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ABSTRACT

The excitation of Rossby waves on the edge of the stratospheric polar vortex, due to time-dependent
topographic forcing, is studied analytically and numerically in a simple quasigeostrophic f-plane model.
When the atmosphere is compressible, the linear response of the vortex is found to have two distinct
components. The first is a spectrum of upward-propagating waves that are excited by forcing with temporal
frequencies within a fixed “Charney–Drazin” range that depends on the angular velocity at the vortex edge
and the vortex Burger number. The second component of the response is a barotropic mode, which is
excited by forcing with a fixed temporal frequency outside the Charney–Drazin range. The relative mag-
nitude of the two responses, in terms of total angular pseudomomentum, depends on the ratio of the
horizontal scale of the forcing to the Rossby radius. Under typical stratospheric conditions the barotropic
response is found to dominate. Nonlinear simulations confirm that the linear results remain relevant to
understanding the response in cases when strongly nonlinear Rossby wave breaking ensues. It is shown that
a sudden warming, or rapid increase in vortex angular pseudomomentum, can be generated at much lower
forcing amplitudes when the barotropic mode is resonantly excited compared to when the upward-
propagating waves are excited. A numerical simulation of a “barotropic sudden warming” due to excitation
of the barotropic mode by a relatively weak topographic forcing is described.

1. Introduction

There has been greatly renewed interest in sudden
stratospheric warmings since the spectacular event in
the Southern Hemisphere of September 2002 (J. At-
mos. Sci., special issue, March 2005). Synoptically, the
sudden warming event was observed in isentropic maps
of Ertel’s potential vorticity (Newman and Nash 2005),
as well as in satellite ozone measurements (Baldwin et
al. 2003), to occur following an elongation of the polar
vortex in the lower and middle stratosphere and to cul-
minate in the vortex splitting into two parts. Although
the dynamical cause of the warming has been widely
discussed (Charlton et al. 2005; Harnik et al. 2005; Man-
ney et al. 2005), its exact nature, whether it be anoma-

lous conditions in the troposphere, preconditioning of
the vortex, or otherwise, remains obscure.

Dynamically there is a clear link between upward-
directed Eliassen–Palm (EP) flux at the tropopause
level and stratospheric warming events (Edmon et al.
1980; Dunkerton and Baldwin 1991; Polvani and
Waugh 2004). It is usually assumed that it is dynamical
forcing, due to planetary-scale Rossby waves originat-
ing in the troposphere, that generates the upward EP
flux, thereby causing the warming. However, even in
models, the relationship between measures of the dy-
namical forcing (e.g., geopotential height fields at the
tropopause level) and the upward EP flux is not well
understood. For example, the 2002 Southern Hemi-
sphere warming coincided with a strong burst of up-
ward EP flux, but Rossby wave amplitudes at the tropo-
pause level were not exceptional (see, e.g., Charlton et
al. 2005, their Fig. 10). Additionally, Scott and Polvani
(2004) provide direct modeling evidence that the con-
dition of the stratosphere may itself strongly influence
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the magnitude of the upward EP flux. The relative im-
portance of stationary and transient Rossby waves in
determining the flux is also unclear (Scinocca and
Haynes 1998). Kushner and Polvani (2005) have re-
cently highlighted a spontaneous sudden warming in a
general circulation model containing only transient
waves, whereas following Matsuno (1971), most mecha-
nistic model simulations of warmings have been forced
with stationary waves only.

Previous theories of sudden stratospheric warmings
include the “linear resonance” theory of Tung and
Lindzen (1979a,b). In their theory, which was devel-
oped initially for a �-plane channel model, sudden
warmings are anticipated to occur when a free-traveling
mode in the stratosphere comes into resonance with a
forced stationary wave. Tung and Lindzen noted the
possibility for the barotropic mode in the atmosphere
to become resonantly excited in this manner, and also
the possibility that other modes may be excited if a
vertical turning surface is present, above which the
mode in question is evanescent. As the theory is linear,
however, little insight is gained into whether, for a
given vertical mode, resonant wave growth can be sus-
tained into the nonlinear regime sufficiently long
enough to allow for a realistic warming to develop. To
begin to address this issue, Plumb (1981) extended and
developed Tung and Lindzen’s work by allowing
weakly nonlinear modification of the mean flow in the
� channel. The consequence of allowing this modifica-
tion was found to be that unbounded wave growth oc-
curred only if the stationary forcing was initially off
resonant, with the mean flow modification acting to
bring the free waves closer to resonance as they grow.
Plumb named this mechanism “self-tuning resonance,”
and its occurrence in more realistic stratospheric mod-
els has been investigated by, for example, Smith (1989).

In this paper we address the above issues by analyz-
ing a simple quasigeostrophic f-plane vortex (Dritschel
and Saravanan 1994), described in detail in section 2.
The system facilitates both analytic and numerical in-
vestigation of the relationship between the details of a
prescribed time-dependent lower boundary forcing, the
upward EP flux, and the response of the vortex itself.
Despite the idealizations made, the system retains
many important dynamical aspects of the winter polar
stratosphere, and we submit that the relationships ob-
tained here are highly relevant to the situation in the
winter polar stratosphere in both hemispheres. Argu-
ably the key strength of the model is that it allows the
relevance of linear or weakly nonlinear theories to be
assessed directly in comparison with fully nonlinear nu-
merical simulations. Unlike the situation with the
�-channel model, fully nonlinear simulations of the vor-

tex model capture what we believe to be the fundamen-
tal aspect of the nonlinear dynamics of the winter
stratosphere, namely, the dynamics associated with the
finite-amplitude distortion of a three-dimensional co-
lumnar vortex.

In what follows a linear analysis broadly analagous to
that of Tung and Lindzen (1979a) for the �-channel
model is carried out for the vortex model, although the
treatment is generalized to allow for transient forcing
with arbitrary time dependence. Emphasis is placed on
the development of linear predictions for the evolution
of quantities that satisfy nonlinear conservation prop-
erties. Hence one of the main results, described in sec-
tion 3, is the derivation of an exact analytic expression
for the time-integrated upward EP flux at the lower
boundary that is valid in the linear limit for a barotropic
vortex. The expression has two components, the first of
which may be interpreted in terms of the Charney–
Drazin theorem applied to the vortex (Charney and
Drazin 1961) and corresponds to the excitation of a
spectrum of upward-propagating waves. The second
component of the expression corresponds to the exci-
tation of a barotropic mode. Importantly, the lower
boundary EP flux is found to depend on the entire time
history of the forcing, or equivalently it depends on
both the instantaneous forcing amplitude and the cur-
rent state of the vortex itself. The analytic results are
verified using a linear numerical model in section 3, and
their relevance to the atmospheric situation is demon-
strated by considering the fully nonlinear, three-
dimensional evolution in a high-resolution numerical
model in section 4. Three-dimensional representations
of the vortex allow the physical consequences of differ-
ent forcings to be visualized. In particular, it is shown
that forcing applied near the resonant frequency of the
barotropic mode can cause the vortex to split, even at
relatively low forcing amplitudes. A numerical simula-
tion of such a vortex split, described as a “barotropic
sudden warming,” is discussed in detail. Section 6 con-
tains our conclusions.

2. Quasigeostrophic f-plane vortex model:
Formulation and background

a. Analytic formulation

The f-plane vortex model to be investigated here was
first described by Dritschel and Saravanan (1994) (see
also Fyfe and Wang 1997; Waugh and Dritschel 1999;
Wang and Fyfe 2000). In its most general configuration,
the vortex at a given vertical level is represented by an
area S (z) containing anomalously high quasigeo-
strophic potential vorticity (PV hereafter) q � f � �b �
�(z) compared with a uniform background value out-
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side S(z) where q � f � �b. Here f is the Coriolis
parameter and �b is a constant vorticity that may be
used to add a solid body rotation to the flow. The PV
distribution may be used to obtain the flow streamfunc-
tion �, and hence the horizontal velocity u � �� � �k,
by inverting the elliptical operator

q�x, z	 � f � �H
2 � �

1
� ��

f2

N2 �z�
z

� �f � ��z	 � �b x ∈ S�z	

f � �b o�w
, �1	

subject to the lower boundary condition

f�z � N2hT � 0, on z � 0. �2	

Here 
2
H is the horizontal Laplacian operator, and N is

the buoyancy frequency, which we take to be indepen-
dent of z, although this condition is easily relaxed. The
density �(z) � exp(�z /H), where H is a constant scale
height. The boundary condition (2) represents a topog-
raphy-like forcing on the lower boundary and is equiva-
lent to setting the vertical velocity in pressure coordi-
nates to zero on a material surface. See, for example,
White (1978) for a discussion of the exact topographic
boundary condition in which the physical vertical ve-
locity is set to zero on the material surface. The pres-
sure height field hT is allowed, in general, to be time
dependent so as to model the effects of forcing by tran-
sient tropospheric planetary waves.

The wind field obtained by the inversion procedure
may then be used to advect the boundary of the vortex
edge. Defining the vortex edge in cylindrical polar co-
ordinates (r, �, z) to be located at r � R(z) � (�, z, t),
the appropriate kinematic condition may be written

� �

�t
� u · ���� � r	 � 0 on r � R � �. �3	

Taken together with the inversion equation (1) and
lower boundary condition (2), Eq. (3) describes an ide-
alized dynamical model of a polar stratospheric vortex.

One important dynamical simplification owing to our
choice of model is the suppression of Rossby wave
propagation in the radial direction since Rossby waves
are confined to propagate on the vortex edge, which is
defined by a single contour. Propagation is therefore in
the vertical direction only. Based on linear analysis of
the stratospheric mean flow (e.g., Karoly and Hoskins
1982; Harnik and Lindzen 2002) it is often argued that
equatorward propagation of Rossby wave activity is im-
portant in the stratosphere. However, the surf zone sur-
rounding the vortex in midwinter is well observed to be
strongly mixed, implying that at best only very weak PV

gradients exist to support such equatorward propaga-
tion. It might therefore be argued, and indeed Swanson
et al. (1997) made a similar argument for the situation
at the extratropical tropopause, that in suppressing ra-
dial propagation we are creating a paradigmatic model
that is more (rather than less) relevant to the actual
nonlinear dynamics of the winter stratosphere.

A further important question concerns the choice of
lower boundary condition (2). As stated above, a to-
pography-like forcing at the lower boundary is used to
model transient dynamical forcing due to tropospheric
planetary wave activity, and physically the model lower
boundary is situated at the height of the tropopause. In
many mechanistic models, however, it is geopotential
height that is specified at the lower boundary, which is
equivalent to specifying � rather than �z, as here. Some
insight into the meaning of each boundary condition
can be obtained by exploiting the ideas of piecewise PV
inversion (Nielsen-Gammon and Lefevre 1996). Ac-
cording to this view, it appears sensible to associate the
flow induced by inverting the boundary anomaly with
whatever flow might be induced by tropospheric PV
anomalies lying beneath the model boundary, were
they resolved by the model. Bretherton (1966) showed
that a �z anomaly on a horizontal boundary corre-
sponds to a monopole PV anomaly concentrated at the
boundary; hence, the flow induced by a �z boundary
anomaly is similar to that obtained from a strong PV
anomaly with a relatively small vertical extent, for ex-
ample, that induced by a Rossby wave at the tropo-
pause level. By contrast, a � boundary anomaly corre-
sponds to a PV anomaly with a dipole structure in the
vertical (Dritschel and Ambaum 1997). To our knowl-
edge, large-scale PV anomalies with a dipole structure
in the vertical do not regularly occur at the tropopause
level, so for this reason we consider the �z boundary
condition (2) to be more physical. We note, however,
that lower boundaries of both types necessarily distort
the Green’s function used in the inversion of the PV
equation (1) in their immediate vicinity (Scott and
Dritschel 2005).

b. Dispersion relation and Charney–Drazin
theorem

Waugh and Dritschel (1999, WD99 hereafter) and
Wang and Fyfe (2000) have respectively presented dis-
cretized and Boussinesq versions of the linear Rossby
wave dispersion relation for the case of a barotropic
vortex (� and R both z independent). Here the near-
analogous derivation of the non-Boussinesq continuous
dispersion relation is briefly described, both as a gen-
eral background and for later use in section 3.
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Following WD99 and Wang and Fyfe, the kinematic
condition for a near-circular vortex may be linear-
ized as

� �

�t
� �e

�

�	�� � 
 � 0, on r � R, �4	

where �e � (� � �b)/2 is a constant angular speed at
the vortex edge and u � (u, �), where u and � are
azimuthal and radial velocities, respectively. The vor-
ticity jump across the vortex edge may also be related
to the vortex edge displacement, following, for ex-
ample, Swanson (2000),

��r� r�R�
r�R�

� ���. �5	

Looking for normal mode solutions of the form

� � Re�R exp� z

2H
� ik	 � imz � i�s�m	t�, �6	

with nondimensional amplitude �, integer azimuthal
wavenumber k, vertical wavenumber m, and frequency
�s(m), we first note that the normal mode streamfunc-
tion satisfies � � �R�̃(r, m, k), where the radial struc-
ture function

�̃�r, m, k	 � �Ik�B�m	r�R�Kk�B�m	� for r  R

Kk�B�m	r�R�Ik�B�m	� for r � R,
�7	

where

B�m	 �
fR

N �m2 �
1

4H2�1�2

,

and Ik and Kk are kth-order modified Bessel functions.
The dispersion relation may now be evaluated from (4),

�s�m	 � k�e � �kKk�B�m	�Ik�B�m	�. �8	

Following Charney and Drazin (1961), the dispersion
relation may be rearranged to emphasize the range of
possible forcing frequencies � that lead to the excita-
tion of vertically propagating waves with real m. These
turn out to be

k��e � �Ik�Bu�1�2	Kk�Bu�1�2	� � �s
� � � � �s

�

� �ek, �9	

where Bu is the Burger number for the vortex

Bu � B�0	�2 �
4LR

2

R2 �10	

and LR � NH/f is the Rossby radius. The vortex Burger
number clearly has a defining role in determining the
response to transient forcing. As Bu → 0, ��

s → ��
s ,

closing the “window” of available forcing frequencies.
In the Boussinesq limit Bu → �, the window is at its

widest, with ��
s → �0 defined below. For the strato-

spheric parameter values used by WD99, the Burger
number Bu � 4/9, and the range of phase speeds that
allow vertical propagation, measured at the vortex
edge, is 16.1–58.9 m s�1 for wave 1 and 27.9–58.9 m s�1

for wave 2, with 58.9 m s�1 being the azimuthal velocity
at the vortex edge. Interestingly, this means that sta-
tionary waves are evanescent in the experiments of
WD99, with vertical propagation due to transient waves
with eastward phase speeds generated during the
mountain switch on.

An advantage of using the continuous dispersion re-
lation (8), as opposed to the discretized spectrum given
by WD99, is that the vertical group velocity cg(m) �
��s /�m can be calculated for the spectrum of upward-
propagating waves [see the appendix, Eq. (A1)]. Figure
1 shows the vertical group velocity for the first four
azimuthal wavenumbers k � 1, 2, 3, and 4 using the
vortex parameter settings of WD99 (LR � 900 km, R �
3LR, H � 6.14 km, � � 0.4f, �b � �0.1f ). Note that the
maximum vertical group velocity at around 5.5 km
day�1 is approximately equal for wave 1 and wave 2,
and occurs for very long vertical wavelengths (9–14 H
� 54–84 km).

An important point that is emphasized further in sec-
tion 3 is that the vertically propagating normal modes
(6), referred to hereafter as the Charney–Drazin spec-
trum (CDS), do not form a complete set. In addition to

FIG. 1. Vertical group velocity cg versus vertical wavenumber m
(solid curve) for the first four azimuthal wavenumbers k � 1, 2, 3,
and 4. Parameter settings are as for WD99 (vortex radius R � 3LR

� 2700 km, scale height H � 6.14 km, � � 0.4f, �b � 0.4f.)
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this spectrum there is a barotropic mode with no ver-
tical dependence:

�0 � � exp�k	 � i�0t�, �0 � k�e �
�

2
.

In this case �0 � �R0�̃0 with

�̃0 �
1

2k �� r

R�k

for r  R

�R

r �k

for r � R
. �11	

Note that the frequency of this mode �0 is distinct from
the Charney–Drazin frequency range [��

s , ��
s ], pro-

vided the atmosphere is compressible (as opposed to
Boussinesq, with Bu → �). At the WD99 parameter
settings, frequency �0 corresponds to phase speeds at
the vortex edge of �19.6 m s�1 for wave 1 and 19.6
m s�1 for wave 2. In sections 3 and 4 we will demon-
strate that in a realistic compressible atmosphere the
barotropic mode plays a major role in the dynamical
response of the vortex to transient forcing.

c. Wave activity conservation and the
Eliassen–Palm flux

Dritschel and Saravanan (1994) derived a nonlinear
angular pseudomomentum conservation relation for
the general f-plane vortex model by considering the
conservation of total angular impulse

J �
1
2 � ��z	r2q�X, t	 d3X. �12	

By subtracting the angular impulse of the undisturbed
vortex and considering the situation at fixed z (see also
Wang and Fyfe 2000) a wave activity conservation re-
lation of the form

�A

�t
�

�F

�z
� 0 �13	

may be derived. In this equation

A�z, t	 �
1
8

��z	��z	 �
C�z	

�x2 � y2	�x dy � y dx	

�
�

4
��z	��z	R�z	4

�
1
8

��z	��z	 �
0

2�

��R � �	2 � R2�2 d	 �14	

can be interpreted as a wave activity, and

F�z, t	 �
f2

N2 �
0

2� �
0

�

��z	
��

�	

��

�z
r dr d	 �15	

as its vertical flux. Note that the final equality in (14)
holds only when the vortex is not displaced over the
pole, that is, when  is well defined. The vertical flux
F(z, t) is recognizable as the horizontal integral of the
vertical component of the Eliassen–Palm flux for this
model (e.g., Edmon et al. 1980). As Wang and Fyfe
(2000) have shown for the Boussinesq case, a mono-
chromatic vertically propagating wave F satisfies a
group velocity condition:

F � cgA, �16	

where the vertical group velocity cg � ��s /�m. An ex-
plicit proof of this identity, expanding on that given by
Wang and Fyfe, is given in the appendix.

Defining A to be the vertical integral of A(z, t), inte-
gration of (14) with respect to z reveals that

dA

dt
� F �0, t	; �17	

that is, the rate of change of A is proportional to the
upward EP flux integrated over the lower boundary. A
further related dynamical quantity is the azimuthal
mean angular momentum

M � � �ru d3X, �18	

where the overbar denotes azimuthal mean. Integrating
the angular impulse equation by parts reveals that

d

dt
�M � A	 � 0. �19	

The sum of angular pseudomomentum and momentum
therefore remains constant, even under the action of
time-dependent topographic forcing at the lower
boundary. A positive lower boundary EP flux therefore
acts to transfer angular momentum to angular pseudo-
momentum, and it follows that the rate of change of M
is also related to the lower boundary EP flux through
dM /dt � �F(0, t). Because the lower boundary EP flux
determines important aspects of the vortex develop-
ment, that is, the evolution of A and M, a theoretical
understanding of its dependence on the details of the
transient lower boundary forcing is central to the dy-
namics of the problem. In section 3 we develop an ana-
lytic expression for the time-integrated lower boundary
EP flux

F � �
��

�

F�0, t	 dt

in the linear wave limit for a barotropic vortex forced
by an arbitrary time-dependent pulse, and in section 4
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we compare this prediction with the results of nonlinear
integrations of a numerical model of the vortex.

3. The lower boundary Eliassen–Palm flux

a. Forcing with general time dependence

To facilitate the calculation of the time-integrated
lower boundary EP flux F in the linear limit, it is as-
sumed that the vortex is forced with a finite pulse at the
lower boundary of the form

hT�r, 	, t	 �
h

2
T�t	Jk�lr	 exp�ik		. �20	

To further aid the mathematical development below,
note also that we may express the time evolution func-
tion T(t) in terms of its Fourier transform

T�t	 � �
��

�

T̂��	 exp��i�t	 d�.

A more general lower boundary forcing might be con-
structed by summing over azimuthal wavenumbers k
and integrating over different values of l in the Bessel
function argument (i.e., creating a “Bessel function
transform” of the topography). The parameter l essen-
tially assumes the role of a radial wavenumber in the
cylindrical geometry.

To determine the EP flux it is helpful to separate the
flow into a topographic and response component, that
is, � � �T � �R and q � qT � qR, which are defined as
follows:

• The topographic component, denoted by subscript T,
satisfies the lower boundary condition,

N2hT � f�Tz � 0, on z � 0, �21	

but has zero PV everywhere in the interior; that is,
qT � 0.

The response component, denoted by subscript R,
satisfies the homogeneous lower boundary condition
�Rz � 0 on z � 0, but has a PV distribution in the
interior identical to that of the vortex

qR�x	 � �f � ��z	 � �b, x ∈ S�z	

f � �b, o�w.

Dividing the flow into these two components means
that the kinematic equation (4) for the vortex edge can
be written as a forced equation,

� �

�t
� �e

�

�	��R � 
R � 
T on r � R, �22	

where the azimuthal velocity � is obtained from the
streamfunction using � � �(1/r)��. The topographic
component of the flow can be considered to play a
similar role to the “forced stationary wave” in the theo-
ries of Tung and Lindzen (1979a,b) and Plumb (1981),
although the mathematical treatment here is not ex-
actly analogous.

The topographic streamfunction is obtained by in-
verting (1) for zero PV subject to (2), giving

�T �
fLR

2 h

H�2�H � 1	
Jk�lr	

� �
��

�

T̂��	 exp� z

2H
� �z � ik	 � i�t� d�,

with

�2 �
N2l2

f2 �
1

4H2 .

If this is to be used to force Eq. (22), it is convenient to
express it in terms of the normal modes of the unforced
problem (4) that satisfy the homogeneous lower bound-
ary condition �z � 0 on z � 0. Applying an appropriate
Fourier transform to exp(��z),

�T �
fLR

2 h

H
Jk�lr	 �

��

�

T̂��	 exp� z

2H
� ik	 � i�t�

� � 1

2LR
2 l2

exp��
z

2H�
�

2
� �

0

�

�̂T�m	 cos�mz � ��m	� dm	 d�, �23	

where

�̂T�m	 �
m

�1 � 4m2H2	1�2��2 � m2	
and

tan��m	 �
1

2mH
.

One important point to note is the presence of a baro-
tropic mode component in the Fourier transform (first
term inside the curly brackets). The barotropic mode
component has no z dependence and excites the baro-
tropic mode response that is discussed below.

Writing the topographic streamfunction in the form
(23) allows the response disturbance field R to be cal-
culated from (22),
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�R �
kfLR

2 hJk�lR	

RH �
��

�

T̂��	 exp� z

2H
� ik	 � i�t�� exp��z�2H	

2LR
2 l2�� � k�e � ��2	

�
2
� �

0

� �̂T�m	 cos�mz � ��m	�

� � k�e � �kIk�B�m	�Kk�B�m	�
dm	 d�. �24	

The asymptotic behavior of the � integral in (24)
may be determined for the limit t → � using standard
complex methods, given some appropriate constraints
on the analyticity of the topography Fourier trans-
form T̂(�). The constraints necessary for the integral
to converge are essentially equivalent to requiring
the forcing to decay at large times. Causality is satisfied

by making the transformation � → � � i� and then
allowing � → 0 (e.g., Lighthill 1967). This has the ef-
fect of moving the singularities in the integrals into
the lower half of the complex plane and is consistent
with R → 0 as t → ��. The following expression for
the long-time behavior of the vortex edge is then ob-
tained:

�R �
kfLR

2 hJk�lR	

RH � �

LR
2 l2 T̂��0	i exp�ik	 � i�0t	

� 4 �
0

�

T̂ ��s�m	��̂T�m	 cos�mz � ��m	�i exp� z

2H
� ik	 � i�s�m	t� dm	, �25	

where �0 and �s(m) are the barotropic mode frequency
and the Charney–Drazin dispersion relation, as defined
in section 2.

The orthogonality of the spectrum of vertical modes,
including with respect to the barotropic mode, may be
exploited in order to evaluate an expression for the
total wave activity A in the limit t → �, by integrating
A � �2�

0 ��R22
R/2 d� with respect to z. Recalling that

the time-integrated lower boundary EP flux F and the
change in the azimuthal mean angular momentum M
are related,

F � A |t�� � ��M |t�� � M |t���	,

an expression for F is obtained:

F � F0 � FCDS � �2k2f2h2Jk�lR	2��� |T̂��0	|
2

2Hl4

�
4LR

4

H2 �
0

�

|T̂ ��s�m	�|2�̂T�m	2 dm	 . �26	

The flux in (26) is divided into two parts, the first term
in the brackets being the part of the EP flux F0 that
contributes to the excitation of the barotropic mode,
and the second part FCDS contributes to the excitation
of waves within the Charney–Drazin upward-propa-
gating spectrum. The expression (26) is valid for gen-
eral time-dependent topographic forcing of the form
(20).

The fact that F(0, t) � 0 whenever hT(t) � �Tz(0, t)
� 0 means that (26) can be exploited to obtain explicit

expressions for the time evolution of the lower bound-
ary EP flux. The integrated flux up to a given fixed time
� t

0 F(0, t̃ ) dt̃ may be evaluated by replacing |T̂(�)|2 in
(26) by |T̂*(�, t)|2, where

T̂*��, t	 �
1

2� �
��

t

T�t̃ 	 exp�i�t̃ 	 dt̃. �27	

From this, an expression for the lower boundary flux
F(0, t) is obtained by straightforward differentiation
with respect to t. Explicitly, F(0, t) can be evaluated
by replacing |T̂(�)|2 in (26) by T(t)[T̂*(�, t) exp(�i�t)
� c. c.].

One important point about these expressions for the
lower boundary EP flux is that they are nonlinear in the
lower boundary forcing. In particular, F(0, t) is not pro-
portional to T(t)—the function that describes the time
evolution of the forcing—but also involves an expres-
sion including T̂*(�, t), which is a functional depending
on the history of T(t) up to that particular time. At least
in this linear limit, therefore, the flux F(0, t) cannot be
said to be determined instantaneously by the forcing. It,
rather, depends on an interaction between the forcing
and the state of the vortex itself, with the state of the
vortex being determined by the time history of the forc-
ing.

b. Impulsive forcing

Insight into the linear response of the vortex may be
obtained by considering an impulsive topographic forc-
ing with the form
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hT �
h

2
��t	Jk�lr	 exp�ik	�.

In this case, T̂(�) � 1; that is, the forcing is not biased
toward any particular frequency. The vortex response
to impulse forcing therefore provides a useful measure
of the typical relative magnitudes, in terms of pseudo-
momentum, of the barotropic and Charney–Drazin
spectrum responses, as well as a way of objectively com-
paring the response to forcing at different frequencies
within the Charney–Drazin limits given by (9).

Considering the Charney–Drazin spectrum in detail
first, we note that the expression for FCDS in Eq. (26)
may alternatively be written as an integral in �,

FCDS � �
�s
�

�s
�

|T̂��	|2F̃��	

cg�ms��	�
d�, where

F̃��	 �
4�2Jk�lR	2k2f2LR

4 �h2

H2 �̂T�ms��	�2.

Here ms(�) is the inverse of the dispersion relation (8)
and cg(m) is the vertical group velocity (see the appen-
dix). The function F̃(�) is a measure of the contribution
from each frequency � to both the final wave activity
and the change in azimuthal mean angular momentum
of the vortex. Expressing FCDS in this form also makes
it explicit that transient forcing at frequencies outside
the Charney–Drazin range [��

s , ��
s ] and away from the

barotropic frequency �0 does not lead to excitation of
Rossby wave activity on the vortex.

Figure 2 shows F̃(�) for zonal wavenumbers k � 1, 2,
3, and 4 for two fixed values of the forcing scale lR,
which correspond to the “vortex scale” and “hemi-
spheric scale” forcing (see also section 4). The vortex
forcing (with lR � 2.427) is so called because the peak
amplitude of the topographic forcing for k � 2 occurs at
a distance (3398 km) comparable to the vortex radius
(2700 km). By contrast, the hemispheric forcing (lR �
1.162) has peak amplitude at 7214 km (again for k � 2).
Vortex parameters are again as for WD99. Also plotted
on the frequency axis are the barotropic frequencies for
k � 1, 2, 3, and 4 (symbols). In the case of the vortex
scale forcing, and for an impulsive forcing with fixed
magnitude, it is notable that the largest amplitude vor-
tex excitation is for azimuthal wavenumber k � 2, and
for forcing frequency much closer to the lower limit of
the Charney–Drazin range than the upper limit. The
vortex response, in terms of angular pseudomomentum,
falls away rapidly with increasing wavenumber. For the
hemispheric scale forcing, azimuthal wavenumber 1
provides the dominant response, and is several times
larger than the response due to the vortex-scale forcing.
This is despite the fact that the height of the hemi-
spheric-scale forcing is substantially lower at the vortex
edge (although the peak topographic amplitude is, of
course, the same in each case). Rossby waves with low
azimuthal wavenumbers are thus preferentially excited
by forcing with radial scale comparable to or greater
than the vortex radius.

An important question concerns the relative magni-
tudes of the barotropic and Charney–Drazin responses.

FIG. 2. Nondimensional contribution to lower boundary EP flux F̃ (�)H/h2f 2R2 due to lower boundary topographic forcing at
different angular frequencies �F /�k for azimuthal wavenumbers k � 1, 2, 3, and 4. Points on the frequency axis show the resonant
frequencies of the barotropic mode for k � 1, 2, 3, and 4; these frequencies give a singular response: (a) Vortex-scale (VS) (lR � 2.427)
and (b) hemispheric-scale (HS) (lR � 1.162) forcing.
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Defining

R �
F0

FCDS

to be the ratio of angular pseudomomentum imparted
to the barotropic mode to that imparted to the Char-
ney–Drazin spectrum, it can be shown by direct inte-
gration of FCDS in (26) that in the case of impulsive
forcing

R �
�4LR

2 l2 � 1	1�2��4LR
2 l2 � 1	1�2 � 1�2

4LR
4 l4 . �28	

Some important aspects of this expression include
that

• the ratio R depends only on the relative scale of the
lower boundary forcing and the Rossby radius, as
quantified by the nondimensional number LRl. In
particular, R is independent of the azimuthal wave-
number k, as well as any details of the vortex itself.

• the values of R for the vortex- and hemispheric-scale
forcing are approximately 9.35 (for LRl � 0.809) and
76.00 (for LRl � 0.387), respectively, that is, signifi-
cantly greater than unity in both cases. This means
that for any large-scale transient forcing, with a wide
distribution of frequencies, one would expect the
dominant contribution to the lower boundary EP flux
to be associated with the barotropic mode.

c. Forcing at fixed frequency: The switch-on
problem

A contrasting limit to the limit of impulsive forcing
described above is that of forcing at a fixed frequency
switched on at t � 0. Tung and Lindzen (1979a) re-
stricted attention to forcing at the stationary wave fre-
quency (�F � 0) in their study of the � channel. Results
analogous to Tung and Lindzen’s may be derived for
the three-dimensional vortex using Eq. (26) in conjunc-
tion with (27), with T̂* calculated for a lower boundary
forcing that is switched on at t � 0 and evolves peri-
odically in time with a fixed frequency �F thereafter.

For the case of a fixed frequency, constant amplitude
forcing switched on at t � 0,

|T̂*��, t	|2 �
 1
2� �

0

t

exp�i�� � �F	t� dt̃
2

�
1 � cos�� � �F	t

2�2�� � �F	
2 .

This result may be used in conjunction with Eq. (27) to
yield an expression for the evolution of the integrated
EP flux up to time t. Of particular interest is the case
where the barotropic mode is forced resonantly; that is,

�F � �0. In this case, the time-integrated EP flux asso-
ciated with the barotropic mode is

� t

F0�0, t̃ 	 dt̃ � �k2f2h2Jk�lR	2�
t2

8Hl4 . �29	

This result shows that the total angular pseudomomen-
tum associated with the barotropic mode grows qua-
dratically in time; hence, the wave amplitude of the
barotropic mode grows linearly in time when it is forced
resonantly. This is consistent with Eq. (60) of Tung and
Lindzen (1979a), which states that, in the case of the �
channel, the northward heat flux associated with the
barotropic mode grows linearly in time when it is forced
resonantly. The angular pseudomomentum of the ver-
tically propagating waves, with frequencies in the Char-
ney–Drazin spectrum, may easily be bounded in this
case using the result that

|T̂*��, t	|2 �
1

�2�� � �F	
2 ,

which upon using it is straightforward to show that

�
0

t

FCDS�0, t̃ 	 dt̃

�
0

t

F0�0, t̃ 	 dt̃

�
1

t2��s
� � �0	

2R
, �30	

where R is as given in (28). This result shows that, for
typical stratospheric vortex parameters, at times t �

1/(��
s � �0) (�1.5 days for the parameters used above)

the angular pseudomomentum is dominated by the con-
tribution of the barotropic mode rather than the propa-
gating waves.

Naturally the linear phase where wave amplitudes
grow linearly in time cannot be sustained, and a full
analysis of the switch-on problem at near-resonant fre-
quencies requires nonlinearity to be considered, follow-
ing Plumb (1981). Below, we restrict attention to finite
transient pulses of topographic forcing in order to ex-
amine linear theory and test its relevance to the full
nonlinear vortex model.

d. Comparison with linear numerical model results

To both verify the analytic results above, test the
extent to which the results apply to a barotropic vortex
of finite height (as opposed to a semi-infinite vortex),
and ensure that the vertical resolution used in the non-
linear model below adequately resolves a continuous
vortex, we employ a linear numerical model similar to
that described in WD99 (see section 4a of WD99 for a
detailed description of the numerical algorithm). The
formulation of the linear model necessarily differs from
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the analytic formulation described above as the domain
is made finite with a vertical lid set at D � 12H (73.68
km), and the vortex is discretized in the vertical with N
levels. The boundary condition on the upper boundary
is �z � 0 on z � D. The linear model may be used to
obtain a discrete set of N vertical structure eigenmodes,
together with N eigenfrequencies. In the case of the
barotropic vortex the lowest eigenfrequency corre-
sponds to the frequency of the barotropic mode �0

above, and the remaining N � 1 eigenfrequencies cor-
respond to the Charney–Drazin frequencies �s(mn) for
the vertical wavenumbers mj � j� /D, 1 � j � N � 1.
The expression for FCDS must, therefore, be replaced by
a summation

FCDS ��
j�1

�

|T̂��s�mj		|
2�̂T�mj	

2�m, �m �
�

D
.

Further, this expression will only be accurate for a vor-
tex of finite height, provided D is large enough that
exp{�(� � 1/2H)D} � 1, which holds to a good ap-
proximation for topographic forcing on the planetary
scale or below, when D � 72 km, as here.

To test the analytic prediction (26) the linear numeri-
cal model is forced with a pulselike forcing with ampli-
tude describing a Gaussian evolution in time and with a
constant angular speed �F /k:

hT�r, 	, t	 �
h

2
Jk�lr	 exp��� t

��2

� ik	 � i�Ft	. �31	

The parameter  is the time scale over which the lower
boundary forcing grows and decays. This topographic
forcing may be expressed in the form (20) with

T̂��	 �
�

2!�
exp�� �2�� � �F	

2

4 	. �32	

The linear model was integrated from t � �10 to �10
days, using 200 time steps per day and with parameters
k � 2, lR � 2.427 (vortex-scale forcing) and  � 2 days.
Four separate angular speeds for the topographic forc-
ing are considered: �F /k � 0.025, 0.125, 0.225, and
0.325� (corresponding to azimuthal velocities of 3.9,
19.6, 35.3, and 51.1 m s�1 at the vortex edge, respec-
tively). At the resolution N � 120, corresponding to
that of the nonlinear numerical model described below,
we were able to obtain the correct frequency for the
first five vertical modes to within an accuracy of 0.5%.
This accuracy was significantly improved when a higher
vertical resolution was used.

Figure 3 shows a comparison between the actual and
predicted nondimensional pseudomomentum spectra
of the upward-propagating vertical modes, with the dis-
crete points showing the amplitude of the results from

the linear model, and the curves the predictions from
(26). Based on the dispersion relation (8), it might be
expected that forcing concentrated at frequencies near
the upper limit of the Charney–Drazin range ��

s �
0.375�k will primarily lead to excitation of short waves,
and forcing around ��

s � 0.178�k will primarily lead to
excitation of long waves. In addition, the maximum re-
sponse in terms of pseudomomentum should arise from
forcing at frequencies corresponding to the peak of the
k � 2 curve in Fig. 2a, at �F � 0.225�k. This is, indeed,
what is found, as the �F /k � 0.325� experiment (dia-
monds) excites a spectrum dominated by relatively
short waves (mH � 1–1.5), the �F /k � 0.225� experi-
ment (squares) elicits the largest amplitude response,
with mH � 0.5–1, and the �F /k � 0.125� case (tri-
angles) excites longer waves with lower amplitudes. In
the final experiment (stars) �F � 0.025�k � ��

s , and
there is very little excitation of the upward propagating
spectrum.

The angular pseudomomentum of the barotropic
mode at the end of each calculation agreed with the
prediction F0 to within 0.5% accuracy in all cases ex-
amined. The ratio of the final barotropic pseudomo-

FIG. 3. Nondimensional angular pseudomomentum spectra
F̃ [�s(m)]H/J0 h2 as a function of vertical wavenumber m as pre-
dicted by linear theory for a transient Gaussian pulse of the form
(31) for different peak forcing frequencies �F /k � 0.025� (stars),
0.125� (triangles), 0.225� (squares), and 0.325� (diamonds). The
symbols correspond to the result of the equivalent linear model
calculations with a lid at D � 12H � 73.68 km; hence, only a
discretized set of wavenumbers is available.
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mentum to the total pseudomomentum (F0 /FCDS)
ranged from 0.0102 (�F /k � 0.325�), 1.571 (�F /k �
0.225�), 57.14 (�F /k � 0.125�), to 1110.1 (�F /k �
0.025�) for the four linear experiments.

4. Nonlinear model results

a. Nonlinear numerical model formulation

Below, the results from a series of integrations of a
nonlinear numerical model of the f-plane vortex are
described. The model employs the contour advective
semi-Lagrangian (CASL) algorithm (Dritschel and
Ambaum 1997) to solve Eqs. (3) and (1) in a circular
cylindrical domain together with the lower boundary
condition (2), an upper boundary condition �z � 0 on z
� D, and the no normal-flow condition �� � 0 on the
outer wall. Full details are given in Macaskill et al.
(2003). The model is used in a similar formulation to
that described by Scott et al. (2004) except that we set
the vertical domain size D � 12H (73.68 km), use 120
model levels, and choose a radial domain size of 30LR

(�10R). The vortex is discretized at each level by rep-
resenting the vortex edge by a single circular contour
made up of discrete points or nodes. The initial node
density is 51 nodes per contour, except where stated
otherwise below. The streamfunction is obtained from
the PV by inverting Eq. (1) on a grid of 96 radial and
192 azimuthal points, although a grid with 4 times this
density is used to store the PV during the integration.

The presence of an outer boundary at the cylinder
edge also imposes a constraint on the horizontal scale
of the lower boundary pulse described in section 3 be-
low. In order for the analysis of section 3 to apply in the
case of the cylinder we require Jk(10lR) � 0; that is, the
height of the topographic lower boundary pulse must
vanish at the outer boundary. This imposes constraints
on the possible values of l. For an azimuthal wavenum-
ber k � 2, we choose lR � 1.162 (referred to as hemi-
spheric-scale forcing below) and lR � 2.427 (vortex-
scale forcing). These choices ensure that the third and
seventh zeroes of J2 respectively coincide with the outer
boundary.

b. Background and experimental setup

Linear theory predicts that the amplitude of an up-
ward-propagating wave grows exponentially with height
� exp(z /2H). Considering the case of an initially local-
ized pulse of wave activity on a semi-infinite vortex, no
matter how small the initial pulse, at high altitudes the
waves will grow to have an amplitude comparable to
the vortex radius R, and nonlinearity will become im-

portant. Linear theory therefore clearly predicts its own
breakdown, and there is an obvious question concern-
ing its relevance to the nonlinear situation. However, it
might be expected that in response to a pulse of tran-
sient forcing, most of the wave activity A(z, t) will be
initially excited near the lower boundary. At the lower
boundary the relatively high density means that the
vortex is less easily deformed, and linear theory may
therefore often be accurate. Subsequently, the wave ac-
tivity may be conservatively redistributed in the vertical
according to (13), but in the absence of dissipation the
total wave activity A will not be changed from its initial
value—even in the event of strong nonlinearity and
wave breaking. Following this argument, the expression
(26) for F � A|t�� might be expected to be accurate
even at moderate forcing amplitudes—a hypothesis
that is tested in detail below.

In the main set of numerical experiments using the
nonlinear model, we use a barotropic vortex with pa-
rameter settings as in WD99. The vortex is forced in
each case with a transient topographic lower boundary
forcing of the form (31). The model is run from t � �5 
to t � 5 in order that the forcing amplitude is insig-
nificant both at the beginning and also by the end of the
experiment, so the late model state is a good approxi-
mation for the state at t � �. The parameters h, �F, l,
and  are varied independently between model runs
with the topographic forcing amplitude h � 0.05H,
0.1H, 0.2H, or 0.4H, and the forcing frequency being
varied between �F � �0.125�k and 0.375�k, with in-
tervals of 0.025�k. The radial wavenumber is set to l �
1.162R�1 hemispheric-scale forcing or 2.427R�1 vortex-
scale forcing, and the pulse time scale is set to  � 2 or
4 days. For every experiment reported here the azi-
muthal wavenumber k � 2. As will be discussed below,
almost all of the experiments result in nonlinear wave
breaking and strongly nonlinear development of the
vortex at some level (the exceptions being those experi-
ments with h � 0.05H and �F " �0.075�k).

c. Vortex response in terms of wave activity

Results from the  � 2 days vortex-scale (VS) (lR �
2.427) forcing set of experiments are summarized in
Fig. 4. The final nondimensional angular pseudomo-
mentum A |t��H2 /J 0h2 (A |t�� � F) is plotted against
forcing frequency �F /�k for the four separate forcing
amplitudes. Because we have scaled with h2, the results
can be compared directly with the linear theory predic-
tions of (26) (solid curve). Before considering the non-
linear results it is interesting to compare the full linear
response F (solid curve) with the linear barotropic re-
sponse F0 (dotted curve). It is clear that the barotropic
response is, by far, the dominant component of F at
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most forcing frequencies, and the peak linear response
occurs at the barotropic mode frequency �0. The pre-
dicted Charney–Drazin spectrum response FCDS, by
contrast, dominates only for frequencies close to ��

s

(see inset) and much less angular pseudomomentum is
generated by forcing in this frequency range, as might
be anticipated by the large value of R � 9.35 associated
with the structure of the lower boundary forcing [Eq.
(28)].

Comparing the linear prediction with the nonlinear
predictions for increasing forcing amplitudes for the h
� 0.05H set, the linear prediction is fairly accurate ex-
cept for around a 10% shortfall in forcing amplitude
and a suggestion of a slight frequency shift in the peak
response toward lower frequencies. As the forcing am-
plitude is increased, the frequency shift in the peak

response also increases, as does the shortfall in the pre-
dicted amplitude.

Figure 5 shows the  � 2 days hemispheric-scale (HS)
(lR � 1.162) forcing set of experiments. Comparing the
linear predictions, the main difference with the VS set
is that the barotropic response dominates to an even
greater extent, with the two curves almost indistin-
guishable except for frequencies near ��

s . This is con-
sistent with the higher value of R � 76 from Eq. (28).
The amplitude of the maximum response, for the same
forcing amplitude, is also greater than that for the VS
case. In the nonlinear experiments, as the amplitude is
increased, an increasing frequency shift of the response
toward lower-frequency forcing is apparent, as with the
 � 2 days VS set. However, unlike the VS set, the
maximum predicted amplitude of the response remains

FIG. 4. The linear prediction (solid line) and the nonlinear numerical model results (points)
for nondimensional angular pseudomomentum, or equivalently time-integrated lower bound-
ary EP flux FH 2/h2 J0, versus peak forcing angular frequency �F /�k for a Gaussian pulse of
the form (31) with  � 2 days. Different symbols correspond to different topographic forcing
amplitudes h � 0.05, 0.1, 0.2, and 0.4. The azimuthal wavenumber k � 2 and the forcing has
the VS (corresponding to lR � 2.427). The inset shows a magnification of the right-hand side
of the graph, showing the behavior when the peak forcing frequency is in the Charney–Drazin
range. The dotted line shows the linear prediction for the barotropic mode only. Note that the
experiments discussed in connection with Fig. 7 are marked as solid diamonds labeled 7.1, 7.2,
7.3, and 7.4.
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approximately constant with forcing amplitude. The
frequency shift that is apparent in both sets of experi-
ments might be explained by a weakly nonlinear theory
(e.g., Plumb 1981), as the mean angular velocity at the
vortex edge �e is likely to be reduced by the topo-
graphic forcing, thereby reducing the resonant fre-
quency of the barotropic mode. The reduction in am-
plitude of the response with increasing forcing ampli-
tude in the VS set of experiments might be explained by
the structure of the Bessel function topographic forc-
ing. With the VS forcing, there is a valley located
around 2.12R, so once the vortex becomes significantly
distorted its outer edges experience weaker effective
forcing, whereas with the HS forcing there is no valley
near the vortex.

The influence of forcing amplitude on the response
can be seen clearly if the evolution of the wave activity
A(z, t) is examined in height and time. The group ve-
locity condition (16) suggests that wave activity associ-
ated with upward-propagating waves should radiate up-
ward with vertical velocity cg. The wave activity asso-
ciated with the barotropic mode, by contrast, decays
exponentially with height according to exp(�z /H),
which is easily seen by inserting the barotropic mode

structure in Eq. (14). In Fig. 6 we compare results from
the �F � 0.225�k,  � 2 days VS set of experiments
with a calculation from the linear model with the same
forcing. At the forcing frequency in these experiments
(�F � 0.225�k), both vertically propagating waves and
the barotropic mode are excited. Examining the linear
response in Fig. 6a, a strong upward-propagating pulse
with the expected group velocity (see Fig. 1) of around
5.5 km day�1 is observed, and later in the integration it
is clear there is also a vertically decaying component to
the response. It is also important to note that the topo-
graphic velocity field �T excites both upward- and
downward-propagating waves [consider how the verti-
cal structure of �T decomposes into terms � exp(z /2H
� imz) and terms � exp(z /2H � imz)] as well as a
barotropic response. This explains the interference pat-
terns in A(z, t) that are apparent once the topographic
forcing has died away.

The low-amplitude nonlinear experiments (Fig. 6b
and also Fig. 7b2) behave in a very similar fashion to
the linear experiments except that wave activity cannot
propagate far beyond heights where A(z, t) is compa-
rable to ���R4/4. At this height, wave amplitudes must
be comparable to the vortex radius, indicating that non-

FIG. 5. As in Fig. 4, but for the HS (lR � 1.162) forcing.

OCTOBER 2005 E S L E R A N D S C O T T 3673



linear wave breaking and the eventual breakdown of
the vortex must occur. In those experiments with stron-
ger forcing Figs. 6c and 6d the evidence for upward
propagation is weaker, with absorption of wave activity
occurring at much lower heights, and with the response
in Fig. 6d in particular appearing to be almost purely
barotropic.

d. Temporal evolution of the response

It is also of interest to examine in detail the response
of the vortex to forcing at different frequencies �F

while the forcing amplitude and other parameters are
kept constant. Figure 7, therefore, shows results from
the h � 0.1H,  � 2 days VS forcing set of experiments
with each set of panels corresponding to a different
forcing frequency �F. The left-hand set of panels, (A1)–
(C1), shows results from the �F � 0.325�k experiment,
(A2)–(C2) the �F � 0.225�k experiment, (A3)–(C3)
the �F � 0.125�k experiment, and (A4)–(C4) the �F �
0.025�k experiment. The upper panels in Fig. 7 show a
snapshot of the vortex 8 days after the peak amplitude
of the lower boundary forcing. The middle panels show
the evolution of A(z, t), as in Fig. 6, and the lower
panels show the change in the azimuthal mean winds
from the beginning to the end of the integration. In the
first experiment to be considered, with �F � 0.325�k,
the forcing frequency is near the upper end of the Char-
ney–Drazin range (��

s � 0.375�k). As a result, linear
theory suggests that a spectrum of relatively short
wavelength upward-propagating waves are excited (see
curve with diamonds in Fig. 3). These short waves can
clearly be observed on the vortex, forming a left-
handed corkscrew pattern on the vortex edge, and
eventually reaching amplitudes large enough to cause
wave breaking at the top of the vortex. From Fig. 1,
short waves (mH � 1.25, where the “diamonds” curve
in Fig. 3 is maximum) would be expected to have up-
ward group velocity of around 4 km day�1, and this
appears to be a slight overestimate of the velocity as-
sociated with the upward-propagating wave activity in
(B1) where the arrow denotes 3 km day�1. At the end
of the integration, the azimuthal mean wind has been

←

FIG. 6. Evolution of nondimensional wave activity A(z, t)H/h2J0

in time t and height z for the set of experiments with � � 0.225�k,
 � 2 days, and VS (lR � 2.427) forcing: (a) linear model; and
nonlinear model with (b) h � 0.05H, (c) h � 0.2H, and (d) h �
0.4H. Contour intervals are 0.004 and 0.04 with two different con-
tour intervals being used to allow different regimes to be com-
pared (see also Fig. 7). Note that the intermediate h � 0.1H case
can be seen in (B2) in Fig. 7.

3674 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 62



significantly decelerated in the vicinity of the vortex
edge in the upper half of the vortex only.

Comparing the �F � 0.225�k and �F � 0.325�k ex-
periments, linear theory suggests that in the former
case the lower value of forcing frequency �F should
lead to the excitation of a larger-amplitude upward-
propagating spectrum dominated by longer waves
(curve with squares in Fig. 3). The snapshot in panel
(A2) of Fig. 7 shows that longer waves have indeed
been excited and have led to a deeper wave breaking
event enveloping the upper part of the vortex. The
longer waves can be seen in panel (B2) to have a higher
group velocity (arrow denotes 5 km day�1) than the
short waves excited in the W325 experiment. Another
difference with the �F � 0.325�k experiment is that the
base of the vortex is slightly elliptical (the vortex re-
turns to being almost exactly circular by the end of the
�F � 0.325�k experiment), indicating that there is some
excitation of the barotropic mode. Changes in the azi-
muthal mean wind, however, are once again largely
confined to the upper half of the vortex.

In the �F � 0.125�k experiment, for which the peak
forcing frequency equals the frequency of the barotro-
pic mode (�F � �0), excitation of the barotropic mode
is more evident compared with �F � 0.225�k. In Fig. 7
(A3) shows that the vortex is once again enveloped by
a deep wave breaking event, consistent with the long
linear wave spectrum predicted in Fig. 3 (curve with
triangles). The main difference with (A2) is that the
base of the vortex is strongly elliptical, owing to stron-
ger excitation of the barotropic mode (the eccentricity
at the vortex base is, in fact, 0.829 compared with
0.526). The exponentially decaying signature of the
barotropic mode dominates the evolution of A(z, t),
although some upward propagation is still apparent at a
group velocity of around 4.5 km day�1, approximately
the group velocity of the longest waves on the vortex.
The barotropic mode is also clearly seen in the azi-
muthal winds, with a reduction of over 10 m s�1 that is
apparent at all heights.

Finally, in the �F � 0.025�k experiment, because
�F " �0, linear theory predicts that there is barely any
excitation of the upward-propagating spectrum (curve
with stars in Fig. 3) and that the barotropic mode
should be excited, but more weakly than in the �F �
0.125�k case. This is consistent with panels (A4)–(C4)
of Fig. 7, which show that the vortex is left moderately
elliptical (eccentricity 0.669) except at very high (me-
sospheric) altitudes (not shown) where the upward-
propagating waves finally attain sufficient amplitude to
cause wave breaking. Barotropic signatures also domi-
nate the A(z, t) and azimuthal wind plots.

e. The barotropic sudden warming

The discussion above of the response of the vortex to
forcing applied at different temporal frequencies leaves
an important question unanswered: What happens if
the vortex is forced resonantly at the frequency of the
barotropic mode? One way of investigating this ques-
tion is by increasing the time scale  over which the
Gaussian topographic forcing grows and decays,
thereby forcing the vortex with a narrower band of fre-
quencies. Figure 8 shows results from the  � 4 days HS
forcing set of experiments, and these may be compared
with the  � 2 days HS experiments shown in Fig. 5. As
the forcing occurs over a narrower band of frequencies,
the range of frequencies that significantly excite the
barotropic mode is also much narrower. As in Fig. 5,
there is a frequency shift in the maximum response of
the vortex with increasing forcing amplitude and it is
significantly greater than that observed in the  � 2
days HS experiments. The maximum amplitude of the
response also deviates from that predicted by linear
theory (unlike in the  � 2 days HS case) with maxi-
mum angular pseudomomentum recorded in the h �
0.4H experiments around one-third of what might be
expected from linear theory. It is perhaps unsurprising,
however, that nonlinearity should become more impor-
tant as the time scale over which the forcing is applied
is increased.

The experiments that result in the peak responses for
h � 0.2H and h � 0.4H cause the total wave activity A
to exceed the initial vortex angular impulse J0, and,
hence, to be extremely nonlinear. Figure 9 shows four
snapshots from the h � 0.2H, � � 0.05�k,  � 4 days
HS experiment at t � 0, 4, 10, and 16 days past the time
of peak forcing amplitude. The vortex may be observed
to become strongly elongated at its base (day 0), to
become “pinched” (day 4), and by day 10 to have di-
vided into two distinct vortices at its base, connected
only by a thin strip of vorticity. These two vortices re-
main coherent and, despite some stripping of filamen-
tary material away from each of them, they continue to
corotate in a fairly stable manner. We describe this
vortex splitting event as a “barotropic sudden warm-
ing” since it is caused principally by the resonant exci-
tation of the barotropic mode. Note that it is not nec-
essary for the vortex itself to be barotropic for this type
of warming to occur: a barotropic mode will exist what-
ever the vertical profiles of vorticity jump �(z), vortex
radius R(z), or edge velocity �e(z). In the atmosphere
the analogous mode is sometimes described as a Lamb
mode (e.g., Salby 1981). In our experiments, barotropic
sudden warmings also occur for experiments that are
forced by the vortex forcing in the h � 0.4H,  � 4 days
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FIG. 7. Illustrating the dynamics of the h � 0.1H k � 2 nonlinear experiments with �F /k � 0.325, 0.225, 0.125, and 0.025�, respectively.
The surface plots (A1)–(B1) of the vortex are at t � �8 days with the lowest six scale heights (0 � z � 6H � 36.84 km) shown. Note
the similarity between (A1)–(B1) and Fig. 22 of Polvani and Saravanan (2000).
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FIG. 7 (Continued). The evolution of nondimensional wave activity A(z, t)H/h2J0, from (B1) to (B4), is as in Fig. 6 and the (c1–c4)
Azimuthal mean velocity, (C1) to (C4), is at t � �10 days: contour interval 5 m s�1.
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VS set, and for some experiments with the shorter forc-
ing time scale of 2 days in the h � 0.4H,  � 2 days HS
set. It is worth remarking that a vortex-splitting event
analogous to a barotropic sudden warming will occur in
an appropriately forced single-layer barotropic model,
although for initial vortices with a more general vertical
structure than the barotropic vortex discussed here, the
analogy is not exact.

5. Discussion and conclusions

In a recent long-time general circulation model ex-
periment, Kushner and Polvani (2005) have shown that
a spontaneous stratospheric sudden warming, involving
a splitting of the polar vortex, may occur purely as a
result of the effects of transient Rossby waves gener-
ated by a dynamically active troposphere. In this paper,
we have used a relatively simple dynamical model of a
polar vortex to investigate theoretically and numeri-
cally the conditions that might allow such an event to
occur. In doing so, a theoretical connection between the
form of the lower boundary forcing, used to model the

effect of tropospheric transience, and the response of
the vortex has been formulated for the case of a baro-
tropic initial vortex. Despite being valid only in the
linear limit the theory gives considerable insight into
nonlinear behavior at large forcing amplitudes.

The polar vortex in our simple model supports both
upward- and downward-propagating Rossby waves as
well as a barotropic mode that has no vertical depen-
dence. When the vortex is forced from below by a tran-
sient topographic forcing with a horizontal scale greater
than the Rossby radius, the excitation of the barotropic
mode dominates the angular pseudomomentum bud-
get. This does not mean, however, that there is no dy-
namical role for the upward-propagating waves. Be-
cause they grow exponentially in amplitude with height,
they will break, dissipate, and deposit their angular mo-
mentum at high altitude where they will dominate the
angular momentum budget. At lower levels the dynam-
ics of the barotropic mode dominate.

The relationship found between the imposed lower
boundary forcing and the resulting time-evolving Elias-
sen–Palm flux at the lower boundary [Eq. (26)] is ex-

FIG. 8. As in Fig. 5-but for a longer topographic forcing pulse ( � 4 days). The baro-
tropic sudden warming experiment shown in Fig. 9 is highlighted as the solid cross labeled
“BTSW.”
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plicitly nonlinear in time. At any instant, therefore, the
lower boundary EP flux depends both on the amplitude
of the lower boundary forcing and the state of the vor-
tex itself. A consequence for the interpretation of ob-
servations is that it is incorrect to describe a peak in

Eliassen–Palm flux at the tropopause as being directly
“caused” by the dynamics of the troposphere at that
instant. Instead, the peak in EP flux occurs because the
time history of the tropospheric forcing causes the
(elongated or displaced) vortex and the forcing to come

FIG. 9. Surface plots showing the evolution of the vortex during the barotropic sudden
warming experiment with h � 0.2H,  � 4 days, HS (lR � 1.162) forcing, �F /�k � 0.05. The
lowest six scale heights (0 � z � 6H � 36.84 km) are shown.
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into alignment at that particular time. In the case of
wave-2 forcing as here, an “in phase” forcing can act to
excite the barotropic mode, for example, causing an
upward flux and making the vortex uniformly more el-
liptical, or the forcing can be out of phase and act to
damp the barotropic mode (downward flux) and return
the vortex to a more circular profile. O’Neill and Pope
(1988) have previously demonstrated temporally non-
linear behavior of the Eliassen–Palm flux in idealized
primitive equation experiments, so Eq. (27) may be in-
terpreted as an analytic verification of their result, al-
beit only in an idealized limit.

This work also suggests other caveats for the inter-
pretation of EP flux. Invariably, in the literature (e.g.,
Andrews et al. 1987) a group velocity condition [e.g.,
Eq. (16)] is cited as justification for interpreting the flux
as being evidence of vertically, and often latitudinally,
propagating Rossby waves. However, excitation of the
barotropic mode, which is not vertically propagating,
leads to an upward flux that exponentially decays with
height according to F � exp[�(� � 1/2H)z]. It is worth
recalling that many researchers scale EP cross sections
with 1/� precisely in order to enhance features that are
decaying exponentially. The wave activity associated
with upward-propagating waves should remain inde-
pendent of height, at least in the absence of dissipation,
and therefore should not require any rescaling. A tem-
porally averaged EP cross section, in our view, may
often then be dominated by the signature of the exci-
tation of the barotropic mode of the vortex. It is also
clear from our simple model that to equate horizontal
momentum fluxes with local latitudinal Rossby wave
propagation may also be misleading. In our model, no
radial (latitudinal) propagation of Rossby waves is pos-
sible, as the Rossby waves are trapped on the vortex
edge. Despite this, significant horizontal momentum
fluxes occur during our nonlinear experiments. In cir-
cumstances that are dominated by a single vortex, only
the horizontally averaged EP flux [as in Eq. (15)] re-
tains a connection with Rossby wave propagation, and
only in the vertical direction.

If the vortex is continuously forced with sufficient
amplitude at a frequency near the linear frequency of
the barotropic mode (allowing for a weakly nonlinear
correction), a “barotropic sudden warming” ensues.
The vortex divides into two, with both resulting vortices
remaining coherent over several scale heights. To our
knowledge, this is the first simulation of a vortex-split
sudden warming based on the deliberate resonant ex-
citation of a free mode of the vortex. The three-
dimensional evolution of the lower part of the vortices
in our simulation is reminiscent of realizations of the
February 1979 wave-2 sudden warming in the Northern

Hemisphere (Manney et al. 1994, see their Fig. 14). By
contrast, three-dimensional visualizations of the Sep-
tember 2002 Southern Hemisphere warming reveal that
the two vortices eventually form a double spiral (Man-
ney et al. 2005). We believe that, in order to reproduce
a qualitatively similar warming in our simple vortex
model, it is necessary to introduce significant vertical
structure into the vortex basic state.

The idea that sudden warmings correspond to the
resonant excitation of free modes of the atmosphere
was first discussed in detail, in the context of a �-chan-
nel model, by Tung and Lindzen (1979a,b). In the case
where flow in the channel is uniform, they highlighted
the possibility of the resonant excitation of the baro-
tropic mode, in a manner analogous to that occurring in
our vortex model. Here, we have shown that such ex-
citation can lead to a vortex split, a scenario that is
obviously not admitted by the geometry of the �-chan-
nel model. Tung and Lindzen’s work was extended fur-
ther by Plumb (1981) who considered the weakly non-
linear evolution of free traveling waves under a near-
resonant forcing. Plumb showed that the forcing
frequency that resulted in the maximum response
changed significantly with increasing nonlinearity. Our
numerical results show that a similar shift in the peak
forcing frequency occurs in the vortex model.

Both Tung and Lindzen (1979a,b) and Plumb (1981)
also consider the resonant excitation of propagating
wave free modes formed by turning surfaces in the up-
per stratosphere, as well as the barotropic mode. The
idea, discussed in detail in the review of McIntyre
(1982), is that the presence of a turning surface (latitu-
dinal and/or vertical) forms a resonant cavity for the
propagating waves. However, the relatively low vertical
group velocities associated with propagating vortex
edge waves (5 km day�1), and the relatively low
pseudomomentum imparted to these modes at realistic
forcing amplitudes, lead us to conclude that vortex-
splitting warmings caused purely by propagating waves
are unlikely to occur, at least for our barotropic vortex.
Additionally, the character of the vortex wave breaking
is invariably different when the propagating modes are
excited, with filamentation occurring rather than vortex
splitting. For the case of the barotropic mode, however,
it is hoped that a theory similar to Plumb’s will lead to
a deeper understanding of the changes in frequency and
amplitude of the peak barotropic mode response that
we observed with increasing forcing amplitude.

Clearly it will also be of interest to determine wheth-
er our results are significantly modified in the case of
vortices that have realistic vertical structure or for
primitive equation vortices in spherical geometry. The
dynamics associated with other wavenumbers, although
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briefly mentioned in section 3, may also merit further
investigation (although the nonlinearity that is associ-
ated with wave-1 disturbances in the model used here is
somewhat unrealistic). Finally, it is hoped that the ideas
developed here can be extended to help identify exactly
what aspect of the planetary-scale meteorology of Sep-
tember 2002 contributed to the unique sudden warming
event in the Southern Hemisphere.
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APPENDIX

Group Velocity Property for the
Eliassen–Palm Flux

Here we demonstrate that the Eliassen–Palm flux
(15) satisfies the group velocity condition (16) as
claimed. Taking a monochromatic wave, as given by
(6), and neglecting powers of � higher than �2, we have
wave activity

A �
�

2
�2R4�

and group velocity

cg �
��s

�m

� �
f2

N2

mkR2

B�m	 �Kk�1Ik � KkIk�1 �
2k

B�m	
KkIk�,

�A1	

with Bessel functions all evaluated at B(m).
It remains to evaluate F from the definition

F � �
0

� �
0

2� f2

N2 ��z�	r d	 dr �A2	

and � � �R�̃(r, m, k). Evaluating the � integral this
may be written

F � �km�
f 2

N2 �Kk�B�m		2 �
0

R

Ik�B�m	r�R	2r dr

� Ik�B�m		2 �
R

�

Kk�B�m	r�R	2r dr�. �A3	

Using the appropriate Bessel function identities these
become

F �
�

2
f2

N2 �2�2R6km�IK
2 Kk�1Kk�1 � Ik�1Ik�1Kk

2�,

�A4	

where all of the Bessel functions are evaluated at B(m).
This may be manipulated using standard identities to
give

F �
�

2
f2

N2 �2�
R6mk

B�m	 �IkKk�1 � Ik�1Kk � 2
k

B�m	
IkKk�.

�A5	

From this is clear that F � cgA for linear monochro-
matic waves, as stated. (Note that in obtaining these
results we have used Bessel function identities that
were taken from http://functions.wolfram.com/.)
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