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The nonlinear equilibration of finite amplitude baroclinic waves in Phillips two-layer model is
investigated at finite supercriticality. The aims are to quantify the robustness and relevance of
the nonlinear theory of Warn, Gauthier and Pedlosky (WGP) for the evolution of the
developing baroclinic wave, and to assess the tightness of pseudomomentum and improved
pseudoenergy bounds for disturbance amplitude and energy. A high-resolution numerical
model is used to perform a parameter sweep in (�,W )-space, where � is the inverse criticality of
the initial flow, and W is the ratio of the channel width to the (internal) Rossby radius. At low
supercriticalities, the main predictions of WGP are found to be accurate at short times, but at
long times the fully nonlinear results are found to diverge from WGP’s solution. The
mechanism for equilibration involves the elimination of the lower layer potential vorticity (PV)
gradient, but as the supercriticality increases this is achieved by the roll-up of a train of
opposite-signed vortices, rather than by coarse-grain PV homogenization as in WGP. Peak
wave amplitudes are typically �90% of the maximum attainable under the pseudomomentum
bound. New formulae are given for the pseudoenergy bound on disturbance energy which,
unlike the WGP solution and the pseudomomentum bound, have non-trivial dependence onW.
A detailed assessment is made of the extent to which these bounds are attained.

Keywords: baroclinic instability; nonlinear equilibration; critical layers;

1. Introduction

Determining and quantifying the mechanisms by which unstable baroclinic waves

equilibrate is a question of central importance in dynamical meteorology, oceanog-

raphy and theoretical fluid dynamics. Theoretical interest in the problem was sparked

by the influential analytical solutions of Drazin (1970) for the Eady model, and

particularly that of Pedlosky (1970) for Phillips two-layer model. In the latter case an

initially unstable baroclinic wave undergoes a time-periodic nonlinear oscillation in

which eddy energy is repeatedly extracted from and returned to the mean flow.

Pedlosky’s solution, characterised by these reversible exchanges of energy, was for a

time considered an archetype of an idealised baroclinic lifecycle in a channel flow.
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However, the numerical experiments of Boville (1981) revealed a quantitative

discrepancy with Pedlosky’s solution near minimum critical shear, and the reversible

oscillations were not observed. The reason, as was clarified by Pedlosky (1982a, b), is

that at minimum critical shear higher harmonics of the fundamental wave are

resonantly excited in the lower layer, and the excited harmonics then interact with the

fundamental at leading order in the solution.
A physical explanation for the resonant excitation of harmonics follows from the

observation that in the lower layer, the frequency of the fundamental wave vanishes

relative to the mean flow and the entire layer is a Rossby wave critical layer (see, e.g.

Maslowe 1986). Pedlosky (1982b) derived an infinite-dimensional dynamical system for

the evolution of the critical layer, and by numerical solution of a truncated subset of the

governing equations deduced some properties of the flow. In particular, the equilibrated

state of the system was identified with potential vorticity (PV) homogenization

throughout the lower layer. PV homogenization is now understood as a fundamental

process influencing the equilibration of a much wider class of geophysical flows (e.g.

Rhines and Young 1983).
An elegant and attractive analytical solution for the problem was later given by Warn

and Gauthier (1989; hereafter WG89). Pedlosky’s relatively unwieldy system of

equations were recast as a pair of integro-differential equations, which are integrable.

Henceforth, this solution will be referred to as the Warn–Gauthier–Pedlosky (WGP)

solution. In the WGP solution, although the evolution of the lower layer PV field

remains transient, the fundamental wave approaches an equilibrated amplitude. In these

exact equations, the lower layer PV distribution undergoes a cascade to smaller scales,

while the fundamental wave in the upper layer ‘‘sees’’ only the large-scale ‘‘coarse-grain’’

lower layer PV. Hence equilibration is possible in the upper layer while the lower layer

remains transient.
WGP’s theory is valid only for initial flows that are weakly unstable, i.e. in the limit

of infinitesimal supercriticality. An alternative approach to investigating unstable

baroclinic flows at finite supercriticality was pioneered by Shepherd, who adapted the

nonlinear stability theorems of Arnol’d (1966) to the specific situation of an initially

unstable baroclinic flow in Phillips model. Both bounds on perturbation enstrophy

(Shepherd 1988), obtained by the momentum-Casimir method, and perturbation energy

(Shepherd 1993), obtained by the energy–momentum-Casimir method (see, e.g.

Shepherd 1990, for a comprehensive review), lead to useful constraints on the fully

nonlinear evolution.
Although the above solutions and bounds are clearly of great pedagogical value,

there remain numerous open questions as to their relevance to real flows in experiments

and the atmosphere and ocean. One aim of this work is to create a bridge between these

results and more realistic flows using idealised high-resolution numerical experiments.

To our knowledge, despite its importance as a textbook paradigm, there has been no

systematic numerical investigation of baroclinic instability in Phillips model at finite

criticality since WG89’s work. A second aim is to assess the extent to which Warn and

Gauthier’s (1989) (WGP) solution is realised and Shepherd’s bounds are attained. As

part of the process of achieving these aims, new and simpler derivations of the WGP

solution and bounds are presented.
The assessment of WGP and Shepherd’s bounds will determine whether or not they

present a reasonably accurate qualitative and quantitative description of a wider class
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of flows at finite supercriticality. Specifically, the focus will be on answering the

following questions:

. To what extent is the WGP solution realised at finite supercriticality? For
example, it has been argued (Gauthier 1990, Shepherd 1993) that at finite
criticality the Rossby wave critical layer either will not form or will occupy only
part of the lower layer of the channel. It is thought that the original Pedlosky
(1970) solution might then be more relevant. How accurate are the WGP
predictions for peak and equilibrated wave amplitudes at finite criticality?

. Is the WGP solution stable on all timescales? For example, Killworth and
McIntyre (1985) argued that idealised Rossby wave critical layers (Stewartson
1978, Warn and Warn 1978) are subject to a secondary barotropic instability,
the existence of which was verified numerically by Haynes (1985, 1989).

. Is the mechanism of nonlinear baroclinic equilibration in the WGP solution, i.e.
homogenization of coarse-grain PV in the lower layer, essentially unaltered at
finite criticality?

. The perturbation enstrophy bound given by Shepherd (1988) translates into a
bound on the amplitude of the fundamental wave in the upper layer. To what
extent is this bound, which is independent of the ratio of the channel width to
the internal Rossby radius (W hereafter), attained by the disturbances? Does the
maximum wave amplitude attained depend on W?

. To what extent are the perturbation energy bounds of Shepherd (1993) attained
by the disturbances? Can these bounds be improved upon? Does the non-trivial
dependence on W of the perturbation energy bound indicate the nature of the
sensitivity of fully nonlinear flows to W?

In section 2 the set-up of the numerical experiments will be described, and in section 3

the WGP solution and Shepherd’s results will be reviewed. A new formula for the

perturbation energy bound is given, and a variational approach is used to improve the

bound further. In section 4, the results of the numerical experiments are compared with

the predictions of the WGP theory and both Shepherd’s bounds and the new results. In

section 5, conclusions are drawn and the questions posed above are answered.

2. Experimental set-up and numerical model

2.1. Baroclinic lifecycles in Phillips two-layer model

For definiteness, throughout this work, the focus will be on baroclinic lifecycles in a

particular set-up as follows. The model adopted is the quasi-geostrophic, two-layer

Phillips model (Phillips 1951, 1954) which describes fluid motion in a re-circulating

channel between rigid sidewalls at the fixed latitudes y¼�Ly/2. It is assumed that the

channel length Lx is effectively infinite, although particular assumptions to be made

about the nature of the flow will permit the use of periodic boundary conditions in the

numerical implementation, as will be described below. The geometry is relevant to a

re-circulating atmosphere, a rotating annulus or an oceanic channel, under the

assumption that zonal wavenumber discretization effects, due to the periodicity of the

re-circulating domain, are not strongly felt.
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Under the �-plane approximation, the channel is subject to differential rotation at the

rate f/2 where f¼ f0þ �*y. The upper and lower layers, to be henceforth denoted with

subscripts 1 and 2 respectively, are each of undisturbed depth H and have densities

�1 and �2 (�15 �2). The Boussinesq approximation D¼ 2(�2� �1)/(�1þ �2)� 1 is

adopted, meaning that an effective gravity g0 ¼ gD acts on the interface between the two

layers. The equations of motion are then identical whether the upper layer is bounded

by a rigid lid, as in an annulus experiment, or has a free surface, as in the oceanic

situation.
The basic flow to be considered is that of uniform vertical shear with zonal velocity U

in the upper layer and a lower layer at rest. The upper and lower boundaries are

assumed frictionless. Nondimensionalizing with horizontal length scale equal to the

internal Rossby radius of deformation (see eq. 5.191 of Vallis 2006) LD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0H=2f 20

q
,

vertical length scale H and vertical and horizontal velocity scales U and UH/LD,

respectively, results in equations of motion (e.g. Pedlosky 1987)�
@t �  iy@x þ  ix@y

�
qi ¼ 0 i ¼ 1, 2 , ð1aÞ

where

qi ¼ �yþ r
2 i þ

1
2 ð�1Þ

i
ð 1 �  2Þ ð1bÞ

is the PV in each layer (i¼ 1, 2),  i is the geostrophic streamfunction, and the
geostrophic velocities are given by ui¼�;� ik. The boundary conditions at the

sidewalls are no-normal flow and the so-called Phillips’ boundary condition (conser-

vation of circulation on the boundary)

 ix ¼ 0 on y ¼ �W=2, ð2aÞ

 iyt ¼ 0 on y ¼ �W=2: ð2bÞ

The two nondimensional parameters appearing in (1) and (2a,b) are the inverse
criticality � and the channel width parameter W, which in terms of the physical

parameters determining the flow are given by

� ¼
��L2

D

U
, W ¼

Ly

LD
: ð3Þ

The linear stability problem can be investigated using the ansatz 
 1

 2

!
¼ �

 
y
0

!
þRe �

 
1
�

!
eikðx�ctÞ sin l

�
y� ðW=2Þ

�
, ð4Þ

where the first term is the uniform flow, k and l are zonal and meridional wavenumbers,
and � is a complex-valued constant. Note that the values of l¼ n�/W (n integer) are

discretized due to the finite channel width. Inserting into (1), and neglecting terms of

O(�2), leads to the dispersion relation for the phase speed c,

c� ¼
1

2
�
ða2 þ 1

2Þ

a2ða2 þ 1Þ
��

1

2a2ða2 þ 1Þ
½�2 þ a4ða4 � 1Þ

�1=2
, ð5Þ
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where a¼ (k2þ l2)1/2 is the total wavenumber. Stability depends on the sign of the
square root term in (5), and it is easily verified (Vallis 2006, pp. 271–277) that if �5 1

2

(and W4 21/4�) then a band of wavenumbers satisfying

1
2�

1
4� �

2
� �1=2

5 a4 5 1
2þ

1
4� �

2
� �1=2

ð6Þ

are unstable. The condition �5 1
2 for instability corresponds to a reversal in sign of the

lower layer PV gradient and is consistent with the Charney–Stern–Pedlosky sufficient

criterion for instability for the flow in question (e.g. sec. 6.4.3 of Vallis 2006).
The baroclinic lifecycles to be considered here are initialized with infinitesimal

‘‘noise’’, in order that a uniform wavetrain consisting of the fastest growing normal

mode emerges from that noise. Note that this restriction limits the focus to waves with

the gravest cross-channel scale (i.e. n¼ 1 so that l¼�/W ) which have meridional

structure �cos(�y/W ). There is a hidden assumption here that modulational (envelope

or wave-packet forming) instability (see, e.g. Esler 1997) does not play a significant role

in the lifecycle, and the developing flow is periodic on the wavelength of the fastest

growing mode. The advantage in prescribing the baroclinic cycles as above is that the

outcome of each flow is determined by � and W only.
The subsequent flows are strongly constrained by conservation of the following

integral quantities, where D denotes the domain of the channel,

M ¼

Z
D

yq1 þ yq2 dx ¼ LW3�=6, ð7aÞ

E ¼ 1
2

Z
D

j; 1j
2 þ j; 2j

2 þ 1
2ð 2 �  1Þ

2 dx ¼ ðLW=2Þ þ ðLW3=48Þ, ð7bÞ

C½q1, q2	 ¼

Z
D

C1ðq1Þ þ C2ðq2Þdx, ð7cÞ

where M is Kelvin’s impulse, which is closely related to conservation of total zonal
momentum, E is the total energy and C[q1, q2] denotes the Casimir invariants, which

hold for arbitrary functions C1 and C2 and follow from the parcel-wise conservation of

PV. The first two integrals have been evaluated for the infinitesimal noise initial

conditions, where for definiteness a nondimensional channel length L(¼Lx/LD) has

been introduced (assumed much larger than W ).
Two important examples of Casimir invariants to be considered below are the upper

(i¼ 1) and lower (i¼ 2) layer planetaryy enstrophies

Zi ¼
1
2

Z
D

q2i dx ¼
LW3

24

�þ 1
2

� �2
i ¼ 1,

�� 1
2

� �2
i ¼ 2:

8><
>: ð8Þ

It is important to note that the nondimensionalization adopted above differs from
that of previous authors (e.g. Shepherd 1988, Warn and Gauthier 1989) in that the

internal Rossby radius, rather than the dimensional channel width, has been used as

the horizontal length scale. The advantage of choosing the Rossby radius is that the

channel width parameter W scales out of much of the resulting analysis. Note that

ySo-called here as the planetary vorticity gradient �y is retained in the definition.
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previous works have introduced a degeneracy by retaining three nondimensional
variables instead of two, throughout the analysis (e.g. following the precedent of
Pedlosky 1987), which arguably somewhat overcomplicates the results. Appendix A
describes how to transfer between our approach and those of the cited previous works.

2.2. Numerical implementation and convergence tests

Phillips model governing equations (1) are integrated numerically here using a pseudo-
spectral/grid-point model, which is essentially that described in Esler and Haynes
(1999). The restriction to the infinitesimal noise lifecycle allows the equations to be
integrated on the subdomain (x, y)2 [��/2km, 3�/2km]� [�W/2,W/2], because the
resulting dominance of the fastest growing mode guarantees a solution that is 2�/km
periodic in the x-direction. A standard Fourier decomposition is employed in the
x-direction to take advantage of the periodicity, whereas the grid-point discretization in
the y-direction facilitates implementation of the no-normal flow and Phillips’ boundary
conditions (2a,b).

In order to inhibit the artificial build-up of enstrophy at the grid-scale it is necessary to
apply an enstrophy filter. Here, a PV diffusion �qr

2qi, acting in each layer, is added to the
right-hand side of (1). There is no fixed a priori rule for setting the value of �q required to
obtain converged solutions at a particular resolution, rather �q is selected according to
both the numerical resolution and the strength of the turbulent cascade occurring in the
flow under examination. A necessary condition for convergence, satisfied by all of the
simulations presented below, is that at all times there is no spurious up-tick in the
enstrophy spectrum as the wavenumber approaches that of the grid-scale.

Further convergence tests involve comparison between numerical solutions at
different resolutions. PV diffusivities �q, time steps �t and details of three corresponding
numerical resolutions are presented in table 1. The time step must satisfy the usual
Courant–Friedrichs–Lewy criterion and hence scales approximately with the grid-scale.
The tabulated values of �q are given for a set of simulations with (�,W )¼ (0.48, 23/4�).
Slightly higher values of �q are necessary at higher supercriticalities (lower �).

Some results are shown in figure 1. The quantity plotted in figure 1(a) is jAf
1ðtÞj, where

Af
i ðtÞ is a complex wave amplitude defined to be

Af
i ðtÞ ¼

4

LW

Z
D

qiðx, y, tÞe
�ikmx cos

�y

W

� �
dx, i ¼ 1, 2, ð9Þ

i.e. a measure of the amplitude of the baroclinic wave (with respect to PV) in each layer
(i¼ 1, 2) of the model. The upper panel shows the evolution of jAf

1ðtÞj at three different
numerical resolutions with different values of �q (LR, MR and HR in table 1). At early
times, but well into the nonlinear stage of the lifecycle, there is excellent agreement
between the three. At later times the three solutions begin to diverge, although it is

Table 1. Numerical parameter settings for three different numerical resolutions, for
simulations with (�,W )¼ (0.48, 23/4�).

Resolution Fourier modes (x) Grid points (y) dt �q

Low (LR) 64 64 5.0� 10�3 5.0� 10�5

Medium (MR) 128 128 2.5� 10�3 2.5� 10�5

High (HR) 256 256 1.0� 10�3 1.0� 10�5
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evident that the LR and MR solutions diverge more rapidly than the MR and HR
solutions, indicating better-than-linear convergence of the solutions with grid-scale.
Figure 1(b) shows the total energy (E/LW3) of the flow, which in the idealised (�q¼ 0)
case is conserved. It is clear that in practice E appears to be conserved almost exactly
until well into the nonlinear stage of the lifecycle, after which time the most dissipative
LR simulation loses energy at a slow but uniform rate that is an order of magnitude
greater than that in the HR simulation. Figures 1(c) and (d) show the upper and lower
layer planetary enstrophies (Z1/LW and Z2/LW respectively). Z1 is seen to be well-
conserved throughout the simulations, but since PV in the lower layer undergoes a

(a)

(b)

(c)

(d)

Figure 1. (a) Time evolution of upper layer wave amplitude (jAf
1ðtÞj=�W) in a simulation with

(�,W )¼ (0.48, 23/4�) for the three numerical resolutions detailed in table 1. (b) Time evolution of total
energy E/LW3 for the same three numerical resolutions. (c, d) As (b) but time evolution of upper and lower
layer total planetary enstrophies Z1/LW and Z2/LW respectively.
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cascade to smaller scales, Z2 is well-conserved only up to the time at which the

maximum wave amplitude is attained, after which time the scale cascade leads to

dissipation of Z2 in all three simulations. Derived quantities, such as wave

pseudomomentum and pseudoenergy to be defined below, are therefore also well-

conserved up to the time that the maximum wave amplitude is attained.
It is to be emphasised that figure 1 is representative of a wider class of convergence

tests spanning (�,W ) parameter space, and is typical of the convergence of the

numerical results elsewhere. Further evidence of numerical accuracy will be presented

below when the WGP solution is assessed.

3. Analytical theory and bounds on disturbance quantities

3.1. The WGP analytical theory

A key objective of this work is to examine the relevance of the WGP solution to flows at

finite supercriticality. To facilitate this comparison full details of the WGP solution will

be presented next. The main innovation here, compared to (WG89), is the use of the

conserved quantitiesM and Z1 to provide a fast route to the WGP governing equations.

Further simplifications are afforded by restricting the focus to just the infinitesimal

noisey baroclinic lifecycle described above. Finally, an effort has been made to minimize

the proliferation of new variables, in order to make the presentation of the solution as

explicit as possible.
The WGP theory is formulated for flows with supercriticality, defined by

� ¼ ð12� �Þ
1=2

taken to be formally small (�� 1). Power series solutions of (1) are then sought by
expanding in �:

 i ¼ �y�i1 þ �  
ð0Þ
i þ � 

ð1Þ
i þ �

2 ð2Þi þ 
 
 

� �

, ð10aÞ

qi ¼ �1i � �
2

� �
yþ � q

ð0Þ
i þ �q

ð1Þ
i þ �

2q
ð2Þ
i þ 
 
 


� �
, ð10bÞ

where

q
ð j Þ
i ¼ r

2 ð j Þi þ ð�1Þ
i 1
2  ð j Þ1 �  

ð j Þ
2

� �
, ð10cÞ

and �ij is the Kronecker delta. In order to suppress secular terms in the solution,
following the method of multiple scales, the terms in the series are allowed to depend on

an additional long time variable 	¼ �t.
At leading order in � the relevant solution is essentially the linear one for the

marginally stable wave with total wavenumber a¼ am¼ 2�1/4. The branch of the linear

solution corresponding to the growing mode (see the discussion in WG89) is chosen

so that  
 ð0Þ1
 ð0Þ2

!
¼ A 	ð Þ

 
1
�m

!
eikmx cos

�y

W

� �
, ð11Þ

yWG89 refer to this lifecycle as their case of ‘‘subliminal disturbance’’.
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where the real part is intended, k2m ¼ a2m � �
2=W2 and �m ¼

ffiffiffi
2
p
� 1. From (5), the real

phase speed of the marginally stable wave is zero and thus the leading solution is

independent of the fast variable t. Since higher order terms in the series are forced by

the leading order solution they can also be taken to be independent of t. The

corresponding leading order PV is given by q
ð0Þ
1 ¼ � 

ð0Þ
1 and, significantly, q

ð0Þ
2 ¼ 0

indicating that the perturbation PV in the lower layer remains an order of magnitude

smaller than that in the upper layer. It is nevertheless within the upper layer, where the

PV distribution consists of a uniform background gradient plus an O(�) wave-like

perturbation, that the flow remains ‘‘Rossby wave-like’’. In the lower layer both the

mean PV gradient and its perturbation are the same amplitude, O(�2).
Inserting the expansion (10) into the definitions of M and Z1 gives

Z1 ¼ Z1ð0Þ þ �

Z
D

yq
ð0Þ
1 dxþ �2

Z
D

yq
ð1Þ
1 þ

1
2 q

ð0Þ
1

� �2
dxþOð�3Þ, ð12aÞ

M ¼Mð0Þ þ �

Z
D

yq
ð0Þ
1 dxþ �2

Z
D

yq
ð1Þ
1 þ yq

ð1Þ
2 dxþOð�3Þ: ð12bÞ

where Z1(0) and M(0) are the respective initial values given in (7a–c) and (8). Since
M¼M(0) and Z1¼Z1(0) at all times, the terms remaining on the right-hand side are

also zero. At O(�) in both expressionsZ
D

yq
ð0Þ
1 dx ¼ 0,

which is easily verified upon insertion of (11). At O(�2), eliminating the integral of yq
ð1Þ
1

between the two expressions reveals thatZ
D

1
2ðq
ð0Þ
1 Þ

2 dx ¼

Z
D

yq
ð1Þ
2 dx, ð13Þ

which upon insertion of (11) becomes

jAð	Þj2 ¼
8

LW

Z
D

yq
ð1Þ
2 dx: ð14Þ

This is nothing but pseudomomentum conservation for the system. Pseudomomentum
invariants are constructed from the linear impulse conservation law M¼M(0) (7a) and

a suitably chosen Casimir invariant (7c) (see, e.g. Shepherd 1990). Here the chosen

Casimir is Z1. Note that the integral on the right-hand side of (14) measures the change

in Kelvin’s impulse of the lower layer.
Equation (14) is augmented by the evolution equation for the leading order

perturbation PV in the lower layer q
ð1Þ
2 (recall that q

ð0Þ
2 ¼ 0). Inserting (10) into the

governing equation (1), and noting that there is now only slow time-dependence in the

problem (@t! �@	), results in

@	 �  
ð0Þ
2y @x þ  

ð0Þ
2x@y

� �
q
ð1Þ
2 � y

� �
¼ 0: ð15Þ

WG89 recognised that equation (15) is simply a passive tracer advection equation, since
the spatial structure of the streamfunction of the advecting velocity  ð0Þ2 is known from

the leading order solution (11). The ‘‘passive tracer’’ Q ¼ q
ð1Þ
2 � y is simply the leading

order total PV in the lower layer. PV is of course an active tracer in general, in the sense
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that it instantaneously determines the flow through PV inversion, but Q is passively

advected in equation (15) because the flow in the lower layer at leading order is

determined entirely by q
ð0Þ
1 , the leading order perturbation PV in the upper layer.

Equation (15) can be further simplified into an passive tracer advection equation in a

steady velocity field by first recognising that, because equation (15) is linear in  ð0Þ2 , the

complex amplitude A(	) in (11) can be set to be real without loss of generality, hence

jA(	)j is used hereafter. Second, the change of variables


 ¼ �m

Z 	

0

jAð ~	Þj d ~	 ð16Þ

can be made, resulting in

@
 �Cy@x þCx@y
� �

Q ¼ 0, where Cðx, yÞ ¼ cos ðkmxÞ cos ð�y=W Þ: ð17Þ

The initial condition for (17) is simply Q(x, y, 0)¼�y in the case of the infinitesimal
noise lifecycle described above. WG89’s solution of (17), presented in Appendix B, is

Qðx, y, 
Þ ¼ �
W

�
sin�1

"
sin �y=Wð Þ cn ~
jmð Þ dn ~
jmð Þ þ sin ðkmxÞ cos

2 �y=Wð Þ sn ~
jmð Þ

1� sin2 �y=Wð Þ sn2 ~
jmð Þ

#
,

ð18Þ

where ~
 ¼ km�
=W, m(x, y)¼ 1� cos2(kmx)cos
2(�y/W ), and sn(
j
), cn(
j
) and dn(
j
)

are Jacobi elliptic functions in standard notation. The solution (18) is shown in

figures 2(a–e) at re-scaled times 
¼ 0, 0.79, 5.55, 10 and 15W/�km, showing the

development of the lower layer critical layer. The lower layer PV field is seen to wrap up

within each circulation cell, and there is consequently a cascade of enstrophy within the

lower layer to increasingly small scales.
The result (18) can be used to evaluate the integral in (14), since q

ð1Þ
2 ¼ yþQ, to

obtain an expression for the wave amplitude jA(	)j. The integral does not obviously

lend itself to analytical evaluation, but can be written in a form suitable for numerical

quadrature using the coordinate transformation described in Appendix B. Substituting

(18) in (14), the WGP solution is found to be

jAð	Þj2 ¼W2 2

3
�
16

�4
I

km�

W



� 	
 �
, ð19Þ

where I(z) denotes the single parameter family of definite integrals

IðzÞ ¼

Z 1

0

Z KðmÞ

0

sin�1 m1=2snð�� zjmÞ
� �

sin�1 m1=2snð�jmÞ
� �

ð1�mÞ1=2
d� dm:

where K(m) is the complete elliptic integral of the first kind. The function I(z) has the
following properties:

. I(0)¼�4/24, meaning that 
¼ jA(	)j ¼ 0 is a solution of (19), corresponding to
the absence of a perturbation to the unstable flow.

. I(z)! 0 as z!1, meaning that the long time solution of (19), corresponding to
the completely wrapped-up, or coarse-grain homogenized lower layer PV, is
jAj2! jAj2eq ¼ 2W2=3.
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. I(z) decreases monotonically until its first local minimum at zm� 5.55, which is
also its global minimum. There I(zm)��2.257. The maximum amplitude
attained is therefore jAj2max � 1:04W2. The lower layer Kelvin’s impulse and
upper layer wave amplitude are therefore both maximized at 
¼ 5.55W/�km,
and the lower layer PV at this time is shown in figure 2(c), which can be
contrasted with the ‘‘perfect’’ rearrangement of lower layer PV in figure 2(f) to
be discussed further below.

It should be emphasised that the solution (19) for jA(	)j is implicit, as jA(	)j is related
to 
(	) through (16). The solution can be made explicit by noting that jAð	Þj ¼
��1m d
=d	, which can be used to rewrite (19) as

	 ¼
1

�mW

Z 



0

2

3
�
16

�4
I

km�

W
�


� 	
 ��1=2
d �
: ð20Þ

The constant 
0 is determined by the fact that, ultimately, a value must be ascribed to
the amplitude of the infinitesimal wave in the initial conditions. Provided 
0 is chosen
within a range that is sufficiently small, changes in 
0 correspond only to changes in the

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2. Snapshots of total lower layer PV (Q(x, y, 
)/W ) in the WGP solution (equation (18)) at scaled
times (a–e) 
¼ 0, 0.79, 5.55, 10 and 15W/km�. The contour interval is 0.1. The advecting streamfunction  ð0Þ2
is contoured in white in panel (a), with solid contours for the anti-cyclonic (clockwise) cell and dotted for the
cyclonic (anti-clockwise). Its structure but not its magnitude is invariant in time, hence no fixed contour
interval applies. The final panel (f) shows the ‘‘rearranged’’ PV field used for the WGP pseudomomentum
bound (equation (21)).
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time of the onset of the nonlinear part of the solution, which remains otherwise
unaltered. The relationship (20) can be inverted numerically to give 
(	), which can in
turn be differentiated numerically to obtain jA(	)j explicitly. Further discussion of the
inversion of the implicit form of the solution is given in WG89.

3.2. The Held–Shepherd pseudomomentum bound on wave amplitude

The derivation of the WGP solution given above is intimately related to upper bounds
on wave amplitude that can be obtained using the methods of Arnol’d. For the situation
considered here, the relevant bound is given by Shepherd (1988) but is attributed there
to I.M. Held, hence it will be referred to as the Held–Shepherd bound here. Here, a brief
and elementary derivation of the Held–Shepherd bound will be given, which bypasses
much of the mathematical machinery introduced by Shepherd.y Before commencing, it
is worth noting that in the WGP governing equation (14) which describes weakly
supercritical flow, the wave amplitude is entirely determined by Kelvin’s impulse in the
lower layer. The lower layer Kelvin’s impulse is obviously bounded above by the
‘‘rearranged’’ field shown in figure 2(f) in which q

ð1Þ
2 ¼ Qþ y ¼ 2y. The resulting bound

from (14) is

jAð	Þj2 ¼
8

LW

Z
D

yq
ð1Þ
2 dx �

8

LW

Z
D

2y2 dx ¼
4W2

3
: ð21Þ

The WGP maximum wave amplitude jAjmax calculated above is therefore approxi-
mately 88% of the maximum attainable under the bound (21).

The Held–Shepherd bound can be obtained by extending essentially the same idea to
the case of finite criticality. The initial aim is to obtain a bound on the perturbation
enstrophy

Z0 ¼ Z01 þ Z02 ¼
1
2

Z
D

ðq01Þ
2
þ ðq02Þ

2 dx, ð22Þ

from which a bound on upper layer wave amplitude follows straightforwardly. Here q01
denotes the non-zonal part of q1 (i.e. q01 ¼ q1 � �q1 where the overbar denotes a zonal
mean).

Inequalities for the perturbation enstrophy are constructed as follows:

Z0 � 1
2

Z
D

ðq01Þ
2
þ �ðq02Þ

2 dx, for any � � 1

� 1
2

Z
D

ðq1 � yÞ
2
þ � q2 �



�
y

� �2
dx, for any  2 R

¼ Z1 þ �Z2 � Mþ
LW3

24

2ð�þ 1Þ

�
,

¼
LW3

24
�þ 1

2

� �2
þ � �� 1

2

� �2
� 4�þ

2ð�þ 1Þ

�

� 	
, ð23Þ

yShepherd’s method is of course much more general and more widely applicable. It is the simplicity of the
uniform flow initial conditions in Phillips model that permits the simpler derivation given here, and allows the
relationship with the WGP solution to be clarified.
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using the initial values for Zi and M given in (7a–c) and (8). The above bound holds for
any (�,)2 [1,1)�R. The tightest bound will either be at the critical point (�c,c) of

the function

gð�,Þ ¼ �þ 1
2

� �2
þ� �� 1

2

� �2
�4�þ

2ð�þ 1Þ

�
,

which is located at

ð�c,cÞ ¼
3�� 1

2
1
2� �

, 3�� 1
2

 !
,

or will be located along the line �¼ 1 at (�,)¼ (1,�). A straightforward calculation
reveals the former case holds for 1

4 � �5
1
2 and the latter for 05�5 1

4. The Held–

Shepherd bound is thus found to be

Z0 �
LW3

48

16�ð12� �Þ
1
4 � � �

1
2 ,

1 05�5 1
4 :

8><
>: ð24Þ

Appendix A discusses the change in notation compared to Shepherd’s work.
A bound on wave amplitude at finite criticality is obtained by applying the same

analysis to the upper layer perturbation enstrophy Z01. The only change in the analysis is

that the range of possible � is extended to [0,1), with the tightest bound for �5 1/6

coming for (�,)¼ (0, 0). The result is

Z01 �
LW3

48

16�ð12� �Þ
1
6 � � �

1
2 ,

2ð�þ 1
2Þ
2 05�5 1

6 :

8<
: ð25Þ

The bound for �5 1/6 is simply the total enstrophy in the upper layer i.e. Z1 above.
The result (25) is converted to a wave amplitude bound by noting that the complex

amplitude Af
1 of the fundamental wave in the upper layer, given by (9) above, satisfies

the inequality (cf. Bessel’s inequality for Fourier series)

jAf
1j
2 �

8Z01
LW
�

W2

6

16�ð12� �Þ
1
6 � � �

1
2 ,

2ð�þ 1
2Þ
2 05�5 1

6 :

8><
>: ð26Þ

In the limit �! 0 (�! 1
2), in which the complex amplitude Af

1 can be identified with
��A in the WGP solution, it is clear that (26) reduces to the WGP result (21).

A bound on the lower layer PV perturbation amplitude jAf
2j, that will be of use for

the interpretation of numerical results below, can be obtained by similar means. Using

the trivial bound on the lower layer perturbation enstrophy from (8),

Z02 � Z2 ¼ Z2ð0Þ ¼
LW3

24
ð12� �Þ

2,

the bound can be obtained as

jAf
2j
2 �

8Z02
LW
�

W2

3
ð12� �Þ

2: ð27Þ
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3.3. Pseudoenergy bounds on wave energy

A similar approach can be taken to recover and improve upon pseudoenergy bounds

given by Shepherd (1993). Shepherd’s objective was to a formulate a bound on the

perturbation energy

E 0 ¼ 1
2

Z
D

j; 01j
2 þ j; 02j

2 þ 1
2ð 
0
1 �  

0
2Þ

2 dx:

Here, a starting point is to introduce a ‘‘basic state’’ streamfunction �i(y) (i¼ 1, 2),
which from the symmetry in the problem is assumed to be an odd function in y, and

satisfies boundary conditions

Ci ¼ 
1
2�iW on y ¼ � 1

2W,

for some undetermined constants �i. Note that �i corresponds to the cross-channel
average of the associated basic zonal flow (��iy) in layer i.

The basic streamfunction �i can be used to formulate the following inequality, using

integration by parts,

E 0 ¼ 1
2

Z
D

j; 01j
2 þ j; 02j

2 þ 1
2ð 
0
1 �  

0
2Þ

2 dx,

� 1
2

Z
D

j;ð 1 �C1Þj
2 þ j;ð 2 �C2Þj

2 þ 1
2 ð 1 �  2Þ � ðC1 �C2Þð Þ

2 dx

¼ E�

Z
D

; 1 
;C1 þ ; 2 
;C2 þ
1
2ð 1 �  2ÞðC1 �C2Þdx

þ 1
2

Z
D

ðC1yÞ
2
þ ðC2yÞ

2
þ 1

2 C1 �C2ð Þ
2 dx

¼ Eþ

Z
D

C1q1 þC2q2ð Þdx� �1LWþ
1
2

Z
D

ðC1yÞ
2
þ ðC2yÞ

2

þ 1
2 C1 �C2ð Þ

2
� 2�yðC1 þC2Þdx: ð28Þ

Note that all of the terms in the final line of (28) are easily bounded except for the first
integral. A similar approach can be used to bound �Z0 (i.e. a constant �4 0 times the

perturbation enstrophy)

�Z0 ¼ 1
2�

Z
D

ðq01Þ
2
þ ðq02Þ

2 dx

� 1
2�

Z
D

ðq01Þ
2
þ �ðq02Þ

2 dx for � � 1

� 1
2�

Z
D

q1 �
1

�
ðC1 þ yÞ

� 	2

þ � q2 �
1

��
ðC2 þ yÞ

� 	2

dx

¼ �Z1 þ ��Z2 � M�

Z
D

C1q1 þC2q2ð Þdxþ
1

2�

Z
D

ðC1 þ yÞ
2
þ

1

�
ðC2 þ yÞ

2 dx:

ð29Þ
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Summing the inequalities for E0 and �Z0, the ‘‘difficult-to-bound’’ integrals cancel giving

E 0 þ �Z0 � Eþ �Z1 þ ��Z2 � M� �1LWþ
1
2

Z
D

ðC1yÞ
2
þ ðC2yÞ

2

þ 1
2 C1 �C2ð Þ

2
� 2�yðC1 þC2Þ þ

1

�
ðC1 þ yÞ

2
þ

1

��
ðC2 þ yÞ

2 dx, ð30Þ

where, as before, M,E, Z1 and Z2 are determined by their initial values given in (7a–c)
and (8).

Shepherd’s bound follows from choosing �i to be the streamfunction of a uniform

flow, namely

C1 ¼ ��1y, C2 ¼ ��2y:

The integral in (30) is now straightforward to evaluate, giving

E 0 þ �Z0 �
LW

2

�
ð1� �1Þ

2
þ �22

�
þ
LW3

48

h
1þ 2�ð�þ 1

2Þ
2
þ 2��ð�� 1

2Þ
2

þ 4�ð�1 þ �2 � 2Þ þ 2ð�1 � �2Þ
2
þ
4

�
ð�1 � Þ

2
þ

4

��
ð�2 � Þ

2
i
: ð31Þ

The bound can now be minimized with respect to the free parameters (�1,�2,, �, �)
over the domain R�R�R� (0,1)� [1,1). Equation (31) is quadratic in (�1,�2,),
consequently the optimal bound with respect to these parameters is found by solution

of a linear system to occur at the critical values

�1,2 c ¼
1

2
�

6� �W2 þ �ð6þ �W2Þ

2W2 þ �ð1þ �Þð12þW2Þ
�,

c ¼
2W2 þ 4�2��ð12þW2Þ þ �

�
ð2�þ 1ÞW2 þ �ð24þW2 þ 2�W2Þ

�
2ð2W2 þ �ð1þ �Þð12þW2ÞÞ

:

Inserting these into (31) results in

E 0 þ �Z0 �
LW3

24

�
1þ � �þ 1

2

� �
� �� �� 1

2

� ��2�
12þW2

�
2W2 þ �ð1þ �Þð12þW2Þ

:

The critical point leading to the minimum of the bound, viewed as a function of (�, �),
can be shown by direct differentiation to lie on the curve

�cð�Þ ¼
24þ ð8�� 2ÞW2 þ �ð6�� 1ÞðW2 þ 12Þ

2�
�
1
2� �

��
W2 þ 12

� ,

which when inserted into the bound gives

E 0 þ �Z0 �
LW3

6

�
1
2� �

�
1�

2
�
1
2� �

�
W2

W2 þ 12
þ 2��

� 	
: ð32Þ

However, the constraint �� 1 means that the above critical point provides the optimal
bound for E0 in the limit �! 0 only under the condition that

� �
1

4
�

3

W2
:
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Otherwise, the optimal bound is at (�,)¼ (1, 0) giving

E 0 �
LW

48
ðW2 þ 12Þ:

Combining these results gives the desired bound on E0

E 0 �
LW3

6

1
2� �
� �

1�
2W2

W2 þ 12
1
2� �
� �� 	

1

4
�

3

W2
� �5

1

2
,

1

8
1þ

12

W2

� 	
05�5

1

4
�

3

W2
:

8>>><
>>>:

ð33Þ

In the appendix, the bound (33) is compared with the corresponding bound in Shepherd
(1993, see his (8.2)). In the notation of this work, Shepherd’s bound is

E 0 �
LW3

6

1
2� �
� �

1�
48� 2W2

W2
1
2� �
� �� 	

,

1

8
1þ

12

W2

� 	
:

8>>><
>>>:

ð34Þ

It is clear that (33) improves upon (34).

3.4. Towards an optimal pseudoenergy bound on wave energy

The bounds above can be improved upon by relaxing the constraint that �i corresponds

to a uniform flow. For fixed (�1,�2,, �, �), finding �i to minimize the integral

expression in (30) is a straightforward calculus of variations problem. �i must satisfy

the Euler–Lagrange equations

C1

C2

� 	
yy

þ
� 1

2� ð1=�Þ
1
2

1
2 � 1

2� ð1=��Þ

 !
C1

C2

� 	
¼

�
ð=�Þ � �

�
y�

ð=��Þ � �
�
y

 !
, ð35Þ

with Ci ¼ 
1
2W�i on y ¼ � 1

2W. In order to make the problem (35) more manageable
an assumption can be made at this stage that the underlying structure of the

optimisation problem with respect to the free parameters (�1, �2, , �, �) remains similar

to that in the uniform flow case above. In the uniform flow case, the tightest bound was

found by taking the distinguished limit �! 0, �!1, ��! q (constant). The same

distinguished limit can be taken before trying to solve (35).
In this distinguished limit the equation for �1 reduces to

C1ð yÞ ¼ �y, ð36Þ

where the additional condition �1¼ is enforced by the need to suppress thin boundary
layers at the sidewalls, which can only contribute positively to the integral in (30). The

�2 equation becomes

C2yy �
1

2
þ
1

q

� 	
C2 ¼ 

1

2
þ
1

q

� 	
� �

� 	
y with C2 ¼ 

1
2W�2 on y ¼ � 1

2W, ð37Þ
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which has solution given by

C2ð yÞ ¼
2q�� ðqþ 2Þ

qþ 2
y�

2q�þ ð�2 � Þ qþ 2ð Þð ÞW

2ðqþ 2Þ sinh
ffiffiffiffiffiffiffiffiffiffi
1
2þ

1
q

q
W
2

� � sinh
ffiffiffiffiffiffiffiffiffiffi
1
2þ

1
q

q
y

� �
: ð38Þ

The solutions {�1(y),�2(y)} of the Euler–Lagrange equations given by (36) and (38)

can be inserted into the expression (30), and the resulting expression minimized over the

remaining parameters (�2,, q). Some details of the calculation are given in the

appendix. The result is

E 0 � LW Minq40 Gðq,�,W Þ
� 

, ð39Þ

where

Gðq,�,W Þ

¼

1þ
�
1
2� �

�
q

� �2
ð48þ ðqþ 2ÞW2Þ tanh

ffiffiffiffiffiffiffiffiffiffi
1
2þ

1
q

q
W
2

� �
�

ffiffiffiffiffiffiffiffiffiffi
1
2þ

1
q

q
Wð24þ ðqþ 2ÞW2Þ

� �
24ðqþ 2Þ2 tanh

ffiffiffiffiffiffiffiffiffiffi
1
2þ

1
q

q
W
2

� �
�W

ffiffiffiffiffiffiffiffiffiffi
1
2þ

1
q

q� � :

Numerical calculation of the bound (39) shows that it is tighter than (33) throughout

the relevant parameter space (�,W )2 [0, 1/2]� [21/4�,1). Disappointingly, the

improvement over (33) is only a few per cent at best, indicating that (33) is sufficiently

accurate for practical calculations.
The bound (39) can be accurately estimated for �4 1/4� 3/W2, i.e. where (33) is

given by the upper solution, using the estimate q� � 1=ð12� �Þ � JðW Þ for the location

q* of the minimum of G(q,�,W ). Here

JðW Þ ¼
4
ffiffiffi
2
p

WðW2 � 12Þ � 8ðW2 � 24Þ tanh ðW=2
ffiffiffi
2
p
Þ

W2ð
ffiffiffi
2
p

W� 2 tanh ðW=2
ffiffiffi
2
p
ÞÞ

:

The result is the following explicit bound, which is very close to the exact result (39),

E 0 � LWG
��

1
2� �

��1
� JðW Þ,�,W

�
: ð40Þ

The bounds (33), (39) and (40) all have the form (LW3/6)�2þO(�3), i.e. they are

identical in the limit � ¼ ð12� �Þ
1=2
! 0.

4. Comparison with fully nonlinear behaviour

Next the numerical model described in section 2.2 will be used to address the questions

highlighted in section 1, using a suite of simulations spanning the region of (�,W )

parameter space for which the flow is unstable. The focus will be on a set of experiments

with channel width W¼ 23/4�� 5.283, a value that has physical significance since the

fastest growing mode in the channel is then isotropic (i.e. km¼�/W¼ 2�3/4) in the

weakly supercritical limit (in which am¼ 2�1/4).
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4.1. Is the WGP solution relevant at finite supercriticality?

Figure 3 compares the evolution in 
 (scaled time) of the WGP wave amplitude jAj/W,

given by equation (19), with the results of simulations of the fully nonlinear numerical

model for criticalities in the range �2 [0.42, 0.495]. The quantity plotted from the

simulations is the wave amplitude defined in equation (9), scaled as jAf
1j=�W to agree

with WGP in the limit �! 0. The scaled time 
 necessary to compare the solutions is

obtained from the nondimensional time t in the simulations using (cf. equation (16))


 ¼ �m

Z t

0

jAf
1ðt
0Þj dt0:

For 
9 10W/km� the fully nonlinear results (dotted and dashed curves) appear to
converge to the WGP solution (solid curve) as �! 1

2. Consequently, the maximum

wave amplitude attained during the lifecycle is accurately predicted by WGP for low

supercriticalities. For 
010W/km�, however, the WGP and fully nonlinear solutions

diverge significantly, with the WGP solution approaching a constant amplitude

(jAj2¼ 2W2/3) relatively quickly, whereas the fully nonlinear solutions oscillate around

this value. It is notable that as �! 1
2 the fully nonlinear solution diverges more slowly

from WGP, and the period of the resulting oscillation grows longer. However, it is

unclear whether or not, in the absence of numerical diffusion, the amplitude of the

oscillation decreases as �! 1
2. The apparent decrease in oscillation amplitude seen in

figure 3 (e.g. for the �¼ 0.495 simulation) could in fact be due to longer integration

times, which scale as ��1, leading to an increase in the time-integrated effects of the

numerical diffusion described in section 2.2. Recall that the period of the oscillation, as

well as the early time behaviour of the solution, was shown to be insensitive to

numerical resolution (and thus �q) in section 2.2.
The evolution of the lower layer PV holds the key to understanding the divergence

between the fully nonlinear simulations and the WGP solution. Figure 4 shows the full

Figure 3. Evolution in scaled time (
) of the upper layer wave amplitude jAf
1 j=�W for simulations with

W¼ 23/4� and �¼ 0.495,0.48,0.45 and 0.42 (broken curves), together with the WGP solution (solid curve).
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(scaled) lower layer PV distribution q2/�
2W at fixed (scaled) times 
¼ 5.55W/km� (left

column) and 
¼ 10W/km� (right column) for simulations with W¼ 23/4� and �¼ 0.2,
0.4 and 0.495 together with the corresponding WGP field Q/W given by (18) (top row).

The low supercriticality simulation (�¼ 0.495) reproduces the WGP solution fairly

closely in both snapshots. Nevertheless, there is a slight asymmetry present between the
two circulation cells, which are exactly (anti-)symmetric in the case of WGP. In the
simulation, the cyclonic (anti-clockwise here) circulation cell entrains slightly more

cyclonic PV (red) than anti-cyclonic (blue). The asymmetry is much more pronounced
at higher supercriticalities. For �¼ 0.40 and 0.20, a vortex forms within each circulation

cell, and by 
¼ 10W/km� these are positioned exactly in phase with the upper layer
wave (not shown). Note that the sign of these vortices is such that the circulation within
each cell is enhanced, i.e. there is a tendency towards barotropization in fully nonlinear

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. Lower layer PV (q2/�
2W ) at scaled times 
¼ 5.55W/km� (left panels) and 
¼ 10W/km�

(right panels), for simulations with W¼ 23/4�. (a, b) WGP solution. (c, d) �¼ 0.495. (e, f) �¼ 0.4. (g–h)
�¼ 0.2. The contour interval is 0.1 and the zero contour is omitted.
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flows, as is observed in isotropic quasi-geostrophic two-layer turbulence (see, e.g. the

discussion in Vallis 2006, sec. 9.2.3). The results show that the mechanism of

equilibration changes as the supercriticality increases. In all cases equilibration is

attained via the removal of the lower layer zonal mean PV gradient. In WGP and at low

supercriticality, the lower layer PV gradient is removed by stirring and eventual (coarse-

grain) homogenization of the entire lower layer PV field. At higher supercriticalities, by

contrast, the lower layer PV rolls up into a train of opposite signed vortices, one pair

per wavelength of the upper layer wave. The transition between the two behaviours is

discussed and quantified further below.
Figure 5 shows snapshots of the lower layer PV for the WGP solution and the

simulations with �¼ 0.48 and W¼ 4,23/4� and 10. It might be anticipated that at such a

low supercriticality the dependence of the evolution on W would be weak, since the

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. Lower layer PV (q2/�
2W ) at scaled times 
¼ 5.55W/km� (left panels) and 
¼ 10W/km� (right

panels), for (a, b) the WGP solution (�! 1
2, all W ) and (c–h) simulations with �¼ 0.48. In (c, d) W¼ 4,

(e, f) W¼ 23/4� and (g, h) W¼ 10. The contour interval is 0.1 and the zero contour is omitted.
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WGP solution and the Held–Shepherd bound (24) scale trivially with W (although the

perturbation energy bound (33) does not). On the other hand, one might expect

the WGP solution in very wide channels W� 10 to be subject to jet-forming secondary

instabilities of the type discussed by Pedlosky (1975) and Berloff et al. (2009). Figure 5

shows, however, that even at moderate widths the differences between the simulation

results and the WGP solution do depend significantly on W. To understand these

differences, it is helpful to take note of the different aspect ratios (given by kmW/�) of
the circulation cells in the three simulations, which differ since the fastest growing

normal mode emergent in each simulation has a quite different structure. For the

simulations shown in figure 5 (with �¼ 0.48) these are kmW/�¼ 0.757, 1.000, 1.893 for

W¼ 4, 23/4�, 10 respectively, indicating that the circulation cells in the W¼ 4

simulations are elongated in the zonal direction, those for W¼ 23/4� are almost exactly

isotropic, whereas those for W¼ 10 are elongated meridionally. The different aspect

ratios of the circulation cells explain in part the different ways the simulations diverge

from WGP. The W¼ 23/4� simulation, with isotropic circulation cells, remains closest

to WGP. For the W¼ 4 simulation, with zonally elongated circulation cells, the finite

criticality asymmetry in the circulation branches is much more pronounced, and the

vortex roll-up and barotropization resembles that seen in the W¼ 23/4� isotropic

simulations at much higher supercriticality (cf. figures 4(c) and (f)). The W¼ 10

simulation, with meridionally elongated circulation cells, by contrast exhibits a rather

different asymmetry within each circulation cell. Within a circulation cell in figure 5(d),

the north–south branches appear to be almost antisymmetric in x. However, the east-

west branches are not quite antisymmetric in y, indicating that the asymmetry leading to

the differences with WGP is rotated through �/2 compared to the other simulations.

The asymmetry in this case does not lead to vortex roll-up and barotropization but

rather, as seen in figure 5(h), a more complex route to stirring and coarse-grain

homogenization of the lower layer PV. The finding that zonally elongated circulation

cells tend to promote vortex roll-up and barotropization, while meridionally elongated

cells promote homogenization, will be investigated further below.
The late time divergence between WGP and the simulations at low supercriticality,

evident in figure 3, can be investigated further by means of the following diagnostics.

A measure of difference between the lower layer PV in the simulations and the WGP

solution is given by the error measure

Eð
Þ ¼
1

LW2
k��2q2 �Qk1 , ð41Þ

where the norm is the usual L1-norm defined to be

k 
 k1 ¼

Z
D

j 
 j dx:

The evolution of E(
) is plotted in figure 6 (left) for simulations with W¼ 23/4� and
�¼ 0.495, 0.48, 0.44 and 0.40. Clearly, E(
) grows more rapidly as the supercriticality

increases, and at short times the growth is found to be quadratic in 
 (which

corresponds to exponential growth in time t via equation 16).
Figure 6 (right) shows the dependence of the time 
0.025, defined to be the scaled time

satisfying E(
0.025km �/W )¼ 0.025, on the supercriticality �. It is clear from the slope of

the fit in the log–log plot, which is almost exactly � 1
2, that the simulations are diverging
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from the WGP solution on a scaled timescale ���1/2 or a physical (i.e. variable t with
units LD/U) timescale ���3/2. The WGP solution develops on a physical timescale ���1,
and is formally valid only up to times 	¼ �t¼O(1). The fact that the simulations
diverge from WGP on a longer O(��3/2) timescale is therefore not inconsistent with the
nature of the multiple-scales method used to obtain WGP. Also shown in figure 6
(right) are estimates of the period 
per of the late-time oscillations apparent in figure 3,
also plotted as a function of log �. The period also seems to scale approximately with
��1/2 in scaled time, or ��3/2 in the original timescale.

4.2. Assessment of pseudomomentum and pseudoenergy bounds

A natural question to ask with regard to the pseudomomentum wave amplitude bounds
(26) and (27), and the perturbation energy bound (39), concerns how closely they are
attained in the simulations. The question is fundamental, as it relates to the question of
the extent to which baroclinic flows are controlled by their known dynamical
constraints, and therefore to the promise of predictive theories based on these (e.g.
Esler 2008).

Figure 7(a) plots the maximum upper layer wave amplitude jAf
1 jmax=�W attained

during the simulations (solid points), the corresponding equilibrated wave amplitude
jAf

1 jeq=�W (open points), the bound (26) (solid line), and the predictions of WGP
(dashed lines) as a function of the inverse criticality �. Results for different channel
widths W are plotted as different symbols. The corresponding lower layer results are
given in figure 7(b), where the relevant bound is (27). Note that the WGP theory
predicts that the equilibrated amplitude is zero in the lower layer.

Figure 7 confirms the success of the WGP predictions at small supercriticalities
(0.4��5 0.5) although the theory is relatively inaccurate in the narrow channel case
W¼ 4. At all criticalities the maximum amplitude attained follows the corresponding
bound, and in the upper layer in particular it appears that a simple predictive model

Figure 6. Left: Evolution of the error measure E(
) (defined by Equation 41) for inverse criticalities �¼ 0.40,
0.44, 0.48, 0.495. Right: Log–log plot of the growth rate of the error measure (determined from the scaled
time 
0.025 defined in the text), and the period of the resulting oscillations 
per, as a function of the
supercriticality �.
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based on the wave amplitude attaining a fixed percentage (�88%, the WGP value) of
the bound (26) is reasonably accurate across much of parameter space, although less so
when W is low.

The lower layer equilibrated amplitude results in figure 7(b) (jAf
2 jeq=�W, open points)

allow the different mechanisms of equilibration to be quantitatively identified. Lower
layer PV homogenization and vortex roll-up can be easily distinguished in figure 7(b),
since the lower layer wave amplitude must decay to zero if the PV field undergoes
coarse-grain homogenization as in the WGP solution, whereas if the PV distribution
rolls-up efficiently into coherent vortices the equilibrated amplitude will remain close to
the bound (equation (26), solid curve). The results confirm the impression that PV
homogenization occurs in the wide channel (W¼ 10) simulations, with efficient vortex
roll up occurring in the narrow channel (W¼ 4) simulations, even at relatively low
supercriticalities.

Figure 8 shows the maximum (solid points) and equilibrated (open points)
perturbation energy (E0/LW3) in the simulations, plotted as a function of inverse

Figure 7. The maximum (jAf
i jmax=W, solid symbols) and equilibrated (jAf

i jeq=W, open symbols) wave
amplitudes in the simulations as a function of inverse criticality �. The upper and lower panels correspond to
the upper and lower layers (i¼ 1, 2 respectively). The dashed lines in the upper panel correspond to the WGP
predictions (derived from jAjeq and jAjmax defined in section 3). The solid lines are the amplitude bounds
(upper panel: equation (26), lower panel: equation (27)) that follow from the Held–Shepherd bound. Different
symbols correspond to different values of the width parameter W as indicated. The right-hand panels are
blow-ups of the same plot at low supercriticality.

342 J. G. Esler and B. T. Willcocks

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 C

ol
le

ge
 L

on
do

n]
 a

t 1
4:

28
 2

7 
M

ar
ch

 2
01

4 



Figure 8. Maximum (solid symbols) and equilibrated (open symbols) perturbation energy (E0/LW3) as a
function of inverse criticality � in the simulations with W¼ 4 (upper panel), W¼ 23/4� (middle panel) and
W¼ 10 (lower panel). The bounds of Shepherd (1993) equation (34) (dotted curve), equation (33) (solid curve)
and equations (39) and (40) (dashed curves) are also plotted.
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criticality �, together with the new bound (33), Shepherd’s (1993) bound (34) and the

variational bounds (39, 40). The latter are (almost) indistinguishable everywhere,

and neither are plotted on the W¼ 10 panel because for large W they become

indistinguishable from (33).
Figure 8 shows that in the wide channel (W¼ 10) simulation, the perturbation energy

bounds are very nearly attained during the evolution of the lifecycles. For all of the

narrow channel (W¼ 4) simulations, however, the perturbation energy attains only

around 50% of the permissible value. The bounds (e.g. (33)) do not therefore appear to

encode much useful information about how the lifecycle dynamics depend on W. The

reason may be that the approach used in section 3 here is based on Arnol’d’s first

theorem. An approach that also exploits the second theorem (see, e.g. Mu et al. 1995)

might allow some further improvement to the narrow channel bounds, since the second

theorem utilizes the fact that the domain is finite. Such an improvement is beyond the

scope of this work. The main utility of the perturbation energy bounds is therefore in

the wide channel case, and the present simulations show that in this case nearly all

available energy can be extracted from the mean flow once the inverse criticality

satisfies �9 1
4.

5. Conclusions

Here, nonlinear baroclinic equilibration in Phillips model has been investigated in detail.

First, new, shorter derivations of the WGP analytical solution and Shepherd’s

pseudomomentum and pseudoenergy bounds on disturbance quantities have been

presented. Second, a new formula has been found for the pseudoenergy bound, which has

been further improved upon using a variational technique. Third, the new results have

facilitated a comparison with fully nonlinear results from a high-resolution numerical

model, and allow the questions posed in the introduction to be answered as follows:

. At low but finite supercriticalities (� ¼ ð12� �Þ
1=2
� 1), the WGP solution can be

realised numerically, but only for a finite time into the evolution of the lower
layer critical layer. The early stages of lower layer critical layer development,
similar to WGP, were found to be ubiquitous in our experiments at low
supercriticalities. Formation of partial (i.e. localised in latitude) critical layers as
reported by Gauthier (1990) was not found in any of our ‘‘infinitesimal noise’’
lifecycles, although was found in other (unreported) experiments with strong
wavenumber discretization effects due to a finite channel length. The WGP
predictions for peak wave amplitude are accurate at low supercriticality
provided the channel width is not too small, and remain reasonable for �00.30.
At higher supercriticality (lower �), the WGP prediction is in conflict with the
pseudomomentum bound, and cannot be accurate. The WGP solution gives
reasonable predictions for equilibrated amplitudes, but at finite supercriticality
the upper layer wave amplitude does not become steady as predicted.

. At finite supercriticality the simulations diverge from the WGP solution at long
times. The divergence originates from an asymmetry in the entrainment of PV
into the positive and negative circulation cells in the lower layer, which is not
present in the symmetric WGP solution. As a consequence, the amplitude of the
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fundamental oscillates about the steady-state value predicted by WGP, and the
period of these oscillations scales as ��3/2. There is little evidence that
the divergence from WGP is due to barotropic instability arising from reversals
of the zonal mean PV gradient within the lower layer, and therefore appears to
be unrelated to the instability of the Stewartson–Warn–Warn Rossby wave
critical layer (see, e.g. Haynes 1985, 1989; Killworth and McIntyre 1985).

. At larger supercriticalities (�9 0.30) equilibration no longer takes place via the
mechanism of PV homogenization in the lower layer. Instead, the negative zonal
mean gradient of PV in the lower layer is eliminated due to the formation
(roll up) of a train of opposite-signed vortices, which remain stable at long
times. For narrow channels (W¼ 4 here) vortex roll-up was found to be much
more prevalent, even at low supercriticalities, whereas for wide channels
(W¼ 10) PV homogenization occurs until �9 0.15.

. At low supercriticalities, the maximum wave amplitude in the upper layer is
close to 88% of the upper bound (26) obtained from the Held–Shepherd
pseudomomentum bound, 88% being the expected ratio from the WGP theory.
As the supercriticality increases, and the Held–Shepherd bound switches to a
simple enstrophy bound (for �5 1/6), the maximum wave amplitude remains
close to attaining the bound (86–92% for channel width W023/4�). However in
the narrow channel simulations, in which the vortex roll-up equilibration
method was prevalent, the maximum wave amplitudes attained were consider-
ably smaller (73–82% of the bound (26)).

. New perturbation energy bounds (33), (39) and (40) were found that improved
upon that of Shepherd (1993, see his equation 8.2). In the simulations the
perturbation energies reached �80% of the maximum attainable under the
known bounds in the wide channel simulations (W¼ 10 here), but were not close
to being attained in the narrow channel (e.g. W¼ 4) simulations, suggesting the
possibility that the bounds might be further improved.

In summary, the study of nonlinear baroclinic equilibration in Phillips model is clearly
of pedagogical importance, both because of the exact scaling behaviour that is revealed,
and because it provides a concrete example of an unstable geophysical flow equilibrating
via (coarse-grain) PV homogenization. In this work, in addition to extending and
simplifying the most important analytical results, the relevance of that analytical work to
fully nonlinear flows at finite supercriticality has been demonstrated. It is hoped that the
results go some way towards clarifying the insights that can be drawn from Phillips
model vis-a-vis real baroclinic flows in the laboratory and in Nature. A companion paper
(Willcocks and Esler 2011) deals with the effects caused by Ekman friction acting in each
of the two layers. The results there show that while the inviscid equilibrated flow remains
relevant in the presence of Ekman friction, it does not determine the long-time ‘‘climate’’
of the model, even when the Ekman friction is vanishingly small.

Acknowledgements

JGE acknowledges support from the UK Natural Environment Research Council
NE/G003122/1, and BTW the support of an EPSRC studentship.

Nonlinear baroclinic equilibration 345

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 C

ol
le

ge
 L

on
do

n]
 a

t 1
4:

28
 2

7 
M

ar
ch

 2
01

4 



References

Abramowitz, M. and Stegun, I., Handbook of Mathematical Functions, 1972. (New York: Dover).
Arnol’d, V.I., On an a priori estimate in the theory of hydrodynamic stability. Izv. Vyssh. Uchebn. Zaved.

Mat., 1966, 54, 3–5 (English transl.: Am. Math. Soc. Transl., Series 2, 1969, 79, 267–269).
Berloff, P., Kamenkovich, I. and Pedlosky, J., A mechanism of formation of multiple zonal jets in the ocean.

J. Fluid Mech. 2009, 628, 395–425.
Boville, B., Amplitude vacillation on a �-plane. J. Atmos. Sci. 1981, 38, 609–618.
Drazin, P.G., Non-linear baroclinic instability of a continuous zonal flow. Q. J. R. Met. Soc. 1970, 96,

667–676.
Esler, J.G., Simple models of wave packets in an equilibrated baroclinic system. J. Atmos. Sci. 1997, 54,

2820–2849.
Esler, J.G., The turbulent equilibration of an unstable baroclinic jet. J. Fluid Mech. 2008, 599, 241–268.
Esler, J.G. and Haynes, P.H., Mechanisms for wave packet formation and maintenance in a quasi-

geostrophic two-layer model. J. Atmos. Sci. 1999, 56, 2457–2489.
Gauthier, P., Effect of detuning on the development of marginally unstable baroclinic vortices. J. Atmos. Sci.

1990, 47, 999–1011.
Haynes, P.H., Nonlinear instability of a Rossby-wave critical layer. J. Fluid Mech. 1985, 161, 493–511.
Haynes, P.H., The effect of barotropic instability on the nonlinear evolution of a Rossby-wave critical layer.

J. Fluid Mech. 1989, 207, 231–266.
Killworth, P.D. and McIntyre, M.E., Do Rossby-wave critical layers absorb, reflect or over-reflect? J. Fluid

Mech. 1985, 161, 449–492.
Maslowe, S., Critical layers in shear flows. Ann. Rev. Fluid Mech. 1986, 18, 405–432.
Mu, M., Zeng, Q., Shepherd, T.G. and Liu, Y., Nonlinear stability of multilayer quasi-geostrophic flow.

J. Fluid Mech. 1995, 264, 165–184.
Pedlosky, J., Finite amplitude baroclinic waves. J. Atmos. Sci. 1970, 27, 15–30.
Pedlosky, J., On secondary baroclinic instability and the meridional scale of motion in the ocean. J. Phys.

Oceanogr. 1975, 5, 603–607.
Pedlosky, J., Finite-amplitude baroclinic waves at minimum critical shear. J. Atmos. Sci. 1982a, 39, 555–562.
Pedlosky, J., A simple model for nonlinear critical layers in an unstable baroclinic wave. J. Atmos. Sci. 1982b,

39, 2119–2127.
Pedlosky, J., Geophysical Fluid Dynamics, 1987. (New York: Springer-Verlag).
Phillips, N.A., A simple three-dimensional model for the study of large-scale extratropical flow patterns.

J. Met. 1951, 8, 381–394.
Phillips, N.A., Energy transformations and meridional circulations associated with simple baroclinic waves in

a two-level quasi-geostrophic model. Tellus 1954, 6, 273–286.
Rhines, P. and Young, W., How rapidly is a passive scalar mixed within closed streamlines? J. Fluid Mech.

1983, 133, 133–145.
Shepherd, T.G., Nonlinear saturation of baroclinic instability. Part I: the two-layer model. J. Atmos. Sci.

1988, 45, 2014–2025.
Shepherd, T.G., Symmetries, conservation laws, and Hamiltonian structure in geophysical fluid dynamics.

Adv. Geophys. 1990, 32, 287–338.
Shepherd, T.G., Nonlinear saturation of baroclinic instability. Part III: Bounds on the energy. J. Atmos. Sci.

1993, 50, 2697–2709.
Stewartson, K., The evolution of the critical layer of a Rossby wave. Geophys. Astrophys. Fluid Dyn. 1978, 9,

185–200.
Vallis, G.K., Atmospheric and Oceanic Fluid Dynamics, 2006. (Cambridge: Cambridge University Press).
Warn, T. and Gauthier, P., Potential vorticity mixing by marginally unstable baroclinic disturbances. Tellus

1989, 41A, 115–131.
Warn, T. and Warn, H., The evolution of a nonlinear critical level. Stud. Appl. Math. 1978, 59, 37–71.
Willcocks, B.T. and Esler, J.G., Nonlinear baroclinic equilibration in the presence of Ekman friction. J. Phys.

Oceanogr. 2011, doi: 10.1175/JPO-D-11-0112.

Appendix A: Switching between nondimensionalizations

In section 1, it was pointed out that both WG89 and Shepherd (1988, 1993) used a

‘‘degenerate’’ nondimensionalization of Phillips model when deriving their results,

following Pedlosky (e.g. 1987). Our view is that Pedlosky’s nondimensionalization
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makes the results of WG89 and Shepherd appear more complicated than necessary. In

particular, the fact that several important results depend primarily on a single

parameter (our �) with the other nondimensional parameter (our W ) scaling trivially, is

obscured if Pedlosky’s precedent is followed.
Nevertheless it is clearly necessary to be able to switch between the two

nondimensionalizations in order to compare results. The degeneracy in Pedlosky’s

treatment follows from introducing an additional velocity scale U0 that is distinct from

the initial upper layer velocity U, and is not defined explicitly. This additional velocity

scale allows the three nondimensional quantities

~� ¼
��L2

y

U0
, ~F ¼

1

2

L2
y

L2
D

, ~U ¼
U

U0
ðA:1Þ

to be defined, where tildes will henceforth denote quantities under Pedlosky’s

nondimensionalization. Note that the factor of two in the definition of ~F can be

traced to our definition of the internal Rossby radius LD, where (following Vallis 2006,

see his equation 5.191) our definition is the natural scale appearing in the baroclinic PV

equation. Our parameters � andW can be expressed in terms of those of Pedlosky using

� ¼
~�

2 ~F ~U
, W ¼

ffiffiffiffiffiffi
2 ~F

p
:

The above relations allow our results to be easily translated to the Pedlosky form,

provided that the dimensions of the quantity being treated are also accounted for. For

example, in our treatment, zonal mean perturbation entropy Z0/L has dimensions

L�1D U2, whereas under the Pedlosky scaling ~Z0 (which is defined as a zonal mean

quantity) has dimensions L�1y U2
0. This means that Z0=LW ¼ 2 ~F ~Z0= ~U2, which allows (24)

to be converted to

~Z0 �
1

12

4 ~�ð ~F ~U� ~�Þ 1
2 �

~�= ~F ~U � 1,

~F2 ~U2 05 ~�= ~F ~U5 1
2

(

recovering equation (5.6) of Shepherd (1988) for the perturbation enstrophy bound.
Similarly, comparing the dimensions of the zonal mean perturbation

energy here and in the Pedlosky form leads to E 0=LW ¼ ~E0= ~U2. This allows (33) to

be written

~E0 �

~�

6 ~F
~U ~F� ~�

� �
1þ

6ð ~U ~F� ~�Þ

~�ð ~Fþ 6Þ

 !
1

2
�

3

~F
� ~�= ~F ~U5 1,

1

24
~U2 ~Fþ 6
� �

05 ~�= ~F ~U5
1

2
�

3

~F
:

8>>><
>>>:

ðA:2Þ

Compared with equation (8.2) of Shepherd (1993) it is again clear that the useful bound

on the upper line is an improvement on Shepherd’s result. Applying the conversion

process in reverse to Shepherd’s (8.2) results in equation (34).
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Appendix B: Solution of the lower layer PV advection equation (17)

Here, a re-working of WG89’s solution to the lower layer PV advection equation

((17) above) is presented. Equation (17) is

@
 �Cy@x þCx@y
� �

Q ¼ 0, where C ¼ cos ðkmxÞ cos ð�y=W Þ,

and it has initial condition

Qðx, y, 0Þ ¼ �y:

Equation (17) is a homogeneous linear partial differential equation and its solution can
be obtained directly using the method of characteristics,

Qðxðx0, y0, 
Þ, yðx0, y0, 
Þ, 
Þ ¼ �y0,

where

dx

d

¼ �Cyðx, yÞ and

dy

d

¼ Cxðx, yÞ, with xð0Þ ¼ x0, yð0Þ ¼ y0: ðB:1Þ

The physical interpretation of the characteristic equations is that a fluid parcel with
coordinates (x0, y0) at 
¼ 0 has coordinates (x, y) at scaled time 
, and carries its initial

PV value with it to its new location, hence Q(x, y, 
)¼� y0. The equations (B.1) are

recognisable as Hamilton’s equations and, by analogy since it does not depend explicitly

on 
, C is easily shown to be an invariant (cf. the Hamiltonian). Physically this recovers

the fact that fluid particles in steady flow move along streamlines (C¼ constant). The

initial conditions consequently provide the identity

Cðx, yÞ ¼ cos ðkmxÞ cos ð�y=W Þ ¼ cos ðkmx0Þ cos ð�y0=W Þ ¼ C0ðx0, y0Þ: ðB:2Þ

The identity (B.2) can be used to rewrite the second equation of (B.1) as

dy

d

¼ kmm

1=2
0 1�m�10 sin2 ð�y=W Þ
� �1=2

, yð0Þ ¼ y0, ðB:3Þ

where m0 ¼ 1�C2
0 can be treated as a constant. The negative branch is taken in the

subdomain x2 [��/2km,�/2km] followed by the positive branch in x2 [�/2km, 3�/2km]
etc., i.e. the lower layer flow consists of disjoint cells as illustrated in figure 2(a).

Henceforth the focus will be on the cell (x, y)2 [��/2km,�/2km]� [�W/2,W/2], with the

full solution easily constructed from this cell using the symmetry relation

Q xþ
�

2km
, y, t

� 	
¼ Q

�

2km
� x, y, t

� 	
:

Equation (B.3) can be integrated directly, using the definitions of elliptic integrals
(e.g. Abramowitz and Stegun 1972) to give

F sin�1 m�1=20 sin
�y

W

� �� �
jm0

� �
þ
km�

W

 ¼ F sin�1 m�1=20 sin

�y0
W

� �� �
m0j

� �
, ðB:4Þ
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where

FðzjmÞ ¼

Z z

0

1

ð1�m sin2 tÞ1=2
dt

is the incomplete elliptic integral of the first kind. It is helpful to note that
m�1/2F(zjm�1)¼F(sin�1(m�1/2sin z)jm). Equation (B.4) can be used to obtain the fluid

parcel latitude y in terms of its initial position (x0, y0). Alternatively, the fact that

m¼m(�) is an invariant can be exploited, by substituting m¼ 1��2
¼ 1�

cos2(kmx)cos
2(� y/W ) for m0 in (B.4), and the initial latitude y0 can then be found in

terms of the current position (x, y). It is of course the latter result that is needed, since the

initial latitude y0 provides the solution of equation (17), through Q(x, y, 
)¼� y0.

Applying the Jacobi elliptic function sn(
jm) to (B.4), and using the following standard

identities

snðFðzjmÞjmÞ ¼ sin z, cnðFðzjmÞjmÞ ¼ cos z, dnðFðzjmÞjmÞ ¼ ð1�m sin2 zÞ1=2,

snðuþ vjmÞ ¼
snðujmÞcnðvjmÞdnðvjmÞ þ snðvjmÞcnðujmÞdnðujmÞ

1�msn2ðujmÞsn2ðvjmÞ

results directly in the solution (18) given in section 3.
Numerical quadrature of the integral in (14) is best effected by making the coordinate

transformation (x, y)! (�,m) where m(x, y) is defined above andy

�ðx, yÞ ¼
km�

W

þ F sin�1 m�1=2 sin

�y

W

� �� ����m� �
: ðB:5Þ

Applying the transformation gives

Q ¼ �
W

�
sin�1 m1=2snð�jmÞ

� �
,

y ¼
W

�
sin�1 m1=2sn

�
��

km�

W

 jm

�� 	
,

which together with the Jacobian

@ ðx, yÞ

@ ð�,mÞ
¼

W

2km�
ð1�mÞ�1=2

allows the integral in (14) to be written in the form I(z) given in (19). Note that
the limit K(m)¼F(�/2jm) in the inner integral corresponds to integrating over only

a quarter of a circulation ‘‘cell’’ defined above, with the integral over the full cell

being four times greater, since the integrand has symmetries in both x- and

y-directions.

yNote that WG89 do not explicitly define their (equivalent) variable �.

Nonlinear baroclinic equilibration 349

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 C

ol
le

ge
 L

on
do

n]
 a

t 1
4:

28
 2

7 
M

ar
ch

 2
01

4 



Appendix C: Details of the derivation of the bounds (39) and (40)

Here a few intermediate steps used to obtain the perturbation energy bounds (39) and
(40) are given. If the extremal functions (36) and (38) are inserted into the expression
(30), the following bound is obtained:

E 0 �
LW

2
1þ 2�2q�

4q�2�þ 4 1þ 1
2� �
� �

q
� �

qþ 2
�

4q2�2

ðqþ 2Þ2

� 	

þ
LW3

24

1þ 1
2� �
� �

q
� �2

qþ 2

þ
LW2

8

ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffi

qþ 2
p

2�qþ �2ðqþ 2Þ � ðqþ 2Þ2
� �2

ffiffiffi
q
p
ðqþ 2Þ2

coth
ffiffiffiffiffiffiffiffiffiffi
1
2þ

1
q

q W

2

� 	
: ðC:1Þ

The aim, as in section 3.3, is to minimize the bound with respect to (, �2, q) over the
domain R�R� (0,1). The problem is again quadratic in  and �2, hence the critical
point can be determined as function of q by solving a linear system. The solution of the
linear system is found to be

cðqÞ ¼
4�q

ffiffiffi
q
p
�

ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffi

qþ 2
p

ð1þ ð12þ �ÞqÞW coth
ffiffiffiffiffiffiffiffiffiffi
1
2þ

1
q

q
W
2

� �
ðqþ 2Þ 2

ffiffiffi
q
p
�

ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffi

qþ 2
p

W coth
ffiffiffiffiffiffiffiffiffiffi
1
2þ

1
q

q
W
2

� �� � ,

�2cðqÞ ¼
1þ ð12� �Þq
� �

4
ffiffiffi
q
p
�

ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffi

qþ 2
p

W coth
ffiffiffiffiffiffiffiffiffiffi
1
2þ

1
q

q
W
2

� �� �
ðqþ 2Þ 2

ffiffiffi
q
p
�

ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffi

qþ 2
p

W coth
ffiffiffiffiffiffiffiffiffiffi
1
2þ

1
q

q
W
2

� �� � : ðC:2Þ

Insertion of (C.2) into (C.1) leads, after some working, to equation (39).
The approximation to (39) given by (40) is found by first writing

Gðq,�,W Þ ¼ Gð1=�þ ~q, 1
2� �

2,W Þ:

The resulting expression is expanded in powers of �, and truncated at O(�3). The value
of ~q for which the truncated expression is minimized is easily shown to be ~q ¼ �JðW Þ,
where J(W ) is given in section 3. The bound (40) follows immediately.
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