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ABSTRACT

Using a global, one-layer shallow water model, the response of a westerly flow to a localized mountain is
investigated. A steady, linear response at small mountain heights successively gives way first to a steady flow
in which nonlinearities are important and then to unsteady, but periodic, flow at larger mountain heights. At
first the unsteady behavior consists of a low-frequency oscillation of the entire Northern Hemisphere zonal flow.
As the mountain height is increased further, however, the oscillatory behavior becomes localized in the diffluent
jet exit region downstream of the mountain. The oscillation then takes the form of a relatively rapid vortex
shedding event, followed by a gradual readjustment of the split jet structure in the diffluent region. Although
relatively simple, the model exhibits a surprisingly high sensitivity to slight parameter changes. A linear stability
analysis of the time-averaged flow is able to capture the transition from steady to time-dependent behavior, but
fails to capture the transition between the two distinct regimes of time-dependent response. Moreover, the most
unstable modes of the time-averaged flow are found to be stationary and fail to capture the salient features of
the EOFs of the full time-dependent flow. These results therefore suggest that, even in the simplest cases, such
as the one studied here, a linear analysis of the time-averaged flow can be highly inadequate in describing the
full nonlinear behavior.

1. Introduction

Since the work of Simmons, Wallace, and Branstator
(1983; hereafter SWB), the linear instability of the zon-
ally asymmetric, time-averaged flow in the upper tro-
posphere has been suggested as an important ingredient
in the maintenance of low frequency variability, even
if its precise role has not been fully clarified. SWB and
subsequent work (Frederiksen and Webster 1988; Bor-
ges and Sardeshmukh 1995; Branstator and Held 1995;
Huang and Robinson 1995) identified the instability as
being localized in the vicinity of the upper-tropospheric
jet exit, and found growing disturbances that were either

1 We refer to this instability as the ‘‘Simmons–Wallace–Branstator’’
instability.
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stationary or slowly propagating and whose amplitudes
are concentrated near the jet exit region.

In most of the previous studies, the basic state was
taken to be an observed, time-averaged upper-tropo-
spheric flow [although Huang and Robinson (1995) took
a simplified representation], and the characteristics of
growing disturbances were investigated, assuming the
background flow to be maintained by external, fixed,
and ad hoc forcing that does not interact with the grow-
ing disturbances. Andrews (1984) has shown that, in
fact, the nature of the instability may be sensitive to
assumptions made about this external forcing. What re-
mains unclear, moreover, is the detailed dynamics of the
instability—in what way, for example, the instability
depends on the degree of nonzonality in the basic flow,
and how the equilibrated, nonlinear, oscillations of the
full flow relate to the growing disturbances calculated
from linearization about the time-averaged state.

In this paper we take a different approach. Rather
than attempting to describe the linear instability char-
acteristics of observed flows, we construct a simple
model to study how a one-layer westerly flow responds
to the presence of a localized forcing. Although we
explicitly use topographic forcing in this study, we do
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TABLE 1. A summary of the parameter settings used in
the experiments.

AF (m) Resolution n (m6 s21)

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

T42
T42
T42
T42
T42
T42
T42
T42
T42
T42
T42

6 3 1026

6 3 1026

6 3 1026

6 3 1026

6 3 1026

6 3 1026

6 3 1026

6 3 1026

6 3 1026

1 3 1027

1 3 1027

5000
5000
5000

T21
T42
T85

3.6 3 1028

2 3 1027

5 3 1025

FIG. 1. The zonal flow u0(f ) used to initialize and drag the model.
so with the intention that this be a proxy for any lo-
calized stationary wave generator. Furthermore, unlike
most previous work, we explicitly avoid using an ad
hoc forcing term to maintain a prescribed time-averaged
flow. We simply observe and report how the response
changes as the forcing amplitude is increased and then
compare the features of the linear instabilities of the
time-averaged flow with those of the fully nonlinear
time-dependent flow.

2. The model

The physical model used in this paper is an incom-
pressible, one-layer, spherical fluid shell of mean depth
10 km, obeying the shallow water equations:

21D v 5 2 f k 3 v 2 g=(h 1 h ) 2 t (v 2 v )t F D 0

D h 5 2h= · v, (1)t

where h is the thickness of the fluid layer, v 5 (u, y)
is the two-dimensional velocity vector, f is the Coriolis
parameter, g is the gravitational acceleration, t D is a
drag coefficient, and Dt [ ] t 1 v · = is the material
derivative.

These equations are numerically integrated using a
standard pseudospectral method (Hack and Jacob 1992).
Unless otherwise specified, the computations reported
below are performed using a T42 truncation (corre-
sponding to a Gaussian grid with approximately 2.88
grid size and a standard ¹6 hyperdissipation on the left
side of (1). The hyperdiffusivity n is adjusted to the
lowest possible value consistent with numerical stability
in each experiment (see Table 1). As a guide, the value
6 3 1026 m6 s21 corresponds approximately to a 5-h
e-folding scale for the smallest resolved scale n 5 42.
The dependence of the model response on the parameter
n is discussed below in section 4.

The flow is initialized with a latitude-dependent zonal
velocity v0 given by

v(w, t 5 0) 5 v 5 (u , y )0 0 0

2 35 (a cosw 1 4a sin w cos w, 0), (2)1 2

where w is the latitude. With the choice a1 5 5 m s21

and a2 5 33 m s21, this flow (shown in Fig. 1) is meant
to be representative of the upper troposphere during the
Northern Hemisphere winter. For later reference we note
that this zonal flow is barotropically stable, in the sense
that the potential vorticity gradient never changes sign.
Note also that the winds at the equator are weak west-
erlies. The thickness field h is initialized to be in exact
nonlinear balance with this wind.

This initially steady zonal balanced flow is then
forced using the topographic term g=hF in (1). For sim-
plicity, we choose the topography to be a circular Gauss-
ian mountain (cf. Waugh et al. 1994) given by

hF(w, l, t) 5 ,2(q/q )FA T(t)eF (3)

where w and l are latitude and longitude, respectively,
and q is the solid angle between the peak of the to-
pography, located at (wF, lF) and the point (w, l). In
this paper we chose the forcing to be in the middle
latitudes (wF, lF) 5 (408N, 908E) and set the angular
width of the mountain to be qF 5 108. The function
T(t) 5 (1 2 ) is used to grow the mountain in a2t/t Fe
smooth way with an e-folding time t F 5 5 days.

The last term in the momentum equation of (1) is a
simple linear drag. Unless otherwise specified, we have
used t D 5 45 days, and the dependence of the results
on this parameter will be discussed in section 4.

3. The response

The key parameter controlling the behavior of the
response is the peak mountain height, AF, which spec-
ifies the amplitude of the forcing. Table 1 shows the
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FIG. 2. The perturbation streamfunction for forcing amplitude AF 5 500 m (with respect to the initial state).
The contour interval is 1 3 106 m2 s21. The dark shaded region indicates the position of the topography.

FIG. 3. As in Fig. 2 except for AF 5 2000 m. The contour interval is 4 3 106 m2 s21.
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FIG. 4. The PV at day 1000 in the AF 5 500, 1000, and 2000 m experiments.
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FIG. 5. The evolution of the globally averaged rms perturbation streamfunction amplitude for2^( 2 ) &c cÏ
each of the experiments AF 5 1000 m to 5000 m over the first 2000 model days. For each experiment c is
calculated by time averaging the streamfunction evaluated between day 1500 and 2000.

range of mountain heights used in the different exper-
iments, along with the corresponding values of the hy-
perdiffusivity n. As we will now describe, the flow
changes in dramatic ways as the forcing amplitude is
varied.

a. Steady response

For sufficiently small forcing amplitudes (i.e., AF ,
1000 m) the response is almost entirely linear and the
flow rapidly becomes steady. The case with AF 5 500
m is illustrated in Fig. 2, where the perturbation stream-
function is plotted for the first 24 days. Familiar wave
trains are clearly apparent and, in the presence of equa-
torial westerlies (cf. Fig. 1), they extend into the South-
ern Hemisphere (Grose and Hoskins 1979; Webster and
Holton 1982).

As the forcing amplitude AF is increased the response
becomes nonlinear, and the wave propagation into the
Southern Hemisphere is hindered by the presence of a
subtropical surf zone (Waugh et al. 1994), which acts
as a reflector and channels the wave trains along the
northern midlatitudes (Brunet and Haynes 1996). Figure
3 illustrates the suppression of the response in the South-
ern Hemisphere for the case AF 5 2000 m.

Up to this amplitude however the flow, whether linear
or nonlinear, eventually settles into a steady pattern. The
potential vorticity (PV) of the flow at day 1000 (by
which time all time variation has vanished) is shown in
Fig. 4 as a function of AF. Although the flow has become
stationary, it bears the marks of the wave breaking for
the larger-amplitude cases. The width of the breaking
region increases with the forcing amplitude, as in Waugh
et al. (1994). Moreover, the steady flow exhibits a region
of tight PV gradients just downstream from the forcing,
reminiscent of an upper tropospheric jet. As the ampli-
tude of the forcing is increased, not only does the sta-
tionary flow exhibit a progressively stronger nonzonal
character, but the PV gradients across the jet also be-
come tighter.

b. Unsteady response

As the forcing amplitude is increased beyond AF 5
2000 m, the character of the response again changes
dramatically: the long-term response becomes time de-
pendent. This is illustrated in Fig. 5, which shows 2000
days of evolution of the globally averaged root-mean-
square (rms) perturbation streamfunction in each of the
experiments AF 5 1000 m, . . . , 5000 m. The 1000- and
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FIG. 6. The Northern Hemisphere PV field over the course of an oscillation in the AF 5 3000 m experiment. The contour interval is 2 3
1029 m21 s21. Values between 4 3 1029 m21 s21 and 1.2 3 1028 m21 s21 are lightly shaded. The topography is indicated by the dark shaded
region.

2000-m experiments both converge toward steady so-
lutions, but for larger forcing the streamfunction vari-
ability asymptotes to an approximately constant val-
ue, which is roughly independent of forcing ampli-
tude.

A valuable tool to quantify and describe this vari-
ability is complex empirical orthogonal function (EOF)
analysis. For a thorough review of this procedure see,
for example, Horel (1984). For present purposes, suf-
fice it to say that this analysis makes possible the ex-
pression of any evolving quantity (in our case the
streamfunction) in terms of its time average and a series
of orthogonal complex eigenfunctions,

jc (x, y, t) 5 c (x, y) 1 Re f (t)C (x, y), (4)O j
j

each corresponding to a traveling wave component of
the flow. These eigenfunctions each describe optimal
amounts of the streamfunction variance, in descending
order of importance, and by definition evolve in the
sequence

Re(C ) → 2Im(C ) → 2Re(C ) → Im(C )j j j j

→ Re(C ), (5)j

the nature of this evolution being determined by the
orthogonal complex principal components f j(t). Of
most interest to our case is the first eigenfunction C1 ,
which explains the most variance (40%–90% in the
experiments with AF 5 2500 to 5000 m).

Use of complex EOF analysis reveals that the un-
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FIG. 7. The structure of the leading complex EOF (left, Re c1; right, Im c1) for the AF 5 3000 m experiment
as well as its evolution in time. The lower plot shows the time evolution of the complex principal components
Re f 1(t) (solid line) and Im f 1(t) (dotted line). The contour interval in the upper-level structural plots is 0.02.

steady response to localized forcing at large amplitudes
falls into two distinct regimes of behavior in our model.
For AF52500 m to AF 5 3500 m, the flow is observed
to oscillate northward and southward, becoming more
and then less wavy in the process. This behavior is not
zonally localized to the forcing region but affects the
whole hemisphere. We refer to this as a global oscil-
lation.

Figure 6 shows the evolution of the Northern Hemi-
sphere PV during one period of the oscillation (from
day 1580 to day 1860) for the case AF 5 3000 m.
There is some wave breaking downstream of the moun-
tain and to the south, but in the midlatitudes the waves
are characterized by tighter PV gradients, which os-
cillate but remain wavy. Figure 7 shows the structure
and evolution of the first complex EOF (80.0% of the
total variance) for the streamfunction in this experi-

ment. Notice that Re(C1) is more zonal while Im(C1)
is more wavy. With reference to the sequence in Eq.
(5), the oscillation can thus be roughly described as
follows:

zonal high-latitude flow

→ wavy low-latitude flow → zonal low-latitude flow

→ wavy high-latitude flow → zonal high-latitude flow.

This oscillatory pattern can be seen in the PV field
itself (Fig. 6), although some effort is required to detect
the difference between the frames.

The period of this global oscillation decreases as the
forcing amplitude is increased, from well over 500 days
for AF 5 2500 m, to 280 days for AF 5 3000 m (cf.
Fig. 7), to 110 days for AF 5 3500 m, while the am-
plitude of the oscillation is similar in each case.
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FIG. 8. As in Fig. 6 except showing the Northern Hemisphere PV field during one of the vortex budding events in the AF 5 5000 m
experiment.

As the forcing amplitude AF is increased to 4000 m
and higher, the oscillation is observed to enter a dif-
ferent regime. This is characterized by the strong non-
zonal jet downstream of the mountain periodically
shedding a vortex from its northern flank. We refer to
this as a localized oscillation. Figure 8 shows the evo-
lution of the Northern Hemisphere PV field during such
a shedding event for the AF 5 5000 m experiment.
Figure 9 shows the corresponding evolution of the
streamfunction over the same period. The time interval
shown is the period 1600–1620 days, by which time
the flow has settled into an oscillation with a period
of approximately 80 days. At 1600 days, there is a belt
of strong PV gradients (collocated with the jet) to the
southeast of the mountain and oriented SW–NE. The
jet extends to about (508N, 1508E) where it splits, the
main subtropical branch being at 308N at this time and

a weaker branch poleward of 608N. Over the course
of the next 20 days, the anticyclonic PV anomaly south
of the poleward branch is ejected, and the poleward
branch collapses, while the subtropical branch rear-
ranges itself such that, by day 1608, the main jet (the
belt of strong PV gradient) is oriented more zonally
and extends all the way to 2008E. Eastward of this
longitude the jet is split into two distinct branches.
Over the next 12 days the location of this split in the
jet is seen to move westward until it is located at (408N,
1708E), replacing the split that was destroyed by the
ejection of the cyclone. During this time, the cutoff
anticyclone at high latitudes drifts westward and dis-
sipates. From 1620 to 1680 days (not shown) the initially
strong poleward branch of the jet gradually weakens and
the subtropical branch gradually gets stronger until the PV
looks very similar to that in the 1600-day snapshot.
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FIG. 9. The evolution of the streamfunction during the vortex budding event shown in Fig. 8. The contour interval is 1 3 107 m2 s21.

From the complex EOFs perspective, this localized
oscillation is illustrated in Fig. 10, which shows the
structure and evolution of the first complex EOF of the
streamfunction for this experiment (42.67% of the total
variance). An SWB-type wave train can be observed
to propagate from the Tropics to the pole in the jet exit
region, with period around 80 days. The propagation
is characterized by periods of relatively rapid transi-
tion, corresponding to the rapid vortex shedding de-
scribed above, followed by relatively long periods of
gradual change, corresponding to a relaxation of the
flow when the subtropical jet becomes stronger and the
polar jet weaker. The period of this type of oscillation
again varies with the forcing amplitude AF . In the
4000-m experiment only two vortex shedding events
were recorded in a 500 day period, whereas for 4500
m the period was around 110 days.

4. The model sensitivity
The scenario of the response just presented, that is,

the evolution from a steady linear to a steady nonlinear
to an unsteady global to an unsteady localized re-
sponse, is not crucially dependent on the parameter
values we have chosen, in the sense that the qualitative
transitions of the response are generic. However, the
precise values of AF at which the transitions occur are
dependent on the dissipative drag t D . For t D smaller
than about 30 days, all time variability is suppressed
over the range of forcing amplitudes used here (up to
AF 5 5000 m); similarly, when weaker dissipation was
used (values of t D greater than 45 days), the time-
dependent behavior appeared at smaller forcing am-
plitude. Such dependence of the flow evolution on the
drag coefficient has been reported by Huang and Rob-
inson (1995) in a similar model.



1454 VOLUME 56J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 10. As in Fig. 7, but for AF 5 5000 m.

Another, perhaps more subtle, form of dissipation is
present in our model, namely, the hyperdissipation that
is introduced via a term of the form n¹ 6 on the left-
hand side of (1). The question of how our results de-
pend on n is of course intimately related to how the
model response varies as a function of the resolution.
We have performed several runs at resolutions of T21,
adjusting n to 3.6 3 1028 m 6 s21 , the smallest value
consistent with numerical stability. As in the experi-
ments of Brunet and Haynes (1996), we discovered a
markedly different response. Specifically, we have
found that nonlinear time-dependent behavior is never
observed at T21 (again, up to AF 5 5000 m). The flow
always becomes steady, even at the largest forcing am-
plitudes. This is because the smallest value of n one
must use at T21 has a direct effect on the dynamically
important scales of motion. This finding appears con-
sistent with that of Brunet and Haynes (1996), that the
wave activity flux into the Tropics is absorbed by the
hyperdissipation, leading to spurious stationary be-

havior. At T21, the PV redistribution evident in Fig.
8 is overwhelmed by the dissipation. Unsurprisingly,
it is also possible to change the regime of behavior
observed in the T42 experiments by increasing the val-
ue of n above that given in Table 1. For example, an
experiment with AF 5 5000 m and n 5 2 3 1027 m6

s21 resulted in an oscillation of the Northern Hemi-
sphere flow similar to that described above for the AF

5 3000 m experiment.
To use significantly lower values of n than those

given in Table 1, it is necessary to increase the reso-
lution to T85 in order to maintain numerical stability.
Figure 11 shows the evolution of Northern Hemisphere
PV during a T85 experiment with AF 5 5000 m and
n 5 5 3 10 25 m6 s21 . This experiment is characterized
by a small amplitude periodic oscillation (period ø 20
days) with several important differences, as well as
similarities, to the oscillations reported at lower res-
olution:

R The strong jet downstream of the mountain now ex-
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FIG. 11. As in Fig. 6 except showing the Northern Hemisphere PV field during the T85, n 5 5 3 1025, AF 5 5000 m experiment. The
contour interval is 1 3 1029 m21 s21. Values between 3 3 1029 m21 s21 and 1 3 1028 m21 s21 are lightly shaded.

tends halfway around the globe. It is characterized
by tight wavy PV gradients surrounded by well-
mixed regions.

R Complex EOF analysis shows that the variability of
the flow is concentrated almost entirely in the jet exit
region, where the flow becomes diffluent (around
2508–3308 East longitude).

R The qualitative nature of the oscillation is the same
as in the T42 case, involving shedding of vorticity
from the north flank of the jet into high latitudes,
although the amplitude of the oscillation is much
smaller.

This experiment suggests that the time-mean flow is
most unstable in regions of diffluence, whereas it is
relatively stable in regions of confluence or where it
is wavy. It also shows that it is the hyperdiffusion that
determines where the jet becomes diffluent and there-

fore the region of instability in this model. Other mech-
anisms may be important in the atmosphere.

Finally, we note in passing another perhaps more
surprising sensitivity of the behavior, namely that to
the basic zonal flow v 0 itself. We have found very high
sensitivity to even very small changes in the zonal wind
profile used in these integrations. As in the case of
varying dissipation, the qualitative behavior was un-
changed; nevertheless, the quantitative changes were
substantial, even for very similar zonal wind profiles.

5. Linear stability analysis of the time-averaged
flow

The strong oscillatory time dependence of the flow
at large forcing amplitude prompts the question as to
how well a linear stability analysis of the time average
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FIG. 12. The time-averaged streamfunction for the four cases AF 5 2000 m, . . . , 5000 m. The
contour interval is 1 3 107 m2 s21. The dark shaded region indicates the position of the topography.

FIG. 13. As in Fig. 12 but showing the time-averaged PV. The contour interval is 1 3 1029

m21 s21.
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TABLE 2. The periods and growth rates, in days, of the most
unstable modes in the linear experiments.

AF (m) Period

e-folding
time

tD 5 0
n 5 0

e-folding
time

t 5 45 d21
D

n 5 0

e-folding
time

t 5 45 d21
D

n as in
Table 1

100
500

1000
2000
3000
4000
5000

96
`
64
`
`
`
`

1480
175.4

46.2
28.8
21.9
15.2
14.1

Stable
Stable
Stable
180
40.3
23.2
19.5

Stable
Stable
Stable
Stable
67.3
54.1
30.7

of these flows (the procedure used by SWB and others
to investigate the characteristics of observed flows)
will reproduce the characteristics of the oscillations.
We start by constructing the time-averaged states. From
the full model runs of 2000 days, we construct time
averages from 1500 to 2000 days, to ensure that all
initial transients have died out. The time-averaged
streamfunction and the corresponding time-averaged
PV are shown in Figs. 12 and 13 for the cases AF 5
2000 m to AF 5 5000 m. As the amplitude is increased,
the time-averaged fields show the formation of a strong
jet downstream of the forcing region.

The shallow water equations (1), linearized around
each of these time-averaged states, are then integrated
for 1000 days, from random initial conditions of very
small amplitude. In each case, the solution typically
starts growing exponentially after a few days, when
the most unstable mode emerges from the initial noise.
The properties of these most unstable modes are sum-
marized in Table 2.

The time-averaged model with hyperdiffusivity and
drag present (last column of Table 2) becomes unstable
for forcing amplitudes greater than 2000 m. Quite strik-
ingly, however, all the unstable modes at large forcing
amplitude were found to be stationary (i.e., of infinite
period), in contrast with SWB who found many un-
stable modes with nonzero frequency. The structures
of the stationary modes (for the inviscid case) are
shown in Fig. 14 as a function of the forcing amplitude
AF . The modes for AF 5 3000-, 4000-, and 5000-m
basic flows have most of their amplitude concentrated
in the jet—jet exit region downstream of the mountain,
while there is much less concentration of amplitude
evident in the AF 5 2000 m case.

From these results it would seem that the linear anal-
ysis of the time-averaged flow is able to capture the
transition from steadiness to time dependence, in the
sense that the time-averaged linear flow becomes lin-
early unstable at forcing amplitudes comparable to
those that mark the transition from steadiness to time
dependence in the fully nonlinear model (i.e., AF 5
2000 m). However, the linear analysis of the time-
averaged flow is unable to predict the amplitude at
which the transition from global to local time-depen-
dent behavior occurs. Moreover, since all the most un-
stable linear eigenmodes at large forcing amplitude are
stationary, the linear analysis cannot explain the pe-
riods and structures of the oscillations observed in the
time-dependent response. This is perhaps not surpris-
ing, since the period of the time-dependent response
is likely to result from a complex nonlinear equilibra-
tion of the growing instabilities.

We have also computed the linear growth rates with-
out hyperdiffusion and with neither hyperdiffusion nor
drag (cf. columns 4 and 3 of Table 2). In each case the
growth rates increase as the forcing amplitude AF in-
creases (up to 5000 m). The linear drag causes the

growth rate to be reduced2 by about t D , and the hy-
perdiffusion stabilizes the system further.

An interesting side issue is the behavior of the linear
model in the limit of very small forcing amplitude and
in the absence of drag and hyperdiffusivity. As can be
seen from Table 2, we find that, perhaps surprisingly,
inviscid growth rates remain positive (though very
small) at forcing amplitudes so small that the nonzon-
ality of the basic flow is barely perceptible (cf. Fig.
4). Moreover, the most unstable normal modes in the
small-amplitude inviscid case possess a time-periodic
global spatial structure, as opposed to the modes at
large forcing amplitude which, as already mentioned,
are all localized and stationary.

As an example, we show in Fig. 15 half the period
of the oscillation for the linearly most unstable dis-
turbance in the case AF 5 100 m, for which the PV of
the steady response is nearly indistinguishable from
zonal. This structure, with half a period of about 48
days, can be described quite well as the superposition
of two Rossby–Haurwitz waves. Such structures are
typical of the instability of a Rossby–Haurwitz wave
(e.g., Baines 1976). It is, however, characteristic of that
instability that there is an amplitude threshold that must
be exceeded. In the small amplitude limit, instability
occurs through resonant triads (Gill 1974). Exactly res-
onant triads cannot usually be found on the sphere, and
so the basic-state wave amplitude must be large enough
for the wave–wave interaction to overcome dispersion
of the growing waves (Baines 1976). That we do not
find a threshold (in the amplitude range investigated)
may result from the fact that the basic state we use,
with barely detectable yet localized nonzonality, can
be thought of as a superposition of many Rossby–Haur-
witz waves, thus increasing the availability of almost
resonant triads.

2 SWB show that the same linear drag applied in the barotropic
vorticity equations reduces the growth rate of all modes by exactly
t D (see their appendix A).
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FIG. 14. The spatial structure of the streamfunction of the linearly most unstable modes
calculated from the time-averaged flows for the four cases AF 5 2000 m, . . . , 5000 m. All
the modes are stationary. The contour interval is arbitrary.

6. Discussion

These experiments have shown how forcing a simple
westerly flow with a single localized mountain can re-
produce one of the observed characteristics of ob-
served quasi-stationary waves, namely, low-frequency
variability localized in the jet exit regions. Moreover,
it was found that the amplitude of the topographic forc-
ing needs to exceed a certain threshold before an os-
cillation of the entire Northern Hemisphere flow yields
to a more ‘‘realistic’’ localized oscillation.

How directly the results of our model can be applied
to the real atmosphere is not entirely clear. Our results
are in agreement with the conclusions of Borges and
Sardeshmukh (1995) (see also Sardeshmukh et al.
1997) in that oscillatory behavior is found only for
unrealistically large wave amplitudes and/or unreal-
istically weak dissipation. Even for t D 5 45 days, a
drag time much longer than is realistic for deep tro-
pospheric systems, oscillatory behavior only sets in
when the time-averaged flow has exaggerated wave
features (cf. Fig. 12 with AF $ 3000 m and compare
with typical monthly mean upper-tropospheric flows in
northern winter). With dissipation that is significantly
more rapid (though still weaker than is realistic), the
oscillatory behavior disappears altogether. Thus, while
the similarity between the patterns of observed low-

frequency variability in the atmosphere and of the var-
iability found in this and similar models continues to
be intriguing, many discrepancies remain.

One interesting conclusion may be drawn from this
study, however. Having constructed a model in which
the time variability is controllable (in this case via the
forcing amplitude AF), we can attempt to answer the
following important question: given a complex, evolv-
ing, time-dependent flow, what can one learn from a
linear analysis of the time-averaged flow? In our simple
model, the linear analysis is unable to capture both the
periodicity and the spatial structures of the fully evolv-
ing flow. Whether these results generalize to more com-
plex and hopefully more realistic models remains an
open question. It does however suggest the possibility
that linear analysis may be an inadequate tool for un-
derstanding atmospheric time variability.

Finally, we remark that our model, which in many
ways is as simple as can be conceived, was found to
be highly sensitive both to the choice of basic zonal
wind and drag coefficient, as well as to the numerical
resolution used. We were surprised to find such sen-
sitivity, since it has rarely been reported in numerical
studies of atmospheric flows. We suggest, therefore,
that much caution may be necessary when using nu-
merical models for direct quantitative comparison with
observations.
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FIG. 15. One half cycle of the spatial evolution of the linear streamfunction of the most unstable mode for the near-zonal AF 5 100 m
case.
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