Invariance under twisting

Javier López Peña

"New techniques in Hopf Algebras and Graded Ring Theory"
Brussels, September 19th-23rd 2006

Based on a joint work with:

- Pascual Jara,
- Florin Panaite,
- Fred Van Oystaeyen
arxiv.org: math.QA/051 1280

Outline

(1) The motivation
(2) The product
(3) The deformation

4 The theorems

Outline

(1) The motivation
(2) The product

3 The deformation

4 The theorems

Drinfeld twist

- H bialgebra, $F \in H \otimes H$ a 2-cocycle.
- H_{F} new bialgebra:
- Same algebra structure as H,
- Comultiplication $\Delta_{F}(h)$
- A_{F-1} new algebra with $a * a^{\prime}:=\left(G^{1} \cdot a\right)\left(G^{2} \cdot a^{\prime}\right)$ (being $\left.F^{-1}:=G^{1} \otimes G^{2}\right)$.

Theorem (Majid, 1997)
A_{E-1} is an H_{F}-module alaebra, and

$$
A_{F-1} \# H_{F} \cong A \# H
$$

Drinfeld twist

- H bialgebra, $F \in H \otimes H$ a 2-cocycle.
- H_{F} new bialgebra:
- Same algebra structure as H,
- Comultiplication $\Delta_{F}(h)$
an H-module algebra.

Theorem (Majid, 1997)
A_{F} is an H_{F} module algebra, and

Drinfeld twist

- H bialgebra, $F \in H \otimes H$ a 2-cocycle.
- H_{F} new bialgebra:
- Same algebra structure as H,
- A an H-module algebra.

A_{F-1} is an H_{F}-module algebra, and

Drinfeld twist

- H bialgebra, $F \in H \otimes H$ a 2-cocycle.
- H_{F} new bialgebra:
- Same algebra structure as H,
- Comultiplication $\Delta_{F}(h):=F \Delta(h) F^{-1}$.
- A an H-module algebra.
- A_{F-1} new algebra with $a * a^{\prime}:=\left(G^{1} \cdot a\right)\left(G^{2} \cdot a^{\prime}\right)$ (being

Theorem (Majid, 1997)
A_{E-1} is an H_{E}-module alaebra, and
$A_{F-1} \# H_{F} \cong A \# H$

Drinfeld twist

- H bialgebra, $F \in H \otimes H$ a 2-cocycle.
- H_{F} new bialgebra:
- Same algebra structure as H,
- Comultiplication $\Delta_{F}(h):=F \Delta(h) F^{-1}$.
- A an H-module algebra.

A_{F-1} is an H_{F}-module algebra, and

Drinfeld twist

- H bialgebra, $F \in H \otimes H$ a 2-cocycle.
- H_{F} new bialgebra:
- Same algebra structure as H,
- Comultiplication $\Delta_{F}(h):=F \Delta(h) F^{-1}$.
- A an H-module algebra.
- A_{F-1} new algebra with $a * a^{\prime}:=\left(G^{1} \cdot a\right)\left(G^{2} \cdot a^{\prime}\right)$ (being $F^{-1}:=G^{1} \otimes G^{2}$).

Drinfeld twist

- H bialgebra, $F \in H \otimes H$ a 2-cocycle.
- H_{F} new bialgebra:
- Same algebra structure as H,
- Comultiplication $\Delta_{F}(h):=F \Delta(h) F^{-1}$.
- A an H-module algebra.
- A_{F-1} new algebra with $a * a^{\prime}:=\left(G^{1} \cdot a\right)\left(G^{2} \cdot a^{\prime}\right)$ (being $\left.F^{-1}:=G^{1} \otimes G^{2}\right)$.

Theorem (Majid, 1997)
$A_{F^{-1}}$ is an H_{F}-module algebra, and

$$
A_{F-1} \# H_{F} \cong A \# H
$$

Drinfeld Double

- $\left(H, r=r^{1} \otimes r^{2}\right)$ a f. dim. quasitriangular Hopf algebra.
- $D(H)$ the Drinfeld double of H :
- $\mathcal{D}(H)=H^{* c o o p} \otimes H$ as a coalgebra.
(where - and $<$ are the regular actions)
- \underline{H}^{*} a left H-module algebra structure in H^{*} given by

Theorem (Majid, 1991)
The Drinfeld double is isomorphic to an smash product:

Drinfeld Double

- $\left(H, r=r^{1} \otimes r^{2}\right)$ a f. dim. quasitriangular Hopf algebra.
- $\mathcal{D}(H)$ the Drinfeld double of H :
(where \rightharpoonup and \leftharpoonup are the regular actions)
- H^{*} a left H-module alaebra structure in H^{*} given by

The Drinfeld double is isomorphic to an smash product:

Drinfeld Double

- $\left(H, r=r^{1} \otimes r^{2}\right)$ a f. dim. quasitriangular Hopf algebra.
- $\mathcal{D}(H)$ the Drinfeld double of H :
- $\mathcal{D}(H)=H^{* c o o p} \otimes H$ as a coalgebra.
(where - and \leftharpoonup are the regular actions)
- \underline{H}^{*} a left H-module algebra structure in H^{*} given by

The Drinfeld double is isomorphic to an smash product:

Drinfeld Double

- $\left(H, r=r^{1} \otimes r^{2}\right)$ a f. dim. quasitriangular Hopf algebra.
- $\mathcal{D}(H)$ the Drinfeld double of H :
- $\mathcal{D}(H)=H^{* c o o p} \otimes H$ as a coalgebra.
- Product $(p \otimes h)\left(p^{\prime} \otimes h^{\prime}\right):=p\left(h_{1} \rightharpoonup p^{\prime} \leftharpoonup S^{-1}\left(h_{3}\right)\right) \otimes h_{2} h^{\prime}$ (where \rightharpoonup and \leftharpoonup are the regular actions)
- \underline{H}^{*} a left $H-m o d u l e ~ a l g e b r a ~ s t r u c t u r e ~ i n ~ H * ~ g i v e n ~ b y ~$

The Drinfeld double is isomorphic to an smash product:

Drinfeld Double

- $\left(H, r=r^{1} \otimes r^{2}\right)$ a f. dim. quasitriangular Hopf algebra.
- $\mathcal{D}(H)$ the Drinfeld double of H :
- $\mathcal{D}(H)=H^{* c o o p} \otimes H$ as a coalgebra.
- Product $(p \otimes h)\left(p^{\prime} \otimes h^{\prime}\right):=p\left(h_{1} \rightharpoonup p^{\prime} \leftharpoonup S^{-1}\left(h_{3}\right)\right) \otimes h_{2} h^{\prime}$ (where \rightharpoonup and \leftharpoonup are the regular actions)
- \underline{H}^{*} a left H-module algebra structure in H^{*} given by

$$
\begin{gathered}
h \cdot \varphi:=h_{1} \rightharpoonup \varphi \leftharpoonup S^{-1}\left(h_{2}\right) \\
\varphi * \varphi^{\prime}:=\left(\varphi \leftharpoonup S^{-1}\left(r^{1}\right)\right)\left(r_{1}^{2} \rightharpoonup \varphi^{\prime} \leftharpoonup S^{-1}\left(r_{2}^{2}\right)\right)
\end{gathered}
$$

The Drinfeld double is isomorphic to an smash product:
\qquad

Drinfeld Double

- $\left(H, r=r^{1} \otimes r^{2}\right)$ a f. dim. quasitriangular Hopf algebra.
- $\mathcal{D}(H)$ the Drinfeld double of H :
- $\mathcal{D}(H)=H^{* c o o p} \otimes H$ as a coalgebra.
- Product $(p \otimes h)\left(p^{\prime} \otimes h^{\prime}\right):=p\left(h_{1} \rightharpoonup p^{\prime} \leftharpoonup S^{-1}\left(h_{3}\right)\right) \otimes h_{2} h^{\prime}$ (where \rightharpoonup and \leftharpoonup are the regular actions)
- \underline{H}^{*} a left H-module algebra structure in H^{*} given by

$$
\begin{gathered}
h \cdot \varphi:=h_{1} \rightharpoonup \varphi \leftharpoonup S^{-1}\left(h_{2}\right) \\
\varphi * \varphi^{\prime}:=\left(\varphi \leftharpoonup S^{-1}\left(r^{1}\right)\right)\left(r_{1}^{2} \rightharpoonup \varphi^{\prime} \leftharpoonup S^{-1}\left(r_{2}^{2}\right)\right)
\end{gathered}
$$

Theorem (Majid, 1991)
The Drinfeld double is isomorphic to an smash product:

$$
\mathcal{D}(H) \cong \underline{H^{*}} \# H
$$

"Unbraiding" of braid product

- (H, r) a quasitriangular Hopf algebra - B a right $H^{+}-$mod alg. C a right $H^{-}-$mod alg. - $B \otimes C$ their braided product wrt $c \otimes b \mapsto b r^{1} \otimes$ - $\pi: H^{+} \# B \rightarrow B$ alg map with $\pi(1 \# b)=b$

"Unbraiding" of braid product

- (H, r) a quasitriangular Hopf algebra
- $\mathrm{H}^{+}, \mathrm{H}^{-} \leq \mathrm{H}$ Hopf subalgebras with $r \in \mathrm{H}^{+} \otimes \mathrm{H}^{-}$
- B a right $\mathrm{H}^{+}-$mod alg. C a right $\mathrm{H}^{-}-$mod alg.
- $B \otimes C$ their braided product wrt $c \otimes b \mapsto b r^{1} \otimes$
- $\pi: H^{+} \# B \rightarrow B$ alg map with $\pi(1 \# b)=b$

"Unbraiding" of braid product

- (H, r) a quasitriangular Hopf algebra
- $H^{+}, H^{-} \leq H$ Hopf subalgebras with $r \in H^{+} \otimes H^{-}$
- B a right $H^{+}-\bmod$ alg. C a right $H^{-}-\bmod$ alg.

"Unbraiding" of braid product

- (H, r) a quasitriangular Hopf algebra
- $\mathrm{H}^{+}, \mathrm{H}^{-} \leq H$ Hopf subalgebras with $r \in \mathrm{H}^{+} \otimes \mathrm{H}^{-}$
- B a right $H^{+}-$mod alg. C a right $H^{-}-$mod alg.
- $B \otimes C$ their braided product wrt $c \otimes b \mapsto b r^{1} \otimes c r^{2}$

"Unbraiding" of braid product

- (H, r) a quasitriangular Hopf algebra
- $\mathrm{H}^{+}, \mathrm{H}^{-} \leq H$ Hopf subalgebras with $r \in \mathrm{H}^{+} \otimes \mathrm{H}^{-}$
- B a right H^{+}-mod alg. C a right $\mathrm{H}^{-}-\bmod$ alg.
- $B \otimes C$ their braided product wrt $c \otimes b \mapsto b r^{1} \otimes c r^{2}$
- $\pi: H^{+} \# B \rightarrow B$ alg map with $\pi(1 \# b)=b$

"Unbraiding" of braid product

- (H, r) a quasitriangular Hopf algebra
- $\mathrm{H}^{+}, \mathrm{H}^{-} \leq H$ Hopf subalgebras with $r \in \mathrm{H}^{+} \otimes \mathrm{H}^{-}$
- B a right H^{+}-mod alg. C a right H^{-}-mod alg.
- $B \otimes C$ their braided product wrt $c \otimes b \mapsto b r^{1} \otimes c r^{2}$
- $\pi: H^{+} \# B \rightarrow B$ alg map with $\pi(1 \# b)=b$

Theorem (Fiore-Steinacker-Wess, 2003)

The map $\theta: C \rightarrow B \otimes C$ given by $\theta(c):=\pi\left(r^{1} \# 1\right) \otimes C r^{2}$ is an alg. map from C to $B \otimes C$ and $B \otimes C \cong B \otimes C$.

A trivial smash produc \dagger

- Ha Hopf algebra with antipode S
- A a left H-mod algebra
- $\varphi: A \# H \rightarrow A$ alg map such that $\varphi(a \# 1)=a$

Theorem (Fiore, 2002)
The map $\theta: H \rightarrow A \otimes H, \theta(h):=\varphi\left(1 \# S\left(h_{1}\right)\right) \otimes h_{2}$ is an alg map from H to $A \# H$ and

A trivial smash produc \dagger

- H a Hopf algebra with antipode S
- A a left H-mod algebra

A trivial smash produc \dagger

- Ha Hopf algebra with antipode S
- A a left H-mod algebra
- $\varphi: A \# H \rightarrow A$ alg map such that $\varphi(a \# 1)=a$

A trivial smash produc \dagger

- H a Hopf algebra with antipode S
- A a left H-mod algebra
- $\varphi: A \# H \rightarrow A$ alg map such that $\varphi(a \# 1)=a$

Theorem (Fiore, 2002)

The map $\theta: H \rightarrow A \otimes H, \theta(h):=\varphi\left(1 \# S\left(h_{1}\right)\right) \otimes h_{2}$ is an alg map from H to $A \# H$ and

$$
A \# H \cong A \otimes H
$$

What have these results in common?

$$
\begin{array}{cl}
A_{F-1} \# H_{F} \cong A \# H & \mathcal{D}(H) \cong H^{*} \# H \\
B \otimes C \cong B \otimes C & A \# H \cong A \otimes H
\end{array}
$$

- Two algebras X and Y

What have these results in common?

$$
\begin{array}{cl}
A_{F-1} \# H_{F} \cong A \# H & \mathcal{D}(H) \cong \underline{H}^{*} \# H \\
B \otimes C \cong B \otimes C & A \# H \cong A \otimes H
\end{array}
$$

- Two algebras X and Y

What have these results in common?

$$
\begin{array}{cl}
A_{F-1} \# H_{F} \cong A \# H & \mathcal{D}(H) \cong \underline{H}^{*} \# H \\
B \otimes C \cong B \otimes C & A \# H \cong A \otimes H
\end{array}
$$

- Two algebras X and Y
- A "product" Z of X and Y

What have these results in common?

$$
\begin{array}{cc}
A_{F-1} \# H_{F} \cong A \# H & \mathcal{D}(H) \cong H^{*} \# H \\
B \otimes C \cong B \otimes C & A \# H \cong \bar{A} \otimes H
\end{array}
$$

- Two algebras X and Y
- A "product" Z of X and Y
- A "deformation" \bar{X} of X

What have these results in common?

$$
\begin{array}{cc}
A_{F-1} \# H_{F} \cong A \# H & \mathcal{D}(H) \cong H^{*} \# H \\
B \otimes C C B \otimes C & A \# H \cong A \otimes H
\end{array}
$$

- Two algebras X and Y
- A "product" Z of X and Y
- A "deformation" \bar{X} of X
- A "product" \tilde{Z} of \bar{X} and Y

What have these results in common?

$$
\begin{array}{cc}
A_{F-1} \# H_{F} \cong A \# H & \mathcal{D}(H) \cong H^{*} \# H \\
B \otimes C \cong B \otimes C & A \# H \cong A \otimes H
\end{array}
$$

- Two algebras X and Y
- A "product" Z of X and Y
- A "deformation" \bar{X} of X
- A "product" Z of \bar{X} and Y
- An algebra isomorphism $X \cong \tilde{X}$

The Question

A natural question arises:

> Question
> Is it possible to find a general result giving us all the former isomorphisms?

The Answer: Yes, but first, we should clarify what do we mean by "product" and "deformation"

The Question

A natural question arises:
Question
Is it possible to find a general result giving us all the former isomorphisms?

The Answer: Yes, but first, we should clarify what do we mean by "product" and "deformation"

The Question

A natural question arises:

Question

Is it possible to find a general result giving us all the former isomorphisms?

The Answer: Yes, but first, we should clarify what do we mean by "product" and "deformation"...

Outline

(1) The motivation

(2) The product

3 The deformation

4 The theorems

What do we mean by "product"?

Definition (Cap-Schichl-Vanžura'94, Van Daele'94, ...)
Z is a twisted tensor product of X and Y if there exist a linear map $R: Y \otimes X \longrightarrow X \otimes Y$ such that Z is isomorphic to $X \otimes Y$ endowed with the product

$$
\mu_{R}:=\left(\mu_{X} \otimes \mu_{Y}\right) \circ(X \otimes R \otimes Y)
$$

Equiv. to conditions given in prof. Schneider's talk: - The map $x \otimes y \longmapsto i_{X}(x) \cdot i_{Y}(y)$ is a linear isomorphism The origin of the story: "Distributive laws", by J. Beck

What do we mean by "product"?

Definition (Cap-Schichl-Vanžura'94, Van Daele'94,)

Z is a twisted tensor product of X and Y if there exist a linear map $R: Y \otimes X \longrightarrow X \otimes Y$ such that Z is isomorphic to $X \otimes Y$ endowed with the product

$$
\mu_{R}:=\left(\mu_{X} \otimes \mu_{Y}\right) \circ(X \otimes R \otimes Y)
$$

Equiv. to conditions given in prof. Schneider's talk:

- $i_{X}: X \hookrightarrow Z$ and $i_{Y}: Y \hookrightarrow Z$ injective algebra maps.
- The map $x \otimes y \longmapsto i_{X}(x) \cdot i_{Y}(y)$ is a linear isomorphism.

What do we mean by "product"?

Definition (Cap-Schichl-Vanžura'94, Van Daele'94, ...)

Z is a twisted tensor product of X and Y if there exist a linear map $R: Y \otimes X \longrightarrow X \otimes Y$ such that Z is isomorphic to $X \otimes Y$ endowed with the product

$$
\mu_{R}:=\left(\mu_{X} \otimes \mu_{Y}\right) \circ(X \otimes R \otimes Y)
$$

Equiv. to conditions given in prof. Schneider's talk:

- $i_{X}: X \hookrightarrow Z$ and $i_{Y}: Y \hookrightarrow Z$ injective algebra maps.
- The map $x \otimes y \longmapsto i_{X}(x) \cdot i_{Y}(y)$ is a linear isomorphism.

The origin of the story: "Distributive laws", by J. Beck

The maps for our examples

All the algebras in our examples are twisted tensor products:

The maps for our examples

All the algebras in our examples are twisted tensor products:
Drinfeld twist $A \# H=A \otimes_{R} H$ with $R(h \otimes a):=h_{1} \cdot a \otimes h_{2}$.
Drinfeld double $\mathcal{D}(H)=H^{*} \otimes_{R} H$ with

Braided product $B \otimes \underline{\otimes} C=B \otimes_{R} C$ with
All the rest in general, all ordinary fensor products and smash products are twisted tensor products.

The maps for our examples

All the algebras in our examples are twisted tensor products:
Drinfeld twist $A \# H=A \otimes_{R} H$ with $R(h \otimes a):=h_{1} \cdot a \otimes h_{2}$.
Drinfeld double $\mathcal{D}(H)=H^{*} \otimes_{R} H$ with

$$
R(h \otimes \varphi):=\left(h_{1} \rightharpoonup \varphi \leftharpoonup S^{-1}\left(h_{3}\right)\right) \otimes h_{2}
$$

All the rest In general, all ordinary tensor products and smash products are twisted tensor products.

The maps for our examples

All the algebras in our examples are twisted tensor products:
Drinfeld twist $A \# H=A \otimes_{R} H$ with $R(h \otimes a):=h_{1} \cdot a \otimes h_{2}$.
Drinfeld double $\mathcal{D}(H)=H^{*} \otimes_{R} H$ with

$$
R(h \otimes \varphi):=\left(h_{1} \rightharpoonup \varphi \leftharpoonup S^{-1}\left(h_{3}\right)\right) \otimes h_{2}
$$

Braided product $B \otimes \underline{\otimes} C=B \otimes_{R} C$ with

$$
R(c \otimes b):=b \cdot r^{\prime} \otimes c \cdot r^{2}
$$

All the rest In general, all ordinary tensor products and smash products are twisted tensor products.

The maps for our examples

All the algebras in our examples are twisted tensor products:
Drinfeld twist $A \# H=A \otimes_{R} H$ with $R(h \otimes a):=h_{1} \cdot a \otimes h_{2}$.
Drinfeld double $\mathcal{D}(H)=H^{*} \otimes_{R} H$ with

$$
R(h \otimes \varphi):=\left(h_{1} \rightharpoonup \varphi \leftharpoonup S^{-1}\left(h_{3}\right)\right) \otimes h_{2}
$$

Braided product $B \otimes \underline{\otimes}=B \otimes_{R} C$ with

$$
R(c \otimes \bar{b}):=b \cdot r^{1} \otimes c \cdot r^{2}
$$

All the rest In general, all ordinary tensor products and smash products are twisted tensor products.

Outline

(1) The motivation

(2) The produc \dagger

(3) The deformation
(4) The theorems

What do we mean by "deformation"?

Informal Definition
By a deformation of an algebra A we mean:

- Some datum (maps, other algebras,....) associated to A
- A new product defined in A upon this datum.

That is, we build a new product, keeping the old vector space.

This is an inner deformation, by contrast to outer deformations like Gerstenhaber's formal deformation.

What do we mean by "deformation"?

Informal Definition

By a deformation of an algebra A we mean:

- Some datum (maps, other algebras,... .) associated to A
- A new product defined in A upon this datum.

```
That is, we build a new product, keeping the old vector space.
This is an inner deformation, by contrast to outer deformations like Gerstenhaber's formal deformation.
```


What do we mean by "deformation"?

Informal Definition

By a deformation of an algebra A we mean:

- Some datum (maps, other algebras,....) associated to A
- A new product defined in A upon this datum.

That is, we build a new product, keeping the old vector space.

This is an inner deformation, by contrast to outer deformations like Gerstenhaber's formal deformation.

What do we mean by "deformation"?

Informal Definition

By a deformation of an algebra A we mean:

- Some datum (maps, other algebras,....) associated to A
- A new product defined in A upon this datum.

That is, we build a new product, keeping the old vector space.

This is an inner deformation, by contrast to outer deformations like Gerstenhaber's formal deformation.

What do we mean by "deformation"?

Informal Definition

By a deformation of an algebra A we mean:

- Some datum (maps, other algebras,... .) associated to A
- A new product defined in A upon this datum.

That is, we build a new product, keeping the old vector space.

Remark

This is an inner deformation, by contrast to outer deformations like Gerstenhaber's formal deformation.

Construction of our deformation I

(1) A, B algebras
(2) $R: B \otimes A \rightarrow A \otimes B$ linear map
(3) Linear maps $\mu: B \otimes A \rightarrow A$ and $\rho: A \rightarrow A \otimes B$
(이 Define $*: A \otimes A \rightarrow A$ by
(0) Assume the (technical and boring) compatibility conditions:

```
- }\rho(1)=1\otimes1,\mp@subsup{m}{A}{}\circ(A\otimes\mu)\circ(\rho\otimes\mp@subsup{U}{A}{})=
- }\mu\circ(B\otimes*)=\mp@subsup{m}{A}{}\circ(A\otimes\mu)\circ(A\otimes\mp@subsup{m}{B}{}\otimesA)\circ(R\otimesB\otimesA)\circ(B\otimes\rho\otimesA
- \rho\circ*=(m
```

Theorem
The man * is an associative product in A.

Construction of our deformation I

(1) A, B algebras
(2) $R: B \otimes A \rightarrow A \otimes B$ linear map
(3) Linear maps $\mu: B \otimes A \rightarrow A$ and $\rho: A \rightarrow A \otimes B$
(4) Define $*: A \otimes A \rightarrow A$ by
(5) Assume the (technical and boring) compatibility conditions:

The map * is an associative product in A.

Construction of our deformation I

(1) A, B algebras
(2) $R: B \otimes A \rightarrow A \otimes B$ linear map
(3) Linear maps $\mu: B \otimes A \rightarrow A$ and $\rho: A \rightarrow A \otimes B$
(-) Define $*: A \otimes A \rightarrow A$ by *
(0) Assume the (technical and boring) compatibility conditions:

The map * is an associative product in A.

Construction of our deformation I

(1) A, B algebras
(2) $R: B \otimes A \rightarrow A \otimes B$ linear map
(3) Linear maps $\mu: B \otimes A \rightarrow A$ and $\rho: A \rightarrow A \otimes B$
(9) Define $*: A \otimes A \rightarrow A$ by $*:=m_{A} \circ(A \otimes \mu) \circ(\rho \otimes A)$
© Assume the (technical and boring) compatibility conditions:

- ρ
-

em
en

The map * is an associative product in A.

Construction of our deformation I

(1) A, B algebras
(2) $R: B \otimes A \rightarrow A \otimes B$ linear map
(3) Linear maps $\mu: B \otimes A \rightarrow A$ and $\rho: A \rightarrow A \otimes B$
(1) Define $*: A \otimes A \rightarrow A$ by $*:=m_{A} \circ(A \otimes \mu) \circ(\rho \otimes A)$
(6) Assume the (technical and boring) compatibility conditions:

$$
\text { - } \rho(1)=1 \otimes 1, m_{A} \circ(A \otimes \mu) \circ\left(\rho \otimes u_{A}\right)=A
$$

The map * is an associative product in A.

Construction of our deformation I

(1) A, B algebras
(2) $R: B \otimes A \rightarrow A \otimes B$ linear map
(3) Linear maps $\mu: B \otimes A \rightarrow A$ and $\rho: A \rightarrow A \otimes B$
(4) Define $*: A \otimes A \rightarrow A$ by $*:=m_{A} \circ(A \otimes \mu) \circ(\rho \otimes A)$
(6) Assume the (technical and boring) compatibility conditions:

- $\rho(1)=1 \otimes 1, m_{A} \circ(A \otimes \mu) \circ\left(\rho \otimes u_{A}\right)=A$
- $\mu \circ(B \otimes *)=m_{A} \circ(A \otimes \mu) \circ\left(A \otimes m_{B} \otimes A\right) \circ(R \otimes B \otimes A) \circ(B \otimes \rho \otimes A)$

Construction of our deformation I

(1) A, B algebras
(2) $R: B \otimes A \rightarrow A \otimes B$ linear map
(3) Linear maps $\mu: B \otimes A \rightarrow A$ and $\rho: A \rightarrow A \otimes B$
(4) Define $*: A \otimes A \rightarrow A$ by $*:=m_{A} \circ(A \otimes \mu) \circ(\rho \otimes A)$
(0) Assume the (technical and boring) compatibility conditions:

- $\rho(1)=1 \otimes 1, m_{A} \circ(A \otimes \mu) \circ\left(\rho \otimes U_{A}\right)=A$
- $\mu \circ(B \otimes *)=m_{A} \circ(A \otimes \mu) \circ\left(A \otimes m_{B} \otimes A\right) \circ(R \otimes B \otimes A) \circ(B \otimes \rho \otimes A)$
- $\rho \circ *=\left(m_{A} \otimes m_{B}\right) \circ(A \otimes R \otimes B) \circ(\rho \otimes \rho)$

Construction of our deformation I

(1) A, B algebras
(2) $R: B \otimes A \rightarrow A \otimes B$ linear map
(3) Linear maps $\mu: B \otimes A \rightarrow A$ and $\rho: A \rightarrow A \otimes B$
(2) Define $*: A \otimes A \rightarrow A$ by $*:=m_{A} \circ(A \otimes \mu) \circ(\rho \otimes A)$
(6) Assume the (technical and boring) compatibility conditions:

- $\rho(1)=1 \otimes 1, m_{A} \circ(A \otimes \mu) \circ\left(\rho \otimes u_{A}\right)=A$
- $\mu \circ(B \otimes *)=m_{A} \circ(A \otimes \mu) \circ\left(A \otimes m_{B} \otimes A\right) \circ(R \otimes B \otimes A) \circ(B \otimes \rho \otimes A)$
- $\rho \circ *=\left(m_{A} \otimes m_{B}\right) \circ(A \otimes R \otimes B) \circ(\rho \otimes \rho)$

Theorem

The map * is an associative product in A.

Construction of our deformation II

Remark

Former datum is a generalization of W. Ferrer and B. Torrecillas left-right twisting datum.

Our first two examples fit into this deformation scheme: Drinfeld twist: $\mu(h \otimes a):=h \cdot a, \rho(a)$ giving A_{F-1}

Construction of our deformation II

Remark

Former datum is a generalization of W . Ferrer and B . Torrecillas left-right twisting datum.

Our first two examples fit into this deformation scheme:

Construction of our deformation II

Remark

Former datum is a generalization of W . Ferrer and B . Torrecillas left-right twisting datum.

Our first two examples fit into this deformation scheme:
Drinfeld twist: $\mu(h \otimes a):=h \cdot a, \rho(a):=\mathcal{G}^{1} \cdot a \otimes \mathcal{G}^{2}$.
Associated product is $a * a^{\prime}=\left(G^{1} \cdot a\right)\left(G^{2} \cdot a^{\prime}\right)$, giving A_{F-1}.

Construction of our deformation II

Remark

Former datum is a generalization of W. Ferrer and B. Torrecillas left-right twisting datum.

Our first two examples fit into this deformation scheme:
Drinfeld twist: $\mu(h \otimes a):=h \cdot a, \rho(a):=\mathcal{G}^{1} \cdot a \otimes \boldsymbol{G}^{2}$.
Associated product is $a * a^{\prime}=\left(G^{1} \cdot a\right)\left(G^{2} \cdot a^{\prime}\right)$, giving A_{F-1}.
Drinfeld double: $\mu(h \otimes \varphi):=h_{1} \rightharpoonup \varphi \leftharpoonup S^{-1}\left(h_{2}\right)$,
$\rho(\varphi):=\varphi \leftharpoonup S^{-1}\left(r^{1}\right) \otimes r^{2}$, associated product $\varphi * \varphi^{\prime}=\left(\varphi \leftharpoonup S^{-1}\left(r^{1}\right)\right)\left(r_{1}^{2} \rightharpoonup \varphi^{\prime} \leftharpoonup S^{-1}\left(r_{2}^{2}\right)\right)$, as in \underline{H}^{*}.

Outline

(1) The motivation

(2) The product

3 The deformation

4 The theorems

Invariance under twisting: Theorem I

- A, B algebras,
- (R, μ, ρ) left-right twisting datum with R twisting map. - $\lambda: A \rightarrow A \otimes B$ linear map such that - $\lambda(1)=1 \otimes 1$ - $\lambda \circ m_{A}=\left(m_{A} \otimes m_{B}\right) \circ(A \otimes \lambda \otimes B) \circ(A \otimes R) \circ(\lambda \otimes A)$ - $\left(A \otimes m_{B}\right) \circ(\lambda \otimes B) \circ \rho=\left(A \otimes m_{B}\right) \circ(\rho \otimes B) \circ \lambda=A \otimes U_{B}$ - A^{d} the deformation of A.

Invariance under twisting: Theorem I

- A, B algebras,
- (R, μ, ρ) left-right twisting datum with R twisting map.
- A^{d} the deformation of A.

Invariance under twisting: Theorem I

- A, B algebras,
- (R, μ, ρ) left-right twisting datum with R twisting map.
- $\lambda: A \rightarrow A \otimes B$ linear map such that
- $\lambda(1)=1 \otimes 1$,
- $\lambda \circ m_{A}=\left(m_{A} \otimes m_{B}\right) \circ(A \otimes \lambda \otimes B) \circ(A \otimes R) \circ(\lambda \otimes A)$
- $\left(A \otimes m_{B}\right) \circ(\lambda \otimes B) \circ \rho=\left(A \otimes m_{B}\right) \circ(\rho \otimes B) \circ \lambda=A \otimes u_{B}$

Theorem

Invariance under twisting: Theorem I

- A, B algebras,
- (R, μ, ρ) left-right twisting datum with R twisting map.
- λ : $A \rightarrow A \otimes B$ linear map such that
- $\lambda(1)=1 \otimes 1$,
- $\lambda \circ m_{A}=\left(m_{A} \otimes m_{B}\right) \circ(A \otimes \lambda \otimes B) \circ(A \otimes R) \circ(\lambda \otimes A)$
- $\left(A \otimes m_{B}\right) \circ(\lambda \otimes B) \circ \rho=\left(A \otimes m_{B}\right) \circ(\rho \otimes B) \circ \lambda=A \otimes u_{B}$
- A^{d} the deformation of A.

Theorem

Invariance under twisting: Theorem I

- A, B algebras,
- (R, μ, ρ) left-right twisting datum with R twisting map.
- $\lambda: A \rightarrow A \otimes B$ linear map such that
- $\lambda(1)=1 \otimes 1$,
- $\lambda \circ m_{A}=\left(m_{A} \otimes m_{B}\right) \circ(A \otimes \lambda \otimes B) \circ(A \otimes R) \circ(\lambda \otimes A)$
- $\left(A \otimes m_{B}\right) \circ(\lambda \otimes B) \circ \rho=\left(A \otimes m_{B}\right) \circ(\rho \otimes B) \circ \lambda=A \otimes u_{B}$
- A^{d} the deformation of A.

Theorem

$R^{d}:=\left(A^{d} \otimes m_{B}\right) \circ\left(\lambda \otimes m_{B}\right) \circ(R \otimes B) \circ(B \otimes \rho)$ is a twisting map, and $\left(A \otimes m_{B}\right) \circ(\rho \otimes B)$ is an algebra isomorphism between $A \otimes_{R} B$ and $A^{d} \otimes_{R^{d}} B$.

Consequences

The strong points of our theorem:

- It recovers the isomorphisms in our first two examples.
- The isomorphism is explicitly given.

And the weak ones.

- Last two examples don’† fit.
- The description of the deformation is very complicated.

Consequences

The strong points of our theorem:

- It recovers the isomorphisms in our first two examples.
- The isomorphism is explicitly given.

And the weak ones...

- Last two examples clon'† fit.
- The description of the deformation is very complicated.

Consequences

The strong points of our theorem:

- It recovers the isomorphisms in our first two examples.
- The isomorphism is explicitly given.

And the weak ones...

- Last two examples don’t fit.
- The description of the deformotion is very complicated.

Consequences

The strong points of our theorem:

- It recovers the isomorphisms in our first two examples.
- The isomorphism is explicitly given.

And the weak ones...

- The description of the deformation is very comnlicated

Consequences

The strong points of our theorem:

- It recovers the isomorphisms in our first two examples.
- The isomorphism is explicitly given.

And the weak ones...

- Last two examples don'† fit.

complicated.

Consequences

The strong points of our theorem:

- It recovers the isomorphisms in our first two examples.
- The isomorphism is explicitly given.

And the weak ones...

- Last two examples don'† fit.
- The description of the deformation is very complicated.

Invariance under twisting: Theorem II

- $A \otimes_{R} B$ a twisted tensor product
- A^{\prime} another algebra structure on A
- $\rho: A^{\prime} \rightarrow A \otimes_{R} B$ an algebra map
- $\lambda: A \rightarrow A \otimes B$ linear map as before

Theorem
 The map $R^{\prime}:=\left(A^{\prime} \otimes m_{B}\right) \circ\left(\lambda \otimes m_{B}\right) \circ(R \otimes B) \circ(B \otimes \rho)$ is a twisting map, and we have an algebra isomorphism

given by $\left(A \otimes m_{B}\right) \circ(\rho \otimes B)$

Invariance under twisting: Theorem II

- $A \otimes_{R} B$ a twisted tensor product
- A^{\prime} another algebra structure on A

given by $\left(A \otimes m_{B}\right) \circ(\rho \otimes B)$

Invariance under twisting: Theorem II

- $A \otimes_{R} B$ a twisted tensor product
- A^{\prime} another algebra structure on A
- $\rho: A^{\prime} \rightarrow A \otimes_{R} B$ an algebra map

given by $\left(A \otimes m_{B}\right) \circ(\rho \otimes B)$

Invariance under twisting: Theorem II

- $A \otimes_{R} B$ a twisted tensor product
- A^{\prime} another algebra structure on A
- $\rho: A^{\prime} \rightarrow A \otimes_{R} B$ an algebra map
- $\lambda: A \rightarrow A \otimes B$ linear map as before
\square twisting map, and we have an algebra isomorphism
given by $\left(A \otimes m_{B}\right) \circ(\rho \otimes B)$

Invariance under twisting: Theorem II

- $A \otimes_{R} B$ a twisted tensor product
- A^{\prime} another algebra structure on A
- $\rho: A^{\prime} \rightarrow A \otimes_{R} B$ an algebra map
- $\lambda: A \rightarrow A \otimes B$ linear map as before

Theorem

The map $R^{\prime}:=\left(A^{\prime} \otimes m_{B}\right) \circ\left(\lambda \otimes m_{B}\right) \circ(R \otimes B) \circ(B \otimes \rho)$ is a twisting map, and we have an algebra isomorphism

$$
A^{\prime} \otimes_{R^{\prime}} B \cong A \otimes_{R} B
$$

given by $\left(A \otimes m_{B}\right) \circ(\rho \otimes B)$

Invariance Theorem II

- This theorem generalizes the former one
- It also contains the last two examples:

Invariance Theorem II

- This theorem generalizes the former one
- It also contains the last two examples:

Unbraiding: $\lambda(c):=\pi\left(u^{\top} \# 1\right) \otimes c \cdot u^{2}$,

$$
\rho(c):=\pi\left(r^{1} \# 1\right) \otimes c \cdot r^{2}
$$

(In this cases, there is no deformation)

Invariance Theorem II

- This theorem generalizes the former one
- It also contains the last two examples:

Unbraiding: $\lambda(c):=\pi\left(u^{\top} \# 1\right) \otimes c \cdot u^{2}$,

$$
\rho(c):=\pi\left(r^{1} \# 1\right) \otimes c \cdot r^{2}
$$

Trivial smash: $\rho(h)=\varphi\left(1 \# S\left(h_{1}\right)\right) \otimes h_{2}$,

$$
\lambda(h)=\varphi\left(1 \# h_{1}\right) \otimes h_{2}
$$

(In this cases, there is no deformation)

Can this theorem be of any use?

Possible ways of taking advantage of the Invariance
Theorem:

- Use it to relate two different twisted tensor products. Could help with the classification, up to isomorphism of factorization structures
- Explicitly build a deformation in the terms of the theorem in order to build a new object isomorphic to the original one. map by a simpler one

Can this theorem be of any use?

Possible ways of taking advantage of the Invariance
Theorem:

- Use it to relate two different twisted tensor products.
- Explicitly build a deformation in the terms of the theorem in order to build a new object isomorphic to the original one. map by a simpler one

Can this theorem be of any use?

Possible ways of taking advantage of the Invariance
Theorem:

- Use it to relate two different twisted tensor products. Could help with the classification, up to isomorphism, of factorization structures
- Explicitly build a deformation in the terms of the theorem in order to build a new object isomorphic to the original one. map by a simpler one

Can this theorem be of any use?

Possible ways of taking advantage of the Invariance Theorem:

- Use it to relate two different twisted tensor products. Could help with the classification, up to isomorphism, of factorization structures
- Explicitly build a deformation in the terms of the theorem in order to build a new object isomorphic to the original one.

Can this theorem be of any use?

Possible ways of taking advantage of the Invariance Theorem:

- Use it to relate two different twisted tensor products. Could help with the classification, up to isomorphism, of factorization structures
- Explicitly build a deformation in the terms of the theorem in order to build a new object isomorphic to the original one.
Could be used to replace a complicated twisting map by a simpler one

Final remarks

(1) Most of the results can be translated to (strict) monoidal categories
(2) Under suitable conditions, the Invariance Theorem can be iterated (cf (JLPVO)).

The study of twisted tensor products allows us to unify apparently unrelated results, proving to be a useful tool in Hopf algebra theory.

Final remarks
(1) Most of the results can be translated to (strict) monoidal categories
(2) Under suitable conditions, the Invariance Theorem can be iterated (cf (JLPVO)).

The study of twisted tensor products allows us to unify apparently unrelated results, proving to be a useful tool in Hopí aigebra theory

Final remarks

(1) Most of the results can be translated to (strict) monoidal categories
(2) Under suitable conditions, the Invariance Theorem can be iterated (cf (JLPVO)).

Moral

The study of twisted tensor products allows us to unify apparently unrelated results, proving to be a useful tool in Hopf algebra theory.

References I

D. Bulacu, F. Panaite, and F. Van Oystaeyen.

Generalized diagonal crossed products and smash products for quasi-Hopf algebras. Applications.
arXiv:math.QA/0506570.
A. Cap, H. Schichl, and J. Vanžura.

On twisted tensor products of algebras. Comm. Algebra, 23:4701-4735, 1995.
Q P. Jara, J. López, F. Panaite and F. Van Oystaeyen
On iterated twisted tensor products of algebras.
Preprint 2005, math. QA/ 0511280

