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ABSTRACT

The fundamental dynamics of ‘‘vortex splitting’’ stratospheric sudden warmings (SSWs), which are known

to be predominantly barotropic in nature, are reexamined using an idealized single-layer f-plane model of the

polar vortex. The aim is to elucidate the conditions under which a stationary topographic forcing causes the

model vortex to split, and to express the splitting condition as a function of the model parameters determining

the topography and circulation.

For a specified topographic forcing profile the model behavior is governed by two nondimensional pa-

rameters: the topographic forcing height M and a surf-zone potential vorticity parameter V. For relatively

low M, vortex splits similar to observed SSWs occur only for a narrow range of V values. Further, a bifurcation

in parameter space is observed: a small change in V (or M) beyond a critical value can lead to an abrupt

transition between a state with low-amplitude vortex Rossby waves and a sudden vortex split. The model

behavior can be fully understood using two nonlinear analytical reductions: the Kida model of elliptical vortex

motion in a uniform strain flow and a forced nonlinear oscillator equation. The abrupt transition in behavior is

a feature of both reductions and corresponds to the onset of a nonlinear (self-tuning) resonance. The results

add an important new aspect to the ‘‘resonant excitation’’ theory of SSWs. Under this paradigm, it is not

necessary to invoke an anomalous tropospheric planetary wave source, or unusually favorable conditions for

upward wave propagation, in order to explain the occurrence of SSWs.

1. Introduction

One of the defining characteristics of the stratospheric

polar vortices is that they are air masses of elevated

Ertel’s potential vorticity (PV), relative to the back-

ground extratropical ‘‘surf zone’’ air that surrounds them.

It is well established that a stratospheric sudden warm-

ing (SSW) involves a relatively rapid (on the order of

a few days) change in the position and/or the structure of

the stratospheric polar vortex (e.g., O’Neill 2003), and

consequently during an SSW there is a large and rapid

disturbance to the PV distribution in the polar region.

Because of the ‘‘invertibility’’ property of PV, both the

rapid increase in stratospheric polar temperatures dur-

ing an SSW and the decrease in polar zonal wind speeds

can be considered to be a consequence of the disturbance

to the boundary of the high-PV polar vortex air mass.

In other words, the evolution of the three-dimensional

boundary of the polar vortex during an SSW largely de-

termines the dynamics of the entire event.

Observed SSWs can be classified into two more or less

distinct types [for recent attempts to document and

classify observed SSWs see, e.g., Limpasuvan et al. (2004),

Charlton and Polvani (2007), Charlton et al. (2007), and

Matthewman et al. (2009)]. During a vortex displace-

ment SSW, the polar vortex is displaced from the pole,

with the magnitude of the displacement increasing rap-

idly with altitude (e.g., Manney et al. 1999; Matthewman

et al. 2009), indicating that vortex displacement SSWs

have a strongly baroclinic structure. During a vortex

split SSW, by contrast, the polar vortex splits almost

simultaneously with height (e.g., Manney et al. 1994;

Matthewman et al. 2009); that is, a vortex split SSW has

a predominantly barotropic structure. A further feature

of vortex split SSWs, as Matthewman et al. (2009) have

concluded from a study of the 14 observed events during

1957–2002, is that the orientation of the vortex split is

approximately parallel to the 608E–1208W meridian (i.e.,

almost all of the events take place at a more or less fixed
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orientation to the earth’s surface). The present work

addresses the nonlinear dynamics of the vortex split type

of SSW. Our strategy is to investigate arguably the sim-

plest possible model capable of capturing the funda-

mental fluid dynamics, as the rapid onset of SSWs implies

that they can primarily be understood as fluid dynamical

events. The key aim is to identify and investigate a

plausible fluid dynamical mechanism that can capture

the essential dynamics governing the onset of vortex

splitting SSWs. The intention is that the present results

can then be combined with those from vacillation-type

models [following, e.g., Holton and Mass (1976) and

Yoden (1987)] of varying complexity (see also, e.g., Chen

1996; Rong and Waugh 2004; Scott and Polvani 2006; Hio

and Yoden 2007), which include other relevant physics

such as a representation of the effects of solar and long-

wave radiation and which provide insight into how the SSW

onset conditions are approached over a longer time scale.

Of course, this is not the first study to investigate the

onset of SSWs from a purely fluid dynamical perspec-

tive. Following the suggestion of Matsuno (1971) that

SSWs might be the consequence of a resonant excitation

of a free Rossby wave mode of the atmosphere by topo-

graphic forcing, Tung and Lindzen (1979a,b) investigated

the resonant properties of a variety of tropospheric and

stratospheric flows in a linear quasigeostrophic b-plane

model. They noted that many realistic wind profiles are

close to a state of a linear resonance with respect to sta-

tionary forcing by the topography, and that linear reso-

nant excitation of free Rossby wave modes is therefore a

plausible mechanism for the onset of both tropospheric

blocking flows and SSWs. However, as will be discussed

further below, there are at least two unsatisfactory as-

pects to a linear resonance theory. First, observed SSWs

are invariably associated with a rapid increase in vortex

Rossby wave amplitudes (i.e., they have an abrupt on-

set). In linear theory, as resonance is approached, Rossby

wave amplitudes depend smoothly on the system’s con-

trolling parameters. To explain the time scale associated

with a sudden increase in wave amplitudes, linear theory

requires an additional theory of why the system is sud-

denly brought close to resonance on that time scale,

in contrast with nonlinear theories in which the rapid

change can be associated with a bifurcation or catas-

trophe (e.g., Chao 1985). Second, linear theory cannot

give insight into whether nonlinear adjustments to the

system due to the amplifying waves will act to intensify

or to damp the resonant excitation. Plumb (1981b) ad-

dressed the latter issue by deriving a weakly nonlinear

evolution equation for the wave amplitude in a b-plane

flow with arbitrary vertical shear. Plumb’s results re-

vealed that, for an initially somewhat off-resonant forcing,

nonlinear effects can act to intensify resonant excitation.

Plumb termed this phenomenon ‘‘self-tuning’’ resonance

and one of the main aims of the present work will be to

investigate its relevance in the simple vortex model of

SSWs described below.

There have been a number of attempts to investigate

Plumb’s ideas in more realistic models. Notably, Smith

(1989) investigated the possibility of resonance during the

February 1979 vortex splitting SSW. A time-dependent

quasi-linear calculation revealed that the phase speed of

a Rossby wave normal mode approached zero as the

SSW developed, hinting at the occurrence of self-tuning

resonance.1 More recently, Esler and Scott (2005) exam-

ined in detail the dynamics of a three-dimensional co-

lumnar quasigeostrophic vortex forced by a wavenumber-2

lower boundary forcing. It was shown that a vortex split

occurred in the model when the frequency of the lower

boundary forcing came close to resonance with that of

the Rossby wave mode with a height-independent or

barotropic vertical structure. The resulting columnar

vortex split strongly resembles observed vortex splitting

SSWs in its vertical structure (see, e.g., Matthewman

et al. 2009). In addition to being an explicit demonstra-

tion of resonant forcing leading to SSW-like behavior in

a three-dimensional model of the polar vortex, the Esler

and Scott (2005) study emphasized that it is only the

barotropic or external vertical Rossby wave mode that

is plausibly linked to vortex splitting SSW behavior

(a different conclusion holds for vortex displacement

SSWs). Excitation of the remaining vertical modes, the

Charney–Drazin spectrum, generates significant Rossby

wave amplitudes only at high altitudes, where Rossby

wave breaking and PV filament formation occurs (cf.

Polvani and Saravanan 2000). The importance of non-

linearity in contributing to a ‘‘frequency offset’’ between

the forcing frequency leading to the maximum response,

and the frequency of exact linear resonance, is discussed

in Esler and Scott (2005), as well as in a subsequent work

(Esler et al. 2006), which is focused on the September

2002 Southern Hemisphere vortex splitting SSW. The

present work aims to place the qualitative descriptions

of the effects of nonlinearity on the vortex development

in Esler and Scott (2005) and Esler et al. 2006) on a firmer

theoretical footing, albeit in a simpler model.

The paper is structured as follows. In section 2 the

model equations to be solved are described, their numer-

ical implementation is detailed, and a set of diagnostics

1 The present study casts doubt on the accuracy of quasi-linear

wave-mean models such as that used by Smith, as it is shown ex-

plicitly in section 4d that the interaction of weakly nonlinear vortex

Rossby waves with their second harmonic is equally important as

their interaction with the zonal mean flow.
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used to interpret the results is introduced. In section 3,

the results from a set of parameter sweep experiments

are presented, and a regime diagram is generated by

categorizing the outcome of each experiment based on

the qualitative evolution of the vortex. In section 4, the

form of the regime diagram is accounted for by making

two distinct nonlinear analytical reductions of the equa-

tions of motion, each formally valid in a different limit

of parameter space. The results allow the construction

of a ‘‘prototype vortex splitting SSW,’’ in which a vortex

undergoing a stable, relatively small (but finite) ampli-

tude oscillation in the numerical model responds to a very

small increase in forcing by undergoing a sudden vortex

split. This prototype vortex splitting SSW is described in

section 5. In section 6 conclusions are given.

2. A single-layer model of polar vortex evolution

The fact that observed vortex splits are planetary-

scale events and are primarily barotropic in their vertical

structure suggests that the basic dynamics can be cap-

tured by a quasigeostrophic, f-plane, single-layer shal-

low water model. The dynamical importance of the

vortex boundary for SSWs suggests the use of a model

that emphasizes this feature by representing the polar

vortex as a single isolated region of elevated PV. The

fixed orientation of the SSWs suggests that the tropo-

spheric Rossby wave forcing influencing the strato-

sphere is primarily stationary with respect to the surface

of the planet and can be represented by a stationary

topographic forcing in our model.

The above considerations motivate the study of the

following system, modeling the physical situation of a

rapidly rotating shallow water layer of mean depth H,

under gravity g, and with rotation rate f0/2, where f0 is

the Coriolis parameter evaluated at the pole. An iso-

lated vortex with uniform PV f0 1 Qi and area pR2 is

assumed to evolve in an infinite background with uni-

form PV f0 1 Q0. The vortex is subject to forcing from

a stationary topography of height h. The time evolution

of the PV q is then determined by

(›t 1 u � $)q 5 0,

q 5 f0 1 =2c 2 L22
R c 1

f0

H
h, (1)

where c is a streamfunction determining the velocity

u 5 2$ 3 ck (where k is a unit vector along the axis of

rotation) and L
R

5
ffiffiffiffiffiffiffi
gH
p

/f
0

is the Rossby radius. For

analytical convenience the topography is taken to have

the form

h(r, u) 5 hmJk(lr) cos ku, (2)

where (r, u) are the usual polar coordinates, Jk(�) is a

Bessel function of the first kind, k is an integer azimuthal

wavenumber, l is a radial wavenumber, and hm is a pa-

rameter determining the height. The set (1) has been

studied by Polvani and Plumb (1992), who focused on

small-scale Rossby wave breaking and filament forma-

tion. Here, however, the focus will be on the possibility

of vortex splitting.

It is convenient at this stage to nondimensionalize the

above system as follows. The vortex radius R is chosen as

the horizontal length scale, (Qi 2 Qo)21 is the time scale,

R(Qi 2 Qo) is the velocity scale, and (Qi 2 Qo) is the PV

scale. Waugh and Dritschel (1999) suggest a value to fit

observations of (Qi 2 Qo) 5 0.4f0, for which one non-

dimensional time unit ’ 0.2 days. Working with the non-

dimensional PV anomaly [i.e., q / (q 2 f0)/(Qi 2 Qo)]

and elsewhere substituting for all variables and oper-

ators with their nondimensional counterparts, the re-

scaled equations of motion are

(›t 1 u �$)q 5 0,

q(x) 5 =2c 2 B2c 1 MJk(lr) cos ku 5
1 1 2V x 2 D
2V x;D.

�
(3)

Here D denotes the region, of nondimensional area p,

occupied by the vortex. The forcing azimuthal wave-

number k and the four nondimensional parameters

M 5
hm

H

f0

Qi 2 Qo

, l 5 lR, B 5
R

LR

, and

V 5
Qo

2(Qi 2 Qo)
(4)

appear explicitly in the nondimensional system and,

together with the initial conditions, fully determine the

vortex evolution. They can be interpreted as follows: M

is a measure of the amplitude of the topographic forcing,

l measures the ratio of the horizontal scale of the vortex

to that of the topography, B is the ratio of the vortex

scale to the Rossby radius (alternatively, the square root

of the inverse Burger number of the vortex), and the

surf-zone PV parameter V controls the strength of

the stratospheric jet, relative to the fixed topography.

The parameter V will be important in the study below,

as it allows control over the initial stratospheric ‘‘cli-

mate’’ in the simple model (3). For example, different

values of V might be regarded as being more appro-

priate to different stages of the seasonal cycle, or al-

ternatively V might be regarded as evolving slowly

under the control of the changing solar and longwave

radiation fields.
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For brevity all of the numerical calculations and anal-

ysis below will be for a vortex that is initially circular; that

is, at t 5 0,

q(x) 5
1 1 2V jxj, 1

2V jxj. 1
.

�
(5)

The azimuthal velocity field due to the background PV

(nonzero V) is easily shown (e.g., Polvani and Plumb

1992) to be

Ub(r) 5 2VI1(Br)/B, (6)

where I1 is a modified Bessel function of the first kind.

The parameter V clearly acts to control the magnitude

of the azimuthal velocity (i.e., the strength of the strato-

spheric jet).

We note in passing that previous analyses of the

model equations given below in section 4 (Kida 1981;

Dritschel 1990) have demonstrated that initializing with

other vortex shapes (e.g., elliptical) may lead to a richer

variety of outcomes. Investigation of this possibility is

postponed to a future study.

a. Numerical implementation

Calculations of the fully nonlinear dynamical evolu-

tion of the vortex, under the influence of topographic

forcing, are performed using the contour dynamics with

surgery algorithm (CD), (Dritschel 1988). In the CD

algorithm for the system (3), the PV field q is repre-

sented by j distinct regions of constant PV. The velocity

at a location x in the domain is then given by

u(x) 5
1

2p
�

j
Dj

þ
›D

j

K0(Bjx 2 xjj) dxj 1 uM(x),

where Dj is the PV jump across the bounding contour of

the jth region of PV ›Dj, xj are the node locations on ›Dj,

and uM(x) is the velocity at x due to the topographic

forcing. The derivation of the expression for u(x) is

discussed in the appendix [see Eq. (A2)].

In the present implementation of the CD algorithm

the time step is 0.05 nondimensional time units. The

resolution parameter between vortex boundary nodes is

chosen to be 0.025, corresponding to an initial 304 nodes

on the circular vortex boundary. As the integration

proceeds, contour surgery adds intervening nodes when

adjacent nodes become too far apart and removes ad-

jacent nodes that become closer than 1.6 3 1024 vortex

radii, corresponding to a dimensional horizontal reso-

lution (for vortex filaments) of approximately 350 m.

b. Vortex diagnostics

To make an objective assessment of the outcome of

the numerical experiments, it is helpful to make use of

‘‘moment diagnostics’’ for the vortex (e.g., Melander

et al. 1986). Moment diagnostics allow objective state-

ments about the aspect ratio, orientation, and degree of

splitting of the vortex during each model run. Since a

detailed application of the technique to observations is

given in Matthewman et al. (2009), we give only the key

definitions below.

The basis for the moment diagnostics are Jmn, the

centralized moments of PV, which are calculated rela-

tive to the vortex centroid x 5 (x, y)T using

Jmn 5

ð
q(x)(x 2 x)m(y 2 y)n dx, x 5

ð
xq(x) dxð
q(x) dx

,

where the integrals are over the full domain R
2. In

practice, for the case of contour dynamics, Jmn can be

evaluated by transforming to a sum of integrals around

the bounding contours of each patch of PV using Green’s

theorem in the plane. The orientation fe(t) and aspect

ratio re(t) of the equivalent ellipse (i.e., the ellipse that is

a best fit to the PV distribution of the vortex) are then

given by

fe(t) 5
1

2
tan21 2J11

J20 2 J02

� �
, (7)

re(t) 5

�������
(J20 1 J02) 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2

11 1 (J20 2 J02)2
q

(J20 1 J02) 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2

11 1 (J20 2 J02)2
q

�������
1/2

. (8)

The statistics of the orientation and aspect ratio of the

equivalent ellipse can easily be used in calculations of

the ‘‘elliptic diagnostics’’ of Waugh (1997). To diagnose

vortex splitting we introduce the ‘‘excess kurtosis’’ here:

K(t) 5 p
J40 1 2J22 1 J04

(J20 1 J02)2
2

2

3

3r4
e 1 2r2

e 1 3

(r2
e 1 1)2

" #
. (9)

By construction, K(t) 5 0 for an elliptical vortex of

uniform PV with any aspect ratio; hence, K(t) measures

the extent of deviation of the vortex from a uniform

ellipse. Filament formation leads to positive values of

K(t), and ‘‘pinching’’ (leading to vortex splitting) results

in negative values. Therefore, vortex splits can be di-

agnosed by checking whether K(t) attains values less

than a well-chosen threshold value (see discussion of

Figs. 1 and 2 below). Finally, to facilitate direct comparison
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with weakly nonlinear theory, an equivalent ‘‘wave am-

plitude’’ diagnostic ae(t) is defined as

ae(t) 5
1ffiffiffi
2
p 2

p
(J20 1 J02) 2 1

� �1/2

. (10)

The wave amplitude diagnostic can be recognized as

being derived from the angular pseudomomentum (or

the excess angular impulse relative to the circular vor-

tex), which is an invariant for the unforced system and is

quadratic in wave amplitude (Dritschel and Saravanan

1994). The quantity ae(t) has been normalized so that, as

well as being an invariant of the full nonlinear system in

the absence of forcing, it is also equal to the wave am-

plitude in the linear limit.

3. Nonlinear evolution of the vortex

Two sets of parameter sweeps have been performed

to explore the full range of behavior of the nonlinear

model. In contrast to Polvani and Plumb (1992), who

investigated Rossby wave microbreaking with k 5 1,

here we examine vortex behavior using forcing with k 5 2.

In each case a value of the radial wavenumber param-

eter l 5 1.162 is chosen to ensure that the topography

has a horizontal scale that is significantly larger than the

vortex (the first zero of the J2 Bessel function is then

located at 4.4 vortex radii). Tests reveal that the quali-

tative behavior is insensitive to the value of l for l & 3.

The two parameter sweeps are distinguished by the

value of B. For the first set B5 0, corresponding to the

well-known barotropic vorticity equation limit LR / ‘.

In the second set B5 1, a value corresponding to R and

LR being equal (a typical vortex radius for the Northern

Hemisphere in midwinter is R 5 2200 km). A value of

LR ’ R is obtained if it is taken that the relevant dy-

namical Rossby radius, appropriate if the shallow water

model is to describe the dynamics of ‘‘tall’’ vortical

structures in a stratified atmosphere, is that of the ‘‘ex-

ternal’’ Lamb mode. In this case L
R

5 NH/f
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k(1 2 k)

p
for an isothermal compressible stratosphere. Taking the

scale height H 5 6.14 km, Brunt–Väisälä buoyancy fre-

quency N 5 0.022 s21, Coriolis parameter f0 5 4p/

86 400 s21, and k 5 2/7 yields LR ’ 2100 km ’ R in the

Northern Hemisphere.

The remaining parameters M and V are varied for

each parameter sweep, with M 2 [0.01, 0.48] and V 2
[20.30, 0] for experiments with B5 0 and M 2 [0.03,

0.49] and V 2 [20.16, 0.07] for experiments with B5 1.

The total number of numerical experiments for each

parameter sweep is 496 for B5 0 and 360 for B5 1. For

each individual model experiment, Eq. (3) is integrated

for 40 nondimensional time units [scaled on (Qi 2 Qo)21]

for B5 0 and 50 nondimensional time units for B5 1.

FIG. 1. Snapshots of vortex evolution during experiments representative of each of the five

categories ACW, OSC, CW, HIGH, and SPLIT shown in Table 1. Parameter B5 0 is used for

all experiments, with V and M given in each panel. (bottom) The evolution ofK(t) as a function

of time, with box symbols marking times at which snapshots are shown. The dashed line marks

the threshold K(t) 5 20:6 at which vortex splitting is diagnosed.
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For the B5 0 experiments, model runs were classi-

fied into five categories as shown in Table 1. In the

table, _fe denotes the time derivative of fe [Eq. (7)] of

the vortex with respect to time. The SPLIT criterion

has been carefully chosen so that all of the model runs

meeting the criterion clearly result in the vortex split-

ting into two, whereas those not meeting the criterion

do not.

Figure 1 presents snapshots illustrating the typical

evolution of the vortex for each of the five categories

defined above. The results are taken from the barotropic

(B5 0) parameter sweep, although similar qualitative

behaviors were found for the B5 1 set. For experiments

in the anticlockwise (ACW) regime, an example of which

is shown in the row labeled ACW of Fig. 1, the vortex

remains almost elliptical throughout its evolution, with

the aspect ratio and orientation of the ellipse evolving

periodically. The period of a revolution is approximately

18 time units for the experiment shown.

An example of typical vortex behavior for experi-

ments lying in the oscillating regime is shown in the row

labeled O. Although the vortex remains almost elliptical

FIG. 2. (a) Classification of vortex behavior as a function of V and M in the fully nonlinear

numerical model experiments with B5 0. Experiments are classified using the criteria outlined

in Table 1 and box shading marks the five experiments shown in Fig. 1. (b) Contours of am as

a function of V and M for the B5 0 sweep in the fully nonlinear model. The contour interval is

0.1 and values . 1 are shaded. Crosses mark experiments shown in Fig. 1 and the parameter

values used in the prototype SSW experiment discussed in section 5. (c) As in (a), but with

contours of Kmax. (d) As in (a), but with contours of Kmin. In both (c) and (d), the contour

interval is 0.1 and shaded parameter space denotes vortex splitting experiments in which

Kmin , 20:6. The reader is reminded that Kmax $ 0 and Kmin # 0 by construction.

TABLE 1. Model experiment classification criteria.

1 ACW _fe . 0 throughout the motion

O OSC All other vortex behavior

2 CW _f
e

, 0 throughout the motion

H HIGH am 5 max[ae(t)] . 1

S SPLIT Min[K(t)] , 20.6
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throughout its evolution, instability of disturbances on

the vortex edge eventually leads to vortex roll up at the

tips of the major axes (see, e.g., Saffman 1992), leading

to filaments of PV becoming advected away from the

core of the vortex. Despite the appearance of filaments,

analysis of the vortex evolution over a longer period

reveals a near-periodic oscillation, during which the time

derivative of fe(t) changes sign repeatedly, indicating

both clockwise and anticlockwise rotation. The period

of oscillation is approximately 52.5 time units for the

experiment shown (i.e., almost 3 times longer than the

period of the ACW experiment). For fixed forcing am-

plitude M, the maximum aspect ratio throughout the

oscillating regime is found to be greater than in the

ACW regime. For experiments in the clockwise (CW)

regime the vortex behavior is very similar to that seen in

the oscillating regime, but with _f
e

, 0 at all times. The

rotation period for the example in row CW of Fig. 1 is

approximately 34 time units. We note that, like the os-

cillating (OSC) experiment shown above, this period is

also greater than that of the ACW experiment. In fact,

for any given M, the period of rotation or oscillation is

generally longer for the CW and OSC experiments when

compared to their ACW counterparts, and in all ex-

periments the period increases the closer to the OSC/

ACW regime boundary one gets.

The behavior of experiments lying in the highly dis-

turbed regime, an example of which is seen in row H, is

similar to that of the oscillating and clockwise rotation

regimes, but with larger maximum aspect ratio. The

large aspect ratio combined with instability of the vor-

tex structure leads to greatly increased filamentation

of PV.

At early times in vortex splitting experiments (e.g.,

row S) the vortex is near elliptical with the aspect ratio

increasing monotonically. For the experiment shown,

which is characteristic of experiments located at the

right-hand boundary of the vortex splitting regime (see

Fig. 2), there is very little change in the orientation of the

ellipse as its aspect ratio increases. By t 5 28 the growth

of unstable disturbances on the vortex edge leads to a

pinching of the vortex close to its centroid. This pinching

initiates a vortex split that occurs at t ’ 30. The two

daughter vortices resulting from the split have the same

area and rotate clockwise around their common centroid

for t . 36.

Evolution of the vortex splitting diagnostic K(t) is

shown for each experiment at the bottom of Fig. 1. Large

negative values ofK(t) are only observed in the splitting

experiment, indicating that vortex splitting behavior can

be distinguished from all other types of behavior using

a criterion based on the K(t) diagnostic (see also Figs.

2c,d). A detailed comparison over all experiments

revealed that min[K(t)] , 20.6 accurately identified all

vortex splitting evolutions but was never satisfied for

nonsplitting evolutions.

Figure 2a is a (M, V) regime diagram for the B5 0

experiments, with each classification of outcome labeled

by the symbols given above. The location of these re-

gimes in parameter space will be discussed further be-

low. Briefly, however, it is noticeable that vortex splits

occur only for M larger than a threshold value Mc 5 M ’

0.24, and that for M . Mc vortex splits occur for only

a relatively narrow range of V, with the extent of this

range increasing with M.

Figure 2b shows the maximum wave amplitude am 5

max[ae(t)] attained in the numerical experiments when

B5 0, plotted as a function of M and V. Regions of

parameter space corresponding to ‘‘high’’ wave activity

(am . 1, HIGH) are shaded. At low forcing amplitude

(small M) the peak response is seen to occur at values of

V close to that corresponding to resonant excitation of

the free vortex Rossby waves by the topographic forcing

(linear resonant excitation occurs at a specific value

V 5 V0(k,B) to be derived in section 4b below). As M

increases, the location of the peak in am migrates to

larger values of V, away from linear resonance. Com-

parison with Fig. 2a reveals that the location of the peak

response (for fixed M) in parameter space remains near

the regime boundary between the ACW regime and

SPLIT/HIGH regimes.

Figures 2c and 2d show the maximum and minimum

values of the excess kurtosis diagnostic K(t)—that is,

Kmax 5 max[K(t)] and Kmin 5 min[K(t)]—during the baro-

tropic (B5 0) model runs. These figures reveal that large

positive values of K
max

and large negative values of

K
min

occur only in the CW, HIGH, and SPLIT regimes,

with values of K(t) in the ACW regime being close to

zero throughout the vortex evolution. In other words,

throughout the ACW regime, the vortex remains al-

most elliptical as it rotates.

4. Analytical approximations to the fully
nonlinear behavior

A route to understanding and interpreting the nu-

merical results above is to formulate analytical approx-

imations to the model Eqs. (3). The objective is to obtain

a set of approximate equations that will capture the es-

sential ingredients of the behavior of the vortex across as

wide a range of parameter space as possible. Three such

analytical approximations are presented below, each

formally valid in a different limit of fM, V, B, l, kg
parameter space. These are

(i) linear theory: valid for M� 1, V 6¼ V0, arbitrary

k, l, B;
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(ii) Kida vortex theory: valid for l � 1, k 5 2, B5 0,

arbitrary M, V; and

(iii) weakly nonlinear theory: valid for M ; (V 2 V
0
)3/2�

1, arbitrary k, l, B.

Here V
0

5 V
0
(k,B) is the value of the surf-zone PV

parameter that leads to linear resonance, to be defined

below. For readers who do not wish to follow the mathe-

matical treatment in detail, a summary of the findings

from each of these three theoretical frameworks, and

their relation to the fully nonlinear model results derived

from the experiments in section 3, is given in section 4a.

The full mathematical analysis then follows in sec-

tions 4b–d.

The following analytical device is used as a first step in

each approach. The linearity of PV inversion can be

used to show that the system (3) can be replaced by the

exactly equivalent system (cf. Swanson 2000)

[›t 1 (uR 1 uM) � $]q 5 0,

q(x) 5 =2cR 2 B2cR 5
1 1 2V x 2 D
2V x ;D,

(

uR 5 2$ 3 cRk,

uM 5 2$ 3 cMk, where cM 5 M
Jk(lr) cos ku

l2 1 B2
.

(11)

In essence, the above manipulation has replaced the

topography in Eq. (3) with an exactly equivalent ‘‘to-

pographic velocity’’ uM in Eq. (11). The distribution of

the topography has been chosen in Eq. (2) so that the

topographic streamfunction cM, which satisfies

=2cM 2 B2cM 5 2h,

takes the simple form given above.

For the case of the vortex patch, the PV advection

equation in Eq. (11) can be replaced by the kinematic

condition at the vortex edge. For the special case where

the vortex edge location is single-valued in the azimuthal

coordinate u—that is, the edge is located at r 5 1 1 �h(u, t),

where � is a parameter to be chosen to correspond to the

magnitude of the disturbance—the kinematic condition

may be written

›t 1
Ub(1 1 �h)

(1 1 �h)
›

u

� �
h 5 (uR � n)c[h] 1 (uM � n)c. (12)

Here Ub is the background velocity given in Eq. (6). The

vector n is everywhere perpendicular to the vortex edge,

and in terms of the usual radial and azimuthal polar unit

vectors r̂ and f̂ is given by

n(u) 5 r̂(u) 2 �
h

u
(u)

1 1 �h(u)
f̂(u). (13)

The subscript c denotes evaluation on the contour de-

fining the vortex edge [i.e., at r 5 1 1 �h(u, t)] and the

square brackets around h in Eq. (12) is intended to

emphasize the functional dependence of (uR � n)c on h.

That is, the value of (uR � n)c at a fixed value of the polar

angle u is determined by the entire instantaneous profile

of h(u, t), (0 # u # 2p).

a. Summary of results

Before giving a detailed derivation of each of the three

theoretical models introduced above, the main conclu-

sions drawn from each will be summarized, with the focus

on the extent to which each explains the various behaviors

seen in the fully nonlinear numerical experiments of sec-

tion 3. A key objective of each theoretical treatment is the

derivation of an evolution equation for the vortex Rossby

wave amplitude, from which theoretical predictions of am

5 max[ae(t)] can be deduced as a function of the surf-zone

PV parameter and topographic forcing amplitude. To

what extent does each theory predict the various regimes

of behavior discussed in section 3 (cf. Figs. 1 and 2)? The

main results are summarized in Table 2 and Fig. 3. In the

table, the evolution equation(s) for each model are pre-

sented, together with the means of determining the vortex

Rossby wave amplitude from the solutions and the cor-

responding predictions for the maximum wave amplitude

attained during the evolution. A summary of the quali-

tative behaviors found is also given. Figure 3 compares the

value of the maximum vortex Rossby wave amplitude in

the fully nonlinear model (Figs. 3a,b, discussed above)

with predictions from linear theory (Fig. 3d), Kida vortex

theory (Fig. 3c), and weakly nonlinear theory (Figs. 3e,f).

Comparing maximum wave amplitudes in Fig. 3b with

the corresponding predictions of linear theory in Fig. 3d,

it is clear that linear theory fails to predict much of the

behavior observed in the fully nonlinear model. The

linear evolution equation for the complex amplitude Al

[Eq. (17), derived in section 4 below] is that of a forced

linear oscillator. When the surf-zone PV parameter

takes a value V0 corresponding to resonant linear exci-

tation of the free vortex Rossby wave, the maximum

wave amplitude is predicted to be infinite. Therefore, for

V close to V0, linear theory unsurprisingly overpredicts

am. Linearity also leads to a response that is symmetric

about the line V 5 V0, again at odds with the asymmetric

behavior seen in the fully nonlinear model. Finally, lin-

ear theory fails to predict the apparent bifurcation in am

identified in the fully nonlinear model. That is, am varies

smoothly with V and M throughout parameter space,

except for the singularity at V 5 V0.
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Comparing maximum wave amplitudes in Fig. 3a with

the corresponding predictions of the Kida model in

Fig. 3c, it is clear that the Kida model is much more

successful in predicting behavior observed in the fully

nonlinear model. The Kida vortex evolution Eqs. (25)

(derived in section 4) determine the evolution of aspect

ratio re and orientation fe of an exactly elliptical vortex

under the influence of an idealized forcing. The equations

can be solved analytically to find the maximum vortex

Rossby wave amplitude, which is qualitatively similar to

that observed in the fully nonlinear model throughout

much of parameter space. As will be explained in detail

below, the Kida model accurately predicts the existence

and location of the ACW, CW, and OSC regimes of be-

havior, although it cannot explicitly identify the SPLIT

regime that lies within the OSC regime. The regime

boundary between the ACW and OSC regimes marks

a bifurcation in am, which is seen in Fig. 3 to lie very close

in parameter space to the location of the same regime

boundary in the fully nonlinear model.

There are, however, some limitations to the Kida

model. First, am is overestimated where the response is

largest, and in particular am / ‘ is predicted in an

‘‘extending’’ regime in which the vortex becomes in-

finitely elongated. Second, the Kida theory is valid only

for k 5 2 topographic forcing, and then only in a purely

barotropic system where B5 0. Finally, the theory is

formally valid only when the horizontal scale of the

forcing is much greater than that of the vortex, with the

accuracy of the theory breaking down as the scales be-

come comparable.

Comparing maximum wave amplitudes in Figs. 3a

and 3b with the corresponding predictions of weakly

nonlinear theory in Figs. 3e and 3f, it is clear that the

behavior of the fully nonlinear model is best predicted

by weakly nonlinear theory. The weakly nonlinear evo-

lution equation for the complex amplitude A [Eq. (34),

derived in section 4d] is the generic equation of a forced

nonlinear oscillator (e.g., Nayfeh and Mook 1979).

Compared with corresponding linear amplitude equa-

tion in Table 2, the weakly nonlinear equation has

an additional nonlinear term that acts to change the

frequency of the nonlinear vortex Rossby waves as

they grow and decay, thus providing a mechanism by

which the system may be brought into and out of

resonance (i.e., Plumb’s ‘‘self-tuning resonance’’).

Similar behavior is found, for example, in the analysis

of (the frictionless form of) Duffing’s equation. It de-

scribes the motion of a mass on a ‘‘soft’’ spring—that

is, a spring that obeys a nonlinear extension/restoring

force relationship (generalized Hooke’s law) when the

opposite end of the spring is oscillated at a frequency

close to the spring’s natural frequency. As will be dem-

onstrated explicitly below, solutions of the amplitude

Eq. (34) are well known to undergo an amplitude bi-

furcation similar to that reported above for the Kida

model. Equation (34) has been derived by Plumb

(1981b) for forced Rossby waves on the b plane, also

with SSWs in mind. The generic properties of Eq. (34)

clearly suggest it has utility as a conceptual model of

SSWs with relevance beyond the single-layer model

considered here.

TABLE 2. Summary of theoretical model results. For details of the coefficients appearing in each evolution equation, see the discussion

surrounding the equation in the relevant subsection.

Linear theory Kida vortex theory Weakly nonlinear theory

Regime of validity M� 1, V 6¼ V0,

arbitrary k, l, B
l� 1, k 5 2, B5 0 arbitrary M, V M ; (V 2 V0)3/2� 1,

arbitrary k, l, B
Evolution equation(s) Eq. (17):

dAl

dt
1 iv0Al 5 iF

Eqs. (22):

dre

dt
5 2Lre cos 2fe,

df
e

dt
5 2

L(r2
e 1 1)

r2
e 2 1

sin2fe 1
r

e

(re 1 1)2
1 V

Eq. (34):

dA

dT
1 i~v0A 1 i~v2AjAj2 5 iF

Wave amplitude ae(t)

given by:

MjAlj 1

2
(re 1 r 21

e 2 2)1/2 M1/3jAj

Max amplitude

am 5 max[ae(t)]

Eq. (21) From Eq. (24) Eq. (42)

Regimes of behavior? No—ACW and

CW only

Yes—ACW, OSC, CW, and HIGH

in agreement with experiments

Yes—ACW, OSC, CW, and HIGH

in agreement with experiments

Amplitude bifurcation No Yes—boundary given by Eq. (25) Yes—boundary given by Eq. (43)

Notable features Infinite response

at resonance

Infinite response in extending regime Finite response

Symmetric response Asymmetric response Asymmetric response
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FIG. 3. Plots of am as a function of V and M for both the fully nonlinear numerical calculations

[given by Eq. (11)], and in the corresponding theoretical predictions (see Table 2). (a) Fully

nonlinear numerical calculations for the k 5 2, B5 0 set. (b) Fully nonlinear numerical cal-

culations for the k 5 2, B5 1 set. (c) Kida model predictions for the k 5 2, B5 0 set. (d) Linear

predictions for the k 5 2, B5 1 set. (e) Weakly nonlinear prediction for the k 5 2, B5 0 set.

(f) Weakly nonlinear prediction for the k 5 2, B5 1 set. In all panels, dashed lines denote

regime boundaries for the Kida vortex model, dotted lines denote V 5 V0 (linear resonance), and

thick solid lines denote the location of the bifurcation in am predicted by the weakly nonlinear

theory. The contour interval in each case is 0.1 and values . 1 (i.e., the HIGH regime) are shaded.

Contours . 2 are suppressed in (c) and (d). Crosses in (a) mark experiments shown in Fig. 1 and

the parameter values used in the prototype SSW experiment discussed in section 5.
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The strengths of weakly nonlinear theory are first that

predictions of am are finite and are of similar amplitude

to those seen in the fully nonlinear model throughout

parameter space. Second, as with the Kida model, weakly

nonlinear theory accurately predicts the ACW, CW, and

OSC regimes of behavior seen in the fully nonlinear

model. Finally, the regime boundary between the ACW

and OSC regimes marks a bifurcation in the amplitude

of am, which is qualitatively very similar to that seen in

the fully nonlinear and Kida models. While strictly only

valid when M � 1, weakly nonlinear theoretical pre-

dictions are surprisingly accurate when compared with

the fully nonlinear model experiments for M well out-

side of this range.

It will be argued below that, from the perspective of

vortex splitting SSWs, the most important feature of the

two nonlinear analytical reductions is that they capture

the bifurcation in am that coincides with the ACW/OSC

regime boundary in both models. The bifurcation fol-

lows a path in parameter space along which nonlinear

effects act to tune the vortex toward resonance most

efficiently. It will be shown below, using a fully nonlinear

model experiment, that a vortex split can be generated

by crossing the bifurcation curve. Crossing the curve

requires only a small change in the controlling param-

eters (either V or M) and can lead to an instantaneous

jump from an ACW oscillation with relatively small am to

an OSC oscillation with large am. In the latter case, vortex

splitting becomes possible because of the development

of Love (1893)-type instabilities on the elongated vortex

when ae(t) is large (see also Dritschel 1986; Mitchell and

Rossi 2008).

While resonance is responsible for growth of distur-

bances in all three idealized models, understanding the

role of nonlinearity in tuning the system is essential if

one is to accurately predict behavior in the fully non-

linear model. Further, the Kida and weakly nonlinear

analyses exhibit a bifurcation in the maximum Rossby

wave amplitudes observed during the vortex evolution,

indicating a plausible mechanism to explain the rapid

onset of a vortex splitting SSW.

b. Analytical reduction I: Linear theory

To appreciate the importance of nonlinearity in deter-

mining the behavior of the vortex, it is first helpful to

review the linear theory of Rossby wave excitation due to

the topography. The treatment here offers an alternative

route to results previously given in Swanson (2000), and

the linear resonance behavior found is analogous to that

found by Tung and Lindzen (1979b) in their study of

topographic excitation of Rossby waves in a b channel.

Linear theory is formally valid for M � 1. For the

linear theory the small parameter � is chosen to be M and

the kinematic condition (12) is linearized by retaining

only those terms that are leading order in �. The re-

sulting equation is

[›t 1 Ub(1)›
u
]h 5

1

2p

ð2p

0
[h

u
(u 1 ~c) 2 h

u
(u) cos ~c]K0 B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2 2 cos ~c

q� �
d~c 1 yl

M. (14)

The appendix gives details of how the leading-order

expression for (uR � n)c [i.e., the integral appearing in

Eq. (14)] is obtained. The linear topographic forcing

term yl
M is defined by �yl

M 5 (u
M
� r̂)

r51
(i.e., the azi-

muthal component of the topographic forcing velocity

evaluated at r 5 1) and can be evaluated for the Bessel

function form given in Eq. (12) as yl
M 5 2F sinkx, where

the topographic forcing parameter F is given by

F(k,B, l) 5
kJk(l)

l2 1 B2
. (15)

Equation (14) is a forced integro-differential equation.

Wavelike solutions, with azimuthal wavenumber k equal

to that of the forcing, can be sought using the ansatz

h(u, t) 5 ReAl(t)eiku,

where Al(t) is a complex amplitude. The integral ex-

pression in Eq. (14) can be evaluated using the following

Fourier series expansion

K0 B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2 2 cos ~c

q� �
5 I0(B)K0(B)

1 2 �
‘

m51
Im(B)Km(B) cos m~c,

(16)

which can be obtained as a limiting case of one of the

Neumann addition formulas for Bessel functions [Watson

1944, ch. 11, Eq. (8)]. The following equation for the

evolution of Al(t) is obtained:

dAl

dt
1 iv0Al 5 iF, (17)

where

v0(k,B) 5 k[Ub(1) 1 I1K1 2 IkKk],

Ub(1) 5 2VI1/B, (18)
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where Ik and Kk are modified Bessel functions evaluated

at B [i.e., I
k

[ I
k
(B), etc.]. The frequency v0 has been

defined so that Eq. (18) is exactly the nondimensional

linear dispersion relation for the unforced system

(Swanson 2000, with an additional term here due to al-

lowing V 6¼ 0). Linear resonance occurs when v0 5 0, or

equivalently when

V 5 V0 [
B(IkKk 2 I1K1)

2I1

. (19)

In the case where F 6¼ 0, the solution of Eq. (17) when

no wave is present initially [Al(0) 5 0] is easily found to be

Al(t) 5
F

v0

[1 2 exp(iv0t)]. (20)

The above result allows the linear prediction of the

maximum wave amplitude to be calculated as

am 5 �max[jAl(t)j] 5

����2MF

v0

����. (21)

A representative comparison between the maximum wave

amplitudes attained in the fully nonlinear model experi-

ments and the corresponding linear predictions for the

B5 1 and k 5 2 parameter sweep was shown in Figs. 3b

and 3d and discussed in section 4a above. The linear

predictions shown there are calculated from Eq. (21).

Given the shortcomings of linear theory that were iden-

tified, it is necessary to turn to nonlinear theories.

c. Analytical reduction II: The Kida vortex limit

The analysis to follow holds only for the special case

with both barotropic flow (B5 0) and the azimuthal

wavenumber of the forcing k 5 2. The limit to be con-

sidered is that where the horizontal scale of the forcing

is much greater than that of the vortex (i.e., l � 1). It

turns out that in this limit, an exact nonlinear solution

of the system exists for all values of the remaining pa-

rameters (M, V), namely the well-known Kida vortex

solution (Kida 1981). Kida’s solution describes the evo-

lution of an elliptical vortex in a uniform strain and solid

body rotation flow: such a vortex remains elliptical for all

time.

The Kida solution is recovered for the special case of

the topographically forced vortex problem because first,

when l� 1, J2(lr) ; l2r2/8 and hence cM satisfies

lim
l/0

cM 5 lim
l/0

MJ2(lr)

l2
cos 2u 5

Lr2

2
cos 2u, L 5

M

4

� �
,

which is the streamfunction of a uniform strain flow.

Second, when B5 0 a nonzero surf-zone PV (parameter

V 6¼ 0) results in a solid body rotation flow with rate V.

In summary, for the case of our experiments, an initially

circular vortex in a barotropic flow (B5 0) with V and

with k 5 2 forcing satisfying l� 1 and with amplitude M

will evolve as a Kida vortex in a solid body rotation of

strength V and a uniform strain flow of strength L 5

M/4. Comparing the Kida model with the fully nonlinear

model results in section 3, where l � 1 is not satisfied

(l 5 1.162), we approximate the relationship between

M and L by demanding that the streamfunction at the

initially circular vortex edge at r 5 1 is the same in both

cases, giving L 5 2MJ2(l)/l2. Note that this still gives

L / M/4 as l / 0 (it has been confirmed that either

choice of L 5 M/4 or L 5 2MJ2(l)/l2 gives similar re-

sults to those in Fig. 3c).

Kida showed that the evolution of re (re $ 1) and fe of

the vortex in such a strain and rotation flow are governed

by the pair of coupled ordinary differential equations

_re 5 2Lre cos 2fe,

_fe 5 2
L(r2

e 1 1)

r2
e 2 1

sin 2fe 1
re

(re 1 1)2
1 V. (22)

Here dots denote time derivatives. Note that re and fe in

this context are entirely consistent with the definitions

given in section 2b. The two Eqs. (22) can be combined

following the substitution X 5 sin 2fe to obtain a linear

equation in X(re), which can then be integrated once

(e.g., Dritschel 1990). After some manipulation, the fol-

lowing ‘‘potential form’’ evolution equation is obtained

for the aspect ratio,

_r2
e 1 Ve(re; V, L) 5 0, (23)

where

Ve(re; V, L)

5 4r2
e

re

r2
e 2 1

log
(re 1 1)2

4re

" #(
1 V

re 2 1

re 1 1

)2

2 L2

0
@

1
A.

The initial condition re(0) 5 1, due to the vortex being

circular at t 5 0, has been used to eliminate the arbitrary

constant of integration.

Once written in the potential form [Eq. (23)] the

vortex evolution equation becomes relatively straight-

forward to interpret. Solutions are restricted to values of

re for which Ve # 0. As the vortex initially satisfies re 5 1,

the maximum possible aspect ratio rm 5 max[re(t)] during

the evolution of the vortex is given by the smallest root of

Ve in re . 1—that is, where
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Ve(rm; V, L) 5 0. (24)

The direction of rotation can be also be deduced from Ve

using

_fe 5 6
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4L2r2
e 1 Ve

q 1

2

dVe

dre

2
Ve

re

� �
.

Oscillatory behavior, characterized by a change of sign in
_fe, occurs only if the potential function satisfies dVe/dre 5

2Ve/re for some re in the range 1 , re , rm.

Figure 4a shows the (V, L) parameter-space regime

diagram for the Kida vortex [essentially Fig. 2a of

Dritschel (1990)]. The regime boundaries are determined

from consideration of the qualitative features of Ve. It is

notable that the Kida regimes (ACW, OSC, CW) oc-

cupy nearly identical regions of parameter space to

those identified for the fully nonlinear model in Fig. 2.

At high forcing amplitudes (high strain rate L) the Kida

vortex exhibits extending behavior, which occurs when

the uniform strain flow overcomes the tendency of the

vortex to rotate and it becomes stretched out without

bound (re / ‘). The extending regime (EXT) occupies

a subset of the region of parameter space where vortex

splits occur in the fully nonlinear model, as will be dis-

cussed further below.

The most important regime boundary, as discussed in

section 4a above, is the curve separating the OSC regime

FIG. 4. (a) Location of the four Kida regimes in M and V parameter space. Crosses denote the

individual cases shown in (b). (b) Plots of the Kida potential function Ve as a function of re for

the parameters marked in (a). Black boxes mark where dfe/dt changes sign. (c) Location of the

three weakly nonlinear regimes in M and V parameter space when B5 0, k 5 2, and l 5 1.162.

Crosses denote the individual cases shown in (d). (d) Plots of the potential function V(a; m) as

a function of a for three choices of m corresponding to (V, M) marked in (c). Black boxes mark

where dq/dt changes sign. In (b) and (d), the solid curve denotes the portion of the potential

function encountered during the vortex evolution. Curves marked CRIT correspond to ex-

periments lying on a regime boundary.
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and ACW regions of parameter space. In terms of the

motion of the vortex, this curve marks the location of an

amplitude bifurcation, with relatively low values of rm in

the ACW region and large values in the OSC region.

The nature of the bifurcation can be seen in Fig. 4b

where Ve is plotted for three values of (V, L), marked as

crosses on Fig. 4a. At the point of transition between the

ACW and OSC regimes the potential function Ve has

the form illustrated by the curve CRIT, which is distin-

guished by having a turning point at re 5 rm; that is,

dVe

dre

(rm; Vc, Lc) 5 Ve(rm; Vc, Lc) 5 0.

The above equations can be used to obtain an expression

for the ACW/OSC transition curve in parametric form

(s $ 1):

Vc(s) 5 2
1

2
1

s2 1 1

2(s 2 1)2
log

(s 1 1)2

4s

" #
,

Lc(s) 5 2
s 2 1

2(s 1 1)
1

(s 1 1)

2(s 2 1)
log

(s 1 1)2

4s

" #
. (25)

Figure 4b shows that when passing from one side of the

transition curve to the other Ve changes from having three

roots (ACW region) to just one (OSC region). Hence

there is a discrete jump in the value of the lowest root rm

across the regime boundary, corresponding to a jump in

the maximum aspect ratio attained by the vortex.

The maximum wave amplitude during the oscillation

can be obtained from the vortex aspect ratio using Eq.

(10), which reveals that am 5 (1/2)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rm 1 r21

m 2 2
q

. The

maximum aspect ratio can be obtained numerically from

Eq. (24) as a function of (V, L) using a root finding

method, again following Dritschel (1990, see his Fig. 3a).

The result is shown in Fig. 3c; it has been compared with

the results from the numerical model (for B5 0, k 5 2)

shown in Fig. 3a, as discussed above in section 4a. The

reason that the contours on Fig. 3c are straight lines is

because Eq. (24), which determines rm and thus am, is

linear in both V and L.

The above analysis gives some further insight into the

reasons for the inaccuracy of the Kida model at large

amplitudes. First, once the vortex in the fully nonlinear

model (for which l is finite) undergoes significant

elongation, it becomes influenced by uM in regions

where it is not well approximated by the uniform strain

flow. Second, an elliptical vortex is well known to be

unstable to Love (1893)-type instabilities once its aspect

ratio exceeds 3. Mitchell and Rossi (2008) have recently

shown that the branch of the instability for aspect ratios

between 3 and 6 leads only to ejection of filaments, while

a vortex split will result if the vortex aspect ratio exceeds

6.046 because of the ‘‘negative wave-4’’ branch of the

Love instability. Hence, although vortex splitting is not

an explicit prediction of the Kida theory, it can never-

theless be anticipated as a probable outcome when am

exceeds a given threshold that will depend on the details

of the forcing (i.e., the value of l here).

d. Analytical reduction III: Weakly nonlinear theory

Next, a weakly nonlinear analysis of the forced vortex

model is presented that is exact in the joint limit M / 0,

V / V0 for arbitrary k, B, and l. Note that this limit

is quite distinct from the Kida vortex limit discussed

above. Scaling analysis suggests the choice �5 M1/3, in

contrast to � 5 M for the linear theory above, for the

small parameter. The system must be near resonance

for nonlinear effects to be important (otherwise the lin-

ear theory described above will remain accurate) and

nonlinearity is found to enter at leading order when

jV 2 Vj ; �2. Consequently, we define

V2 5
V 2 V0

�2
,

with V2 taken to be an order unity quantity in all that

follows. The background velocity Ub(r) can then be ex-

panded as

Ub(r) 5 U0(r) 1 �2U2(r), with

U0(r) 5
IkKk 2 I1K1

I1

I1(Br), U2(r) 5
2V2

B I1(Br).

(26)

The relevant time scale for the motion based on these

scalings is O(�22), hence a ‘‘slow’’ time variable T 5 �2t

is introduced.

Just as for the linear theory above, the kinematic Eq.

(12) at the vortex boundary can be expanded in powers

of �. Solutions for the disturbance h 5 h(u, T) are sought

that depend only on the slow time variable T; hence, the

time derivative ›t is replaced by �2›T. The expansion

proceeds, as is shown in the appendix, using the fact that

when the vortex boundary is located at r 5 1 1 �h the

advection term can be expanded in powers of � as

(uR � n)c 5 �(uR � n)l
c
[h] 1 �2(uR � n)q

c
[h]

1 �3(uR � n)c
c
[h] 1 O(�4), (27)

where the superscripts l, q, and c denote the linear, quad-

ratic, and cubic functionals of h given by Eqs. (A6)–(A8).

Finally, h(u, T )is itself expanded as
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h 5 h1 1 �h2 1 �2h3 1 O(�3),

allowing the kinematic Eq. (12) to be expanded. Equat-

ing terms at successive powers of � reveals

O(�): Lh1 5 0, (28)

O(�2): Lh2 5 (uR � n)q
c
[h1] 1 [U0(1) 2 U0r(1)]h1h1u

,

(29)

O(�3): Lh3 5 2h1T 1 (uR � n)c
c
[h1] 1 (uR � n)q

c
[h1, h2] 1 yl

M 2
1

2
U0rr(1) 2 U0r(1) 1 U0(1)

� �
h2

1h1u

1 [U0(1) 2 U0r(1)](h1h2u
1 h2h1u

) 2 U2(1)h1u
. (30)

Here yl
M is identical to the corresponding forcing term in

the linear problem above, and U0r and U0rr refer to the

first and second derivatives of U0(r) defined in Eq. (26)

above. The linear operator L is defined by

Lh [ U0(1)h
u
(u) 2 (uR � n)l

c
[h],

5 U0(1)h
u
(u) 2

1

2p

ð2p

0
[h

u
(u 1 ~c) 2 h

u
(u) cos ~c]K0 B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2 2 cos ~c

q� �
d~c.

The leading-order Eq. (28) is identical to that of the

unforced linear problem and has the solution

h1(u, T) 5 ReA(T)eiku,

where A(T) is (at this order) an arbitrary complex am-

plitude. As the leading-order equation is homogeneous,

the function eiku inhabits the kernel of L. In order for

the entire solution to depend only on the slow time

variable T, at higher orders the forcing terms on the

right-hand side of the equation must not project2 onto

the kernel of L. If the higher-order Eqs. (29)–(30) are

written schematically as

Lhi 5 F i, i 5 2, 3, . . . ,

the projection or orthogonality condition on F
i
is easily

shown to be

ð2p

0
F ie

2ikudu 5 0, i 5 2, 3, . . . (31)

and must be satisfied for all i $ 2.

At O(�2) the quadratic forcing term is shown in the

appendix to be given by Eq. (A11) and acts to excite the

second harmonic. The orthogonality condition (31) is

satisfied automatically. The solution for h2 is found,

using the results in the appendix, to be

h2 5 Re
(P2k 2 Pk 1 P1) 1

B
2

(2P9k 1 P92k 2 P91) 1 [U0(1) 2 U0r(1)]

4(Pk 2 P2k)
A(T)2e2iku 2

1

4
jA(T)j2. (32)

Here Pk denotes the Bessel function product

Pk(B) 5 Ik(B)Kk(B) (33)

and P9k its derivative with respect to B. The properties

of the products Pk have been the subject of recent study

in the mathematics literature (e.g., Penfold et al. 2007;

we follow their notation here) and they are discussed

further in the appendix. The final term in Eq. (32) arises

because an arbitrary function g(T) is a solution of the

homogeneous equation Lg 5 0. The function g(T) is

chosen at this order to be the vortex area correction

g(T) 5 2jAj2/4. This choice for g(T) is essential to en-

sure that the vortex retains its initial area throughout

its evolution in time to O(�2) accuracy [with the initial

area being determined by the circular initial condition

A(0) 5 0]. Note that the vortex area correction would in

fact be enforced at O(�4) in the expansion, and the result

must be anticipated here in order to obtain the correct

area-preserving result at O(�2).

2 Had we retained the dependence on the fast time variable t

here, the projection condition would appear as the ‘‘condition for

the removal of secular terms’’ at higher orders in the expansion.
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At O(�3) an amplitude equation follows from appli-

cation of the orthogonality condition (31). In the ap-

pendix all of the relevant forcing terms are evaluated.

Applying Eq. (31), the following equation is obtained:

dA

dT
1 i~v0A 1 iv2AjAj2 5 iF. (34)

Here

~v0 5 2kV2B
21I1 5 kU2(1) (35)

measures the sense and extent to which the forcing is

initially off-resonant for the relevant linear mode;

v2 5 2
k

4
2(B2 1 k2)Pk 2

1

2
(B2 1 4k2)P2k 2

3

2
(B2 1 1)P1 1

1

8
P2k 2

1

8
Pk 2 P1

 

1
B2

4
(2P2k 2 P2k11 2 P2k21) 1

B
4

(5P91 2 10P9k 2 P92k) 2
1

2
U0rr(1) 2 2U0r(1) 1 2U0(1)

� �

1
fPk 2 P2k 1 2P1 1 B(2P9k 1 P92k 2 P91) 1 2[U0(1) 2 U0r(1)]g2

8(Pk 2 P2k)

!
(36)

measures the frequency correction to the free mode as

the (square of) its amplitude increases; and the forcing

F(k, B, l) is given by Eq. (15). It is notable that Eq. (34)

differs from its linear counterpart [Eq. (17)] only by the

introduction of the cubic nonlinear iAjAj2 term. In the

appendix it is shown that the coefficient v2 of this non-

linear term reduces to known results in certain limits,

namely the barotropic 2D Euler limit (B/ 0) and the

straight contour limit k / ‘, B/ ‘ (with k/B held

constant).

Equation (34) can be rewritten using the substitutions

A 5
F

v2

� �1/3

a(t) exp[2iq(t)], and t 5 (F2v2)1/3T,

where a(t) and q(t) are real functions, resulting in the

ordinary differential equations

_a 5 2sin q,

_q 5 2
cos q

a
2 m 1 a2,

(37)

where m 5 2 ~v
0
/(F2v

2
)1/3; the dots here denote differ-

entiation with respect to t. Equations (37) have a similar

form and interpretation to the Kida Eqs. (22) and can be

analyzed in a similar way. Changing variables to Y 5 cosq

and combining the two equations results in the linear

equation

dY

da
1

Y

a
5 2m 1 a2,

which can be integrated directly to obtain

Y(a) 5 2
ma

2
1

a3

4
1

C

a
, (38)

where the constant of integration C can be set to zero

using the initial condition a(0) 5 0, since the wave am-

plitude is initially zero.

Using the first equation in Eqs. (37) to substitute for

Y(a), a potential form equation for a(t) is obtained:

( _a)2
1 V(a; m) 5 0, (39)

where the potential V(a; m) is a cubic polynomial in a2:

V(a; m) 5 a2 m

2
2

a2

4

� �2

2 1. (40)

The behavior of the forced nonlinear oscillator conse-

quently depends only on the parameter m. A bifurcation

in the maximum amplitude of the wave, similar to that

described above for the Kida model, occurs when the

cubic switches from having three roots to one. The

‘‘local maximum’’ turning point of V(a; m) is easily

shown to occur at a 5
ffiffiffiffiffiffiffiffiffiffi
2m/3
p

, and the condition for three

roots to exist is V(
ffiffiffiffiffiffiffiffiffiffi
2m/3
p

; m) $ 0, which can be re-

arranged to obtain the condition m $ mc 5 3/21/3 ’ 2:38.

Figure 4d illustrates how the potential curve changes

as m passes through mc and indicates the associated

jump in the maximum amplitude as the nearest roots

of V(a; m) become complex. The curve m 5 mc defines

a boundary between a low-amplitude ACW regime and

a high-amplitude OSC regime, analogous to the Kida

model regime boundary [Eq. (25)]. A rotation rate

analogous to that of the Kida model can be expressed as

_q 5
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 V
p dV

da
5

m

2
2

3a2

4
,

making it clear that
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(i) the vortex will rotate in both directions in the

oscillating regime, as _q changes sign at each turning

point of V(a; m), and

(ii) a further regime boundary exists at m 5 0, between

the OSC and CW regimes, as V(a, m) no longer has

any turning points for m , 0 and in this case _q , 0

throughout the motion.

The resulting regime diagram, shown in Fig. 4c for the pa-

rameter settings corresponding to the fully nonlinear case

(B5 0, k 5 2, and l 5 1.162), strongly resembles that of the

Kida vortex (Fig. 4a) and the fully nonlinear model (Fig. 2).

The exact value of am 5 max[a(t)] can be calculated

using Cardano’s formulas for the roots of a cubic. The

result is

a2
m 5

4m

3
1

2m2

3(27 2 m3 1 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81 2 6m3

p
)

1
2

3
27 2 m3 1 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81 2 6m3

q� �1/3

, m , mc

4m

3
2

4m

3
cos

1

3
arccos

m3 2 27

m3

� �� �
8>>><
>>>:

(41)

The maximum of am(m) occurs at m 5 mc on the OSC

side of the regime boundary, and the amplitude is exactly

halved (from am 5 24/3 to am 5 21/3) as the boundary is

crossed into the ACW regime.

Rescaling to facilitate comparison with the fully non-

linear model, the maximum vortex Rossby wave ampli-

tude am can be written in terms of functions of the original

parameters of the problem as

am 5 2
MF(k,B, l)

v2(k,B)

� �1/3

am(m), where

m 5 2
2k[V 2 V0(k,B)]I1(B)

BF(k,B, l)2/3
v2(k,B)1/3M2/3

, (42)

and V0(k,B) is given by Eq. (19), v2(k,B) is given by

Eq. (36), and F(k, B, l) is given by Eq. (15). Equation

(42) is the basis for the weakly nonlinear prediction for

am for the k 5 2, B5 0, and B5 1 cases shown in Figs. 3e

and 3f, respectively. The success of these predictions is

discussed in section 4a above. It should be noted that

where very high amplitudes are predicted, the good

agreement is probably serendipitous, as weakly non-

linear theory ought not to be valid. The key prediction of

the location of the amplitude bifurcation in parameter

space also appears to be accurate far beyond amplitudes

for which it should be expected. The amplitude bifurcation

curve, defined by m 5 mc, can be expressed in terms of the

original full model parameters as

M 5
4

3
ffiffiffi
3
p (kI1)3/2

B3/2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2v2(k,B)

p
F(k,B, l)

[V 2 V0(k,B)]3/2,

(43)

which explains the simple shape of the curve in the (V, M)

regime diagrams. The close correspondence between the

curve [Eq. (43)] and its Kida model equivalent [Eq. (25)]

(see curves on Fig. 3a) is notable given that the two ap-

proaches are valid in different limits of the full model.

5. Prototype stratospheric sudden warming
experiments

In this section, the results presented above will be

used to construct a simulation of a ‘‘prototype’’ vortex

splitting SSW using the simple nonlinear vortex model

described in section 2. In previous studies, SSWs have

often occurred as a direct response to a switch-on or

dramatic increase in forcing or are uncontrolled spon-

taneous events in the midst of a seasonal cycle or long

model experiment. Our simulation differs from those of

previous studies, and from our experiments in section 3,

in that the timing of the SSW will be controlled by an

incremental change in the model boundary conditions.

This approach is similar to that of Chao (1985), who used

catastrophe theory to explain the transition from steady

flow to vacillating regime in a Holton and Mass (1976)

model framework, with the ‘‘catastrophic’’ transition be-

ing an SSW-like event. However, the focus here is on

quantitatively predicting this transition in our model using

the self-tuning resonant theory described in section 4.

The fully nonlinear numerical model is initialized in

the same way as the experiments in section 3 with pa-

rameters B5 0, k 5 2, and l 5 1.162. Throughout the

experiment, the surf-zone PV parameter is kept at V 5

0.10. Between model times of t 5 0 and t 5 215.5 (;42.9

days, based on taking Qi 2 Qo 5 0.4f0, as is typical of the

NH winter stratosphere) the topographic forcing is kept

constant at M 5 M1 5 0.28 (hm 5 688 m, using a refer-

ence height of H 5 6.14 km). At model time t 5 215.5,

when the vortex patch has returned to its initially cir-

cular shape, the topographic forcing is instantaneously

increased by approximately 7% to M 5 M2 5 0.3 (hm 5

737 m). The forcing is maintained at M 5 M2 until the

end of the experiment at t 5 300. The locations in pa-

rameter space of (V, M1) and (V, M2) are shown in the

middle-right panel of Fig. 5 (as well as Figs. 2b and 3a),

with the initial parameters (V, M1) lying in the ACW
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regime (as predicted by both the Kida and weakly

nonlinear theories), and (V, M2) in the OSC regime.

The top panels of Fig. 5 show the evolution of the vortex

patch over the duration of the experiment, with the evo-

lution of M as a function of time, together with the times

of the snapshots, indicated in the lower-left panel. When

M 5 M1, disturbances on the vortex edge propagate anti-

clockwise, in keeping with the Kida and weakly nonlinear

theoretical predictions. Furthermore, the evolution is sta-

ble, with no shedding or filamentation of PV away from the

main vortex core. Six periods are completed by t 5 42.9

days, as evidenced by the behavior of theK(t) diagnostic in

the bottom panel. At t 5 42.9 days, when the topographic

forcing height increases to M 5 M2, the vortex enters the

OSC regime. The effect of the change is not evident for

another 7 days. By day 49, however, the amplitude of the

disturbance on the vortex exceeds the maximum amplitude

observed up to that point. The vortex then begins to rotate

clockwise and simultaneously becomes pinched near its

centroid. The pinch becomes increasingly pronounced over

the following 2 days, and by day 53.6 the vortex has split.

In principle the onset of the vortex split in the ex-

periment described above might have been caused by an

infinitesimal change either in M or V. Note, however,

that the periods of the vortex motion become infinite

close to the transition between the ACW and OSC re-

gimes. The onset of the split will therefore take longer as

the magnitude of the change in M or V is reduced.

Nevertheless, it has been demonstrated above that

a relatively modest change in M is sufficient to cause

a split on the physically relevant time scale of a few days.

6. Conclusions

The nonlinear evolution of the stratospheric polar

vortex under the influence of a topographic forcing has

FIG. 5. (top) Snapshots of vortex evolution at a selection of times during the SSW prototype

experiment with B5 0, k 5 2, and l 5 1.162. (middle left) Forcing amplitude as a function of

time in dimensional units, with tick marks corresponding to times at which snapshots are

shown. (middle right) Location of the experiment parameters in dimensional parameter space.

(bottom) Evolution of K(t) as a function of time, with box symbols marking times at which

snapshots are shown. The dashed line marks the thresholdK(t) 5 20:6 at which vortex splitting

is diagnosed.
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been considered in a single-layer f-plane model. It has

been demonstrated that most aspects of the nonlinear

behavior exhibited by the model can be understood us-

ing either of two distinct analytical reductions, each

valid in a different region of parameter space. The im-

portant feature of the resulting amplitude Eqs. (22) and

(34) is that each exhibits a bifurcation in vortex Rossby

wave amplitude across a well-defined curve in parame-

ter space. It has been shown that it is just such a bi-

furcation in wave amplitude that causes vortex splits in

the fully nonlinear model, and we propose an amplitude

bifurcation of exactly this type as the fundamental dy-

namical mechanism underlying vortex splitting SSWs.

The insights from the nonlinear analyses allowed the

construction of a ‘‘prototype vortex split SSW’’ (see

section 5) during which, following a long period of sta-

ble and relatively low-amplitude oscillation, a small (in

principle, infinitesimal) change in forcing amplitude leads

to a spontaneous vortex split. The small change neces-

sary to cause the split could equally have arisen from

a small change in the underlying stratospheric circula-

tion, controlled in our model by the parameter V, as

might be associated with, for example, the seasonal cy-

cle. The key point illustrated by the prototype SSW is

that it is not necessary, notwithstanding the efforts of

numerous authors, to invoke an anomalous tropospheric

‘‘event,’’ which then leads to anomalous vertical prop-

agation of Rossby waves, in order to explain the occur-

rence of the SSW. Rather, a vortex splitting SSW can

arise as a spontaneous bifurcation of the forced vortex

system as the system’s parameters evolve smoothly in

time. It is to be emphasized that linear theory (e.g., Tung

and Lindzen 1979b) gives no clue as to the existence of

the bifurcation.

Plumb (1981b) has previously obtained the forced

nonlinear oscillator Eq. (34) in connection with SSWs in

a b-channel model. While in many respects Plumb’s work

has strongly influenced the present study, there are two

key differences in interpretation that merit comment.

d First, Plumb (1981b) makes reference to ‘‘wave–wave

interaction’’ where the interaction is between a ‘‘sta-

tionary topographic wave’’ and a freely propagating

Rossby wave. Plumb’s terminology has been influ-

ential; for example, Hio and Yoden (2007) recently

discussed wave–wave interaction in a topographically

forced single-layer shallow water model. The present

work has deliberately avoided this terminology and

any associated interpretation because of the fact that

in any quasigeostrophic system the influence of the

topography is equivalent to that of a time-independent

effective ‘‘forcing’’ velocity field uM, which is deter-

mined by the distribution of the topography h(x).

Although uM might exhibit a wavelike pattern—for

instance, if h(x) is chosen to be spatially periodic—it is

not a wave in any meaningful sense. This is most

obvious in the Kida vortex limit of broad topographic

forcing discussed above, for which uM becomes a

uniform strain flow. Our view is therefore that it is

meaningful to think in terms of only a single wave,

the freely propagating Rossby wave, which oscillates

in amplitude under the influence of a stationary

forcing velocity field uM.
d Second, although Plumb was aware that the system

governed by Eq. (34) exhibits a bifurcation in oscilla-

tion amplitude [see in particular section 3 of Plumb

(1981a)], Plumb chose instead to identify SSWs with

linear instability of the steady solutions of Eq. (34),

rather than the bifurcation itself. Our view is that

Plumb’s conceptual model is flawed for the same

reason we believe the linear theory explanation of

SSWs to be flawed, because the instability growth

rates in Plumb’s theory [see Eq. (3.8) of Plumb 1981b]

depend smoothly on the model parameters, and there-

fore one is once again required to invoke an abrupt

change in the parameter values (such as the magnitude

of the topographic forcing) to obtain a rapid onset SSW.

Our hope is that the unambiguous demonstration given

in section 5 that the bifurcation governed here by

Eq. (43) directly leads to a rapid onset SSW makes

a compelling case for the new paradigm.

The application of the nonlinear theory to vortex dis-

placement SSWs, which have some complicating features

due to their baroclinic vertical structure (e.g., Manney

et al. 1999; Matthewman et al. 2009), is the subject of

Part II (Esler and Matthewman 2011).
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APPENDIX

Details of the Weakly Nonlinear Analysis

a. Expansion of the integral expression determining
the velocity field

In R2 it is well known that the solution of Eq. (11),

expressing the streamfunction in terms of the PV, can be

given in Green’s function form (e.g., Esler 2004) as
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cR(x) 5 2
1

2p

ð ð
R

2
K0(Bjx 2 ~xj)q(~x) d2~x. (A1)

For the special case where q(x) is a uniform patch of

constant unit vorticity in an areaD as here, the curl of the

vector field cRk in Eq. (A1) can be taken, and Green’s

theorem in the plane used to convert the area integral to

a contour integral around the patch boundary ›D:

uR(x) 5
1

2p

þ
›D

K0(Bjx 2 ~xj)q(~x) d~x. (A2)

Equation (A2) gives the self-induced velocity uR of the

vortex patch in terms of the location of its boundary ›D.

It is assumed in all that follows that the location of the

boundary can be expressed in polar form as r 5 1 1

�h(u), where « is a small parameter set equal to M1/3 in

section 4d above.

In fact, to expand Eq. (12) in powers of «, only

(uR � n)c[u] need be evaluated. Here n is the vector

perpendicular to the patch edge defined by Eq. (13),

and the subscript c denotes evaluation at the patch

boundary. To proceed note first that the position vec-

tors x and ~x in Eq. (A2) can be expanded as

x(u) 5 [1 1 �h(u)]̂r(u),

~x(f) 5 [1 1 �h(f)]̂r(f),

so that d~x 5 f�h
f

(f)r̂(f) 1 [1 1 �h(f)]f̂(f)gdf and

(uR � n)c can be written

(uR � n)c(u) 5
1

2p

ð2p

0
K0(Bjx(u) 2 ~x(f)j) �h

f
(f) 2 �

h
u
(u)[1 1 �h(f)]

1 1 �h(u)

� 	�
cos(u 2 f)

1 1 1 �h(f) 1 �2
h

u
(u)

1 1 �h(u)
h

f
(f)

� �
sin(u 2 f)

�
df, (A3)

where the identities

r̂(u) � r̂(f) 5 f̂(u) � f̂(f) 5 cos(u 2 f) and

r̂(u) � f̂(f) 5 2r̂(f) � f̂(u) 5 sin(u 2 f)

have been used. The Bessel function terms in Eq. (A3)

can be expanded using the (easily verified) Taylor series

expansion, valid for any smooth function f, constant n,

and vectors a and b:

f (nja 1 �bj) 5 1 1 �
(a � b)

(a � a)
1
�2

2
1 2 �

(a � b)

(a � a)

� �(
(b � b)(a � a) 2 (a � b)2

(a � a)2

 )
n

d

dn

1
�2

2

(a � b)2

(a � a)2
1
�3

2

(b � b)(a � a)(a � b) 2 (a � b)3

(a � a)3

" #
n2 d2

dn2
1
�3

6

(a � b)3

(a � a)3
n3 d3

dn3

!
f (njaj) 1 O(�4). (A4)

Using Eq. (A4) with f [ K0, n 5B, a 5 r̂(u) 2 r̂(f), and b 5 h(u)r̂(u) 2 h(f)r̂(f), and noting that

a � a 5 2[1 2 cos(u 2 f)],
a � b 5 [h(u) 1 h(f)][1 2 cos(u 2 f)],
b � b 5 [h(u) 2 h(f)]2 1 2h(u)h(f)[1 2 cos(u 2 f)],

the Bessel function expression in Eq. (A3) can be expanded in � as

K0(Bjx(u) 2 ~x(f)j) 5 1 1 �
h(u) 1 h(f)

2
B d

dB 1 �2
[h(u) 1 h(f)]2

8

1 1 cos(u 2 f)

1 2 cos(u 2 f)

� �(
B d

dB

1 �2
[h(u) 1 h(f)]2

8
B2 d2

dB2
1 �3

[h(u) 1 h(f)][h(u) 2 h(f)]2

16

1 1 cos(u 2 f)

1 2 cos(u 2 f)

� �

3 B2 d2

dB2
2 B d

dB

 !
1 �3

[h(u) 1 h(f)]3

48
B3 d3

dB3

)
K0 B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2 2 cos(u 2 f)

ph i
1 O(�4). (A5)
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The integral in Eq. (A3) can now be expanded in

powers of � according to Eq. (27), thus defining linear,

quadratic, and cubic functionals of h. These can now be

obtained as

(uR � n)l
c
[h] 5

1

2p

ð2p

0
[h

u
(u 1 ~c) 2 h

u
(u) cos ~c]K0 B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2 2 cos ~c

q� �
d~c, (A6)

(uR � n)q
c
[h] 5

1

2p

ð2p

0
[h

u
(u 1 ~c) 2 h

u
(u) cos ~c] h(u 1 ~c) 2 h(u) 1

h(u 1 ~c) 1 h(u)

2
B d

dB

� ��

2 h
u
(u 1 ~c)h

u
(u) sin ~c

	
K0 B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2 2 cos ~c

q� �
d~c, (A7)

(uR � n)c
c
[h] 5

1

2p

ð2p

0
[h

u
(u 1 ~c) 2 h

u
(u) cos ~c]

(
h(u)[h(u) 2 h(u 1 ~c)]

 

1
h(u 1 ~c)2

2 3h(u)2

4
B d

dB 1
[h(u 1 ~c) 1 h(u)]2

8
B2 d2

dB2
1 B d

dB

 !
1

[h(u 1 ~c) 2 h(u)]2

4(1 2 cos ~c)
B d

dB

)

1 h
u
(u)h

u
(u 1 ~c) sin ~c h(u) 2

h(u 1 ~c) 1 h(u)

2
B d

dB

� 	!
K0 B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2 2 cos ~c

q� �
d~c: (A8)

Note that the relation

sin ~cB d

dBK0 B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2 2 cos ~c

q� �

5 (1 2 cos ~c)
d

d~c
K0 B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2 2 cos ~c

q� �
,

together with integration by parts, has been used to

simplify Eqs. (A6)–(A8) where possible.

The expressions (A6)–(A8) hold for any h(u) and thus

facilitate the expansion of (uR � n)c in powers of � for any

boundary disturbance profile. The linear functional

(u
R
� n)l

c
naturally appears in the integro-differential

Eq. (14) describing the linear problem. The remaining

quadratic and cubic functionals are required for the weakly

nonlinear theory.

b. Evaluation of the quadratic and cubic velocity
functionals for wavelike perturbations

Next, the aim is to evaluate the quadratic and cubic

velocity functionals given by Eqs. (A7) and (A8) for the

case where

h 5 h1 1 �h2 1 �2h3 1 O(�3),

and h1 is given by the wavelike solution to the leading-

order equation in the weakly nonlinear expansion for

the near-resonant problem:

h1(u, T) 5 ReA(T)eiku.

To proceed we adopt the notation Pk 5 Ik(B)Kk(B) for

the Bessel function product as introduced by Penfold

et al. (2007) (see main text). The Pk appear directly in

the Fourier expansion [Eq. (16)] and can be manipulated

using the following two (independent) differentiation

identities:

P9k 5
B
2k

(Pk11 2 Pk21), (A9)

B(P9k11 1 P9k) 5 2kPk 2 2(k 1 1)Pk11, (A10)

each of which helps facilitate the manipulation of our

results into the form given below. Note that derivative

terms can be eliminated (where necessary) between the

expressions to give a recurrence relation. Penfold et al.

(2007) also show that for all k $ 1 the Pk can be shown to

be positive, bounded, monotonically decreasing func-

tions on B $ 0.

The quadratic functional (A7) can be evaluated for

h 5 h1 by replacing the K0 Bessel function term with

its Fourier series [Eq. (16)]. All of the terms in the

integral reduce to elementary Fourier integrals and

after some simplification the following result is ob-

tained:

(uR � n)q
c
[h1] 5 Re

1

4
ikA(T)2e2iku[2(P2k 2 Pk 1 P1)

1 B(2P9k 1 P92k 2 P91)]. (A11)
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Examination of the kinematic equation at next order

in the weakly nonlinear expansion (29) reveals that

h2 5 Reb1jAj
2

1 b2A(T)2e2iku,

for constants b1, b2 (see discussion in the main text

where their values are given). Nonzero h2 means that

the quadratic functional (A7) also contributes terms

O(�3), which also reduce to Fourier integrals that on

evaluation give

(uR � n)q
c
[h1, h2] 5

1

4
b2ikAjAj2eiku[4Pk 2 4P2k 1 2P1 1 B(2P9k 1 P92k 2 P91)]

1
1

4
b2ikA(T)3e3iku[6P3k 2 4P2k 2 2Pk 1 6P1 1 3B(P9k 1 P92k 1 P93k 2 P91)]

1
1

4
b1ikAjAj2eiku[B(P9k 2 P91)]. (A12)

Finally, evaluation of the cubic functional (u
R
� n)c

c
[h

1
]

is required. A complicating factor is the term involving

the factor (1 2 cos ~c)21 appearing in the integral, which

does not allow for reduction to standard Fourier

integrals. Instead, it is evaluated using the following

identities (these results have been derived by trans-

forming the integral to the unit circle in the complex

plane, and have been verified numerically):

ð2p

0

[cos b 2 cos(k~c 1 b)]2

1 2 cos ~c
cos m ~c d~c 5 p

2(k 2 m) 2 m cos 2b 0 # m # k
2(2k 2 m) cos 2b k , m # 2k
0 m . 2k,

8<
:

ð2p

0

sin(k~c 1 b)[cos b 2 cos(k~c 1 b)]2

1 2 cos ~c
cos m~c d~c 5

p

2

2k sin b 0 # m # k
(4k 2 2m) sin b 1 (k 2 m) sin 3b k , m # 2k
(m 2 3k) sin 3b 2k , m # 3k
0 m . 3k.

8>><
>>:

Using the above results, at third order, the cubic functional can be evaluated to obtain

(uR � n)c[h1] 5 Re
1

4
ikAjAj2eiku[Pk 2 P2k 2 P1 1

B2

4
(2P2k 2 P2k11 2 P2k21)

1
B
4

(P91 2 6P9k 2 P92k) 2
3

2
(B2 1 1)P1 1 2(B2 1 k2)Pk 2

1

2
(B2 1 4k2)P2k]

1
1

4
ikA(T)3e3iku[Pk 2 P2k 2 P1 1

3B2

4
(2P2k 2 P2k11 2 P2k21) 1

B
4

(3P91 2 7P9k 1 P92k 1 P93k)

2
1

2
(B2 1 1)P1 1

3

2
(B2 1 k2)Pk 2

3

2
(B2 1 4k2)P2k 1

1

2
(B2 1 9k2)P3k].

The results above can be used as described in the main

text to obtain the nonlinear frequency correction

v2(B; k) given by Eq. (36).

c. Limiting forms of the nonlinear frequency
correction v2

As discussed above, the coefficient v
2
(B; k) determines

the magnitude of the nonlinear frequency correction for

Rossby waves on the vortex, and its magnitude is im-

portant in determining the location of the bifurcation in

parameter space. The exact expression (36) has been

carefully checked numerically for several values of B

and k and also contains two separate known limits that

merit discussion.

The first relevant limit is the barotropic limit B/0 in

which the governing equations reduce to the 2D Euler

equations. The weakly nonlinear analysis of the motion

of a vortex patch governed by the 2D Euler equations

has been studied previously by Su (1979). The results

lim
B/0

Pk 5
1

2k
, lim
B/0

P9k 5 O(B)

[Abramowitz and Stegun 1964, Eqs. (9.6.7)–(9.6.9)] can

be used to show that
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lim
B/0

v2(B; k) 5 2
k(k 2 1)

4
,

in agreement with Su [1979; see Su’s Eq. (16), which

gives an equivalent result for a scaled angular speed

l2 5 pv2/k].

The second limit is the ‘‘straight contour’’ limit, in

which the wavelength of the Rossby waves is comparable

to the Rossby radius but much smaller than the vortex

radius. The problem of weakly nonlinear Rossby wave

propagation on a straight (zonal) PV jump has been

previously examined by Esler (2004) in the context of

modulational or Benjamin–Feir instability. The results

lim
k/‘

Pk

k

g

� �
5

g

2k(1 1 g2)1/2
, lim

k/‘
P9k

k

g

� �
5 2

g2

2k2(1 1 g2)3/2
,

lim
k/‘

P1

k

g

� �
5

g

2k
, lim

k/‘
P91

k

g

� �
5 2

g2

2k2

[see Abramowitz and Stegun 1964, their Eqs. (9.7.7)–

(9.7.10) and (9.7.5)–(9.7.6)] can be used to access this

limit. Specifically, the joint limit k, B/‘ is required,

with the ratio k/B 5 kx held constant. In this limit

lim
k,B/‘

B5k/k
x

k22v2(B; k) 5 2
1

16kx

[4(1 1 k2
x)1/2

2 (1 1 4k2
x)1/2

2 3],

recovering the corresponding result in Esler [2004, see

Eq. (30) therein]. Here kx is a nondimensional wave-

number, scaled on L21
R , and rescaling also explains the k2

prefactor necessary in the limit, because in Esler (2004)

the wave amplitude h is scaled on the inverse of the

dimensional wavenumber (kxLR 5 k21R) as opposed to

the vortex radius R used here. Note that only the first

three terms in expression (36) contribute to the straight

contour limit.

The fact that expression (36) for v
2
(B; k) contains the

known results for the ‘‘barotropic’’ and straight contour

in distinguished limits, and agrees with numerical results

away from these limits, indicates that despite its some-

what opaque appearance and lengthy derivation [Eq.

(36)] is likely to be correct.
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