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This paper reports experimental observations of finite amplitude interfacial waves forced
by a surface-mounted obstacle towed through a two-layer fluid both when the fluid is
otherwise at rest and when the fluid is otherwise rotating as a solid body. The
experimental apparatus is sufficiently wide so that sidewall effects are negligible even in
near-critical flow when the towing speed is close to the interfacial long-wave speed and
the transverse extent of the forced wavefield is large. The observations are modelled by a
simple forced Benjamin–Davis–Acrivos equation and comparison between integrations of
both linear and nonlinear problems shows the fundamental nonlinearity of the near-
critical flow patterns. In both the experiments and integrations rotation strongly confines
the wavefield to extend laterally over distances only of order of the Rossby radius and
also introduces finite-amplitude sharply pointed lee waves in supercritical flow.
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1. Introduction

Among the many observations of cloud patterns near orography, some stand out
as showing stationary disturbances upwind of the orography. Johnson & Vilenski
(2004) (simply ‘JV’ here) reproduce a NASA photograph of Guadalupe Island,
Baja California taken during the Gemini-V flight and described by Stevenson
(1969). A low layer of stratocumulus cloud is moving at 6–10 knots past the
island whose peaks reach 4500 ft and thereby project through, and interfere with,
the cloud layer. Stevenson (1969) notes that a ‘shock or bow’ wave spreads from
the north end of the island, ‘similar to waves formed by a ship moving through
water’, and further observes that as these cloud features were photographed
during four Gemini missions they must be considered climatic features of the
Guadalupe marine atmosphere, whose fluid dynamic details must be investigated
for proper analyses of atmospheric and ocean flows. Burk & Haack (1999)
describe similar wave clouds extending away from the Monterey—Big Sur
coastline of central California, noting that it is the orographic forcing and
stationary appearance in geostationary operational environment satellite
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E. R. Johnson and others4
(GOES) image loops that set these waves apart from propagating wave
phenomena. They present a schematic description based on isolated single
attached and detached shocks forced by obstacles in supercritical flows.
Tjernstrom & Grisogono (2000) and Soderberg & Tjernstrom (2001) also discuss
flow in the atmospheric boundary layer around points and capes in terms of the
criticality of the flow, following Samelson (1992) and Samelson & Lentz (1994)
who treat the shallow marine atmospheric boundary layer under a low-level
inversion along the Californian coast as supercritical flow with a sidewall. Jiang
& Smith (2000) model these phenomena theoretically in the context of shallow
water flow over isolated orography, noting that a shallow water model can
capture such atmospheric flow phenomena as long wakes in the lee of obstacles,
quasi-steady vortices and vortex shedding, and observing that with realistic
parameters a single-layer model as a representation of stratified air flow has even
made some reasonable quantitative predictions of vortex shedding period and
wake length (Schär & Smith 1993). Because of the direct analogy between the
shallow water equations and the compressible two-dimensional Euler equations,
these analyses lead to flow patterns with isolated attached and detached shocks
as in the schematic descriptions of Burk & Haack (1999) and Jiang & Smith
(2000). However, the GOES observations and nonhydrostatic numerical
computations in Burk & Haack (1999) show a wave pattern that does not
necessarily consist of an isolated cloud line but can consist of an initial line
followed by a set of parallel lines of cloud. Figure 1 shows a closer view of
Guadalupe Island from a more recent (11 July 2001) NASA photograph. The
parabolic bow wave is again clearly visible, bearing out Stevenson’s (1969)
observation that it is a climatic feature, but behind the initial bow wave a series
of alternate crests and troughs also appears.

JV note that extending the shallow water equations to include weak non-
hydrostatic effects causes the single isolated shocks of the ship–wave analogies of
Stevenson (1969), Burk & Haack (1999) and Jiang & Smith (2000) to split into
multiple parallel crests similar to those observed. JV consider near-critical flow,
where the oncoming flow speed is close to the dominant free-wave speed of the
flow, in the limit where wave steepening due to weak nonlinearity is balanced by
weak dispersion due to non-hydrostatic effects. For one-dimensional flow over
ridges this leads to the forced Korteweg-de Vries (fKdV) equation (Grimshaw &
Smyth 1986) and in two-dimensional flow over isolated orography to the forced
two-dimensional KdV or forced Kadomtsev–Petviashvili (fKP) equation
(Kadomtsev & Petviashvili 1970; Akylas 1994). Solutions reproduce many of
the features seen in numerical integrations of the fully nonlinear shallow-water
equations of Jiang & Smith (2000) and also give predictions of the drag exerted
on the flow by the orography, perhaps one of the most important physical
quantities required from local modelling to parameterize orography in large-scale
models.

Li et al. (2004) report upstream propagating solitary waves identified both
from synthetic aperture radar and moderate resolution imaging spectro-
radiometer images near St Lawrence island in the Bering Sea. To model these
observations numerically they treat the waves as one-dimensional and
approximate the density profile as a two-layer fluid. The governing equation
then becomes the forced extended KdV (feKdV) equation where, for sufficiently
large amplitude waves or particular ratios of densities and depths, cubic
Proc. R. Soc. A (2006)



Figure 1. A wavefield above Guadalupe Island, Baja California with crests (solid lines) and troughs
(dashed lines) indicated.

5Orographically generated nonlinear waves
nonlinearities can contribute to the motion in addition to the usual quadratic
nonlinearities of the KdV (Melville & Helfrich 1987; Grimshaw et al. 2002).
Johnson & Vilenski (2005) note the modification to these flow patterns when the
forcing is more localized so the flow is weakly two-dimensional, governed by the
forced extended KP (feKP) equation. Similar solitary waves advancing away
from the front of an obstacle have been generated and observed in the laboratory
by Maxworthy et al. (1984). In both the cases described by Maxworthy et al.
(1984) and Li et al. (2004), the flows are significantly subcritical and waves
advance unsteadily upstream. The unsteady development of forced two-
dimensional solitary waves is described in Lee & Grimshaw (1990) and Li &
Sclavounos (2002). It is the purpose of this paper to investigate experimentally,
and model simply, nearly steady near-critical flow patterns, both weakly
subcritical and weakly supercritical, to provide a possible mechanism for the
observed steady flow patterns noted earlier and shown in figure 1.

Before applying analyses like these to planetary flows it is necessary to
estimate the effect of the Earth’s rotation on the flow. Ostrovsky (1978) considers
weak rotation in unforced one-dimensional flows and this, together with later
work on one-dimensional flows and some two-dimensional unforced flows—
governed by the rotating KP (rKP) equation—are described in detail in the
reviews of Akylas (1994) and Grimshaw et al. (1998b). In particular, Grimshaw
Proc. R. Soc. A (2006)
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et al. (1998b) point out that rotational effects are important when they become
comparable to non-hydrostatic dispersion and that in oceanic flows this occurs
for motions with scales of the order of a few hundreds of kilometres in the open
ocean and only a few tens of kilometres in shallow seas. Vilenski & Johnson
(2004) consider an obstacle advancing at approximately critical speed into an
otherwise quiescent rotating fluid, a set-up chosen for the possibility of verifying
predicted flow fields against relatively straightforward towing tank experiments
and because the natural division of non-rotating flows into subcritical, critical
and supercritical flows remains. The flow is governed by the forced rKP (frKP)
equation. They describe weakly nonlinear supercritical solutions showing how
steady oblique solitary waves, unattenuated in non-rotating flow, decay with
distance from the obstacle and how they can be interpreted in terms of the
temporal decay of solitary waves in the one-dimensional problem described by
Grimshaw et al. (1998a). These effects appear here in both the experimental and
model results.

The fKP equation describes not only the vertical displacement of the free-
surface of a near-critical shallow flow but also, as shown for the fKdV by
Grimshaw & Smyth (1986), the horizontal and temporal variation of the
amplitude of a near-critical vertical mode in a continuously stratified flow of
finite depth. Grimshaw & Smyth (1986) show that, for oncoming flows with
speeds near that of the fundamental linear mode, the vertical structure of the
mode influences the governing equation only through the coefficients in the
equation, determined by integrals of the vertical structure. Computed patterns,
like those in JV, thus depend only weakly on the details of the vertical structure
of the linear wave. This weak dependence of the horizontal patterns on vertical
linear wave structure offers a possible explanation of the qualitative accuracy of
the description of near-critical flows by the shallow water equations even when
the vertical structure of the fundamental linear wave differs from the two-layer
reduced gravity model. Such differences in vertical wave structure have been
remarked on in models of coastally trapped waves on a inversion within
uniformly stratified layers by Samelson (1999) and Durran (2000), although the
vertical step orography in their examples leads to singular pressure fields
(Schmidt & Johnson 1993b) and differences near continuous orography
(following, for example, Schmidt & Johnson 1993a) could be smaller.

Rottman & Einaudi (1993) review weakly nonlinear theory for the propagation
of one-dimensional solitary waves in the atmosphere. They distinguish between
two typical scenarios. In the first scenario the waves propagate within a strongly
stratified waveguide with relatively weak stratification elsewhere. Jiang & Smith
(2000) note that in the marine atmosphere the top of the boundary layer often
acts as this waveguide. In the second scenario the stratification is relatively
uniform throughout most of the depth of the fluid, and in the atmospheric case
the waves then occupy most of the troposphere with the tropopause and strongly
stable stratosphere acting as an upper boundary, to give an effectively finite-
depth flow. The first scenario leads to Benjamin–Davis–Acrivos (BDA)
(Benjamin 1967; Davis & Acrivos 1967; Ono 1975) theory and the second to
KdV theory. Hence Rottman & Einaudi (1993) note that in the atmosphere BDA
theory applies mostly to low-level solitary waves, where waves propagate in a
low-level stable layer topped by a very weakly stratified layer, whereas the KdV
theory generally applies to deeper waves that occupy most of the troposphere.
Proc. R. Soc. A (2006)
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Figure 2. The experimental set-up. (a) The top view. (b) A vertical cut. The obstacle O is moved
along the upper layer by the carriage C which rides along rigid rails R sufficiently far above the
surface to clear the spar supporting the interfacial probes P. Each probe consists of an ultrasonic
emitter/receiver e above the interface and a reflector r below the interface.

7Orographically generated nonlinear waves
They point out that the atmosphere often produces layers of nearly neutrally
stratified air that are sufficiently deep to provide effective trapping of solitary
waves (the BDA case), but rarely produces a sufficiently large increase in
buoyancy frequency to make a good reflector and effectively cap a stratified layer
(the KdV case). They suggest that the KdV may, however, be relevant when
there is sufficient vertical shear in the oncoming flow to reflect vertically
propagating internal waves. As the lower layer in the experiments described
below is deep and neutrally stable and the effective oncoming flow is unsheared,
the experiments relate most closely to the BDA case and are modelled below in
terms of a forced, rotating, weakly two-dimensional BDA (fr2dBDA) equation.

Section 2 describes the experimental set-up of a two-layer fluid in a large
rotating tank where a thin upper layer occupies 10% of the total fluid depth.
Section 3 interprets the experimental observations of interface displacement in
terms of solutions the fr2dBDA equation and §4 gives brief conclusions.
2. Experimental set-up

The experiments were performed in the large rotating tank at the LEGI-Coriolis
facility in Grenoble, the same facility as used in the experiments of Maxworthy
et al. (1984). The present set of experiments differed from those of Maxworthy
et al. (1984) in that here the obstacle (O in figures 2 and 3) was mounted on a
carriage C whose speed could be accurately controlled so the obstacle could be
moved along the water surface at constant speed. In the experiments of
Maxworthy et al. (1984), the obstacle was bottom-mounted and moved only a
fixed distance before being brought to rest; so interfacial solitary waves
propagated away in front of the obstacle. One of the great advantages of the
Coriolis set-up is the large width of the tank. The wavefield forced by obstacles
towed at near-critical speeds spreads laterally over significant distances and in
narrower domains wave reflection from sidewalls soon dominates the entire
wavefield (Ertekin et al. 1986). In the present experiments wall reflections do not
Proc. R. Soc. A (2006)
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Figure 3. A side photograph of the experimental apparatus. The oblong obstacle O used in the set
of experiments described in §§2 and 3 has dimensions 50 cm!100 cm. The speed at which the
carriage C is moved along the rails R is accurately controlled by the stepper motor S.
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Figure 4. (a) A typical density profile showing the particularly sharp interface of the rotating
experiments. (b) The time-series of interface displacements from the innermost five probes (in
order from the closest at the bottom, with successive traces displaced upwards by 4 cm to avoid
overlap) for figure 5 for rotating flow with towing speed UZ10 cm sK1. The crest of the bow wave
is marked C1 and the more prominent sharp-crested lee wave is marked C2.
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affect the flow until long after the dominant flow pattern had passed the
measurement line. The present experiments differed also from those of
Maxworthy et al. (1984), which used two thin fluid layers, in having a layer of
thickness H1Z6 cm floating on a much deeper lower layer of thickness H2Z54 cm
Proc. R. Soc. A (2006)
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Figure 5. Observed experimental interface elevations for an oblong obstacle at towing speeds
UZ7.5, 10, and 12.5 cm sK1. Left column: non-rotating. Right column: rotating with period
TZ120 s (fZ0.105 sK1), giving a Rossby radius of approximately 1.0 m. The centre of the obstacle
is indicated by the ‘C’ at the origin. As in figure 4b, C1 marks the crest of the bow wave, C2 the
more prominent sharp-crested lee wave and T, the long deep trough between them.
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(figure 4a). The aim was to give a system to model, when inverted, an
atmospheric flow consisting of a thin lower layer below a much deeper upper
layer, following Rottman & Einaudi (1993) and Jiang & Smith (2000) who note
that the marine atmosphere typically has a two-layer stratification profile, with
the marine atmospheric boundary layer forming a lower layer of 1–2 km beneath
free tropospheric air of depth 8–10 km. The value of inverting the experimental
system is twofold: first, no problems arise due to bottom boundary layer effects at
the obstacle and, second, the upper layer can be readily refreshed after each
experiment with fresh water. The density difference was 2.5%, corresponding
to interfacial long wavespeeds c0Z(g0H1)

1/2 of 10 cm sK1. The obstacle was
moved across a diameter of the tank at a constant speed U in the range
5–30 cm sK1, allowing the transition from subcritical to supercritical regimes to
be explored in all cases. At these speeds the Froude number associated with the
free surface is extremely small and consequently the upper surface acts as a rigid
lid. During the experiments no surface waves were observed. In addition to
non-rotating runs, the Coriolis facility allowed experiments with tank rotation
periods of TZ60, 90 and 120 s.

Interface displacements were measured by a set of 20 acoustic probes (P in
figure 2) spaced 20 cm apart along a spar transverse to and to one side of the
obstacle motion. The probes consisted of an ultrasonic pulse emitter (e in figure 2),
positioned above the interface, and a reflector (a small metallic plate, r in figure 2),
positioned below it. The piezo-electric emitter was also used as a receiver, and
the return time of the ultrasonic pulses measured. As the speed of sound is
different in both layers, this return time varies linearly with interface
displacement. The precision of measurement was 0.1 mm. The probe calibration
was checked before each experiment by applying a vertical translation of 1 cm to
the whole spar of probes, using a stepping motor. Similar interfacial probes have
been used previously by Ramirez & Renouard (1998). Figure 4b gives time-series
from a typical experimental run. Runs were performed in both directions to
verify that the flow was symmetric about the centreline. Individual runs with the
same parameters showed a high degree of reproducibility and runs with the same
parameters in opposite directions showed good agreement: at the rotation rates
here the observed wavefields away from the direct wake region were symmetric
about the centreline. Thus the interface elevations in figure 5 are shown with
data reflected about the centreline to represent the whole wavefield. The absence
of data in the band near the centreline is due to the inner limit placed on the
probe line to allow the obstacle to pass without obstruction. The gap between the
innermost probe and the edge of the widest obstacle was approximately 9 cm.
Time-series of interface displacements from the probes like those in figure 4b were
converted into the spatial plots of figure 5 by assuming that the flow pattern was
stationary relative to the obstacle. The validity of this assumption is discussed
briefly in §4.

Typical runs in the tank, of diameter 13 m, took approximately 2 min. Data
from the probes were stored in raw form, a simple program converted this to
displacements in centimetres and a further program plotted these in the form of a
frame of figure 5. Thus within a few minutes of the end of a run it was possible to
examine the generated wavefield. In practice, it was necessary to wait about
20 min for the wavefield to decay after each run and so it was possible to perform
over 18 runs a day with a given stratification and rotation speed while varying
Proc. R. Soc. A (2006)
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obstacle height and towing speed. The disruption to the basic stratification was
minimal over one day but over a three-day period the interface thickened altering
the interfacial wavespeed and making it more difficult to estimate the fractional
depth of the upper layer occupied by the obstacle. At this stage the tank was
drained, the two layers mixed, sufficient salt added to return the density to 2.5%
above freshwater, this mixed fluid used to form the lower layer and freshwater
added to form a new upper layer.

Various obstacle shapes were used in the experiments, including axisymmetric
Gaussian obstacles of different volumes and the flat obstacle of figure 3. It
was found that the wavefield generated by symmetric obstacles was determined
almost entirely by the volume of the obstacle and was uninfluenced by the
obstacle profile. Observations are thus reported below solely for the flat
obstacle.
3. Interpretation of the experimental results

(a ) A model equation for forced, rotating, near-critical internal waves

As the lower layer is neutrally stratified and 10 times deeper than the upper
layer, it is treated here as effectively infinitely deep so the appropriate model
equation can be expected to belong to the BDA family. Following the derivation
in Grimshaw (1985) and Johnson (1997), and including modifications for two-
layer flow (e.g. Ono 1975), and for rotation (Ostrovsky 1978), gives the forced,
rotating, weakly two-dimensional BDA equation (fr2dBDA),

2h0zt C2Gh0zzC
3

2
ðh20ÞzzCH½h0�zzzKn2h0 CA2h0YY ZKMBzz; ð3:1Þ

for the evolution of the leading order interface displacement h0. Here H is the
Hilbert transform

H½f ðxÞ�Z 1

p
PV

ðN
KN

f ðx 0Þ
x 0Kx

dx 0;

where PV denotes the Cauchy principal value of the integral. The one-
dimensional form of equation (3.1) has been used previously by Matsuno (1995)
to describe the collision of a soliton with a ridge.

The derivation of equation (3.1) follows from expansion in the small parameter
dZH1/L/1, and it follows that zZd(xKUt)/H1 is a spatial coordinate fixed in
the frame of the obstacle which is moving at speed U, YZd3=2Ay=H1 is a
stretched y-coordinate and tZd2c0t/H1 is a ‘slow’ time variable. At leading order
h0 is related to the true interface displacement h via hZdh0 and B is a non-
dimensionalized obstacle height with a maximum value of unity. There are four
non-dimensional parameters G, A, n and M associated with equation (3.1). They
can be identified with criticality (G!0 indicates a super-critical obstacle tow
speed), obstacle anisotropy, rotation and nonlinearity, respectively. These non-
dimensional parameters are directly related to the experimental parameters as
follows:

GZ
c0KU

c0
dK1; AZ

L

Ly

dK1=2; nZ
fH1
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dK3=2; M Z

h

H1

dK2: ð3:2Þ
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Recall that h is the maximum height of the obstacle; Ly, the obstacle length
scale in the y-direction; c0Z(g0H1)

1/2, the speed of long interfacial gravity
waves, with g 0 the reduced gravity; and f, the Coriolis parameter. A balance of
the final two terms on the left side of equation (3.1) shows that solutions can be
expected to decay away from the axis over distances of the order of the Rossby
radius, c0/f. It is noted below that this decay is more evident in the
experimental observations that in either the linear or nonlinear solutions of
equation (3.1).

(b ) Numerical calculations

In order to differentiate between the separate roles of criticality, rotation and
nonlinearity in determining the wave pattern generated by the obstacle, equation
(3.1) was integrated numerically on a workstation. Equation (3.1) is a model
equation for the experimental problem and the results should be interpreted as
such, rather than as a direct numerical simulations of the experiments.
Nevertheless, in order to ensure that the parameter regimes most relevant to
the experiments are explored, the model equation parameters G, A, n and M are
calculated in each case from the corresponding experimental parameters using
equation (3.2).

Equation (3.1) was solved in a doubly periodic domain, with dimensions
120L!120Ly in terms of the obstacle length scales L and Ly. The integrations
continue until the interface height is found to be steady in a subdomain of
dimensions 40L!40Ly centred on the obstacle. The discretization is pseudo-
spectral, and a resolution of 512!512 Fourier modes was found to be adequate to
resolve the wave patterns in the parameter regime of interest. (Higher resolution
was found necessary when nonlinearity dominated over dispersion, i.e. at large
Proc. R. Soc. A (2006)
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M, small jnj, jGj.) Time-stepping in the model proceeds according to the
predictor–corrector method with time-step DtZ0.1.

The obstacle shape B is taken in the numerical integrations to be the Gaussian

Bðz;Y ÞZ expfKðz2CY 2Þg: ð3:3Þ
This shape is numerically convenient as it has little signature at the very high
wavenumbers that can affect the time-stepping in the numerical model but are
absent from the experimental observations due to weak viscous effects. The
length scales of the obstacle are chosen as LZ30 cm, and LyZ60 cm to give the
same volume and aspect ratio as the experimental obstacle. In all the numerical
integrations described Dr/rZ2.5%, and H1Z6 cm, so that AZ1:12 and, for the
purposes of determining the other non-dimensional parameters using equation
(3.2), dZ1/5 and c0Z12 cm sK1. The parameters G, n and M vary as the tow
speed U, the rotation rate f and the obstacle height h, respectively, are varied. To
compare with the nonlinear solutions, linear calculations of the steady-state wake
pattern were also obtained. For each Fourier component, equation (3.1) was
solved with the nonlinear terms absent, and with the operator v/vt replaced by a
scalar factor 3Z0.04. The use of a positive scalar factor ensures the correct
causality in the solution for the obstacle wake (Lighthill 1965), and the limit
3/0 corresponds to the exact linear solution in an infinite domain. In practice a
finite value of 3 is necessary to restrict the scale of the wake to within that of the
finite domain.

The obstacle used in the experiments had a width of the order of the total fluid
depth and so, to determine the importance of the particular model equation
chosen, integrations were also performed using the frKP equation following
Vilenski & Johnson (2004) and the feKP equation following Johnson & Vilenski
(2005), using linear wave parameters from both the two-layer model and
computed from the measured experimental density profiles. With parameter
values derived from the experiments, all models showed the same qualitative
behaviour, and so only integrations of the fr2dBDA are described below.
(c ) Numerical solutions and interpretation

Figure 6 shows the steady state solutions of the non-rotating (nZ0) fr2dBDA
equations with hZ3 cm (MZ12.5) at three different criticalities GZ0.208,
K0.625 and K1.458 corresponding to towing speeds UZ11.5, 13.5 and
15.5 cm sK1. The left panels show the linear solutions and the right panels the
nonlinear solutions, allowing the effects of nonlinearity to be easily identified. At
the subcritical towing speed UZ11.5 cm sK1, nonlinearity generates two weak
bow waves up to 30L ahead of the obstacle, with the wave pattern behind the
obstacle modified only slightly from its linear counterpart. At weakly
supercritical towing speeds (not shown) the two bow waves are stronger and
form closer to the obstacle. With increasing supercriticality the inner bow wave
decays, its curvature increases, and it eventually merges with the dispersive wave
pattern. By moderate supercriticality (UZ13.5 cm sK1 panel) there is, therefore,
only a single, large-amplitude bow wave ahead of the obstacle. With further
increases in criticality this solitary bow wave begins to decay and also merges
with the dispersive wave pattern until by UZ15.5 cm sK1 the V-wave pattern
(e.g. Jiang & Smith 2000) strongly resembles its linear counterpart.
Proc. R. Soc. A (2006)



15Orographically generated nonlinear waves
The numerical results of figure 6 can be compared directly with the
experimental results shown in figure 5: both show similar developments in the
forced wave pattern once allowance is made for the difference in the critical speed
c0 between the numerical results and the experiments caused inter alia by the
diffusion acting on the stratification profile in the experiments. The two weak
bow waves of the UZ7.5 cm sK1 experiment are stronger and closer to the
obstacle in the UZ10.0 cm sK1 experiment, whereas in the UZ12.5 cm sK1

experiment only a single bow wave with much greater curvature remains distinct
from the dispersive wave pattern behind the obstacle.

Figure 7 illustrates how increasing nonlinearity affects the wave pattern.
The hZ3 cm (MZ12.5), UZ13.5 cm sK1 numerical solution (left panel) should
be compared with its hZ5 cm (MZ20.83) counterpart (right panel). Numerical
integrations of the fKP equation in JV similarly show that increased
nonlinearity, or equivalently reduced dispersion, leads to the formation of
multiple solitary bow waves ahead of the obstacle. This transition between
different solitary wave regimes has profound implications for the drag exerted by
the obstacle on the flow (JV). Examining figure 7 and series of similar numerical
solutions (not shown) shows that the extent to which the solitary wave pattern
extends ahead of the obstacle depends only weakly on nonlinearity, but depends
sensitively on the criticality, as can be seen in figure 6.

Figure 8 shows linear and nonlinear rotating steady states for the numerical
integrations with fZ0.105 sK1 (so nZ0.587), corresponding to a Rossby radius of
c0/fZ1.3 m. To emphasize the nonlinearity of the wave pattern topographic
forcing has been chosen to be strong with hZ6 cm so MZ25. Because of the
increased nonlinearity, and the tendency of the nonlinear solutions in the
rotating regime to form extremely sharp-crested waves (e.g. Shrira 1981, 1986;
Grimshaw et al. 1998b; Esler et al. in press), it was found necessary to apply
either a weak diffusion (ZKkP2h0z, where P2fZfzzCfYY) or hyper-diffusion
(ZkHP

4h0z) to the right-hand side of equation (3.1) in order to maintain
numerical stability. Very similar wave patterns were obtained with either choice,
although the diffusion operator had a stronger damping effect on the wavetrain
far behind the obstacle. Figure 8 was generated using hyper-diffusion with
kHZ5.4!10K4.

The subcritical (UZ11.5 cm sK1) andmoderately supercritical (UZ13.5 cm sK1)
numerical solutions show that the main effect of nonlinearity in rotating flow in
this parameter regime occurs in the wake behind the obstacle. The bow wave is
relatively unmodified by nonlinearity, but the trough following the obstacle
(marked as T in figure 5) is broadened and deepened and is followed by either one
(for UZ13.5 cm sK1) or two (for UZ11.5 cm sK1) sharp-crested, large-amplitude
solitary waves, which do not appear in the linear solutions. The crests of the
solitary waves can be seen to merge with those of the dispersive wavetrain away
from the centre axis. The dispersive wavetrain itself is modified by nonlinearity, as
the waves have sharp crests and relatively broad troughs.

Interpreting the rotating, experimental results on the basis of figure 8 shows
clearly, for UZ10 cm sK1, a bow wave (with crest C1 in figures 4b and 5) and a
steep, large amplitude wave (with crest C2 in figures 4b and 5) following the
broad deep trough after the obstacle (marked as T in figure 5). As in the
numerical solutions wave C2 is a significant distance behind the obstacle
(over 2 m) and maintains its amplitude towards the centre axis. Similarly to
Proc. R. Soc. A (2006)
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Figure 8. Linear and nonlinear rotating fr2dBDA steady states corresponding to obstacle height
hZ6 cm (MZ25) and towing speeds UZ11.5, 13.5 and 15.5 cm sK1 (GZ0.208, K0.625, K1.458).
As in the corresponding experiments, C1 is the bow wave; T, the long, deep trough; and C2, the
sharp-crested lee wave in near-critical rotating flow.
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Karpan (1967) for one -layer non-rotating flow, it can be shown that the far-field
weakly nonlinear supercritical steady two-dimensional rotating flow is governed
by the corresponding one-dimensional unsteady equation provided the cross-
stream coordinate of the two-dimensional equation is identified with the slow
time of the one-dimensional equation. In Vilenski & Johnson (2004) this allows
solutions of the frKP equation to be interpreted in terms of the Ostrovsky
(rotating KdV) equation (Ostrovsky 1978). Here a similar interpretation is
possible and the cross-stream development of the interface displacement
observations of figure 4b is closely modelled by the temporal development of a
solution of the one-dimensional unforced rotating BDA equation.

To our knowledge this is this first time this type of topographically forced
nonlinear solitary wave has been recorded experimentally in a rotating fluid
system. By contrast, it is debatable whether there is a clear signature of
nonlinearity in the supercritical flow (UZ12.5 cm sK1) or indeed, with the
exception of the multiple bow waves, in the subcritical flow (UZ7.5 cm sK1).
4. Discussion and conclusions

Experimental observations have been presented of the wavefield forced by a finite
height obstacle travelling at near-critical speed through a two-layer rotating and
non-rotating fluid in a tank sufficiently large to allow the lateral development of
the pattern to be observed without interference from wall reflections.
Comparisons with numerical solutions of the model fr2dBDA equation show
that close to criticality bow waves appear in the experimental flows that are
absent from linear theory but modelled by the weakly nonlinear equation.
Further from criticality the difference between the linear and nonlinear flows
disappears and the experimental results are well described by linear theory.
Rotation is shown to introduce sharp crested highly nonlinear waves in the wake
behind a near-critical obstacle. Recent exact solutions for fully nonlinear
transcritical flow over a one-dimensional parabolic ridge in rotating shallow
Proc. R. Soc. A (2006)



E. R. Johnson and others18
water (Esler et al. in press) typically show a shock downstream of the ridge
followed by a wavetrain of finite-amplitude Poincare waves of limiting amplitude
(Shrira 1981, 1986; Grimshaw et al. 1998b). Numerical integrations (not shown
here) of a fully nonlinear, finite-volume, shallow water model show shocks
appearing behind obstacles in non-dispersive rotating flows, providing further
evidence of the nonlinearity of the sharp-crested waves of figure 5. The
experiments of figure 5 also show that rotation confines the wake to within a
distance of order the internal Rossby radius, c0/f for critical speed c0 and Coriolis
parameter f, of the axis. More rapid rotation confines the wake more closely to
the axis and experiments for rotation periods of TZ60 s and TZ90 s (so fZ0.06,
0.08 sK1), giving Rossby radii of 50 and 75 cm, gave a clearly visible wake with
little signature away from the axis and so not shown here.

The presentation of the experimental results as a fixed wave pattern travelling
with the obstacle assumes that the flow has had sufficient time to become steady
before the waves arrive at the probe spar. The obstacle reaches the spar in the
middle of the tank in non-dimensional time in the range tZ3.8–6.4, although
waves forming the outer edges of the pattern can take twice as long to arrive.
Some indication of the extent to which this is sufficient for nonlinear bow waves
to develop may be gauged from figure 9, which shows the temporal development
of the bow waves in the case of the non-rotating multiple bow wave numerical
solution with hZ5 cm, UZ13.5 cm sK1. The steady state for this experiment is
shown in figure 7 (right panel). Figure 9 shows the wavefield at tZ2, 4 and 8. At
tZ2 a single bow wave has separated from the dispersive wake, while by tZ4 a
second bow wave has begun to separate. It is not until tZ8, however, that the
bow wave pattern begins to resemble the final state shown in figure 7 (right
panel). It is clear, therefore, that although significant development of nonlinear
bow waves has taken place by the time the wave pattern passes the probe spar in
the experiments, it is by no means certain that the bow wave pattern has
attained its steady state. Experiments intended to detect multiple bow wave
patterns would thus need careful design to ensure that t is sufficiently large when
measurements are taken.

This work was funded by the UK Natural Environment Research Council Grant
NER/A/S/2000/01323 and under the European Union contract HPRI-2001-CT-00168, ‘Access

to Research Infrastructures’ of the program ‘Improving Human Potential’. The authors are
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