product wrt c ⊗ b 7→ br1 ⊗ cr2

π : H+#B → B alg map with π(1#b) = b

Theorem (Fiore-Steinacker-Wess, 2003)

The map θ : C → B ⊗C given by θ(c) := π(r1#1)⊗ cr2 is an
alg. map from C to B⊗C and B⊗C ∼= B ⊗C.
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A trivial smash product

H a Hopf algebra with antipode S

A a left H-mod algebra
ϕ : A#H → A alg map such that ϕ(a#1) = a

Theorem (Fiore, 2002)

The map θ : H → A⊗ H, θ(h) := ϕ(1#S(h1))⊗ h2 is an alg
map from H to A#H and

A#H ∼= A⊗ H
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What have these results in common?

AF−1#HF
∼= A#H D(H) ∼= H∗#H

B⊗C ∼= B ⊗C A#H ∼= A⊗ H

Two algebras X and Y

A “product” Z of X and Y

A “deformation” X of X

A “product” Z̃ of X and Y

An algebra isomorphism X ∼= X̃
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The Question

A natural question arises:

Question
Is it possible to find a general result giving us all the former
isomorphisms?

The Answer: Yes, but first, we should clarify what do we
mean by “product” and “deformation”. . .
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What do we mean by “product”?

Definition (Cap-Schichl-Vanžura’94, Van Daele’94, . . . )

Z is a twisted tensor product of X and Y if there exist a
linear map R : Y ⊗ X −→ X ⊗ Y such that Z is isomorphic to
X ⊗ Y endowed with the product

µR := (µX ⊗ µY ) ◦ (X ⊗ R ⊗ Y )

Equiv. to conditions given in prof. Schneider’s talk:
iX : X ↪→ Z and iY : Y ↪→ Z injective algebra maps.
The map x ⊗ y 7−→ iX (x) · iY (y) is a linear isomorphism.

The origin of the story: “Distributive laws”, by J. Beck
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The maps for our examples

All the algebras in our examples are twisted tensor
products:
Drinfeld twist A#H = A⊗R H with R(h⊗ a) := h1 · a ⊗ h2.
Drinfeld double D(H) = H∗ ⊗R H with

R(h⊗ ϕ) := (h1 ⇀ ϕ ↼ S−1(h3))⊗ h2

Braided product B⊗C = B ⊗R C with
R(c ⊗ b) := b · r1 ⊗ c · r2

All the rest In general, all ordinary tensor products and
smash products are twisted tensor products.
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What do we mean by “deformation”?

Informal Definition
By a deformation of an algebra A we mean:

Some datum (maps, other algebras,. . . ) associated
to A

A new product defined in A upon this datum.

That is, we build a new product, keeping the old vector
space.

Remark
This is an inner deformation, by contrast to outer
deformations like Gerstenhaber’s formal deformation.
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Construction of our deformation I

1 A, B algebras
2 R : B ⊗A → A⊗ B linear map
3 Linear maps µ : B ⊗A → A and ρ : A → A⊗ B
4 Define ∗ : A⊗A → A by ∗ := mA ◦ (A⊗ µ) ◦ (ρ⊗A)

5 Assume the (technical and boring) compatibility
conditions:

ρ(1) = 1⊗ 1, mA ◦ (A⊗ µ) ◦ (ρ⊗ uA) = A
µ◦(B⊗∗) = mA◦(A⊗µ)◦(A⊗mB⊗A)◦(R⊗B⊗A)◦(B⊗ρ⊗A)
ρ ◦ ∗ = (mA ⊗mB) ◦ (A⊗ R ⊗ B) ◦ (ρ⊗ ρ)

Theorem
The map ∗ is an associative product in A.
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Construction of our deformation II

Remark
Former datum is a generalization of W. Ferrer and B.
Torrecillas left-right twisting datum.

Our first two examples fit into this deformation scheme:
Drinfeld twist: µ(h⊗ a) := h · a, ρ(a) := G1 · a ⊗G2.

Associated product is a ∗ a′ = (G1 · a)(G2 · a′),
giving AF−1 .

Drinfeld double: µ(h⊗ ϕ) := h1 ⇀ ϕ ↼ S−1(h2),
ρ(ϕ) := ϕ ↼ S−1(r1)⊗ r2, associated product
ϕ ∗ ϕ′ = (ϕ ↼ S−1(r1))(r2

1 ⇀ ϕ′ ↼ S−1(r2
2 )), as in

H∗.
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Invariance under twisting: Theorem I

A, B algebras,
(R, µ, ρ) left-right twisting datum with R twisting map.
λ : A → A⊗ B linear map such that

λ(1) = 1⊗ 1,
λ ◦mA = (mA ⊗mB) ◦ (A⊗ λ⊗ B) ◦ (A⊗ R) ◦ (λ⊗A)
(A⊗mB) ◦ (λ⊗ B) ◦ ρ = (A⊗mB) ◦ (ρ⊗ B) ◦ λ = A⊗ uB

Ad the deformation of A.

Theorem

Rd := (Ad ⊗mB) ◦ (λ⊗mB) ◦ (R ⊗ B) ◦ (B ⊗ ρ) is a twisting
map, and (A⊗mB) ◦ (ρ⊗ B) is an algebra isomorphism
between A⊗R B and Ad ⊗Rd B.



The motivation The product The deformation The theorems

Invariance under twisting: Theorem I

A, B algebras,
(R, µ, ρ) left-right twisting datum with R twisting map.
λ : A → A⊗ B linear map such that

λ(1) = 1⊗ 1,
λ ◦mA = (mA ⊗mB) ◦ (A⊗ λ⊗ B) ◦ (A⊗ R) ◦ (λ⊗A)
(A⊗mB) ◦ (λ⊗ B) ◦ ρ = (A⊗mB) ◦ (ρ⊗ B) ◦ λ = A⊗ uB

Ad the deformation of A.

Theorem

Rd := (Ad ⊗mB) ◦ (λ⊗mB) ◦ (R ⊗ B) ◦ (B ⊗ ρ) is a twisting
map, and (A⊗mB) ◦ (ρ⊗ B) is an algebra isomorphism
between A⊗R B and Ad ⊗Rd B.



The motivation The product The deformation The theorems

Invariance under twisting: Theorem I

A, B algebras,
(R, µ, ρ) left-right twisting datum with R twisting map.
λ : A → A⊗ B linear map such that

λ(1) = 1⊗ 1,
λ ◦mA = (mA ⊗mB) ◦ (A⊗ λ⊗ B) ◦ (A⊗ R) ◦ (λ⊗A)
(A⊗mB) ◦ (λ⊗ B) ◦ ρ = (A⊗mB) ◦ (ρ⊗ B) ◦ λ = A⊗ uB

Ad the deformation of A.

Theorem

Rd := (Ad ⊗mB) ◦ (λ⊗mB) ◦ (R ⊗ B) ◦ (B ⊗ ρ) is a twisting
map, and (A⊗mB) ◦ (ρ⊗ B) is an algebra isomorphism
between A⊗R B and Ad ⊗Rd B.



The motivation The product The deformation The theorems

Invariance under twisting: Theorem I

A, B algebras,
(R, µ, ρ) left-right twisting datum with R twisting map.
λ : A → A⊗ B linear map such that

λ(1) = 1⊗ 1,
λ ◦mA = (mA ⊗mB) ◦ (A⊗ λ⊗ B) ◦ (A⊗ R) ◦ (λ⊗A)
(A⊗mB) ◦ (λ⊗ B) ◦ ρ = (A⊗mB) ◦ (ρ⊗ B) ◦ λ = A⊗ uB

Ad the deformation of A.

Theorem

Rd := (Ad ⊗mB) ◦ (λ⊗mB) ◦ (R ⊗ B) ◦ (B ⊗ ρ) is a twisting
map, and (A⊗mB) ◦ (ρ⊗ B) is an algebra isomorphism
between A⊗R B and Ad ⊗Rd B.



The motivation The product The deformation The theorems

Invariance under twisting: Theorem I

A, B algebras,
(R, µ, ρ) left-right twisting datum with R twisting map.
λ : A → A⊗ B linear map such that

λ(1) = 1⊗ 1,
λ ◦mA = (mA ⊗mB) ◦ (A⊗ λ⊗ B) ◦ (A⊗ R) ◦ (λ⊗A)
(A⊗mB) ◦ (λ⊗ B) ◦ ρ = (A⊗mB) ◦ (ρ⊗ B) ◦ λ = A⊗ uB

Ad the deformation of A.

Theorem

Rd := (Ad ⊗mB) ◦ (λ⊗mB) ◦ (R ⊗ B) ◦ (B ⊗ ρ) is a twisting
map, and (A⊗mB) ◦ (ρ⊗ B) is an algebra isomorphism
between A⊗R B and Ad ⊗Rd B.



The motivation The product The deformation The theorems

Consequences

The strong points of our theorem:
It recovers the isomorphisms in our first two examples.
The isomorphism is explicitly given.

And the weak ones...
Last two examples don’t fit.
The description of the deformation is very
complicated.
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Invariance under twisting: Theorem II

A⊗R B a twisted tensor product
A′ another algebra structure on A

ρ : A′ → A⊗R B an algebra map
λ : A → A⊗ B linear map as before

Theorem
The map R′ := (A′ ⊗mB) ◦ (λ⊗mB) ◦ (R ⊗ B) ◦ (B ⊗ ρ) is a
twisting map, and we have an algebra isomorphism

A′ ⊗R′ B ∼= A⊗R B

given by (A⊗mB) ◦ (ρ⊗ B)
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Invariance Theorem II

This theorem generalizes the former one
It also contains the last two examples:
Unbraiding: λ(c) := π(u1#1)⊗ c · u2,

ρ(c) := π(r1#1)⊗ c · r2

Trivial smash: ρ(h) = ϕ(1#S(h1))⊗ h2,
λ(h) = ϕ(1#h1)⊗ h2

(In this cases, there is no deformation)
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Can this theorem be of any use?

Possible ways of taking advantage of the Invariance
Theorem:

Use it to relate two different twisted tensor products.
Could help with the classification, up to isomorphism,
of factorization structures
Explicitly build a deformation in the terms of the
theorem in order to build a new object isomorphic to
the original one.
Could be used to replace a complicated twisting
map by a simpler one
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Final remarks

1 Most of the results can be translated to (strict)
monoidal categories

2 Under suitable conditions, the Invariance Theorem
can be iterated (cf [JLPVO]).

Moral
The study of twisted tensor products allows us to unify
apparently unrelated results, proving to be a useful tool in
Hopf algebra theory.
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