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Abstract. A new methodology for the formulation of an ad-
joint to the transport component of the chemistry transport
model TOMCAT is described and implemented in a new
model, RETRO-TOM. The Eulerian backtracking method
is used, allowing the forward advection scheme (Prather’s
second-order moments) to be efficiently exploited in the
backward adjoint calculations. Prather’s scheme is shown to
be time symmetric, suggesting the possibility of high accu-
racy. To attain this accuracy, however, it is necessary to make
a careful treatment of the “density inconsistency” problem
inherent to offline transport models. The results are veri-
fied using a series of test experiments. These demonstrate
the high accuracy of RETRO-TOM when compared with di-
rect forward sensitivity calculations, at least for problems in
which flux limiters in the advection scheme are not required.
RETRO-TOM therefore combines the flexibility and stability
of a “finite difference of adjoint” formulation with the accu-
racy of an “adjoint of finite difference” formulation.

1 Introduction

The past 20 years or so have seen an explosion in the de-
velopment of adjoint models for chemistry transport mod-
els (CTMs). Adjoint models have numerous applications
(e.g.Enting, 2002), including variational data assimilation of
constituent concentrations (Elbern and Schmidt, 1999), in-
verse modelling of chemical source strengths (Müller and
Stavrakou, 2005; Meirink et al., 2006), sensitivity analysis
(Vukicevic and Hess, 2000) and parameter sensitivity esti-

mation (e.g.Navon, 1998). The numerical accuracy (defined
here as the relative difference between sensitivities calculated
by a linear perturbation to a forward calculation and those
obtained from the adjoint) as well as the reliability of adjoint
models are evidently key to the above applications. Data as-
similation applications in particular are sensitive to numeri-
cal inconsistencies between the formulations of the forward
and adjoint models. Careful numerical analysis in the devel-
opment of adjoint models is therefore crucial.

The focus of this work will be the linear advection–
diffusion–convection problem that forms the “dynamical
core” of a CTM, although we believe that all of our results
can be straightforwardly extended to the case of the tangent
linear model of the full CTM. For the related problem of
nonlinear general circulation models, two approaches to for-
mulating adjoints are summarized bySirkes and Tziperman
(1997). The methods are namely “finite difference of adjoint”
(FDA) and “adjoint of finite difference” (AFD). In the con-
text of the linear problem considered here, the FDA approach
involves finding the (continuous) adjoint equation for the
underlying (continuous) advection–diffusion equation, fol-
lowed by discretizing the continuous equation. In the AFD
approach, the forward equation is first discretized, and then
the adjoint of the resulting discrete system of equations is
taken.

The advantage of the FDA approach is that a partial differ-
ential equation is obtained, which can then be solved by re-
liable and well-understood numerical methods. A disadvan-
tage is possible numerical inaccuracy, of the order of the dis-
cretization error, compared with sensitivities calculated us-
ing the forward model. The advantage of the AFD approach
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is that the instantaneous sensitivities calculated by the ad-
joint model typically match those of the forward model to
within machine precision. The disadvantage is that, as em-
phasized bySirkes and Tziperman(1997), the time-stepping
behaviour of the adjoint equations is poorly understood, and
it is possible that spurious computational modes overwhelm
the calculations. In particular, several authors (e.g.Hourdin
et al., 2006; Henze et al., 2007; Gou and Sandu, 2011) have
noted that AFD adjoints to nonlinear advection schemes can
lead to undesirable results and poor performance.

The aim of the present work is to describe the develop-
ment of an adjoint RETRO-TOM to the dynamical core of
the TOMCAT CTM (Chipperfield, 2006) that combines the
desirable numerical and conceptual properties of the FDA
approach with the accuracy of an AFD model. Our results are
achieved by utilizing the Eulerian backtracking framework
of Hourdin and Talagrand(2006), which is an elegant vari-
ation on the FDA approach which maximizes the symmetry
between forward and adjoint models. Specifically Eulerian
backtracking confers the following advantages:

– There is a close correspondence between calculations
made using the retro-transport equation of the Eulerian
backtracking method and Lagrangian back trajectory
calculations (e.g.Seibert and Frank, 2004). Compared
with alternative formulations, Eulerian backtracking re-
sults are simpler to define, understand and compare with
Lagrangian results, allowing for their ease of use in pro-
cess studies.

– The numerical transport scheme used by the Eulerian
backtracking model is essentially that utilized by the
forward model. The qualitative behaviour of numerical
solutions is therefore well understood, and numerical
stability problems such as those discussed above can be
avoided.

One reason to suspect a priori that an accurate adjoint of
TOMCAT could be formulated using Eulerian backtracking
is that thePrather(1986) advection scheme used by TOM-
CAT can be shown (under certain circumstances, see be-
low) to be time symmetric in the sense ofHourdin et al.
(2006). In other words, the Prather scheme applied to the
retro-transport equation turns out to be the exact numerical
adjoint of the Prather scheme applied to the forward prob-
lem. Alternatively, in the language ofSirkes and Tziperman
(1997), the finite difference of the adjoint coincides with the
adjoint of the finite difference so that the desirable numer-
ical properties of the FDA are combined with the accuracy
of the AFD. The column-matrix formulation of both the con-
vective and boundary-layer turbulence parameterizations in
TOMCAT also lend themselves to accurate adjoint formula-
tion.

Notwithstanding the above, the key development that en-
ables the high accuracy obtained by RETRO-TOM is a care-
ful treatment of what might be termed the “density incon-

sistency problem” of offline forward CTMs. First discussed
in detail byJöckel et al.(2001), density inconsistency arises
when forcing wind and density fields (obtained in TOMCAT
from surface pressure) are provided (e.g. from re-analysis
products) at finite time intervals. There is then an inconsis-
tency between the density field computed by forward advec-
tion from the previous forcing field and that obtained from
the new forcing field. TOMCAT addresses density inconsis-
tency by making a discontinuous update to the density field
as each new forcing file is read. In order that chemical species
in TOMCAT remain “well-mixed” (in the sense that spatially
uniform mixing ratios remain so), the density update is also
applied to tracer mass fields meaning that global mass con-
servation of each tracer is violated. Because the issue is fun-
damental to the intermittent nature of the forcing files, other
CTMs must unavoidably address density inconsistency in a
similar way.

Our position is that a CTM adjoint should be built upon
a numerical scheme for the “dynamical core” that is both
highly accurate and numerically well formulated, at least in
the absence of advection-scheme-related nonlinearities due
to e.g. flux limiters (Thuburn and Haine, 2001; Vukicevic
et al., 2001; Hourdin et al., 2006) which raise various sep-
arate issues. Such a model provides as solid as possible a
foundation for the applications listed above, and in partic-
ular allows numerical errors to be excluded, as far as pos-
sible, when assessing results. Previous efforts to assess the
accuracy of the transport component of CTM adjoint calcu-
lations have been made byHourdin et al.(2006), Henze et al.
(2007) and Wilson et al.(2013). Hourdin et al.(2006, see
their Fig. 2b) record relative errors, comparing adjoint sensi-
tivities and sensitivities calculated directly using the forward
model in a 3-day integration, of the order of 0.5 % when
the linear Godunov (upwind) scheme is used.Henze et al.
(2007, see their Fig. 7) show significantly larger errors for a
2-day integration, although it is likely (see referee comment
by D. Henze) that their poorer results are predominantly due
to the difficulties of generating an adjoint to the nonlinear
piecewise parabolic scheme (Lin and Rood, 1996) used for
their test case. Both studies suggest significant room for im-
provement that has motivated the present work, which de-
velops an adjoint model using Prather’s advection scheme.
The recent AFD scheme ofWilson et al.(2013) also uses
Prather’s scheme, and has demonstrated accuracies close to
machine precision, but could be subject to the problems of
AFD adjoints to nonlinear advection schemes highlighted by
e.g.Gou and Sandu(2011). The present study is the first to
exploit the time-symmetric properties of the Prather scheme.

Eulerian backtracking, i.e. the framework ofHourdin and
Talagrand(2006) underpinning RETRO-TOM, is summa-
rized in Sect.2. In Sect.3, the formulation of RETRO-TOM
is described in detail. Section3.1 details the key aspects of
the forward model (TOMCAT) including the treatment of
density inconsistency. Section3.2 continues by demonstrat-
ing the time symmetry of thePrather(1986) scheme and
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Sect. 3.3 gives the explicit numerical details of RETRO-
TOM. In Sect. 4 the accuracy of RETRO-TOM is as-
sessed in three different test problems, in which the trans-
port characteristics are dominated by short-term advection
(Sect.4.1), short-term convection (Sect.4.2) and long-term
inter-hemispheric transport (Sect.4.3), respectively. The ex-
tent to which the accuracy of RETRO-TOM depends upon a
correct treatment of the “density inconsistency” problem is
discussed in Sect.4.4. The difficulties associated with flux
limiters are discussed in detail in Sect.4.5, and the effect of
numerical resolution of the forward model is considered in
Sect.4.6. Conclusions are drawn in Sect.5.

2 Mathematical formulation of Eulerian backtracking

We consider a transport problem described by a linear equa-
tion of the form

Lc = ρ−1s. (1)

Here c(x, t) is the mixing ratio of the relevant trace gas,
s(x, t) is its source,ρ(x, t) the density of air andL is the
linear advection–diffusion–reaction–convection operator de-
fined by

L≡ ∂t + (u · ∇) − ρ−1
∇ · (ρκ · ∇) + l − C. (2)

Hereu(x, t) is the local mean wind speed,κ(x, t) is a sym-
metric eddy diffusivity tensor,l(x, t) is the local loss rate e.g.
due to photolysis or reaction with a reservoir species, andC
is a linear operator modelling the non-local transport associ-
ated with unresolved convection (seeHaines and Esler, 2014,
for an exact definition ofC).

The Eulerian backtracking formulation (Hourdin and Tala-
grand, 2006) follows from using the density-weighted inner
product to define the adjoint operatorL† of L. Specifically,
if

〈f,g〉 =

∞∫
−∞

∫
�

f (x, t)g(x, t)ρ(x, t) dx dt, (3)

for real-valued functionsf andg, and where the spatial inte-
gral is over the entire domain�, thenL† is defined by

〈L†f,g〉 = 〈f,Lg〉 for all admissiblef,g. (4)

A straightforward exercise in integration by parts (Hourdin
and Talagrand, 2006), assuming no-flux conditions at the
Earth’s surface, reveals that

L†
≡ −∂t − (u · ∇) − ρ−1

∇ · (ρκ · ∇) + l − C†, (5)

whereC† is the “transpose” of the convection operatorC.
A key insight ofHourdin and Talagrand(2006) is that us-

ing the density-weighted inner product (3) to define the ad-
joint operator leads to a symmetry between the direct and

adjoint equations. As a result of this symmetry the adjoint,
or retro-transport, equation corresponds to solving the for-
ward problem backwards in time and with the advective mass
fluxes reversed. Other researchers (e.g.Sandu et al., 2005;
Hakami et al., 2007; Henze et al., 2007; Gou and Sandu,
2011) have used non-density-weighted inner products to con-
struct a continuous adjoint model which can then be dis-
cretized and solved. The result is an asymmetry between the
form of the forward transport equation (e.g. an advection
equation written in terms of mixing ratio) and its adjoint (e.g.
a flux-form conservation law written in terms of tracer mass).
Compare, for example, Eqs. (1a) and (5a) ofSandu et al.
(2005). The disadvantage, apart from inelegance, of this ap-
proach, is that if the same numerical scheme is used to solve
both equations (Henze et al., 2007), then numerical inaccura-
cies can be introduced in moving between one form and the
other. For example,Henze et al.(2007) rescale their adjoint
variable before and after each advective time step, by divid-
ing and multiplying by the air density respectively, under the
approximation that the density remains constant across each
time step. See also Table 2 ofHakami et al.(2007) which
details the steps required to convert their adjoint variable to
and from a mixing ratio during each model step.

In practice, the ultimate object of solving Eq. (1) is often to
evaluate an integral quantityI = 〈r,c〉 with r(x, t) a “recep-
tor” function defining the location and time of the measure-
ment, and allowing for the possibility of non-uniform spatial
and temporal weighting. In many process studies, the ques-
tion of interest involves determining the sensitivity ofI to
different configurations of the source distributions. It is then
well known (e.g.Enting, 2002) that rather than solve a large
number of forward problems each with differents, it is more
efficient to solve one adjoint or inverse equation to (1) from
which the same sensitivity ofI to s can be evaluated. If the
retro-transport equation is defined to be

L†c∗
= r, (6)

wherec∗ is the mixing ratio of a “retro-tracer”, then the def-
inition of the Eulerian backtracking operatorL† can be used
to write

I = 〈L†c∗,c〉 = 〈c∗,Lc〉 = 〈c∗,ρ−1s〉. (7)

The form (7) allowsI to be calculated from the retro-tracer
c∗(x, t) obtained by solving Eq. (6), which must be found
in practice by integrating backwards in time. The retro-
tracerc∗(x, t) is, equivalently, the sensitivity ofI with re-
spect to a change ins at the location and time(x, t), as
can be expressed mathematically by the functional derivative
c∗

= δI/δs. Since the problem (1) is linear, knowledge ofc∗

throughout the source region is sufficient to obtainI for any
given source distributions, simply by evaluating the integral
defined by Eq. (7).
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3 RETRO-TOM: a description

3.1 Numerical formulation of TOMCAT’s forward
scheme

TOMCAT is a global three-dimensional off-line chemistry
transport model, which is run here with Gaussian horizontal
grids of size 128× 64 (approx. 2.8◦

× 2.8◦) and 320× 160
(approx. 1.1◦

× 1.1◦). A hybrid sigma-pressure coordinate
is used in the vertical direction with 31 model levels ex-
tending from the surface up to approximately 30 km. Advec-
tion is performed using the second-order moments scheme
of Prather(1986) with the forcing wind fields obtained from
the European Centre for Medium-Range Weather Forecasts
(ECMWF) operational analyses. TOMCAT parameterizes
subgrid-scale deep convection according to the scheme of
Tiedtke(1989) and boundary layer vertical diffusion accord-
ing to Louis (1979) (seeStockwell and Chipperfield, 1999,
for further details). An assessment of the performance of the
convective parameterization in TOMCAT is given byHoyle
et al.(2011). Typically a new forcing file is supplied once ev-
ery 6 h (the “forcing period” hereafter) and the required mass
fluxes, temperature field etc. are linearly interpolated across
the forcing period.

A brief outline of TOMCAT’s dynamical core, as required
to understand the formulation of RETRO-TOM, is described
next for a single species subject to chemical loss. The rectan-
gular grid in longitude and latitude and the 31 vertical levels
together divide the atmosphere into a total ofN grid cells.
It is helpful to express quantities such as the tracer mix-
ing ratio and the air mass in each box as vectors of length
N , i.e. c = (c1, . . . ,cN )T andm = (m1, . . . ,mN )T . Further,
the total mass of tracer in each grid box can be written
S = (S1, . . . ,SN )T = Mc, whereM = diag(m) is anN × N

diagonal matrix containing the box masses.
The discrete form of the transport operator Eq. (1) in

TOMCAT, at thenth time level, can be written as an op-
eratorLn satisfyingcn+1 = Lncn. The discretized operator
Ln can be further decomposed into a successive applica-
tion of a number of sub-operators representing advection,
chemical loss and non-local vertical transport. The advection
sub-operator can be further split into individual components
that perform advection in each coordinate direction. Finally,
TOMCAT’s treatment of the density inconsistency problem
requires a density correction operator to be applied at the start
of each forcing period,

In the Prather scheme, the advection operator in fact acts
on a longer state vector of length 10N , consisting of the total
tracer mass and first and second moments of the tracer in
each grid cell. For simplicity we describe the operators here
in terms of their action upon the first of these 10 components,
the zeroth-order moment giving the total mass of tracerS in
each grid cell. With the exception of advection, which will be
considered in detail in Sect.3.2 and in AppendixA, higher-
order moments are treated in the same way as the zeroth-

order moment. We now summarize these operators, adopting
the convention that− and+ subscripts indicate the value of
a variable respectively before and after the application of a
particular operator.

Subgrid-scale convection and boundary layer vertical dif-
fusion are implemented by multiplying each vertical column
of the grid by an individual matrix operator. For mathemati-
cal convenience, we represent this process in terms of a sin-
gle operatorVn acting on all the tracer massesS simultane-
ously,

S+ = VnS−. (8)

For computational efficiency TOMCAT calculates the oper-
atorVn only once per forcing period. In order to ensure that
a tracer distribution corresponding to a uniform mixing ra-
tio remains so under the action ofVn, it is necessary to also
apply the operatorVn to the box massesm as part of each
convective step:

m+ = Vnm−. (9)

An operatorDn accounts for chemical loss over each time
step (1t),

S+ = DnS− Dn = diag
(
e−li,n1t

)
, (10)

whereli,n = l(xi, tn) gives the local loss rate in the grid cell
centred onxi at timetn.

As described in the introduction there is an inconsistency
between the density field obtained by advection over a forc-
ing period and the density field implied by the surface pres-
sure supplied by the next forcing file. TOMCAT updates the
density field at the start of each forcing period so that it is
in agreement with the surface pressure supplied by the new
forcing file. In order to preserve the mixing ratioc+ = c−

across this update the tracer mass in each grid box is adjusted
simultaneously. An instantaneous update to box masses from
m− to m+ requires that we update the tracer masses accord-
ing to

S+ = M+M−1
− S− (11)

at the beginning of each forcing period.

3.2 Time symmetry of the Prather scheme

In this section we discuss the time symmetry of the
Prather(1986) advection scheme used by TOMCAT. A nu-
merical scheme is described as time symmetric if the matrix
operator generated by its application to the retro-transport
equation is an exact adjoint of that generated by its appli-
cation to the forward problem (Hourdin et al., 2006). Time
symmetry has been previously demonstrated in general for
the first-order upwind Godunov scheme (Hourdin et al.,
2006), and for the quadratic upstream interpolation algorithm
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(QUICK) in the special case of one-dimensional advection
by a non-divergent (i.e. spatially uniform) wind field (Vu-
kicevic et al., 2001). The Godunov scheme is equivalent to
advection by zeroth-order moments.

Our discovery that the Prather scheme is time symmet-
ric in general motivated the development of RETRO-TOM
because of the promise of high accuracy. Here and in Ap-
pendixA an explicit proof is presented for the time symmetry
of the first-order moment scheme (Russell and Lerner, 1981),
which is equivalent to the Prather scheme with second-order
moments neglected. The full exposition of the proof for the
Prather scheme itself is too lengthy to be given in full here,
but proceeds by exact analogy with the proof for the first-
order scheme (however, one key result for the Prather scheme
is given in AppendixA5 by means of illustration). An im-
portant detail is that it is the mass flux (rather than the wind
speed) that is reversed in the adjoint calculation.

Advection in higher dimensions is implemented in the
Prather scheme by successively applying the operators as-
sociated with one-dimensional advection in each coordinate
direction (time splitting,Strang, 1968), hence time symmetry
need be established for one-dimensional advection only. The
time symmetry of higher-dimensional advection follows by
treating the coefficients associated with variation in the other
dimensions in terms of their variation in the single dimension
in which advection is taking place.

As discussed in Sect.3.1 the Prather scheme acts upon
a total of 10 components per grid cell. Introducing an ex-
tended state vectors containing these moments, defined pre-
cisely in AppendixA, the advection operator at timetn can
be expressed ass+ = Ans−. Here the− and + subscripts
indicate variables evaluated before and after application of
An respectively. FollowingHourdin et al.(2006) we define a
discretized inner product, evaluated at a single time, by

〈f ,g〉 = f T Wg, (12)

where f and g are column vectors and the “weighting
matrix” W is a diagonal matrix constructed from the box
air masses and described in AppendixA. The adjoint of
an operatorA with respect to Eq. (12) must then satisfy
〈A†f ,g〉− = 〈f ,Ag〉+ for all possiblef andg. That is

A†
= W−1

− AT W+. (13)

Here we drop the subscriptn to indicate that the result (13)
applies equally well to both the umbrella advection operator
An and to the individual advection operators in each dimen-
sion, provided of course that the weighting matricesW− and
W+ are constructed at the appropriate point.

The RETRO-TOM advection operatorBn for stepn is ob-
tained by discretizing the advective part of Eq. (6) using the
same Prather scheme as in the forward model. The operator
Bn is applied to the extended state vectors∗ associated with
Eulerian backtracking according tos∗

− = Bns
∗
+. A numeri-

cal scheme is time symmetric if the forward operatorA and

Eulerian backtracking operatorB satisfy

B = A†
= W−1

− AT W+. (14)

In Appendix A we construct the matrix operatorA for
one-dimensional advection by first-order moments and then
demonstrate explicitly thatA andB satisfy time symmetry
(i.e. Eq.14). A brief outline of the second-order moment re-
sult is then provided.

A simple summary of the method follows. The major part
of the work is in combining the “splitting” and “recombin-
ing” stages of Prather’s algorithm into a single matrix opera-
tor, from which the components ofA andB can be obtained.
We start by describing the basis functions and coefficients as-
sociated with approximating a one-dimensional function by
first-order moments, and then demonstrate how they are ma-
nipulated. These results are then applied to advective trans-
port by firstly splitting each grid box into three parts. The first
part contains the tracer to be advected to the left, the second
part remains in the original grid box, and the third part is ad-
vected to the right. These sub-boxes are then combined into
new boxes, each with a single set of moment coefficients.
The equations for splitting and recombining moments are
then combined into a single set of expressions giving new
moments for grid boxi in terms of the old moments in grid
boxesi − 1, i and i + 1 in a single step. Finally, the equa-
tions obtained are converted into a matrix stencil for which
Eq. (14) can be verified.

3.3 Numerical implementation of RETRO-TOM

The time symmetry of the Prather scheme is conditional on
the density field for Eulerian backtracking being identical
to that used in the forward run. Due to the “density incon-
sistency” between surface pressure and forcing wind fields
discussed in Sect. 1 the density field obtained by TOMCAT
after a forward integration over a forcing period will differ
from that supplied by the forcing file associated with the
next forcing time. If this second density field is used as the
starting point for the (backwards) RETRO-TOM calculation
across the forcing period there will be an associated discrep-
ancy between the forward and Eulerian backtracking density
fields. To avoid this discrepancy the density field in RETRO-
TOM is instead initialized at the start of each forcing pe-
riod to agree with that obtained in the forward problem at the
same time.

To initialize the density field at the start of each forcing
period in RETRO-TOM, the box masses are first advected
forwards across the forcing period, exactly as in a TOM-
CAT calculation, in order to obtain the appropriate density
field. This additional forward calculation does not lead to a
significant increase in the length of the run as the forward
transport of the density field is an order of magnitude lower
in computational cost compared to a single tracer species
(since there are 10-second-order moments per species). The
resulting density field is stored at every model time step

www.atmos-chem-phys.net/14/5477/2014/ Atmos. Chem. Phys., 14, 5477–5493, 2014
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between the two forcing times, for use with the RETRO-
TOM backwards integration. The above procedure ensures
that RETRO-TOM uses an identical density field to TOM-
CAT at every model time step.

While the advective adjoint operator is obtained from a
discretization of the retro-transport Eq. (A23), exact adjoints
to the other operators that comprise TOMCAT are more read-
ily obtained directly from their forward counterparts. As seen
in Sect.3.1, individual operators in TOMCAT and RETRO-
TOM are best described in terms of their effect upon the total
mass of tracer in each grid cell,S. The discrete inner product
associated with Eq. (3) is then

〈F ,G〉 = F T M−1G, (15)

whereF and G are column vectors of lengthN . The in-
ner product Eq. (15) is used to define adjoints to the for-
ward transport operators. For example, the adjoint of the dis-
cretized convective operatorVn (satisfying Eq.8), is given
by

V†
n = M−VT

n M−1
+ . (16)

In RETRO-TOM, V†
n acts upon the Eulerian backtracking

equivalent ofS, the total mass of retro-tracer in each grid
boxS∗, according toS∗

− = V†
nS

∗
+.

The forward convective scheme also changes the density
field by a small amount (see Eq.9) to ensure that the convec-
tive scheme preserves a uniform mixing ratio. Although this
density update is small in comparison with that associated
with reading a new forcing file, in order to enable RETRO-
TOM to proceed with an identical density field to the forward
problem it is necessary to reverse this update. The relevant
box masses are already calculated when advecting the box
masses forward across each forcing period. Thus, although
proscribing the density at each time step introduces a slight
storage overhead, it does not represent a significant compu-
tational one.

The adjoint to the operator Eq. (11), which preserves a
uniform mixing ratio across an instantaneous change in air
density, is the identity matrix

S∗
− = S∗

+. (17)

That is, no adjustment toS∗ is required in RETRO-TOM in
response to an instantaneous change in air density.

Since the tracer decay operatorDn is diagonal and does
not alter the mass matrixM it remains as for the forward
problem. To further increase the accuracy of the adjoint
model the order in which the individual operators are ap-
plied is reversed in RETRO-TOM. At each time step the or-
der advection–decay–vertical mixing in TOMCAT becomes
vertical mixing–decay–advection in RETRO-TOM. It will be
demonstrated below that, with the correct density field pro-
scribed and the adjoint operators implemented as described
here, RETRO-TOM yields an accurate adjoint to TOMCAT.

4 Validation of RETRO-TOM

In order to validate RETRO-TOM, three separate model
problems are considered next. These problems are intended
to examine different aspects of the model functionality,
namely (I) short-term primarily advective transport in the ex-
tratropics, (II) short-term primarily convective transport in
the tropics, and (III) inter-seasonal inter-hemispheric trans-
port. RETRO-TOM will be validated by a comparison be-
tween sensitivities calculated in a single Eulerian backtrack-
ing calculation, and sensitivities obtained by a number of for-
ward calculations with isolated sources.

In each case we are interested in the sensitivity of a time-
integrated quantity of tracer (I) over a regionD of the at-
mosphere, with respect to surface emissions at some ear-
lier time. In the inner product notation introduced in Sect.2,
I = 〈r,c〉 is the integral, with respect to space and time, of
tracer massρc over the regionD and the detection period
(t1, t2). This corresponds to the receptor functionr(x, t) be-
ing

r(x, t) =

{
1 x ∈D, t ∈ (t1, t2)

0 otherwise.
(18)

For definiteness, we aim to calculate the sensitivity ofI to
the surface emissions during an earlier period(ta < t < tb).
The result can be expressed as a map

C∗(λ,φ) =

tb∫
ta

c∗(λ,φ,zs, t)dt (19)

for longitudeλ, latitudeφ, surface altitudezs(λ,φ) and with
c∗

= δI/δs obtained by using RETRO-TOM to solve Eq. (6)
with r(x, t) as in Eq. (18).

Alternatively, the mapC∗(λ,φ) can be constructed “grid
cell by grid cell”, by solving Eq. (1), in a (possibly large)
number of forward TOMCAT calculations. In each of these
calculations the tracer sources(x, t) is confined to a single
grid cell andI is calculated by integratingc(x, t) over the re-
ceptor region (i.e. calculating the inner product〈r,c〉 directly
for each grid-cell-sized source. The forward sensitivity map
is built up systematically from these integrations, a method
that is obviously highly inefficient compared with the single
RETRO-TOM calculation described above. The results pre-
sented below are for TOMCAT and RETRO-TOM run at a
horizontal resolution of 128× 64; a comparison with results
obtained at higher resolution (320×160) is given in Sect.4.6.

4.1 Test case I

Test case I is designed to test the accuracy of RETRO-
TOM’s advective transport operator, by solving a relatively
short-term primarily advective transport problem in the ex-
tratropics. The time period of interest is 1–11 January 2012
(00:00–00:00 UT). The receptor regionD is centred over
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Figure 1. Comparison of sensitivitiesC∗ for test case I.(a) Sen-
sitivity calculated from a single run of RETRO-TOM by Eulerian
backtracking. The white rectangle indicates the location of the re-
ceptor region and the red rectangle illustrates the location of the
source patch used in subsequent subplots.(b) The same sensitivity
calculated directly from a 10×10 patch of TOMCAT forward runs.
Results are indistinguishable from those shown in(a). (c) Relative
error of the Eulerian backtracking results in(a) in comparison to
the (true) direct sensitivity in(b). (d) As for (c) but with Eulerian
backtracking performed without reversing the order of the opera-
tors. (e) As for (c) but with Eulerian backtracking performed by
naive RETRO-TOM, that is without initializing the density field to
agree with that in the forward problem. Note the logarithmic colour
scale for the error plots.

central Europe (13◦ < λ < 24◦ and 42◦ < φ < 53◦) and sit-
uated in the upper troposphere at a height of approximately
6.5–9 km. The receptor regionD corresponds to 4× 4× 4
TOMCAT grid cells. Both the emission period and the detec-
tion period correspond to the full 10-day run.

Figure1a shows the sensitivity mapC∗ obtained from a
single run of RETRO-TOM. The map shows that the recep-
tor regionD (white rectangle in Fig. 1) is most heavily influ-
enced by surface sources in the western Atlantic compared
with other locations. To validate the results, Fig.1a is com-
pared with results obtained by repeatedly solving the forward
problem, focusing on a subset of the western Atlantic region
demarcated by the red rectangle (10× 10 surface grid cells).
Evidently this requires 100 forward TOMCAT runs. The re-
sults of these are shown in Fig.1b and are indistinguishable
by eye from those within the red rectangle in Fig.1a.

To quantify the difference between the two calculations of
C∗, we define the local relative error

E(λ,φ) =
|C∗

D − C∗
R|

maxC∗
D

, (20)

where the subscripts D and R refer to “direct” and “retro”
respectively. Figure1c showsE(λ,φ) with a logarithmic
colour scale. It is evident that the sensitivities obtained by
Eulerian backtracking have maximum relative error of order
10−8.

Figure 1d shows the relative error for a comparison be-
tween the direct sensitivities and those computed by Eule-
rian backtracking without reversing the sequence of individ-
ual operators in RETRO-TOM. The maximum and average
relative errors over the 10× 10 patch of grid cells shown are
0.014 and 0.004 respectively. For their 4-day test caseHour-
din et al.(2006) reported a decrease in error of the same or-
der when they reversed the sequence of individual operators.
Figure1e will be discussed below.

To assess the importance of convection in test case I, it was
repeated with the convective parameterization (although not
the boundary layer diffusion) switched off. The results (not
shown) showed a modest reduction in the reported sensitivi-
ties of approximately 10 %.

4.2 Test case II

Test case II is designed to test the accuracy of RETRO-
TOM’s treatment of convective transport, by solving a rel-
atively short-term vertical transport problem in the tropics.
Here the time period of interest is the first 20 days of January
2012, with the receptor active throughout, and the receptor
regionD (10× 10× 4 model grid cells) located over the mar-
itime continent (97◦ < λ < 125◦, −14◦ < φ < 14◦) at ap-
proximate height 11–14 km, i.e. in the tropical tropopause
layer. Unlike in test case I, the source is active for only the
first day of the calculation (1 January).

Figure2a shows the sensitivity mapC∗ to emissions dur-
ing the 1 January. The map shows that the receptor region
D (again indicated by a white rectangle) is principally in-
fluenced by surface sources almost directly below, strongly
suggesting the importance of deep convection in driving the
transport. The region for the forward runs is chosen accord-
ingly (red rectangle). Again 100 forward calculations are re-
quired to obtainC∗

D as shown in Fig.2b with the direct sen-
sitivities again indistinguishable from those in Fig.2a. Fig-
ure2c shows the relative error,E, of the sensitivities obtained
by Eulerian backtracking with respect to those obtained by
direct transport. The maximum relative error is again found
to be of order 10−8. Fig. 2d–e will be discussed below.

Test case II was repeated with the convective parameteri-
zation switched off, and this time the results were profoundly
different, with sensitivities approximately 60 % lower than
those reported above.

4.3 Test case III

The magnitude of the errors in test cases I and II are suf-
ficiently small to motivate a much longer integration to pro-
vide a sterner test of the accuracy of RETRO-TOM. Test case
III examines inter-hemispheric surface-to-surface transport
over a time period of six months (00:00 UT 1 January 2012–
00:00 UT 1 July 2012) with both the sources and the receptor
active throughout. The receptor is positioned in the lowest
level of the model covering a region of size 4× 4× 1 model
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Figure 2. Comparison of sensitivitiesC∗ for test case II.(a) Sen-
sitivity calculated from a single run of RETRO-TOM by Eulerian
backtracking. The white rectangle indicates the location of the re-
ceptor region and the red rectangle illustrates the location of the
source patch used in subsequent subplots.(b) The same sensitivity
calculated directly from a 10×10 patch of TOMCAT forward runs.
Results are indistinguishable from those shown in(a). (c) Relative
error of the Eulerian backtracking results in(a) in comparison to
the (true) direct sensitivity in(b). (d) As for (c) but with Eulerian
backtracking performed without reversing the convective mass cor-
rection.(e) As for (c) but with Eulerian backtracking performed by
naive RETRO-TOM, that is without initializing the density field to
agree with that in the forward problem. Note the logarithmic colour
scale for the error plots.

grid cells centred over the United States. In order to evaluate
the ability of RETRO-TOM to correctly incorporate tracer
decay the tracer is assumed to decay exponentially with an
e-folding time of 50 days. Figure3a shows values ofC∗ as
obtained from RETRO-TOM. The map shows that the in-
fluence of Southern Hemisphere sources upon a surface re-
ceptor in the Northern Hemisphere is primarily a function
of latitude, decreasing by an order of magnitude from north
to south between the equator and the pole. Note that a log-
arithmic colour scale has been used to visualize this large
variation.

To assess the accuracy of RETRO-TOM in determining
sensitivities for inter-hemisphere transport Fig.3b compares
the sensitivity given in panel a against direct sensitivities ob-
tained for a surface source region made up of a patch of
11×1×1 model grid cells. The patch lies on a latitude circle
(38◦ S) in the region of New Zealand and the south Pacific
and is indicated by the red line on Fig.3a. Despite the sig-
nificantly increased timescale the maximum relative error in
the value ofC∗ obtained from RETRO-TOM (black line in
Fig.3b in comparison to the direct sensitivity (blue triangles)
is again found to be of order 10−8.

Figure 3. Comparison of sensitivities for test case III.(a) Sensitiv-
ity calculated from a single run of RETRO-TOM by Eulerian back-
tracking; note the logarithmic colour scale. As before, the white
rectangle indicates the location of the receptor region.(b) Sensi-
tivity against longitude along the red line shown in(a) (φ ≈ 38◦ S).
The solid black line givesC∗ obtained from RETRO-TOM as previ-
ously reported in(a). The points indicate sensitivities obtained from
multiple forward model runs performed both with (red squares) and
without (blue triangles) flux limiting.

4.4 Importance of the treatment of the “density
inconsistency” problem

Here, the extent to which the accuracy of RETRO-TOM de-
pends upon a careful treatment of the “density inconsistency”
problem, discussed in Sect. 1, is demonstrated. As stated in
Sect.3.3, backwards calculations in RETRO-TOM use the
density field calculated in the forward run at each time step.
Here the results obtained are compared with calculations, re-
ferred to as “naive RETRO-TOM”, in which the densities in
RETRO-TOM are updated between forcing files in a simi-
lar fashion to the forward model. To be precise, in “naive
RETRO-TOM”, the forward integration step described in
Sect.3.3is omitted, and the density field is calculated at time
steps in between forcing files by solving the mass continuity
equation, using the backwards winds.

To quantify the difference between RETRO-TOM and
“naive RETRO-TOM” we re-run test cases I and II with the
naive formulation. For test case I naive RETRO-TOM results
in the errors shown in Fig.2e. The maximum and average
relative errors are 0.005 and 0.001 respectively for the patch
shown in Fig.1a, compared with 10−8 and 10−8 in RETRO-
TOM. Similarly, for test case II the relative errors are shown
in Fig. 2e, with maximum and average values for the patch
shown of 0.003 and 0.001 respectively.

A further test involved correctly initializing the density
field in RETRO-TOM, following the procedure of Sect.3.3,
but not then updating the density field at each time step us-
ing the density field calculated from the forward run. In this
case errors are introduced by the failure of RETRO-TOM
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to reverse the effect of the convective operator Eq. (9) on
the density field. However, the errors in this case are much
smaller: a maximum relative error of 1× 10−4 is obtained
for both test cases I and II. For test case II this error is shown
in Fig. 2d.

4.5 Evaluation of the effect of flux limiters

The transport problems considered in this work are linear.
However, chemistry schemes require positive concentrations
and the means by which this is achieved in the Prather
scheme is by introducing flux limiters (specifically that de-
scribed in Sect. 4 ofPrather, 1986), which are necessarily
nonlinear in tracer concentration. Other widely used schemes
(e.g.Lin and Rood, 1996; Hourdin and Armengaud, 1999)
use similar devices. It is highly questionable whether it is
even desirable to generate an exact adjoint to a nonlinear ad-
vection scheme. Several authors (e.g.Thuburn and Haine,
2001; Vukicevic et al., 2001) have discussed the undesir-
able properties of the discrete adjoints to such schemes. A
number of studies (Hourdin et al., 2006; Henze et al., 2007;
Hakami et al., 2007; Gou and Sandu, 2011) have made cal-
culations showing that the exact adjoint to a forward scheme
subject to advective nonlinearities produces unphysical sen-
sitivities and show that more physically reasonable results are
obtained by FDA methods such as the Eulerian backtracking
method adopted here. One issue is that, when flux limiters are
on, the associated nonlinearity is so strong that any tangent
linear model diverges rapidly from the full nonlinear model
for perturbations of amplitude relevant to applications. The
situation is particularly extreme at zero concentration. In this
case no unique tangent linear model exists, as direct sensitiv-
ity calculations can give different results for positive and neg-
ative perturbations of any size (see e.g. Fig. 2b ofThuburn
and Haine, 2001, and surrounding discussion).

Based on the above, our view is that it is near-impossible
in the presence of advective nonlinearities such as flux lim-
iters, to obtain adjoint sensitivities that are both accurate (in
the sense defined in Sect. 1) and practical (in that they do
not contain spurious and unphysical sensitivities due to the
scheme’s nonlinearity). However, for numerous problems in
atmospheric chemistry flux limiters are not needed, notably
those in which the key species under investigation has a sig-
nificant background concentration (e.g. O3 CH4, N2O, CO,
CO2 etc.), and their localized sources are not too strong.

In process studies with simple chemistry, it may also be
preferable to switch off flux limiters to improve accuracy,
provided that small regions of negative mixing ratio can be
tolerated for short times. This approach also has the advan-
tage of preserving tracer–tracer correlations (Thuburn and
McIntyre, 1997). Below, however, we record some tests to
determine the magnitude of the inaccuracies introduced by
flux limiters. The focus is on the “worst-case scenario” for
the spatial structure of the source, when it is isolated to a
single grid cell and the background concentration is set to

Figure 4. Comparison of direct sensitivities calculated with and
without nonlinear flux limiting for test cases I (top) and II (bottom).
The left hand plots repeat the direct sensitivity results previously
shown in Figs.1b and 2b whereas the centre plots show the same
direct sensitivity calculated with flux limiters turned on. Note that
the colour scales for the four left-hand plots are as used in Figs.1a–
b (top) and2a–b (bottom). The colour scales shown here are for the
right-hand plots, which give the size of the relative error between
the direct sensitivity calculated with and without flux limiting.

zero. Much better performance can be expected for smoothed
sources and non-zero backgrounds.

Figure4 compares direct sensitivities for test cases I and II
for forward model integrations with and without flux limiters
(the left-hand plots are identical to Figs.1b and2b respec-
tively). The two centre plots give direct sensitivities calcu-
lated from nonlinear forward runs subject to flux limiting.
The right-hand plots give the discrepancy between these two
cases:

EL(λ,φ) =
|C∗

D − C∗
DL |

maxC∗
D

, (21)

with the DL subscript indicating a direct sensitivity calcu-
lated with flux limiting. For test case I the maximum and
average relative errors are 0.13 and 0.035 respectively. For
test case II they are 0.20 and 0.037 respectively.

For the longer experiment, test case III, the red squares in
Fig.3b show direct sensitivities calculated with flux limiting.
The maximum and average errors relative to the direct sensi-
tivities calculated without flux limiting are 0.021 and 0.012
respectively. The maximum error in particular is significantly
smaller than for the shorter test cases.

While these errors are significant, it is to be noted that they
are the difference between calculating forward sensitivities
with and without flux limiting, the latter of which is linear
and can be efficiently replicated by an adjoint calculation and
the former of which is not. Since our adjoint is equivalent to
the forward scheme run without nonlinear flux limiting this is
equally well viewed as a comment on the (significant) effect
of flux limiting upon direct sensitivity calculations. These
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Figure 5. Comparison of the sensitivity mapsC∗(λ,φ) for test cases I (top) and II (bottom) obtained from RETRO-TOM run at a resolution
of 2.8◦

× 2.8◦ (left) and 1.1◦
× 1.1◦ (right).

errors represent the sensitivity of the CTM to the use of flux
limiting and perhaps reflect the artificial nature of their use
to control a concentrated source of tracer in a single grid box
given the large spatial gradients that result. We also note that
the errors due to flux limiting are significantly smaller for the
longer run, in contrast to the error due to density inconsis-
tency which remains of a comparable size for all run lengths.

Turning on flux limiting in runs of RETRO-TOM results
in an average error of 0.007 for test case II, which is signif-
icantly smaller than the 0.037 reported for flux limiting ap-
plied to the direct sensitivity calculation. We believe that this
decreased impact is at least partially explained by the larger
source region (a 10×10×4 receptor) for the backwards cal-
culation.

4.6 Resolution study

So far we have presented results obtained at a horizontal res-
olution of approximately 2.8◦

× 2.8◦. In this section we dis-
cuss results obtained when RETRO-TOM is run as an adjoint
to TOMCAT with an increased 320× 160 (≈ 1.1◦

× 1.1◦)
horizontal resolution. The new grid has an unchanged verti-
cal resolution and 2.5 times as many grid points in both lon-
gitude and latitude. As a consequence of the increased hori-
zontal resolution the advective time step is reduced to 5 min,
a reduction by a factor of 6 in comparison to the results pre-
viously presented. In total therefore high-resolution runs take
approximately 38 times longer than their 2.8◦ counterparts, a
potentially prohibitive increase for long studies with a large
number of tracer species.

To examine the robustness of our results to changes in res-
olution we recalculateC∗ for test cases I and II with RETRO-
TOM run at 1.1◦ resolution. Figure5 contrasts the sensitivi-
ties obtained at 2.8◦ and 1.1◦ resolutions for both test cases
I and II. The 2.8◦ results are as in Figs.1a and2a but have

been replotted here using a slightly different colour scale (in
order to accommodate the 1.1◦ results) and without indicat-
ing individual grid cells. Clearly the higher-resolution results
resolve finer-scale structures; however, the overall picture re-
mains similar. In order to quantify this effect we consider
the globally averaged sensitivity for each of the maps. For
test case I we find that the average sensitivity of the high-
resolution results is just over 30 % higher than it is at lower
resolution. For test case II the average sensitivity is just under
20 % higher. For both test cases the higher-resolution results
were compared against direct sensitivity results over a small
(6-grid-cell) forward patch. As for the 2.8◦ results reported
above, the relative errors are of order 10−8.

5 Conclusions

In this technical note the development of RETRO-TOM,
an adjoint to the “dynamical core” of the chemistry trans-
port model TOMCAT has been presented. RETRO-TOM has
been shown to combine the conceptual and numerical advan-
tages of a “finite difference of adjoint” (FDA) model with the
accuracy of an “adjoint of finite difference” (AFD) model.
The three key aspects of the model development are:

1. the use ofHourdin and Talagrand(2006)’s Eulerian
backtracking framework;

2. identification of the “time-symmetry” (Hourdin et al.,
2006) of thePrather(1986) advection scheme;

3. the recognition of and careful treatment of the “density
inconsistency problem” (Jöckel et al., 2001).

When flux limiters in the advection scheme are not used, for
example as is appropriate for the inverse modelling of species
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Figure 6. Schematic showing the incoming and outgoing mass
fluxes for boxi together with the proportions of the box that they
occupy.

with a high background concentration (e.g. CO2, N2O, CO or
CH4), accuracies of up to 10−8 for a 6-month transport prob-
lem are recorded. With flux limiters on, there are good argu-
ments, supported by calculations (seeHourdin et al., 2006,
and above), for saying that it is better to use the Eulerian
backtracking model formulated here than to attempt to cre-
ate an exact adjoint to the nonlinear scheme.

One advantage of a CTM adjoint formulated in the Eule-
rian backtracking framework is that it can be used for process
studies designed to investigate the origin of air masses, in
exact analogy with Lagrangian back trajectory studies (e.g.
Manning et al., 2003; Stohl et al., 2003; Seibert and Frank,
2004; Stohl, 2006; Polson et al., 2011). By way of demon-
stration, RETRO-TOM has recently been used successfully
(Haines and Esler, 2014) to quantify the efficiency of differ-
ent surface source locations for very-short-lived species of
halogenated hydrocarbons, in terms of their potential contri-
bution to the halogen flux into the stratosphere.

RETRO-TOM will be suitable, in combination with an ad-
joint to the tangent linear scheme of TOMCAT, for the var-
ious applications (data assimilation, inverse modelling, pa-
rameter sensitivity estimation) detailed in the introduction,
where it is to be hoped that the higher level of accuracy can
be used to exclude numerical errors as a significant factor
in some problems, and will prove particularly advantageous
in problems where consistency between forward and adjoint
models is of vital importance.

A recent development is that an alternative adjoint model
for TOMCAT (ATOMCAT, with associated nonlinear inverse
model INVICAT), based on the AFD framework, has been
under concurrent development by the Leeds University group
(Wilson et al., 2013). The ATOMCAT model has an advan-
tage over RETRO-TOM in that it is coupled to the INVICAT
model, which is designed to solve nonlinear inverse prob-
lems by iterating forward TOMCAT and adjoint ATOMCAT
calculations. As a result, at the present stage of development
ATOMCAT/INVICAT are suited to a wider range of applica-
tions compared to RETRO-TOM. However, ATOMCAT also
has certain disadvantages relative to RETRO-TOM including
the disadvantages of AFD numerical schemes detailed above,
which may be particularly severe when flux limiters are in
use (see discussion above). It is also likely to be the case
that RETRO-TOM is much better suited as an alternative to
Lagrangian backtracking (e.g.Haines and Esler, 2014), be-
cause ATOMCAT requires output from a forward calcula-
tion at every time step, making it difficult to use in problems
that are formulated without reference to a forward calcula-
tion. Finally, RETRO-TOM has the advantage that, unlike
ATOMCAT which relies on code generated by differentiation
of TOMCAT’s forward code, RETRO-TOM utilizes the ma-
chinery of TOMCAT itself (e.g. Prather advection scheme,
column matrix approach to parameterizations), making it rel-
atively straightforward for users to adapt and update in con-
junction with the forward model. An interesting topic for fu-
ture study is the question of whether the ATOMCAT “dy-
namical core” can be replaced by that of RETRO-TOM with-
out any degradation in model performance, thus creating a
full inverse model with the advantages of both schemes.
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Appendix A: Time symmetry of the Prather scheme

A1 First-order moments

FollowingPrather(1986), define orthogonal first-order poly-
nomial basis functions on the intervalX1 < x < X2,

K0 = 1, Kx =
2

X2 − X1

(
x −

X1 + X2

2

)
. (A1)

Note that each function has been normalized so that their ex-
trema are invariant under a rescaling of the interval length.
An appropriate choice of moment coefficientss0 andsx then
allows us to approximate any functionφ(x) defined on the in-
terval asφ(x) ≈ s0K0+sxKx . Hereφ is assumed to represent
the mixing ratio of tracer within a “grid box”X1 < x < X2
of constant air densityρ and sos0 gives the mean value of
the mixing ratio in the grid box.Prather(1986) presented his
scheme in terms of moments obtained from integrals ofφ

over the grid box. For a first-order scheme in one dimension
these moments are equivalent to

S0 =

X2∫
X1

ρ φK0dx = ms0 (A2)

Sx = 3

X2∫
X1

ρ φKx dx = msx,

where we explicitly allow for the air densityρ to vary be-
tween grid boxes and so have box massm = ρ(X2 − X1) in
place of Prather’s volume of integrationV . The “zeroth-order
moment”S0 gives the total mass of tracer in the grid box.
However, here we choose to work entirely in terms of the co-
efficients(s0, sx) and will use the terms moment and moment
coefficient interchangeably.

The process of advection by first-order moments involves
first splitting each grid box into several sub-boxes for which
appropriate moment coefficients are obtained and then re-
combining these coefficients in a way that captures trans-
port to neighbouring boxes. Suppose first that we wish to
obtain an approximation toφ on a second interval[X3,X4]

with corresponding basis functions̄K0, K̄x defined in the
same way as Eq. (A1). An identical polynomial represen-
tation φ(x) ≈ s̄0K̄0 + s̄xK̄x is obtained in terms of the new
basis functions by taking

s̄0 = s0 +

(
X3 + X4 − (X1 + X2)

X2 − X1

)
sx

s̄x =

(
X4 − X3

X2 − X1

)
sx . (A3)

Now let functionsφ(1), φ(2) andφ(3) denote the mixing ra-
tio in boxes with massm(1), m(2) andm(3) respectively, for
which

φ(j)
= s

(j)

0 K
(j)

0 + s
(j)
x K

(j)
x j = 1,2,3 (A4)

as before. We wish to combine these three boxes into a new
box of lengthX weighting the length of each sub-box accord-
ing to the proportion of the total mass it contributes. Thus the
moments from sub-box 1 will take up the portion of the box
0 < x < X̄1, that from sub-box 2̄X1 < x < X̄2 and that from
sub-box 3X̄2 < x < X, where

α(1)
=

m(1)

m̄
=

X̄1

X
and α(2)

=
m(3)

m̄
=

X − X̄2

X
(A5)

andm̄ = m(1)
+m(2)

+m(3) is the total mass of the new box.
A key feature of the chosen basis functions is that we can
change the interval that a functionφ(j) varies over just by
changing the basis functions, that is we do not have to recal-
culate the coefficientss0, sx . Thus the moments from each
sub box can be combined to obtain a new function,

φ =


s
(1)
0 K

(1)
0 + s

(1)
x K

(1)
x , for 0 < x < X̄1

s
(2)
0 K

(2)
0 + s

(2)
x K

(2)
x , for X̄1 < x < X̄2

s
(3)
0 K

(3)
0 + s

(3)
x K

(3)
x , for X̄2 < x < X

, (A6)

wheres
(j)

0 ands
(j)
x are as before butK(i)

0 andK
(i)
x now refer

to basis functions defined on the new subintervals. We then
construct an approximatioñφ = s̄0K0+s̄xKx toφ on the new
interval such that

X∫
0

φ̃Kk dx =

X∫
0

φKk dx for k = {0,x}, (A7)

giving

s̄0 = α(1)s
(1)
0 + (1− α(1)

− α(2))s
(2)
0 + α(2)s

(3)
0

s̄x =

(
α(1)

)2
s(1)
x +

(
1− α(1)

− α(2)
)2

s(2)
x +

(
α(2)

)2
s(3)
x

+ 3
(
1− α(1)

− α(2)
)(

α(1)
− α(2)

)
s
(2)
0

− 3α(1)
(
1− α(1)

)
s
(1)
0 + 3α(2)

(
1− α(2)

)
s
(3)
0 . (A8)

A2 Advection by first-order moments

We now consider one dimensional advection as depicted in
figure6 with momentss0,i andsx,i defining the mixing ratio
profile φ̃i(x) for grid box i. Note that the mean box mixing
ratio s0,i is equal toci as defined in Section3.1, and sim-
ilarly S0,i , the integral Eq. (A2) involving φ̃i over the grid
box, is equivalent toSi . Note also that, whereas the other
transport operators that comprise TOMCAT were introduced
in Sect.3.1 in terms of their action upon the tracer mass,S,
it is more convenient to describe the advective transport in
terms of the coefficientss0,i andsx,i .

We start by dividing each grid box into three parts. For box
i this gives a left subinterval[0,XL] representing the possi-
ble flux from boxi to box i − 1, a right subinterval[XR,X]

representing the possible flux from boxi to box i + 1 and a
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central part[XL,XR] that remains in boxi. The lengths of
the subintervals are chosen in accordance with the fraction
of the total box mass,mi , in each sub-box,

αL
i =

Li

mi

=
XL

X
and αR

=
Ri

mi

=
X − XR

X
, (A9)

whereLi is the mass flux to boxi − 1 andRi the mass flux
to boxi + 1.

Note that bothRi−1 andLi represent a flux between boxes
i − 1 andi. In most schemes only a net flux is considered
and at least one of these will be zero. We choose to include
both here since this allows us to construct the scheme for a
general mass flux stencil, treating all grid boxes via a sin-
gle mechanism whether they are subject to convergent, di-
vergent or uni-directional winds. This has the side effect of
generating a scheme general enough to handle bi-directional
exchange between grid boxes, a feature which could possibly
prove advantageous in modelling a diffusive process. Apply-
ing Eq. (A3) we obtain new moments for each sub-box:

s̄L
0,i = s0,i − (1− αL

i )sx,i s̄L
x,i = αL

i sx,i

s̄C
0,i = s0,i + (αL

i − αR
i )sx,i s̄C

x,i = (1− αL
i − αR

i )sx,i

s̄R
0,i = s0,i + (1− αR

i )sx,i s̄R
x,i = αR

i sx,i . (A10)

Once each box has been split in this way we must then re-
combine the moments appropriately. We need to construct a
new boxi from the three sub-boxes representing a fluxRi−1
from boxi−1, a massmi −Li −Ri that has remained in box
i and a fluxLi+1 from box i + 1. Substitutings(1)

0 = sR
0,i−1,

s
(2)
0 = sC

0,i , s
(3)
0 = sL

0,i+1 and similarly fors(j)
x into Eq. (A8)

and then making use of Eq. (A10) we obtain

s̄0,i = α
(1)
i

[
s0,i−1 + (1− αR

i−1)sx,i−1

]
+

(
1− α

(1)
i − α

(2)
i

)[
s0,i + (αL

i − αR
i )sx,i

]
+ α

(2)
i

[
s0,i+1 − (1− αL

i+1)sx,i+1

]
(A11)

and

s̄x,i =

(
α

(1)
i

)2
αR

i−1sx,i−1 +

(
α

(2)
i

)2
αL

i+1sx,i+1

+

(
1− α

(1)
i − α

(2)
i

)2
(1− αL

i − αR
i )sx,i

− 3α
(1)
i

(
1− α

(1)
i

)[
s0,i−1 + (1− αR

i−1)sx,i−1

]
+ 3

(
1− α

(1)
i − α

(2)
i

)(
α

(1)
i − α

(2)
i

)[
s0,i + (αL

i − αR
i )sx,i

]
+ 3α

(2)
i

(
1− α

(2)
i

)[
s0,i+1 − (1− αL

i+1)sx,i+1

]
, (A12)

where

α
(1)
i =

Ri−1

m̄i

and α
(2)
i =

Li+1

m̄i

(A13)

and the new box has massm̄i = Ri−1+(mi−Li−Ri)+Li+1.
Equations (A11) and (A2) allow new moments,(s̄0, s̄x), to be
obtained from old in a single step.

A3 A matrix representation of advection

For a system ofN grid boxes we define a state vectors =

(s0,1, sx,1, . . . , s0,N , sx,N )T comprised of the moment coeffi-
cients associated with each grid box. This is the first-order,
one-dimensional, incarnation of the extended state vectors

introduced in Sect.3.2. Here it has two components per grid
box; for second-order, three-dimensional advection as imple-
mented in TOMCAT each grid box requires 10 components.

We can express the process of advection in terms of a 2N×

2N matrix operatorA acting on the vectors:

s̄ = As (A14)

with the entries of the matrixA determined from Eqs. (A11)
and (A2). We focus on the entries in rows 2i − 1 and 2i of A
and write

A =


. . .

. . .
. . . 0

Xi Yi Zi

0
. . .

. . .
. . .

 (A15)

in order that the entries may be given more compactly in
terms of 2× 2 sub-matricesXi , Yi and Zi . Defining T i =(
s0,i, sx,i

)T and T̄ i =
(
s̄0,i, s̄x,i

)T to be the moment coeffi-
cients in boxi at the start and end of the step respectively we
have

T̄ i = XiT i−1 + YiT i + ZiT i+1 (A16)

with Xi giving the contribution of the moments in boxi − 1
to boxi due to a rightwards mass flux,Zi the contribution of
the moments in boxi + 1 to box i due to a leftwards mass
flux andYi the contribution of tracer that remains in boxi.
The entries ofXi , Yi andZi are obtained from Eqs. (A11)
and (A2) and are as follows:

Xi = (A17)

α
(1)
i

(
1 1− αR

i−1

−3(1− α
(1)
i ) α

(1)
i αR

i−1 − 3(1− α
(1)
i )(1− αR

i−1)

)

Yi = (A18)

γ̄i

(
1 (αL

i − αR
i )

3(α
(1)
i − α

(2)
i ) γ̄iγi + 3(α

(1)
i − α

(2)
i )(αL

i − αR
i )

)

Zi = (A19)

α
(2)
i

(
1 −(1− αL

i+1)

3(1− α
(2)
i ) α

(2)
i αL

i+1 − 3(1− α
(2)
i )

(
1− αL

i+1

) ) ,

where the substitutionsγi = 1−αL
i −αR

i andγ̄i = 1−α
(1)
i −

α
(2)
i have been used for compactness.
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To apply the Prather scheme to Eulerian backtracking the
direction of the mass fluxes must be reversed, together with
the box masses at the start and end of each step:

L∗

i = Ri−1 R∗

i = Li+1

m∗

i = m̄i m̄∗

i = mi . (A20)

This gives(
αL

i

)∗

= α
(1)
i

(
αR

i

)∗

= α
(2)
i γ ∗

i = γ̄i (A21)

and vice versa. The state vectors̄∗ containing moment co-
efficients associated with Eulerian backtracking is calculated
from s∗ according to

s̄∗
= Bs∗ (A22)

with the entries ofB obtained from those ofA by replacing
all variables by their Eulerian backtracking (starred) equiva-
lents. Here we focus on the non-zero entries ofB in columns
2i − 1 and 2i:

B = A∗
=



. . .
. . . 0

. . . Y∗

i−1 Z∗

i−1

X∗

i Y∗

i Z∗

i

. . .

X∗

i+1 Y∗

i+1
. . .

0
. . .

. . .


(A23)

with a star indicating that all variables in the 2× 2 sub-
matrices Eqs. (A17)–(A19) are to be replaced by their Eule-
rian backtracking equivalents in accordance with Eq. (A21):

Z∗

i−1 = (A24)

αR
i−1

(
1 −(1− α

(1)
i )

3(1− αR
i−1) αR

i−1α
(1)
i − 3(1− αR

i−1)
(
1− α

(1)
i

) )

Y∗

i = (A25)

γi

(
1 (α

(1)
i − α

(2)
i )

3(αL
i − αR

i ) γi γ̄i + 3(αL
i − αR

i )(α
(1)
i − α

(2)
i )

)

X∗

i+1 = (A26)

αL
i+1

(
1 1− α

(2)
i

−3(1− αL
i+1) αL

i+1α
(2)
i − 3(1− αL

i+1)(1− α
(2)
i )

)
.

A4 Establishing time symmetry

The final step is to use the matrix stencils Eqs. (A17)–(A19)
and (A24)–(A26) to verify the time symmetry ofA according
to Eq.(14). In order to do so we must first obtain the weight-
ing matrix W associated with the discretized inner product

(12). Neglecting the time integral in the continuous problem
we obtain an inner product

〈f ,g〉 =

∫
�

fgρdx. (A27)

For functions

f =

N∑
i=1

s0,iK0,i + sx,iKx,i

g =

N∑
i=1

s̄0,iK0,i + s̄x,iKx,i (A28)

this gives

〈f ,g〉 =

N∑
i=1

Xi∫
0

ρi(s0,iK0,i + sx,iKx,i) (A29)

(s̄0,iK0,i + s̄x,iKx,i)dx

=

N∑
i=1

s0,i s̄0,i ρi

Xi∫
0

K2
0,i dx + sx,i s̄x,i ρi

Xi∫
0

K2
x,i dx

 (A30)

=

N∑
i=1

[
mis0,i s̄0,i +

1

3
misx,i s̄x,i

]
(A31)

since boxi, of constant densityρi and lengthXi , contains a
massmi = ρiXi . Thus we must have

W =

 W1 0
. . .

0 WN

 ,

where

Wi =

(
mi 0
0 1

3mi

)
(A32)

in the discrete inner product (12). As previously stated in
Eq. (14) an operatorA is time symmetric if

B = A†
= W−1

− AT W+, (A33)

whereW− is evaluated at the start of the forward model step
and so consists of sub-matricesWi each constructed using a
box massmi while W+ is evaluated at the end of the forward
step and consists of sub-matricesW̄i each constructed using
a box mass̄mi . Considering only columns 2i −1 and 2i of B
Eq. (A33) is equivalent to

Wi−1Z∗

i−1 = XT
i W̄i

WiY∗

i = YT
i W̄i

Wi+1X∗

i+1 = ZT
i W̄i, (A34)
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which can be shown to hold from Eqs. (A17)–(A19) and
(A24)–(A26) upon making use of the definitions of the vari-
ousα and the relation

miγi = mi − Li − Ri = m̄i − Ri−1 − Li+1 = m̄i γ̄i . (A35)

This completes the demonstration of the time symmetry of
Prather’s first-order moments advection scheme in one di-
mension.

A5 Extension to second-order moments and higher
dimensions

The procedure for second-order moments in one dimension
proceeds by direct analogy with that for first-order moments,
but with a considerably larger amount of tedious algebra. For
second-order moments in one dimension there are three mo-
ment coefficientsT = (s0, sx, sxx) per grid box, the last of
which is associated with the second-order polynomial basis
function

Kxx =

6
(
x2

− (X1 + X2)x +
1
6(X2

1 + X2
2 + 4X1X2)

)
(X2 − X1)2

. (A36)

The matricesXi , Yi andZi are now of size 3×3. We list the
nine components ofYi (with the subscripti dropped to avoid
clutter) as an illustration:

Y1,1 = γ̄i (A37)

Y1,2 = γ̄i(α
L
i − αR

i )

Y1,3 = γ̄iλi

Y2,1 = 3γ̄i

(
α

(1)
i − α

(2)
i

)
Y2,2 = γ̄ 2

i γi + 3γ̄i

(
α

(1)
i − α

(2)
i

)
(αL

i − αR
i )

Y2,3 = 3γ̄ 2
i γi(α

L
i − αR

i ) + 3γ̄i

(
α

(1)
i − α

(2)
i

)
λi

Y3,1 = 5γ̄i λ̄i

Y3,2 = 5γ̄ 2
i (α

(1)
i − α

(2)
i )γi + 5γ̄i λ̄i(α

L
i − αR

i )

Y3,3 = γ̄ 3
i γ 2

i + 15γ̄ 2
i (α

(1)
i − α

(2)
i )γi(α

L
i − αR

i ) + 5γ̄i λ̄iλi .

Note that the four entries in the top left corner ofYi are iden-
tical to those given previously for first-order moments (A18).
However, the five new entries are of greater complexity than
their first-order counterparts. We have introduced the follow-
ing additional definitions to save space:

λi = αL
i (2αL

i − αR
i − 1) + αR

i (2αR
i − αL

i − 1)

λ̄i = α
(1)
i (2α

(1)
i − α

(2)
i − 1) + α

(2)
i (2α

(2)
i − α

(1)
i − 1). (A38)

Similar expressions have been obtained forXi andZi .
The weighing matricesW− andW+ for second-order mo-

ments in one dimension take the same form as in Eq. (A32)
but are of total size 3N × 3N , with theN sub-matricesWi

now of the form

Wi =

 mi 0 0
0 1

3mi 0
0 0 1

5mi

 . (A39)

The key point of our presentation in Eqs. (A1)–(A4) is
that the definition of time symmetry, given by Eq. (A33),
and its local reduction (A34), remains unchanged for this ex-
tended system. To show time symmetry, it is necessary only
to calculateX∗

i , Y∗

i andZ∗

i , and then to verify the expres-
sions in Eq. (A34). For example,Y∗

i can be constructed from
Eq. (A37) by making use of the relations (A21) (note that
λ∗

i = λ̄i).
Extension to three dimensions requires storage of the 10

coefficients

T = (s0, sx, sy, sz, sxx, syy, szz, sxy, sxz, syz)
T (A40)

for every grid box. The associated basis functions can be ob-
tained by analogy with Eqs. (A1) and (A36) together with
non-symmetric permutations ofKxy = KxKy .

Higher-dimensional advection is performed in a single di-
mension at a time, treating the coefficients associated with
variation in the other dimensions in terms of their varia-
tion in the dimension at hand. For example, for advection
in the x direction the coefficients that relate to no variation
in y andz (s0, sx, sxx) are treated as for a one-dimensional
second-order scheme, those that relate to linear variation in
y (sy, sxy) or in z (sz, sxz) are treated as for two separate
one-dimensional first-order schemes inx and the remaining
coefficientssyy , syz andszz are individually advected as for
three zeroth order schemes. If the moment coefficients are
ordered appropriately the associated 10×10 matricesXi , Yi

andZi are of block diagonal form with one 3× 3 block, two
2×2 blocks and three diagonal entries. Time symmetry then
follows from the time symmetry of each of the sub-blocks.
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