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ABSTRACT

Two theories for the nonlinear equilibration of baroclinic waves in a two-layer fluid in a b channel are tested by

comparison with high-resolution numerical simulations. Predictions are tested for a range of parameters (b, k),

where the inverse criticality b measures the degree of instability and the quasigeostrophic Ekman number k

measures the strength of Ekman friction. The first theory, from Warn, Gauthier, and Pedlosky (WGP), is for-

mally valid for marginally unstable waves at k 5 0. The second, from Romea, is formally valid for nonzero k and

for waves that are marginally stable with respect to a different criterion, which enters because of the dissipative

destabilization of otherwise stable waves by Ekman friction. The predictions of the two theories are in conflict in

the limit k / 0. When k is slightly greater than zero, it is found that the WGP accurately predicts the maximum

wave amplitude attained during a baroclinic life cycle across a significant range of parameter space. By contrast,

accurate predictions of the long-time asymptotic wave amplitude are obtained only from Romea’s theory, even

for those cases where WGP describes the initial behavior during the life cycle accurately. The results first indicate

the importance of understanding the nonlinear equilibration mechanism of dissipatively destabilized waves.

Second, it follows that baroclinic adjustment theories formulated from inviscid and frictionless stability criterion

make demonstrably incorrect predictions for the equilibrated state, even in the limit of vanishing Ekman friction.

1. Introduction

In their otherwise comprehensive review article on

baroclinic instability, Pierrehumbert and Swanson (1995)

briefly credit the weakly nonlinear theory of baroclinic

instability as ‘‘providing an island of certainty in a bewil-

dering sea of nonlinear behaviors.’’ A survey of the liter-

ature reveals the reasons why such analytical theories do

not feature heavily in their review. Even for arguably

the simplest fluid dynamical model of baroclinic in-

stability, the Phillips two-layer model (Phillips 1951,

1954), both linear and nonlinear theories are subject to

a number of confounding features. Chief among these

are the following:

d Critical layer formation in the lower layer: The issues

surrounding finite-amplitude equilibration in the ab-

sence of Ekman friction are covered in a companion

paper (Esler and Willcocks 2011, hereafter EW11).

Briefly summarizing, following disagreement with the

numerical results of Boville (1981), the influential

weakly nonlinear analysis of the Phillips model near

minimum critical shear of Pedlosky (1970) was found

to be incorrect. Pedlosky’s original solution breaks down

as all harmonics of the fundamental are resonantly

excited in a lower-layer critical layer. The first attempts

(Pedlosky 1982a,b) at a corrected solution including the

harmonics resulted in an infinite dimensional system

that could only be analyzed numerically. Subsequently,

Warn and Gauthier (1989) derived a new solution in

which an evolution equation for the lower-layer critical

layer is coupled to an amplitude equation for the (upper

layer) fundamental wave. An implicit expression for

the time evolution of the wave amplitude was found in

terms of the quadrature of a two-dimensional definite

integral. This solution to the frictionless problem will

be referred to here as the Warn–Gauthier–Pedlosky

(WGP) solution.
d Dissipative destabilization of stable linear waves by

Ekman friction: It is a natural step to investigate the

effects of Ekman friction, due to Ekman layers at

horizontal boundaries, within the framework of the

Phillips model. Holopainen (1961) discovered that the

presence of the Ekman friction introduces a new

instability mechanism, the ‘‘Holopainen mechanism’’

(see also Swaters 2010). Waves that are linearly stable
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when no Ekman friction is present can become ‘‘dis-

sipatively destabilized’’ by the Holopainen mechanism

[Krechetnikov and Marsden (2009) discuss dissipative

destabilization by the Holopainen mechanism in the

framework of dynamical systems theory], with the re-

sult that the location of the curve of marginal stability is

displaced by an order one distance in parameter space,

even where the Ekman number is infinitesimal. The

growth rates of the destabilized waves near the new

marginal stability curve are of the order of the Ekman

number.
d An alternative theory for nonlinear equilibration in

the presence of Ekman friction: A weakly nonlinear

theory for the dissipatively destabilized waves has been

given by Romea (1977), based on a weakly nonlinear

expansion about the marginal stability curve found in

Holopainen’s analysis. A lower-layer critical layer does

not form in Romea’s problem, and a (typical) Landau-

type amplitude equation is the result. Boville (1981) has

suggested that Romea’s theory may only be applicable

below the frictionless stability criterion (i.e., for the

dissipatively destabilized waves only), but to our knowl-

edge this has not been tested. Nor is it clear why Romea’s

theory should not be accurate for larger values of the

Ekman number, when the baroclinic instability mech-

anism is strongly modified by Ekman friction.

At best then, rather than Pierrehumbert and Swanson’s

‘‘island of certainty,’’ there are two such islands associ-

ated with the WGP and Romea theories; each of which

has an uncertain domain of influence over the wider sea

of parameter space. To understand the wider relevance

of either theory, it seems necessary to turn to numerical

experiments. Here, the predictions of each will be tested

numerically against two-layer baroclinic life cycles in a b

channel, initialized with a uniform unstable zonal flow

plus (near) infinitesimal noise. Ekman friction acts in each

fluid layer. Following Romea (1977), for simplicity the

magnitude of the Ekman friction in each layer will be

taken to be of equal magnitude, although the qualitative

form of the theory changes little if this assumption is re-

laxed or indeed if interfacial friction is included (e.g., Esler

1997). The degree of instability of the flow is controlled by

the inverse criticality parameter b to be defined below.

The baroclinic life cycles that result, involving linear

growth and nonlinear equilibration, are relevant as simple

models of flows in experiments (i.e., in the rotating an-

nulus) and in oceanic channels subject to surface forcing

by wind stress. The primary aim of the present work is

to explore (b, k) parameter space in order to answer the

following questions:

(i) Are the WGP predictions relevant when Ekman

friction is present (k 6¼ 0)? Are the dynamics of

nonlinear equilibration fundamentally altered by

dissipative destabilization?

(ii) Are the Romea predictions relevant to flows satis-

fying the frictionless criterion for instability (b ,

½) (i.e., those where wave growth is primarily due

to baroclinic instability rather than the Holopainen

mechanism)? What happens in the Holopainen re-

gime, particularly in the limit of vanishing Ekman

friction (k / 0)?

(iii) What are the implications for more general hypoth-

eses of nonlinear baroclinic equilibration? For ex-

ample, some authors define ‘‘baroclinic adjustment’’

to be a process during which regions of an unstable

flow where the latitudinal potential vorticity (PV)

gradient is negative are homogenized by PV mixing,

rendering the flow stable according to the Charney–

Stern–Pedlosky criterion (see, e.g., section 12.6.2 of

Vallis 2006). Is this frictionless baroclinic adjustment

idea ever relevant when k 6¼ 0?

The plan of the paper is as follows: In section 2, the

physical problem under investigation will be described

in detail together with the numerical implementation of

the equations of motion. Linear theory and dissipative

destabilization by the Holopainen mechanism are dis-

cussed in section 3a, the predictions of the WGP theory

and the results of EW11 are briefly summarized in sec-

tion 3b, and the Romea theory is covered in detail in sec-

tion 3c. The results of the numerical parameter sweep are

given in section 4. In section 5, conclusions are presented.

2. The physical problem and its numerical
implementation

a. The physical problem

The model of baroclinic instability adopted here is the

quasigeostrophic (QG), two-layer Phillips’s model (Phillips

1951, 1954), which describes fluid motion in a recirculat-

ing channel between rigid sidewalls at the fixed latitudes

y 5 6Ly/2. The channel is taken to be periodic in the x

direction x 2 [0, Lx], as in the physical situation of a re-

circulating atmosphere, a rotating annulus, or the Southern

Ocean. Periodicity is not strictly necessary for the results

to be relevant, but the situation of an open channel re-

quires some extra analysis to ensure that the time scale

for the nonlinear development is shorter than the time

scale for propagation out of the domain of interest, so

for definiteness the periodic situation will be assumed

here. Under the b-plane approximation, the channel is

subject to differential rotation at rate f/2, where f 5 f0 1

b*y. The upper and lower layers, which are denoted with

subscripts 1 and 2, respectively, are each of undisturbed

depth H and have densities r1 and r2 (r1 , r2). The
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Boussinesq approximation D 5 2(r2 2 r1)/(r1 1 r2)� 1

is adopted, meaning that an effective ‘‘reduced’’ gravity

g9 5 gD acts on the interface between the two layers. The

equations of motion are then identical whether the upper

layer is bounded by a rigid lid, as in an annulus experi-

ment, or has a free surface, as in the oceanic situation.

The basic flow to be considered is a uniform vertical

shear with zonal velocity U in the upper layer and no flow in

the lower layer. Ekman layers are present at the upper and

lower boundaries, because of no-slip boundary conditions,

and penetrate into the fluid interior because of vertical

(eddy1) viscosity A within the fluid. Nondimensionalizing

with horizontal length scale equal to the internal Rossby

radius of deformation [see Eq. (5.191) of Vallis 2006]

LD 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g9H/2f 2

0

q
; vertical length scale H; and vertical and

horizontal velocity scales U and UH/LD, respectively,

results in equations of motion (e.g., Pedlosky 1987),

(›t 2 ciy›x 1 cix›y)qi 5 2k=2ci

qi 5 by 1 =2ci 1
1

2
(21)i(c1 2 c2).

(1)

Here, qi is the PV in each layer (i 5 1, 2), ci is the geo-

strophic streamfunction, and the geostrophic velocities are

given by ui 5 2$ 3 cik. For simplicity, the possibility of

Stewartson layers at the sidewalls is neglected, in favor of

no-normal flow and Phillips’s boundary conditions,

cix 5 0 on y 5 6
1

2
W, (2)

ciyt 1 k(ciy 1 d1i) 5 0 on y 5 6
1

2
W, and (3)

c(x, y) 5 c(x 1 L, y), (4)

where dij is the Kronecker delta.

The four parameters appearing in (1)–(4) are

b 5
b*L2

D

U
, k 5

A1/2f 1/2
0 LD

2UH
,

W 5
Ly

LD

, and L 5
Lx

LD

. (5)

The inverse criticality b is a measure of the degree of

instability of the flow, with the Charney–Stern–Pedlosky

criterion for instability in the absence of Ekman friction

being b # ½. The quasigeostrophic Ekman number k

is a measure of the influence of the Ekman layers on

the fluid interior. In terms of the usual Ekman number

Ek 5A/f
0
H2, the quasigeostrophic Ekman number is

given by k 5 Ek1/2/2Ro. The remaining parameters

(L, W) are the nondimensional channel dimensions.

The experiment setting is envisaged to be a long chan-

nel; hence, L � W, where W is order unity. Following

EW11, the initial conditions will be taken to consist of

the basic flow plus an infinitesimal perturbation, in order

that the subsequent evolution is dominated by the fastest

growing mode with zonal wavenumber km. Unlike in

EW11, where the dependence of baroclinic life cycles on

the width parameter W was investigated, the channel width

parameter will be set here to a fixed value W 5 23/4p. The

value W 5 23/4p is significant because, in the absence of

Ekman friction and at minimum critical shear b 5 ½, the

fastest growing mode is exactly isotropic (km 5 p/W). All

of the simulations to be shown below will therefore be for

nearly isotropic waves, a simplification that to a certain

extent can be justified on physical grounds, because waves

that are approximately isotropic emerge spontaneously in

most annulus experiment atmospheric and oceanic flows.

It is important to note that the nondimensionalization

adopted above differs from that of previous authors (e.g.,

Pedlosky 1987; Shepherd 1988; Warn and Gauthier 1989)

in that the internal Rossby radius, rather than the channel

width, has been used as the horizontal length scale. The

advantage of the new approach, as discussed in EW11

(see their appendix A), is that the channel width param-

eter W scales trivially in much of the resulting analysis. The

fundamental dynamics of the current problem therefore

depends primarily on the parameters b and k, and a pa-

rameter sweep over (b, k) space will be the focus below.

b. Numerical implementation and
experimental setup

The quasigeostrophic equations in (1) are integrated

numerically using the numerical model described in de-

tail in EW11, adapted from that used in Esler and Haynes

(1999). The discretization is pseudospectral in the x di-

rection and grid point in the y direction. Numerical sta-

bility is maintained throughout the integrations by means

of a PV diffusion n=2qi on the right-hand side of (1). At

a given numerical resolution, the value of n is chosen

to be sufficiently large to ensure that there is no spurious

buildup of enstrophy at the grid scale. The enstrophy

spectrum in each layer is monitored throughout each

numerical experiment, and experiments are discarded if

at late times the enstrophy spectrum does not decay super-

algebraically within a finite band of wavenumbers close

to the largest resolved wavenumber. The numerical time

step dt is then chosen to satisfy the Courant–Friedrichs–

Lewy criterion. Details of the spatial discretizations

used, the corresponding diffusivities n, and time steps dt

are given in Table 1.

1 In the experimental setting where the flow is near laminar, A
can be taken to be the kinematic viscosity, whereas in the atmo-

sphere and ocean A will be an eddy viscosity that depends on the

surface roughness.
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Simulations are repeated at more than one numerical

resolution to ensure that results do not depend signifi-

cantly on the value of the PV diffusivity n. In EW11, it is

shown that high-resolution (HR) experiments with k 5

0 conserve total energy to a high degree of accuracy over

the time scale of the nonlinear life cycle of the baroclinic

waves and that the small amount of energy dissipation

that does take place in the medium-resolution (MR) and

low-resolution (LR) experiments has little quantitative

bearing on the results.

Simulations are initialized, as described above, with

an initial state

c1

c2

� �
5 2

y

0

� �
1 ‘‘noise’’, (6)

where noise refers to random perturbations that in prac-

tice are O(1026) in amplitude. Because the fastest grow-

ing mode, with zonal wavelength 2p/km, emerges from

such a setup in a long zonal channel, periodicity can be

enforced in the numerical model by setting L 5 2p/km.

A single parameter sweep of (b, k) parameter space

is performed, with the channel width parameter fixed at

W 5 23/4p throughout and km calculated separately for

each simulation using the results of the linear theory of

section 3a. A total of 330 experiments is performed for

each parameter sweep, within the range of parameters

b 2 [0, 0.55], k 2 [0, 0.2] for which there is instability.

3. Linear and nonlinear theories

a. Linear theory and dissipative destabilization

To set the scene for the nonlinear theories of WGP

and Romea, it is helpful to first revisit the linear theory

for the Phillips model in the presence of Ekman friction

(Holopainen 1961). The key point is that, because of

the dissipative destabilization mechanism, the marginal

stability curve when Ekman friction is absent (k 5 0)

and the marginal stability curve when Ekman friction is

vanishingly small (k / 0) are different.

Linear stability is investigated using the ansatz

c1

c2

� �
5 2

y

0

� �
1 Re �

1

g

� �
eik(x2ct) sinl y 2

W

2

� �
,

(7)

where the first term is the uniform flow � streamfunction,

k and l are zonal and meridional wavenumbers, ~� is the

wave amplitude, and g is the complex-valued stream-

function ratio between the two layers. Hence, jgj is the

amplitude ratio and Arg(g) is the phase difference be-

tween the streamfunctions in each layer. Note that the

values of l 5 np/W (n integer) are discretized because of

the finite channel width and, because of the restriction to

the fastest growing mode adopted above, only the

gravest mode (n 5 1) need be considered here. Inserting

(7) into (1) and neglecting terms of O(~�2) leads to the

dispersion relation for the complex phase speed,

c6 5
1

2
2

a2 1
1

2

� �
a2(a2 1 1)

b 2 ik
a2 1

1

2
k(a2 1 1)

6
1

2a2(a2 1 1)

�
b2 1a4(a4 21) 2

a4k2

k2
1 2i

a2k

k
b

�1/2

,

(8)

where a 5 (k2 1 l2)1/2 is the total wavenumber. The so-

lution also determines the complex streamfunction ratio

g6 5 2 a2 1
1

2

� �
1 2

b 1
1

2
1 i

a2k

k
c6 2 1

0
@

1
A

. (9)

Instability corresponds to the imaginary part of the phase

speed being positive, which occurs for the positive branch

of the dispersion curve (i.e., Im c1 . 0).

In the absence of Ekman friction (k 5 0), the condi-

tion for instability is

b , bI
c(a) [ a2(1 2 a4)1/2. (10)

For k 6¼ 0, the condition for instability is found to be

b , bR
c (a, k) [ a2 1

1

2

� ��
a2(1 2 a2) 2

4a4

k2
k2

�1/2

, (11)

where bR
c (a, k) is the frictional marginal stability curve.

Taking the limit k / 0 in (11), the marginal stability

curve is given by

bR
c (a, 0) 5 a2 1

1

2

� �
[a2(1 2 a2)]1/2, (12)

which differs from the frictionless value bI
c(a) by a factor

(a2 1 1/2)/a(a2 1 1)1/2 . 1 (e.g., Fig. 2 of Romea 1977). It

is clear that bR
c (a, 0) , bI

c(a), meaning that an infinites-

imal amount of Ekman friction causes the marginal sta-

bility curve to shift by an order one amount (as first shown

by Holopainen 1961). Waves with total wavenumber a sat-

isfying bR
c (a, 0) , bI

c(a) are said to be dissipatively desta-

bilized by the presence of Ekman friction. The marginal

TABLE 1. Details of the three different resolutions used for the

numerical simulations.

Resolution

Fourier

modes (x)

Grid

points (y) dt n

LR 64 64 5.0 3 1023 5.0 3 1025

MR 128 128 2.5 3 1023 2.5 3 1025

HR 256 256 1.0 3 1023 1.0 3 1025
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stability curves (10) and (11) are plotted in Fig. 1a for k 5

0, k / 0 (dashed line), and k 5 0.2 (dotted line). The

shaded region in Fig. 1a, bounded above and below by

the marginal stability curves bI
c(a) and bI

c(a, 0), respec-

tively, shows the dissipatively destabilized waves. As

discussed above, the mechanism of instability for the

dissipatively destabilized waves will be referred to here

as the Holopainen instability mechanism (for discussion,

see, e.g., Swaters 2010). Dissipative destabilization cor-

responds to a situation where the frictionally induced

phase shift between the waves in each layer allows more

energy to be released from the sloping interface than is

dissipated by Ekman friction. It is notable from Fig. 1a

that the Holopainen instability mechanism has a greater

effect at low wavenumbers, with the explanation being that

Ekman friction has a stronger effect on long waves, as can

be argued on scaling grounds from (1).

The O(1) difference in the k 5 0 and k / 0 marginal

stability curves can perhaps best be understood by exam-

ination of how the growth rate of a wave of fixed wave-

number a, considered as a function of inverse criticality

b, changes when Ekman friction is introduced. Hence,

growth rates (Im kc6) calculated from (8) are plotted in

Fig. 1b as a function of b, for fixed total wavenumber a 5

221/4, for the no Ekman friction case (solid curve, k 5 0),

and for weak Ekman friction (k 5 0.005). The k 5 0 curve

shows a bifurcation at the frictionless minimum critical

shear (b 5 ½) corresponding to the coalescence of the

two normal modes of the system, which have distinct

real phase speeds for stable flow (b . ½) and complex

conjugate phase speeds for unstable flow (b . ½), as can

be seen from (8). The mode coalescence corresponds to

the vanishing of the PV gradient in the lower layer at

b 5 ½, meaning that at marginal criticality the system

can support only a single Rossby wave in the upper layer, as

opposed to two coupled Rossby waves in the general case.

The addition of Ekman friction results in complex-

valued perturbations to the k 5 0 phase speeds and

therefore also the growth rates by an amount linear in k.

Significantly, the perturbation is different for each nor-

mal mode, so the bifurcation structure associated with

mode coalescence at b 5 ½ is destroyed for all values

of k, however small. The new curve of marginal stability

bR
c is associated with only one normal mode, and for

bI
c , b , bR

c the dissipatively destabilized waves have

O(k) (slow) positive growth rates.

Below, nonlinear theories will be developed for mar-

ginally critical flows with inverse criticality b 5 bm, where

bm is defined as the maximum value of b at which in-

stability occurs (see points marked in Fig. 1a). The total

wavenumber of the marginally stable wave at b 5 bm will

be labeled am, and the corresponding zonal wavenumber

km 5 (a2
m 2 p2/W2)1/2. For frictionless flow (k 5 0), it is

straightforward to show from (10) that b 5 ½ and am 5 221/4.

When k 6¼ 0, bm and am are determined by first finding

bm(k) 5 sup
a.p/W

fbR
c (a, k)g, (13)

FIG. 1. (a) Criticality b21 at which the system is marginally stable to linear instability (Im c1 5 01), plotted as

a function of total wavenumber a. Solid curve is k 5 0 [bI
c(a); (10)]. Dashed curve is k / 0 [bR

c (a, 0); (12)]. Dotted

curve is k 5 0.2 [bR
c (a, 1/5); (11)]. The shaded region shows waves that are dissipatively destabilized by the addition of

a small amount of Ekman friction, and the filled points show the minimum critical values of b 5 bm and a 5 am in each

case. (b) Growth rate (s 5 Im kc6) as a function of inverse criticality b for fixed total wavenumber a 5 221/4, for k 5

0 (solid curve) and k 5 0.005 (dashed curves). Positive and negative branches of the dispersion curve are shown. Solid

points show the location of the point of marginal stability in each case.
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with bR
c (a, k) given by (11). The supremum occurs at

a 5 am.

b. The Warn–Gauthier–Pedlosky theory

Next, the main results of the WGP nonlinear theory

(Warn and Gauthier 1989; Pedlosky 1982a,b) are briefly

reviewed. The WGP theory is formally valid in the limit

of vanishing supercriticality b / bm 5 ½ in the absence

of Ekman friction, for marginally stable waves with am 5

221/4. In EW11, an appraisal was made of the accuracy of

the WGP theory at finite criticality, including a detailed

exploration of (b, W) parameter space. However, the

question of how the WGP solution is perturbed by Ekman

friction was not addressed.

The WGP solution is based on a perturbation theory, in

which the frictionless supercriticality �, defined to be

� 5
1

2
2 b

� �1/2

, (14)

is taken to be formally small (�� 1). A slow time scale

t 5 �t is introduced to eliminate secular terms in the

solution. The multiple scales substitution ›t / ›t 1 �›t is

then made in the frictionless (k 5 0) form of (1), and the

expansion

ci 5 2ydi1 1 �(c
(0)
i 1 �c

(1)
i 1 �2c

(2)
i 1 � � � )

qi 5 (d1i 2 �2)y 1 �(q
(0)
i 1 �q

(1)
i 1 �2q

(2)
i 1 � � � ),

(15)

where

q
( j)
i 5 =2c

( j)
i 1 (21)i 1

2
(c

( j)
1 2 c

( j)
2 ) and

dij is the Kronecker delta, is inserted. The leading order

solution in �, emerging from infinitesimal noise, is given by

c
(0)
1

c
(0)
2

 !
5 Re �A(t)

1

gm

� �
eik

m
x cos

py

W
. (16)

This is the linear solution for the marginally stable wave,

with arbitrary complex amplitude A(t) and zonal wave-

number km 5 (221/2 2 p2/W2)1/2. It has the gravest

meridional structure ;cos(py/W) [n 5 1 in Eq. (7)] and

vertical structure associated with a linear growing dis-

turbance at minimum critical shear (g 5 gm 5
ffiffiffi
2
p

2 1).

The nonlinear evolution takes place on the time scale t.

On this time scale the complex amplitude A(t) of the

leading order solution can be shown to satisfy the WGP

governing equations [see EW11 for a fast route to (17)

and (18)],

jA(t)j2 5
8

LW

ð
D

y(Q 1 y) dx and (17)

(›
h

2 Cy›x 1 Cx›y)Q 5 0, where

C(x, y) 5 cos(kmx) cos(py/W), (18)

where the domain of integration D in (17) denotes the

horizontal domain of the channel. Here, Q(x, y, t) 5

q
(1)
2 2 y is the total PV at the leading order O(�2) in the

lower layer. The initial condition for (18) is Q(x, y, 0) 5

2y and

h(t) 5 gm

ðt

0
jA(~t)j d~t (19)

serves as a rescaled time variable. Warn and Gauthier

(1989) (see also appendix B of EW11) realized that the

evolution Eq. (18) can be solved as a passive tracer ad-

vection equation. Inserting the solution into (17) leads

to the following implicit form solution for the upper-

layer wave amplitude:

jA(t)j2 5 W2

�
2

3
2

16

p4
I

kmp

W
h

� ��
. (20)

Here, I(z) denotes the single parameter family of defi-

nite integrals

I(z) 5

ð1

0

ðK(m)

0

sin21[m1/2sn(a 2 zjm)]sin21[m1/2sn(ajm)]

(1 2 m)1/2
da dm,

where sn(�j�) is a Jacobi elliptic function in standard

notation and K(m) is the complete elliptic integral of the

first kind.

Certain properties of the function I(z) allow important

characteristics of the solution (20) to be deduced. First,

I(z) attains its global minimum at zm ’ 5.55, where I(zm) ’

22.257, giving jAj2max ’ 1:04W2. Second, I(z) / 0 as

z / ‘, and hence jAj2eq 5 2W2/3. The WGP predictions

for maximum and equilibrated amplitudes are therefore

�jAjmax ’ 1:02W
1

2
2 b

� �1/2

and

�jAjeq 5
2

3

� �1/2

W
1

2
2 b

� �1/2

. (21)
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The quantitative successes of the predictions of the WGP

theory at low to moderate supercriticality (0.3 & b , 0.5),

reported in EW11, prompt the question of whether WGP

remains relevant when the system is (weakly) perturbed by

Ekman friction. It is tempting to introduce Ekman friction

directly into the WGP analysis at O(�). This approach fails

in the sense that a system of equations predicting un-

bounded wave growth results. The reason is that even in-

finitesimal Ekman friction shifts the fundamental wave

from marginal stability [O(�) supercriticality] to outright

instability [O(1) supercriticality], because of dissipative de-

stabilization. To understand nonlinear equilibration in the

presence of Ekman friction, a different approach is needed.

c. The Romea theory

Next, an alternative nonlinear theory that is valid when

Ekman friction is present, from Romea (1977), is reviewed.

Romea’s analysis is updated using the current non-

dimensionalization and adopting a more modern mathe-

matical approach (following, e.g., Warn and Gauthier

1989), and a new simplified expression for the equilibrated

wave amplitude is obtained. Romea’s theory will be for-

mulated here for flows close to marginal criticality b 5 bm

and for waves with the marginally stable total wavenumber

am, as determined from (13).2

To facilitate the perturbation expansion a new small

parameter, the ‘‘Ekman friction supercriticality’’ « is

introduced as,

« 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bm 2 b

q
. (22)

Note that « is distinct from the supercriticality � in the

WGP problem above, because in general bm 6¼ ½, the

frictionless value. The natural slow time scale when

Ekman friction is present will turn out to be T 5 «2t.

Note that T has a slower (quadratic) dependence on

supercriticality compared to the linear dependence in

the WGP problem above.

Romea’s solution is found by first making the multiple

scales substitution ›t / ›t 1 «2›T in (1), and then in-

serting the ansatz

ci 5 2ydi1 1 «(c
(0)
i 1 «c

(1)
i 1 «2c

(2)
i 1 � � � ),

qi 5

�
bm 2 «2 1 (21)i111

2

�
y

1 «(q
(0)
i 1 «q

(1)
i 1 «2q

(2)
i 1 � � � ), (23)

where

q
( j)
i 5 =2c

( j)
i 1 (21)i 1

2
(c

( j)
1 2 c

( j )
2 ),

which, like the expansion (15) for WGP, consists of the

basic uniform flow plus perturbation terms.

At leading order in «, Eq. (1) becomes

LC(0) 5 0, (24)

where the matrix differential operator L, which is de-

fined to be

L [

(›t 1 ›x) =2 2
1

2

� �
1 bm 1

1

2

� �
›x 1 k=2 1

2
(›t 1 ›x)

1

2
›t ›t =2 2

1

2

� �
1 bm 2

1

2

� �
›x 1 k=2

0
BB@

1
CCA, (25)

acts on the streamfunction vector C(0) 5 (c
(0)
1 c

(0)
2 )y. The

solution of (24) is the linear plane wave solution at mini-

mum critical shear, with arbitrary complex amplitude

A(T ),

C(0) 5
c

(0)
1

c
(0)
2

 !
5 Re A(T)

1

gm

� �
eik

m
(x2c

m
t) cos

py

W
,

where km 5 (a2
m 2 p2/W2)1/2 is the zonal wavenumber of

the marginally stable wave and cm and gm denote the real

phase speed and complex amplitude ratios, respectively.

From (8) and (9), these are

cm 5
1

2
2

bm

a2
m 1

1

2

,

gm 5 2 a2
m 1

1

2

� �
2 2

2
6664

bm 1
1

2
1

ia2
mk

km

1

2
1 bm a2

m 1
1

2

� ��
3
7775. (26)

The complex amplitude A(T) has an undetermined de-

pendence on the slow time scale T to be uncovered at

higher order in the expansion. Note that, unlike in the

WGP analysis above, gm has a nonzero imaginary part;

that is, there is a leading order phase shift between the

upper and lower layer because of Ekman fiction. In the

2 In fact, in contrast with WGP, Romea’s theory can be formu-

lated for any wavenumber on the marginal stability curve [(11)].
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WGP problem, gm is strictly real at leading order, and

the phase shift between the upper- and lower-layer

waves enters at higher order and is proportional to

dA/dt, as opposed to A here. This fundamentally

changes the asymptotics and is the reason why the long

time scale T in the Romea problem is O(«22) in contrast

to WGP, where it is O(�21). The phase shift between the

streamfunction in the two layers leads to a nonzero me-

ridional PV flux in each layer, which is necessary for

momentum exchange between the layers. In the WGP

solution momentum is exchanged between the layers only

in association with wave growth and decay, whereas in the

Romea solution momentum exchange is proportional to

jAj2, but its effects are opposed by momentum restoration

because of the Ekman friction in each layer.

At O(«2) in the expansion, the equation is found to be

LC(1) 5 f(1), (27)

where the forcing term

f(1) 5
2J(c

(0)
1 , q

(0)
1 )

2J(c
(0)
2 , q

(0)
2 )

 !
5

1

21

� �
kmpgi

4W
jAj2 sin

2py

W

� �
,

(28)

where J(�,�) is the usual Jacobian operator. Here, gi 5

Im gm is a measure of the phase difference between each

layer and is proportional to the Ekman friction k; hence,

the Jacobian terms in (28) are nonzero only when k 6¼ 0,

and the Romea solution breaks down when k 5 0 (al-

though it will be shown below that the limit k / 0 is well

defined). The forcing f (1) is easily shown to satisfy the

solvability condition to be discussed below, so a partic-

ular integral for C(1), satisfying the Phillips boundary

condition (3) on y 5 6W/2, is straightforward to find as

C(1) 5
c

(1)
1

c
(1)
2

0
@

1
A5

1

21

 ! a2
m a2

m 1
1

2

� �
W

4p 2bm 1 a2
m 1

1

2

� �jAj2

3

�
sin

2py

W

� �
1

2p

W
y

�
. (29)

The solution (29) represents the mean flow correction

resulting from a competition between eddy fluxes and

Ekman friction. Both the eddy fluxes and Ekman friction

act to force the mean flow correction and both are linear

in k. Consequently, C(1), which represents the balance

between the two effects, has only a relatively weak de-

pendence on k, because of bm, am, and km, depending on

k through (13).

At the next order O(«3), Eq. (1) takes the form

LC(2) 5 f(2), (30)

where

f(2) 5
2q

(0)
1T 1 c

(0)
1x 2 J(c

(0)
1 , q

(1)
1 ) 2 J(c

(1)
1 , q

(0)
1 )

2q
(0)
2T 1 c

(0)
2x 2 J(c

(0)
2 , q

(1)
2 ) 2 J(c

(1)
2 , q

(0)
2 )

0
@

1
A.

(31)

It is not necessary to solve (30) explicitly in order to de-

rive the amplitude evolution equation for A(T). Instead,

the amplitude equation follows from a solvability condi-

tion, which arises because the operator L has a nontrivial

kernel. If the forcing f (2) were to project onto the kernel

of L, then the response in C(2) would include so-called

secular (i.e., resonantly excited) terms that would grow

linearly in time. The presence of secular terms would cause

the expansion of (1) to become disordered on times t ; «22

[T ; O(1)]. For the expansion to remain uniformly valid

on the long time scale of interest, the solvability condi-

tion must therefore be imposed to remove the secular

terms from the solution.

An elegant method to derive the solvability condition

is to consider the adjoint of the operator L. The adjoint

is defined with reference to an inner product, which acts

on two pairs of ‘‘streamfunction like’’ functions F 5

(f1 f2)y and C 5 (c1 c2)y as follows:

hF, Ci 5
1

T

ðT

0

ð
D

f1c1 1 f2c2 dx dt,

where the D denotes the domain of the channel and the

time integral corresponds to averaging over an interval

of length T where O(1)� T � O(«22). The adjoint

operator Ly is then defined by

hF,LCi 5 hLyF, Ci,

and it is straightforward to show using integration by

parts that

Ly [

2(›t 1 ›x) =2 2
1

2

� �
2 bm 1

1

2

� �
›x 1 k=2 2

1

2
›t

2
1

2
(›t 1 ›x) 2›t =2 2

1

2

� �
2 bm 2

1

2

� �
›x 1 k=2

0
BB@

1
CCA. (32)
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Consider now any pair of functions F0 5 (f0,1 f0,2)y

belonging to the kernel of Ly; that is, LyF0 5 0. Taking

the inner product of Eq. (30) with F0 gives

hF0,LC(1)i 5 hLyF0, C(1)i 5 0 5 hF0, f(2)i.

The solvability condition is therefore simply hF0, f (2)i5
0. It turns out that the relevant solution ofLyF0 5 0; that

is, the solution that results in a nonvanishing inner

product with f (2) is

F0 5 Re
2cm

(1 2 cm)gm
*

 !
eik

m
(x2c

m
t) cos

py

W
, (33)

where the superscript asterisk denotes the complex con-

jugate. The resulting inner product hF0, f (2)i is straight-

forward to evaluate and yields the amplitude equation of

Romea (1977),

AT 5 (sr 1 isi)kmA 1 (mr 1 imi)kmjAj
2A, (34)

where after some algebra the coefficients simplify to

s 5 sr 1 isi 5
k

km

4a2
m

�
a2

m 1
1

2

�"
bm 2 4 a2

m 1
1

2

� �2

(k/km)i

#

b2
m 1 16a4

m a2
m 1

1

2

� �4

(k/km)2

, and

m 5 mr 1 imi 5

a2
m a2

m 1
1

2

� �2�
3a2

m(1 2 a2
m) 1 4 a2

m 2
1

2

� �
p2/W2

�

2 2bm 1 a2
m 1

1

2

� �"
b2

m 1 16a4
m a2

m 1
1

2

� �4

(k/km)2

#�4a2
m a2

m 1
1

2

� �
k

km

1 ibm

�
. (35)

The expressions (35) are much more explicit than the

corresponding expressions in Romea [1977, his (A1) and

(A2)] and will be used below to make clear the param-

eter dependencies of the solution.

Forming the product [A* 3 (34)] 1 [A 3 (34)*] results

in the real amplitude equation

djAj2

dT
5 2kmjAj

2(sr 2 mrjAj
2). (36)

Equation (36), which was first suggested by Landau

(1944), is generic for dynamical systems near marginal

stability and has been derived explicitly for numerous

fluid dynamical systems beginning with Stuart (1960) for

plane Poiseuille flow at relatively low Reynolds number.

The usual situation of linear instability and nonlinear

equilibration requires sr and mr . 0, which are both

satisfied here for supercritical flow. As is typical, the

linear growth rate in time (i.e., 2kmsr«
2) can be obtained

directly from the dispersion relation (8) by a Taylor

series expansion in b about b 5 bm. The nonlinear co-

efficient quantifies the stabilizing effect of the mean flow

correction (29) on the fundamental wave and requires

explicit evaluation.

Equation (36) can be integrated to give the solution

jA(T)j2 5
jA(0)j2e2k

m
s

r
T

1 1 (mr/sr)jA(0)j2(e2k
m

s
r
T 2 1)

. (37)

For a linearly unstable wave (sr . 0), the wave ampli-

tude is a monotonic increasing function of the slow time

scale T and approaches an asymptotic limit for the wave

amplitude given by

«jAjeq 5 lim
T/‘

«jA(T)j 5 (bm 2 b)1/2 sr

mr

� �
1/2

5 (bm 2 b)1/2

8>><
>>:

2bm 2bm 1 a2
m 1

1

2

� �
W2

a2
m a2

m 1
1

2

� �3�
3a2

m(1 2 a2
m)W2 1 4 a2

m 2
1

2

� �
p2

�
9>>=
>>;

1/2

.

(38)

Equation (38) reveals the parameter dependency of the

amplitude of the equilibrated solution. One surprising

aspect is that there is no explicit dependence on k

whatsoever; that is, the only effect of Ekman friction on

the equilibrium state is through changes in bm and am,

the inverse criticality and total wavenumber at marginal

FEBRUARY 2012 W I L L C O C K S A N D E S L E R 233



stability defined by (13). Because bm and am are given

implicitly by (13), it is instructive to examine the limit

k / 0 for which explicit values can be found. In the limit

k / 0, it is straightforward to show from (12) and (13)

that the inverse criticality and total wavenumber at mar-

ginal stability are

bm 5

ffiffiffi
34
p

(3 1
ffiffiffi
3
p

)

8
ffiffiffi
2
p , and am 5

1

2
(1 1

ffiffiffi
3
p

)1/2.

Inserting these values into (38), the following expression

for the equilibrated amplitude is obtained,

lim
k/0

«jAjeq 5 (bm 2 b)1/2

3

"
32

ffiffiffi
34
p

(
ffiffiffi
2
p

1
ffiffiffi
34
p

)W2

8(3 1
ffiffiffi
3
p

)p2 1 9(2 1
ffiffiffi
3
p

)W2

#1/2

. (39)

The result (39) can be compared with the equilibrated

WGP amplitude (21), noting the different supercriticalities

(bm 6¼½). The most significant difference between the two

formulas is that Romea predicts an equilibrated amplitude

that is independent of W in the wide channel limit (W /
‘) whereas WGP predicts an amplitude proportional to

W. Given that it is necessary that W . 21/4p for (fric-

tionless) instability, the coefficient multiplying the su-

percriticality in Romea is always smaller than that in

WGP. The predictions (38) and (39) for the equilibrated

amplitude will be compared with the results of numeri-

cal simulations next.

4. Numerical results: Behavior at finite
supercriticality

a. Typical behavior near marginal stability

A natural question to ask is, under what circumstances,

if any, is the analytic solution (37) accurate? The question

can be addressed numerically, just as the corresponding

question for the WGP solution was addressed (for k 5 0)

in EW11. The (b, k) parameter sweep of simulations that

forms the basis for our results was described in section 2b.

From that set of simulations, six in particular, which

are labeled experiments (Expts) I–VIa and detailed in

Table 2, will be examined in detail as representative of

typical model behavior at low supercriticality.

Expts I and II are simulations for which the Romea

theory might be expected to be accurate. They differ in that

Expt I with (b, k) 5 (0.53, 0.04) is dissipatively desta-

bilized; that is, the only instability mechanism in opera-

tion is the Holopainen mechanism and the flow would be

stable to baroclinic instability in the absence of Ekman

friction (k 5 0). Expt II with (b, k) 5 (0.31, 0.16), by

contrast, is weakly supercritical because of the action of

strong Ekman friction, without which it would be strongly

unstable to baroclinic instability.

Figure 2a shows the time evolution of the upper wave

amplitudes for both Expts I and II, with the simulations

results plotted as solid curves and the corresponding

results from Romea’s equation (37) plotted as dashed

curves. The amplitudes jAs
1j are obtained from the

upper-layer streamfunction3 in the simulations, from the

complex-valued wave amplitude As
i defined to be

As
i (t) 5

4

LW

ð
D

ci(x, y, t)e2ik
m

x cos
py

W

� 	
dx, i 5 1, 2.

(40)

The amplitude As
1(t) has been defined in order that it can

be directly identified with «A(T) in Romea’s theory. It is

clear that the Romea theory is accurate for both Expts I

and II, with the maximum discrepancy in wave ampli-

tude being around 12% (during Expt I) and with the

equilibrated amplitude accurate to within 3% in each

case. Figure 2b shows the upper-layer zonal-mean winds

TABLE 2. Summary of selected simulations.

Simulation

Inverse

criticality b

QG Ekman

number k

Channel

width W Description

Expt I 0.53 0.04 23/4p Dissipatively destabilized; Romea is accurate.

Expt II 0.31 0.16 23/4p Strong Ekman friction; Romea is accurate.

Expt III 0.50 0.04 23/4p Dissipatively destabilized; illustrates Holopainen mechanism.

Expt IV 0.495 0 23/4p Weak baroclinic instability; WGP is accurate.

Expt V 0.48 0.0025 23/4p Weak baroclinic instability and weak Ekman friction; WGP

predicts early times, and Romea predicts equilibrium.

Expt VIa 0.47 0.005 23/4p As in Expt V, but at greater supercriticality and stronger

Ekman friction.

Expt VIb 0.47 PV damping

r 5 0.005

23/4p Weak baroclinic instability with PV damping; forced WGP

is accurate.

3 Note that, in EW11, wave amplitudes were defined using the

PV field rather than the streamfunction, in order to exploit results

derived from pseudomomentum bounds.
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u1 5 2 c1y (solid curves) for Expts I and II at late times

in the simulations when the flow is steady. Also plotted is

the zonal-mean flow correction predicted from Romea’s

theory 2«2c
(1)
1y (dashed curves) given by (29). It is clear

that the nonlinear mean flow correction is well captured by

the Romea theory for both Expts I and II, with the upper-

layer zonal velocity decreasing across the channel and with

the largest adjustment observed at the channel center.

Figure 3 shows the development of the lower-layer PV

field in two further simulations Expts III and IV detailed

in Table 2. The two simulations have been chosen as

‘‘clean’’ illustrations of a Romea-type equilibration (Expt

III) and a frictionless WGP-type equilibration (Expt IV).

The development of the lower-layer PV is key to un-

derstanding the equilibration mechanism in each case.

The qualitative dynamical behavior in Expt III is sim-

ilar to that of Expt I, featuring dissipatively destabilized

waves that grow because of the Holopainen instability,

except that the flow is somewhat more unstable. How-

ever, from a PV perspective, Expt III is particularly in-

structive, because there is no background gradient of PV

in the lower-layer initial flow, because inverse criticality

b 5 ½ corresponds to marginal stability of the frictionless

system. Because Ekman friction acts to relax the system

toward the initial zonal flow throughout the evolution,

the existence of PV in the lower layer must ultimately be

due to the action of Ekman friction on the velocity field

induced by the PV distribution in the upper layer.

In Fig. 3a, the linear growing mode is present at small

amplitude. The perturbation is amplified during the linear

growth stage (approximately up to t 5 400; Fig. 3b),

during which time the PV distribution remains close to

the plane wave solution (7) and consequently has the

form in the lower layer of a pair of vortices spanning the

channel. During the linear growth stage, the lower-layer

vortices grow exponentially because of the Holopainen

mechanism. Physically, Ekman friction acts on the lower-

layer flow that is induced by the Rossby wave present in

the upper layer, causing the growth of the vortices within

each lower-layer circulation cell. The upper-layer Rossby

wave and lower-layer vortex train are phase locked, so

that the velocity fields they induce in the opposite layer

are mutually reinforcing, in a manner reminiscent of

the counterpropagating Rossby wave (CRW) mecha-

nism of baroclinic instability (Bretherton 1966). As dis-

cussed elsewhere (Willcocks 2011), there remain

significant differences between the CRW mechanism

and the Holopainen mechanism, because of the differing

nature of the PV structure in the lower layer (Rossby

wave versus train of forced vortices). Eventually, the

vortex train in the lower layer reaches finite amplitude

and a significant mean flow feedback develops. The

changes to the mean flow act to advect both the upper-

layer Rossby wave and lower-layer vortex train, dis-

rupting the phase locking and inhibiting growth. The

Holopainen instability is equilibrated and the flow ap-

proaches a final steady state. In the lower layer, the final

state consists of finite-amplitude vortices, together with

a weak positive PV gradient associated with the mean

flow feedback, as shown in Fig. 3c.

The evolution of the lower-layer PV field during Expt

III can be contrasted with that in Expt IV, (b, k) 5

(0.495, 0), in Figs. 3d–f. Expt IV is weakly unstable to

baroclinic instability; hence, at early times (Fig. 3d) there

is a uniform negative PV gradient in the lower layer. No

Ekman friction is acting; hence, the lower-layer PV is

FIG. 2. (a) Evolution of the fundamental wave amplitudes jAs
1j for Expt I [(b, k) 5 (0.53, 0.04)] and Expt II [(b, k) 5

(0.31, 0.16)]. Simulation results are solid curves and Romea’s theoretical prediction [(37)] are the dashed curves.

(b) Solid curves are equilibrated upper-layer zonal-mean flow corrections 2 c1y as a function of latitude y for Expts I

and II. Dashed curves are predictions from Romea’s theory 1 2 «2c
(1)
1y [Eq. (29)].
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conserved following fluid parcels. Figures 3e–f show that

equilibration nevertheless occurs by the removal of the

negative PV gradient, via PV stirring throughout the entire

lower critical layer and eventual (coarse grain) homog-

enization, exactly as predicted by the WGP theory (see

Warn and Gauthier 1989; Fig. 2 of EW). The elimina-

tion of the negative lower-layer PV gradient was found

to occur in all of the frictionless baroclinic life cycles

examined in EW11, although the mechanism by which

the gradient is removed changes somewhat as super-

criticality increases.

Expts I–III belong to a subset of (b, k) parameter space

that can be described as ‘‘Romea like,’’ which can be

contrasted with the ‘‘WGP like’’ evolution of Expt IV.

Both Romea (1977) and Boville (1981) suggest that the

Romea-like region of (b, k) parameter space might be

restricted to the dissipatively destabilized region with

½ , b , bm. Expt II, however, demonstrates that the

Romea-like regime extends far into the region of fric-

tionless baroclinic instability b , ½, provided that

Ekman friction k is sufficiently strong.

Another means to distinguish between WGP-like and

Romea-like evolution is to examine the qualitative

evolution of the upper-layer wave amplitude. In the

WGP life cycle, the wave amplitude reaches a maxi-

mum that is around 25% greater than the final equil-

ibrated value attained at long times. By contrast,

Romea-like flows feature wave growth that is mono-

tonic up to the maximum equilibrated value as seen in

Romea’s solution (37). The full extent of the Romea-

like and WGP-like regions of parameter space will be

determined next.

FIG. 3. (a)–(c) Snapshots of the lower-layer PV field at three times (t 5 0, 400, and 800) for Expt III (b, k) 5 (0.5,

0.04). Blue/dashed lines correspond to negative PV values and red/solid lines correspond to positive PV values.

Contour intervals are (a) 1.5 3 1023, (b) 7.5 3 1023, and (c) 2 3 1022. (d)–(f) As in (a)–(c), but for Expt IV, (b, k) 5

(0.495, 0), showing the corresponding PV evolution in the presence of baroclinic instability but the absence of Ekman

friction. Contour intervals for (d)–(f) are 8 3 1023.
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b. Exploration of (b, k) parameter space

Here, the main results from the full set of simulations

across (b, k) parameter space will be described. Figures

4a,b contrast Romea’s prediction for the equilibrated

wave amplitude «jAjeq [Eq. (38)] with the actual wave

amplitudes attained in the simulations [calculated using

(40)]. The thick solid curve in each panel of Fig. 4 shows

the inverse criticality bm 5 bm(k) associated with

marginal stability. The first region of parameter space to

notice is the Romea-like regime lying close to this

curve: that is, where the value of « 5 (bm 2 b)1/2 is

small. Agreement between Romea and the simulations

within this region, where Expts I–III are located, is

good. Maximum wave amplitudes, shown in Fig. 4c, are

close to the equilibrated values within this region as

expected.

A second region of parameter space to be seen in Fig.

4b is a ‘‘boundary layer’’ at k 5 0, for b 2 [0, 0.5). The

discontinuity in jAs
1jeq

at the boundary layer is strong

evidence that the equilibrium wave amplitude in the

limit k / 0 differs from that for the frictionless problem

(k 5 0). This point will be discussed further below.

A third region of (b, k) parameter space is located far

from both the marginal stability curve and away from k 5 0,

which will be termed the strongly nonlinear region. Romea

overestimates jAs
1jeq

here by a factor of 2 or more, and

jAs
1jmax

. jAs
1jeq

throughout. In fact, the dependence of

jAs
1jeq

on (b, k) within much of this region is relatively weak.

Figure 5 shows the extent to which Romea’s theory

remains accurate as the supercriticality increases and the

system moves from the Romea-like region of parameter

space to the strongly nonlinear region. The equilibrated

amplitudes jAs
1jeq from the simulations are plotted as

a function of b along with the corresponding predictions

from Romea, for k 5 0.005, 0.05, 0.1, and 0.15. The

equilibrated amplitudes remain close to the predicted

values for bm 2 b & 0.06 (« & 0.25) for each value of k. As

the supercriticality increases, the equilibrated amplitudes

FIG. 4. (a) Equilibrated wave amplitude predicted by Romea’s

theory [«jAjeq; Eq. (38)] as a function of inverse criticality b and

QG Ekman number k. (b) Actual equilibrated amplitude attained

in the simulations [calculated using (40)]. (c) Maximum amplitude

attained during the simulations.

FIG. 5. Equilibrated amplitude jAs
1jeq as a function of inverse

criticality b for k 5 0.005, 0.05, 0.1, and 0.15. Simulations are open

points (as labeled), whereas the curves show the Romea’s pre-

dictions [from Eq. (38)].
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then maximize at bm 2 b ’ 0.25 (« ’ 0.5), before de-

creasing. Interestingly, at very low inverse criticalities fb 2
[0, 0.1]g, equilibrated amplitudes are almost independent

of k, suggesting the possibility of a different theoretical

treatment for this region.

A fourth region of (b, k) parameter space, roughly

occupying 0.4 & b , 0.5 and 0 , k & 0.05 will be termed

the mixed behavior region. Here, Romea accurately

predicts the equilibrated amplitude (see Figs. 4a,b), but

the maximum amplitude (see Fig. 4c) is much greater.

The evolution cannot be described as Romea like, be-

cause Romea’s solution (37) predicts that the equilibrated

and maximum amplitudes are identical. Understanding

the behavior of the simulations in the mixed behavior

region will be the focus next.

c. Evolution in the mixed behavior region of
parameter space

A region of (b, k) parameter space roughly occupying

0.4 & b , 0.5 and 0 , k & 0.05 was identified above and

termed the mixed behavior region. The flow in this region

is unstable to baroclinic instability (b , ½) and Ekman

friction is low (k / 0). Romea theory’s makes an accu-

rate prediction of the equilibrated amplitude jAs
1jeq, but

the baroclinic life cycle is not Romea like, because the

maximum wave amplitude attained jAs
1jmax

is significantly

greater than jAs
1jeq

. Interestingly, the mixed behavior

region of parameter space is a region where the WGP

theory (valid for k 5 0) might be expected to be relevant.

Most flows in this region have the property that the time

scale TR ; k21(«)22 for the development of the Romea

solution is much longer than TI ; «21, the time scale for

the frictionless baroclinic life cycle. Recall that « is the

frictionless supercriticality given by (14) and « given by

(22) is the Ekman friction supercriticality. Should flows in

the mixed behavior region with TI� TR be expected to

show features of the frictionless solution at short times?

Expt V with (b, k) 5 (0.48, 0.0025) (see also Table 2) is

precisely such a flow. Figure 6a (solid curve) shows the

evolution of the amplitude of the fundamental wave

during Expt V. The dashed line shows the corresponding

evolution of the WGP solution (from 20), and the dotted

lines show the Romea solution (37). Both the initial

growth rate and the maximum amplitude of the wave are

captured reasonably well by the WGP theory up to t ’ 400

when the wave amplitude begins to oscillate about the

WGP equilibrated amplitude as described in EW11. The

wave amplitude then decays on the much longer time scale

TR toward an equilibrated value, which is seen to be well

predicted by (38). Similar behavior can be seen in Fig. 6b for

Expt Via, for which the supercriticality is slightly greater.

The contrast with Expt VIb, in which Ekman friction is

replaced by PV damping, is discussed further below.

Figure 7 shows snapshots of the lower-layer PV evo-

lution during Expt V, which can be contrasted with the

Romea-like behavior reported for Expt III (Figs. 3a–c)

and the frictionless WGP-like behavior of Expt IV (Figs.

3d–f; see also Figs. 4 and 5 of EW11). The initial state,

as can been seen in Fig. 7a, is a negative lower-layer

PV gradient, consistent with baroclinic instability. As

the disturbance grows (Figs. 7b,c), the evolution of the

lower-layer PV remains very close to the critical layer

behavior exhibited by the corresponding frictionless flow

and predicted by the WGP theory, demonstrating that at

this time the flow is essentially undergoing a frictionless

baroclinic life cycle. Ekman friction is not strong enough

to act on the baroclinic life cycle time scale as TI � TR.

However, slight asymmetries are apparent between the

two circulation cells, with negative PV becoming con-

centrated in the cyclonic (anticlockwise) cell and positive

PV becoming concentrated in the anticyclonic cell. In-

terestingly, the finite criticality effect identified in EW for

frictionless flows acts in exactly the opposite sense in that

positive PV becomes concentrated within the cyclonic

cell. By t 5 225–275 (Figs. 7d,e), coherent Romea-like

vortices have organized within the lower layer because of

the cumulative effect of the Ekman friction, and these

continue to grow by the Holopainen mechanism (cf. Figs.

3b,c and surrounding discussion). By t 5 2000, a signifi-

cant positive PV gradient has emerged because of the

induced mean flow, which acts to stabilize the system.

In summary, Expt V undergoes a (near) frictionless

baroclinic life cycle on a time scale TI, during which time

the initial negative PV gradient in the lower layer is

(partially) homogenized by stirring. The life cycle is

followed by a much longer adjustment on time scale TR,

during which forced vortices due to Ekman friction

emerge within the lower layer and subsequently gener-

ate a positive background PV gradient associated with

the mean flow correction. An equilibrium determined

by the Ekman friction is eventually reached.

The behavior seen in Expt V is typical of that through-

out the mixed behavior region of parameter space identi-

fied above. Figure 8 shows maximum amplitudes jAs
1jeq

(solid points) and equilibrated amplitudes jAs
1jeq

(unfilled

points) for simulations with k 5 0.0025, 0.005, and 0.02 and

b 2 [0.2, 0.55]. The solid curves show the predictions of

WGP for the maximum amplitude [(21)] and Romea

[(39)] for the equilibrated amplitude in the limit k / 0.

For b . 0.5, as discussed in the context of Expt I above, the

maximum and equilibrated amplitudes are approximately

equal, and Romea’s theory makes reasonable predictions

of both, particularly as k / 0. At b 5 0.5, there is a pivot

point. The equilibrated amplitude continues to be accu-

rately predicted by Romea’s theory, but the maximum

amplitude is now much better predicted by the WGP
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theory. The relevance of Romea’s theory for b , ½—and

in the mixed behavior region in particular—is a new and

surprising result and is one of the main findings of this work.

5. Conclusions

The main objective of this work has been to determine

the relevance of two different asymptotic theories, with

each formally valid under different assumptions, to baro-

clinic life cycles in a b channel at finite supercriticality and

in the presence of Ekman friction. The results presented

allow the three questions posed in the introduction to be

answered as follows:

(i) The WGP theory accurately describes the early

time behavior of the baroclinic life cycle for flows

that are unstable according to the frictionless

criterion (b , ½), provided that the supercriticality

is not too large [� 5 (1/2 2 b)1/2� 1] and Ekman

friction is relatively weak (k & 0.05). The time scale

for the wave to equilibrate, via the formation and

rollup of a nonlinear critical layer in the lower

layer, is TI ; «21. The maximum wave amplitude

during the life cycle is attained on this time scale

and is well predicted by WGP. Typically thereafter,

as seen in Expt V described in section 4c, the upper-

layer wave amplitude then briefly oscillates around

the value predicted by WGP as reported in EW11.

On a longer time scale TR 5 k21«22, where « is the

Ekman friction supercriticality [(22)], the wave

amplitude decays from the WGP predicted value.

Isolated vortices intensify in the lower layer and

obliterate all trace of the early time critical layer

evolution. The late time behavior is reminiscent

FIG. 6. (a) Evolution in time of wave amplitude jAs
1j during Expt V [(b, k) 5 (0.48, 0.0025);

solid curve]. The dashed curve shows the corresponding WGP solution [for k 5 0; see (20)], the

dotted curve shows the Romea solution, [see (37)] and the dotted line shows the asymptotic

value for Romea’s solution. (b) As in (a), but for Expts VIa [(b, k) 5 (0.47, 0.005); solid curve]

and VIb [(b, r) 5 (0.47, 0.005; PV damping; dashed curve]. The dotted curves show the equi-

libria predicted by Romea (for Expt VIa) and WGP (for Expt VIb).
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instead of the equilibration of dissipatively desta-

bilized waves.

(ii) The Romea theory accurately describes the non-

linear evolution of dissipatively destabilized waves

that grow because of the Holopainen instability but

are stable to frictionless baroclinic instability (1/2 ,

b , bm) for low Ekman friction (k & 0.05): for

example, Expt I in section 4a. At higher Ekman

numbers (0.05 & k & 0.2) for which bm , ½ (e.g.,

Expt II), Romea is also found to be accurate near

marginal stability [i.e., for « 5 (bc(k) 2 b)1/2� 1].

For flows subject to baroclinic instability at low

Ekman number (b , ½ and k � 1; i.e., for which

Romea’s theory has not been thought relevant;

e.g., Boville 1981), the equilibrium wave ampli-

tude and zonal flow structure are nevertheless well

predicted by Romea. The equilibrium state is estab-

lished on the time scale TR, which throughout much

of parameter space is much longer than the WGP

time scale TI. Hence, there is no contradiction

between the short-time behavior of such flows

being well described by WGP, whereas the equi-

librium behavior is captured by Romea.

(iii) The frictionless baroclinic adjustment hypotheses

for nonlinear equilibration, Vallis (see, e.g., section

12.6.2 of Vallis 2006) hypothesizes that in general

flows adjust through PV homogenization to a state

that is stable under the Charney–Stern–Pedlosky

criterion (i.e., a state with single-signed PV gradi-

ents throughout the domain). The equilibrium state

in the WGP solution is an example of an ‘‘adjusted’’

state of this type (as pointed out by Shepherd 1993),

because the lower-layer PV is completely homog-

enized at late times in the WGP solution. Clearly,

however, in the presence of Ekman friction the

equilibrated states differs significantly from the

FIG. 7. Snapshots of the lower-layer PV field for Expt V [(b, k) 5 (0.48, 0.0025)] at t 5 100, 175, 200, 225, 275, and

2000. Blue/dashed contours correspond to negative PV values, and red/solid contours correspond to positive PV.

Contour intervals are (a)–(e) 0.01 and (f) 0.02.
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adjusted states, because, for example, Fig. 7f reveals

the equilibrated state of Expt V has a significant

positive PV gradient in the lower layer, indicating

that ‘‘overadjustment’’ has taken place. Hence, non-

linear baroclinic equilibration in the presence of

Ekman friction presents a clear example of a flow

for which the baroclinic adjustment hypotheses fails.

The conclusions above raise wider questions about the

validity of adjustment arguments for predicting equili-

brated states. Dynamical systems for which the adjust-

ment hypothesis will be valid are those for which

(weakly) forced-dissipative experiments equilibrate at

a state close to a stable equilibrium of the corresponding

unforced system. Examples include weakly forced con-

vection (through radiation or boundary conditions), and

indeed the two-layer b-channel flows studied here in the

special case where the forcing/dissipation is applied di-

rectly to the PV. The case of PV damping is a singular

situation (for further discussion, see, e.g., Pedlosky 1971;

Warn and Gauthier 1989) in which the Holopainen in-

stability vanishes, in contrast to other forms of damping,

which might quantitatively change both the Holopainen

instability and its nonlinear equilibration but leave the

qualitative behavior essentially unaltered (e.g., Esler 1997).

Expt VIb is an example of a flow with PV damping, and

in Fig. 6b it is shown to convergence to an equilibrium state

close to that predicted by the forced-dissipative formula-

tion of the WGP theory (e.g., section 4 of Warn and

Gauthier 1989), with the prediction being �W/
ffiffiffi
3
p

(valid

in the limit of weak PV damping r / 0). The equili-

brated state of Expt VIb can be described as an adjusted

state as the lower-layer PV (not shown) is homogenized,

just as occurs for the unforced life cycles discussed in

EW11.

The feature of baroclinic instability in the presence of

Ekman friction that prevents adjustment arguments from

being correct is that the flow must also be rendered stable

to the dissipatively destabilized waves. In this respect, it is

important to note that dissipative destabilization is not

a feature peculiar to the Phillips model. In the two-layer

model, a recent energetics budget study by Lee (2010)

indicates that dissipative destabilization provides an eddy

energy source in a more realistic jet flow. In the Eady

model, Weng (1990) and Weng and Barcilon (1991) have

shown that dissipative destabilization analogous to that in

the Phillips model occurs when sloping boundaries (the

so-called topographic b effect) are present. The situation

in other models appears to be more complicated (e.g., Lin

and Pierrehumbert 1988; Panetta et al. 1988), but it can be

concluded that a better understanding the mechanism of

the dissipative destabilization could provide an important

step toward understanding baroclinic equilibration in a

wider context. Swaters (2010) has made a step forward in

this regard with a modal interpretation of the instability

mechanism.

The robust feature of the present study is that it gives

a clear example of how equilibration can occur by a

mechanism distinct from that hypothesized by adjustment

arguments. It is this feature that is likely to be universal.

The fact that Romea’s theory has been shown to have

considerable predictive power for the equilibrated state

across much of parameter space suggests a similar ap-

proach may bring insight into a wider range of flow sce-

narios, with the most relevant physical situations being

wind-driven flow in an oceanic channel and rotating an-

nulus experiments.
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