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Shear dispersion in the turbulent atmospheric boundary layer
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The problem of shear dispersion in the atmospheric boundary layer (ABL) is revisited. The
aim is to improve understanding of how and why the behaviour of state-of-the-art ‘random
flight’ Lagrangian particle dispersion models (RFMs) can differ from that of simpler ‘random
displacement’ models (RDMs or eddy diffusivity models). First an asymptotic analysis is
used to obtain a formula, valid for quite general profiles of turbulent statistics and the mean
wind, for the effective horizontal diffusivity of a tracer in the ABL. Second, with ‘poison
gas release’ problems in mind, a large-deviation approach is used to understand in greater
detail the behaviour of the concentration in the tails of the distribution. Results are verified
by solving the RFM equations numerically for a large ensemble of particles. Turbulent
statistics relevant to stable and neutral boundary-layer conditions are considered, as is
the effect of non-uniqueness in the RFM equations. The importance of three-dimensional
effects such as the effect of an Ekman spiral in the mean wind are then considered, and
criteria determining whether plume widths are controlled by direct horizontal diffusion or
by secondary shear dispersion effects are obtained. Finally, a quantitative account of ‘plume
bending’ in the stable ABL is presented.
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1. Introduction

Shear dispersion, sometimes Taylor or Taylor–Aris dispersion
(Taylor, 1953; Aris, 1956), is a fundamental process in fluid
dynamics. In shear dispersion problems the diffusion of a tracer
in the along-flow direction of a unidirectional but non-uniform
flow is found to be controlled, not by the direct diffusion acting
in the along-flow direction, but by diffusion in the across-flow
direction acting in concert with the shear in the flow. Counter-
intuitively, the dominant term in the effective diffusivity in the
along-flow direction is found to be inversely proportional to
the across-flow diffusivity. This is because, when the across-flow
diffusivity is weak, individual fluid particles experience coherent
differential advection by the shear flow for relatively long periods,
leading to particles becoming widely dispersed in the along-flow
direction. By contrast, in the limit of strong across-flow diffusivity,
particles experience only (non-dispersive) advection by the mean
flow.

The relevance of shear dispersion to atmospheric boundary
layer (ABL) flows has long been recognised. In a classic paper
Saffman (1962) derived analytical solutions for two idealized
problems. In the first problem, vertical diffusion is assumed
uniform up to a fixed boundary-layer height, where a no-
flux boundary condition is imposed. In the second problem,
the vertical diffusion is uniform and unbounded with height.
Subsequent researchers (e.g. Smith, 1965, 2005; Tyldesley and
Wallington, 1965; Taylor, 1982) have mainly focused on the
paradigm presented by the second solution, which is relevant

to the early stages of a tracer release problem in which a near-
Gaussian tracer plume or puff spreads freely in the vertical,
interacting only with the surface. The present work, by contrast,
is motivated in part by the desire to understand shear dispersion in
state-of-the-art Lagrangian dispersion models such as FLEXPART
(Stohl et al., 2005) and NAME (Jones et al., 2007). In these
models a no-flux boundary condition is imposed at the top
of ABL as in Saffman’s first problem above, and corresponds
physically to the trapping of fluid particles within the ABL by
a horizontal interface with high stratification (i.e. an inversion
layer).

The set-up of Saffman’s first problem is illustrated in Figure 1,
which shows scatterplots of an ensemble of trajectories in stable
ABL conditions, integrated using a Lagrangian model to be
described in detail below. Following a point release of tracer, here
at half the ABL height h, there is a time period of the order of hu−1∗ ,
where u∗ is the surface friction velocity (equal to

√
τ0/ρ where τ0

is the Reynolds stress of the mean wind at the surface), over which
particles become homogenised in the vertical (Figures 1(a) and
(b)). After this homogenization period, shear dispersion over the
depth of the ABL ensues. In the ABL, hu−1∗ is typically of the order
of tens of minutes. Consequently Saffman’s first problem has
practical relevance for understanding the horizontal dispersion
of tracers in the ABL over periods of a few hours. Saffman’s
main result for the one-dimensional problem, for an ABL with a
height-dependent isotropic diffusivity κ(z) and shear flow u(z), is
as follows. Denoting the vertical mean taken over the depth of the
ABL by angle brackets, the vertical mean concentration 〈c〉(x, t)
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Figure 1. Scatterplots of an ensemble of N = 5000 trajectories, following a point release at (X, Z) = (0, 0.5), as simulated by the RFM (3) in the stable ABL case: (a)
early-time dispersion t = 0.2 hu−1∗ , (b) when particles have become well-mixed in the vertical by time t = 2 hu−1∗ , and (c) at late time (t = 20 hu−1∗ ) when shear
dispersion is well-established. A key measure of shear dispersion, the standard deviation Var(X)1/2 ≈ (2κeff t)1/2, is shown for reference.[Colour figure can be viewed
at wileyonlinelibrary.com].

evolves according to the advection-diffusion equation

∂t〈c〉 + 〈u〉∂x〈c〉 = κeff∂
2
xx〈c〉. (1)

Results of the form (1) are generic to a wide range of tracer
dispersion problems (e.g. Majda and Kramer, 1999) and can be
found using the method of homogenization (Pavliotis and Stuart,
2007), as well as the method of moments used by Saffman. The
effective diffusivity κeff in Saffman’s problem is given by

κeff =
〈
F2

κ
+κ

〉
, where F(z) =

∫ z

0
{u(z̄)−〈u〉} dz̄. (2)

In practice κeff is usually dominated by the first term which, as
anticipated by the discussion above, depends on the inverse of
the diffusivity κ(z).

The present work will re-examine the paradigm presented by
Saffman’s first problem. The aim is to better understand the shear
dispersion process as it takes place in state-of-the-art particle
dispersion models designed for the ABL (e.g. FLEXPART and
NAME). Specifically, the following questions will be addressed:

1. Does κeff change significantly if random flight models
(RFMs) are used instead of random displacement models
(RDMs)? Both FLEXPART and NAME are RFMs, meaning
that they model turbulent dispersion using stochastic
processes that describe a turbulent velocity field with
a realistic Lagrangian decorrelation time. However, the
results of Saffman (1962) apply directly only to RDMs,
which corresponds to both the limit of zero decorrelation
time of the RFM (e.g. Rodean, 1996) and, equivalently, to
the standard advection-diffusion model.

2. Is the large-deviation behaviour influenced by the type of
model used? Large-deviation theory (Haynes and Vanneste,
2014) describes the evolution of the low concentrations
seen in the tails of a spreading cloud of parcels, and can
be important in estimating the time-scale on which a
threshold concentration is first met at a given location

downstream, which might be important, for example, in a
problem involving a toxic gas or aerosol release. It is not
obvious a priori how concentrations in the tails will change
if an RFM is used as opposed to an RDM.

3. Under realistic three-dimensional ABL conditions, what
controls the horizontal effective diffusivity in the direction
perpendicular to the principal direction of the wind shear?
Under what conditions is shear dispersion due to wind
curvature with height (e.g. in an Ekman layer) more
important than direct horizontal turbulent diffusivity?

Questions 1–3 will be answered by comparing analytical, semi-
analytical and numerical results. Note that the present work will
focus on the late-time behaviour of ABL flows, leaving questions
relating to the early-time corrections to the shear dispersion
framework (e.g. Young and Jones, 1991; Camassa et al., 2010)
to a future work. In section 2, the RFM and RDM models are
introduced, and the large-deviation approach to the RDM model
is described, reviewing the results of Haynes and Vanneste (2014).
In section 3, analytical results are presented for the effective
diffusivity, and numerical results for the tracer decay rate at
large distances which is controlled by the large-deviation rate
function. Possible behaviours due to non-uniqueness of the RFM
are then considered. Finally three-dimensional effects, e.g. due to
an Ekman spiral in the mean wind, are investigated. Throughout
section 3, results are compared with numerical calculations of
large ensembles of tracer particles, using both the RFM and
RDM where appropriate. The differences between two models
are investigated in both stable and neutral conditions. Finally, in
section 4, conclusions are drawn.

2. Model and background

2.1. The random flight model (RFM)

The RFM to be investigated is defined by the following set of
stochastic differential equations, describing the time evolution of
the position (X, Z) and eddy velocity (U , W) of a single fluid parcel
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in a turbulent boundary layer with Gaussian velocity statistics:

dU = − U

τ1
dt +

(
2σ 2

1

τ1

)1/2

dB1,

dW =
[
−W

τ2
+ 1

2

{
1 +

(
W

σ2

)2
}

d(σ 2
2 )

dz

]
dt

+
(

2σ 2
2

τ2

)1/2

dB2,

dX = (u + U) dt,

dZ =W dt.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)

Here (B1, B2) are Brownian (Wiener) processes. Throughout,
stochastic variables (e.g. X, Z, U , W) will be denoted by capitals.
The mean horizontal velocity profile is given by u(z) and the
turbulent statistics in the ABL are specified by the turbulent
velocity scales (σ1(z), σ2(z)), and Lagrangian decorrelation times
(τ1(z), τ2(z)), where the subscripts 1 and 2 refer to the
horizontal and vertical directions respectively. Three profiles used
throughout this work, corresponding to an ABL with idealized
(constant) statistics, and to stable and neutral ABL conditions,
are described in Appendix A.

For the purposes of this work, the equation set (3) will be
interpreted as being non-dimensional, with the boundary-layer
height h, the surface friction velocity u∗ and hu−1∗ as scales
for velocity, length and time respectively. Under this scaling, no
explicit non-dimensional parameters appear in the problem. Note
also that the mean velocity profile u(z) will typically have a large
magnitude (measured in units of u∗), i.e. the implicit parameter

U = umax − umin, (4)

where umax and umin are the maximum and minimum values of
u(z) respectively, is typically O(10) or greater. Finally, without
loss of generality, the vertical mean of u(z) will be taken to be
zero, i.e. we will work in the frame following the mean position
of the ensemble of trajectories.

Physically, it is easy to understand most of the terms in (3). The
equations for (X, Z) are standard trajectory equations, whereas
those for (U , W) resemble Ornstein–Uhlenbeck processes, or
random walks in quadratic potential wells, which in spatially
homogeneous turbulence would result in (U , W) having ‘red
noise’ frequency spectra. The additional term in the W-equation
is necessary for the model to be ‘well-mixed’ in the sense of
Thomson (1987), as will be discussed below. Equation (3) is
essentially that used in FLEXPART (Stohl et al., 2005) and
NAME (Jones et al., 2007) to model dispersion in the ABL.
Following these models, reflection boundary conditions are used
at the model boundaries at z = 0, 1. Physically, reflection at the
boundary-layer top (z = 1) is (at least partially) justified when
the ABL has locally developed a sharp gradient in buoyancy,
forming an interface across which there is a large decrease in the
intensity of turbulence. Wilson and Flesch (1993) and Thomson
et al. (1997) have discussion, including the possibility of more
sophisticated boundary conditions.

Following Rodean (1996) it is easier to work with
scaled velocities (�, �) = (U/σ1(Z), W/σ2(Z)) which, following
application of Itô’s lemma, satisfy

d� = −�

τ1
dt +

(
2

τ1

)1/2

dB1,

d� =
(

−�

τ2
+ dσ2

dz

)
dt +

(
2

τ2

)1/2

dB2,

dX = (u + �σ1) dt,

dZ = �σ2 dt.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)

A complementary approach to systems of stochastic differential
equations such as (5) is to consider the corresponding

Fokker–Planck equation (FPE) for the time-evolution of the
joint probability density p(x, z, λ, ω, t) of the stochastic variables
(X, Z, �, �). Following the standard procedure, outlined for
example in section 3.4.1 of Gardiner (2009), the FPE of (5) is
found to be

pt + {
(u + λσ1)p

}
x
+ (

ωσ2p
)

z
+ (σ ′

2p)ω

= τ−1
1

(
pλ + λp

)
λ

+ τ−1
2

(
pω + ωp

)
ω

. (6)

Here subscripts denote partial derivatives and σ ′
2 ≡ dσ2/dz. The

reflecting boundary conditions at z = zb become

p(x, zb, λ, ω) = p(x, zb, λ, −ω) for zb = 0, 1. (7)

Most of our results below will be based on analysis of (6)–(7).
The stationary density

pe = constant × exp
{− 1

2 (λ2 + ω2)
}

(8)

is the steady solution of (6). The solution pe or, in the language
of probability theory, the invariant measure of (5), is interpreted
physically as the distribution of particles in the background
atmosphere in position–velocity space. The ‘well-mixed’ criterion
of Thomson (1987) corresponds to ensuring that the invariant
measure of the system of stochastic differential equations being
solved corresponds to a notional, pre-specified distribution pe,
which in general is determined by the statistics of the background
atmosphere.

2.2. The random displacement model (RDM) and its large-
deviation behaviour

It is well-known (e.g. section 6.3 of Rodean, 1996) that the
RFM (5) can be approximated by the simpler RDM in the
distinguished limit of short decorrelation time τi → 0 and large
velocity fluctuations σi → ∞, in which σ 2

i τi = κi (here i = 1, 2)
is finite and non-zero. The equation set (5) can in this case be
replaced by

dX = u dt + (2κ1)
1/2 dB1,

dZ = κ ′
2 dt + (2κ2)

1/2 dB2, (9)

where κ ′
2 ≡ dκ2/dz. The FPE of (9), which is the equivalent of

(6) for the RDM, is simply the advection-diffusion equation

ct + u cx = κ1cxx + (κ2 cz)z , (10)

where we have identified the joint pdf of (X, Z) in (9) with
the particle concentration c(x, z, t) (in general, these can differ
by a multiplicative constant). The effective diffusivity result,
generalizing (1), can be obtained from (10) by applying the
method of moments (following Saffman, 1962), or the method of
homogenization (e.g. Pavliotis and Stuart, 2007). Its exact form
is given in section 3.1 below.

The effective diffusivity paradigm of (1) does not give the full
picture of the long-time dispersion of tracer particles according
to (9). In certain problems, for example the point release of
a highly toxic substance, the quantity of interest can be the
time taken for the tracer concentration to first reach a given
(low) threshold at a particular location. The evolution of the
relatively low concentrations in the tails of the spreading cloud of
particles are described mathematically by large-deviation theory.
Recently, Haynes and Vanneste (2014) considered the large-
deviation behaviour of (10), focusing on classic Taylor–Aris
dispersion problems (Couette flow, plane Poiseuille flow and
pipe Poiseuille flow). The main point is that, while in the central
region (where x2/t ∼ O(1)), the evolution of 〈c〉 is well-described
by the effective diffusivity model (1); in the tails of the distribution
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(where x/t ∼ O(1)) the concentration c(x, z, t) can be shown to
satisfy

c(x, z, t) ∼ t−1/2φ(z, ξ) e−t g(ξ), where ξ = x/t. (11)

Here φ(z, ξ), which is determined by a solving a family of
eigenvalue problems parametrized by ξ , gives the local vertical
structure of the tracer profile. In the central region (ξ ≈ 0),
where the tracer is well-mixed in the vertical, it turns out that
φ(z, 0) = 1. The effective diffusivity result for the central region
can be recovered from the leading term in a Maclaurin expansion
of the so-called rate function g(ξ), which is given by g′′(0)ξ 2/2.
Here, g(0) = 0 follows from conservation of mass, and g′(0) = 0
from the fact we are working in the frame of the mean wind. It
follows, by comparison with the well-known ‘heat kernel’ solution
of (1), that κeff = 1/(2g′′(0)).

In the tail regions, by contrast, according to (11) the decay
rate of the tracer is controlled by the rate function g(ξ).
If the effective diffusivity model were valid everywhere, then
the rate function would be everywhere equal to its quadratic
approximation g0(ξ) = ξ 2/4κeff . However, the calculations of
Haynes and Vanneste (2014) revealed that typically g(ξ) � g0(ξ),
indicating that tracer concentrations fall off much more rapidly in
the tail regions than predicted by the effective diffusivity model.
In fact there are two distinct regimes: an inner region for which
ξ ∈ (umin, umax) (containing the central region) and an outer
region ξ > umax and ξ < umin. The regions are distinct because
particles can arrive at any location in the inner region under
the influence of horizontal advection alone (e.g. by remaining
at a level near that of the maximum or minimum velocity). By
contrast, a particle can only reach a location in the outer region by
a favourable combination of horizontal advection and horizontal
diffusion. The transition between the two regimes is evident as
g(ξ) is typically found to increase very rapidly from the inner
to the outer region. Tracer concentrations are consequently very
low in the outer region, where they are controlled by the direct
horizontal diffusivity. One of our main aims below is to determine
the extent to which the rate function g(ξ) depends on whether
the RFM or RDM is used.

3. Results

3.1. Effective diffusivity in the RFM

The main purpose of this section is to use an asymptotic approach
to calculate the effective horizontal diffusivity for particles released
in the RFM. To effect this analysis, two parameters are introduced.
First ε = h/L is the ratio of the ABL depth to the horizontal
length-scale of the cloud of particles. Second, δ = u∗τ/h is the
ratio of a typical Lagrangian decorrelation time τ to the reference
time-scale hu−1∗ .

The most interesting tractable regime appears to be ε � δ � 1.
Enforcing ε � δ corresponds to focusing only on the late-time
behaviour for which the diffusive approximation applies. As
explained in Haynes and Vanneste (2014), next-order effects in ε,
which could be recovered here by considering the distinguished
limit ε ∼ δ � 1, result in the diffusion equation being augmented
with higher derivative terms (e.g. ∂3

x 〈c〉), which are important only
at early times. Such an augmented diffusion equation does not
preserve positivity, and hence is not very useful in practice. It is
a property of empirical profiles of turbulent statistics that δ � 1,
which justifies consideration of δ � 1.

Based on these insights, we seek solutions of (6) of the form
p = p(x̄, z, λ, ω, t̄) where x̄ and t̄ are long time and space scales
satisfying

x̄ = εx, t̄ = ε2t. (12)

Further, the turbulent statistics σi and τi are rescaled as follows

σi = δ−1σ̄i, τi = δ2τ̄i. (13)

Notice that this scaling preserves the relationship with the
diffusivity, since σ 2

i τi = σ̄ 2
i τ̄i = κi.

The primary expansion in ε, relative to which δ is treated as
finite, is

p =
∞∑

j=0

εjpj(x̄, z, λ, ω, t̄). (14)

Inserting this expansion into (6), at leading order in ε,

Lp0 = δ
(
ωσ̄2p0

)
z
+ δ(σ̄ ′

2p0)ω, (15)

where the linear operatorL acts on functions f (λ, ω, z) as follows:

Lf ≡ τ̄−1
1

(
fλ + λf

)
λ

+ τ̄−1
2

(
fω + ωf

)
ω

. (16)

The leading-order equation (15) has the ‘well-mixed’ solution

p0 = P(x̄, t̄) exp
{− 1

2 (λ2 + ω2)
}

, (17)

where P(x̄, t̄) is at this order an undetermined function of the
‘long’ space and time variables (x̄, t̄).

At O(ε) in the expansion

Lp1− δ(ωσ̄2p1)z − δ(σ̄ ′
2p1)ω = δ2up0x̄+ δλσ̄1p0x̄. (18)

To proceed, a particular integral needs to be found for (18).
A solution can be sought based on a Hermite polynomial
(Gram–Charlier type A) expansion

p1 =
∞∑

k=0

Hek(ω)
{

Ck(z) + λDk(z)
}

× Px̄(x̄, t̄) exp
{− 1

2 (λ2 + ω2)
}
. (19)

The probabilists’ Hermite polynomials Hek(·) are defined in
Appendix B1, where their relevant properties are listed. Solving
for p1 involves determining the sequences of functions {Ck(z)}
and {Dk(z)}. In Appendix B2, asymptotic approximations to the
leading terms in these sequences are evaluated, and it is shown
that Ck ∼ O(δk) and Dk ∼ O(δk+1). Note that the full solution
for p1 also includes a complementary function, similar to the
well-mixed solution for p0 given above, but this can be set to zero
without loss of generality in order to define a unique separation
between the various orders in the expansion (14).

It is at O(ε2) in the expansion that the effective diffusivity can
be calculated. The equation for p2 is

Lp2 − δ(ωσ̄2p2)z − δ(σ̄ ′
2p2)ω

= δ2p0t̄ + δ2up1x̄ + δλσ̄1p1x̄. (20)

At this order it is not necessary to solve explicitly for p2.
Instead, the solvability condition of (20) can be used to obtain
the effective horizontal diffusivity. The solvability condition
arises because the integral of the left-hand side of (20), over
the domain {D : (λ, ω) ∈ R

2, z ∈ [0, 1]} is evidently zero. The
corresponding integral over the right-hand side must also be zero,
i.e. ∫

D

(
p0t̄ + up1x̄ + δ−1λσ̄1p1x̄

)
dz dλ dω = 0. (21)

Evaluating this integral, and using the orthogonality properties of
the Hermite polynomials, the one-dimensional diffusion equation
is obtained

Pt̄ = κeff Px̄x̄, (22)
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where the effective diffusivity is given by

κeff = − 〈uC0 + δ−1σ̄1D0
〉

= 〈
FC′

0 − δ−1σ̄1D0
〉

= κ
(1)
eff + κ

(2)
eff , (23)

where, as above, angle brackets denote the vertical average of a
quantity over the boundary layer, and F(z) is the integral of the
mean wind profile as in (2). In direct analogy with Saffman’s

result (2), the two terms κ
(1)
eff and κ

(2)
eff refer to the two separate

terms in the vertical average, with the much larger term κ
(1)
eff being

due to shear dispersion, and the smaller term κ
(2)
eff being due to

direct horizontal diffusion.
It is evident from (23) that only C′

0 and D0 are needed to
calculate κeff , which guides our approach to solving (18) in
Appendix B2. There, it is shown that, approximately,

κ
(1)
eff =

〈
F2

κ2
+ κ2

(
F

σ2

)′2
− κ2

2

{
κ2

σ2

(
F

σ2

)′}′2〉
. (24)

Equation (24) can be interpreted as an expansion in δ2, including
three terms of O(1), O(δ2) and O(δ4) respectively, and with terms
of O(δ6) neglected. The leading term is identical to the first
term in Saffman’s result (2), with the remaining terms giving the
corrections due to the finite decorrelation times in the RFM (3).
It is notable that the dominant correction, given by the second
term in (24), is always positive. Consequently, at least for small
δ, the effective horizontal diffusivity will always be greater in the
RFM compared to its RDM limit.

Following a similar procedure, the direct diffusivity (here
correct to the first two terms) is found to be

κ
(2)
eff =

〈
κ1 + κ2τ1

τ1 + τ2

(
κ1

σ1

)′2〉
. (25)

Once again, the leading correction term is positive definite,
showing that shear dispersion is always increased in the RFM
compared with the RDM.

An important point is that the expansion in δ2 underpinning the
results (24)–(25) is a singular rather than a regular perturbation
expansion, as is commonly found in multiple scales expansions.
This means that the resulting series in (24)–(25) will be divergent,
and as a result the optimal agreement between the series
expansions and the full model at finite δ will be obtained by
truncating the series at a finite number of terms.

3.2. Numerical calculation of κeff in the RFM

The validity and accuracy of the results (24)–(25) can be tested
by comparison with direct integration of the RFM (3). It is
not obvious a priori that (24)–(25) will be accurate or relevant,
because they are formally valid only for δ � 1, and obviously
δ takes a finite value for any physically realistic profile of ABL
statistics.

Three profiles of turbulent statistics are tested in detail,
corresponding to a simple idealized profile with constant τi

and σi, a stable ABL and a neutral ABL respectively. Details of
all three profiles are given in Appendix A. In each case a linear
shear flow u(z) = U(z − 0.5) is used. (Recall: the velocity unit
is the friction velocity u∗, and U = umax − umin ∼ O(1 − 100)
is typical of the observed ABL.) Here U = 5 is used. A linear
shear flow is chosen here primarily for analytical convenience
(see section 3.5 below). However tests with more realistic wind
profiles have yielded similar results.

Effective diffusivities in the RFM (3) are calculated based on
the fact that

κeff = lim
t→∞

Var(X)

2t
. (26)

In practice, the RFM is run for a suitably long period (typically
50–100 hu−1∗ ), and a least-squares linear fit is then made to
Var(X)(t) for the later part of the integration period. Then κeff is
obtained from the gradient of this fit, with error bars estimated
by sub-sampling.

To create a robust test of (24)–(25), and better understand
the limitations of the approach of section 3.1, a wider class of
RFM models are introduced as follows. For each of the three
profiles detailed in Table A1, a one-parameter of ‘interpolated’
RFM models is defined by the transformation:

σi → δ−1σi, τi → δ2τi. (27)

Here the ‘interpolating parameter’ δ has an analogous role to δ in
the theory of section 3.1, which is formally valid only for models
with δ � 1. Specifically:

• δ = 0: recovers the RDM limit.
• 0 < δ < 1: corresponds to a family of models with shorter

decorrelation times (more ‘diffusive’ behaviour) than the
observed ABL.

• δ = 1: corresponds to the RFM with observed ABL statistics
as in Table A1.

• δ > 1: corresponds to a family of models with longer
decorrelation times (more ‘ballistic’ behaviour) than the
observed ABL.

Figure 2 shows a comparison between κeff calculated directly
from RFM calculations (points with error bars) and from
(24)–(25) (black curves). Results are obtained from integrations
of the interpolated models with 0 ≤ δ ≤ 2, for idealized, stable
and neutral ABL profiles respectively. Note that the δ = 0 results
are obtained by integrating (9) rather than (3). The results show
that

• The three profiles (ideal, stable and neutral) have rather
different values of κeff . The controlling factor in each case
is the magnitude of the vertical diffusivity κ2(z) (relatively
high in ideal, low in neutral), with the greatest sensitivity
being to the value in the centre of the domain where F2 is
largest.

• The analytical results (24)–(25) remain accurate for δ � 1
for all three profiles, and only at δ = 2 begin to diverge
significantly from the RFM calculations. The small-δ theory
appears to be justified in practice.

• The difference in κeff between the physical RFMs (δ = 1)
and their RDM limit (δ = 0) is rather small, in fact just 9.08,
2.74 and 0.76% for the ideal, stable and neutral profiles.

In summary, for flows with realistic ABL statistics, the modelled
rate of shear dispersion is relatively unchanged if the RDM is used
in place of the RFM. However this result, which applies to the
central region only, does not tell us anything about dispersion in
the tails which will be addressed next.

3.3. Dispersion in the tail regions

The above sections were concerned with dispersion in the central
region, where x2/t ∼ O(1). The results do not tell us anything
about changes in the tail regions where x/t ≡ ξ ∼ O(1), which
can be important if the key measurement is the time at which a
tracer concentration first meets a fixed threshold, e.g. the ‘poison
release’ scenario discussed above. Hence the following question is
of interest: does the rate function g(ξ), which controls the tracer
decay rate in the tail regions, change significantly if the RFM is
used in place of the RDM?

Haynes and Vanneste (2014) have calculated g(ξ) for the
RDM (via the advection–diffusion equation (10)), and here
their method is adapted for the Fokker–Planck equation (6)
corresponding to the RFM. A leading-order WKBJ-type solution
of (6) is sought using the ansatz

p(x, z, λ, ω, t) ∼ t−1/2 φ(z, λ, ω, ξ) e−t g(ξ). (28)

c© 2017 Royal Meteorological Society Q. J. R. Meteorol. Soc. 143: 1721–1733 (2017)
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Figure 2. Effective diffusivity κeff in the ‘interpolated models’ derived from the three ABL flows –(a) idealized, (b) stable, (c) neutral – detailed in Table A1, as a
function of the interpolation parameter δ. Note that δ = 0 corresponds to the RDM limit, and δ = 1 recovers the standard RFM. Points show κeff obtained from
an ensemble of integrations of (3) using (26). The dotted curves show the analytical predictions ((24)–(25)), and the solid (blue online) curves show κeff obtained
numerically from the eigenvalue problem ((29)–(30)).[Colour figure can be viewed at wileyonlinelibrary.com].

The function φ(z, λ, ω, ξ) is found to be determined by a single-
parameter family of eigenvalue problems

Lφ+{(u+λσ1) q
}
φ−(ωσ2φ)z −

(
σ ′

2φ
)
ω
= f (q) φ, (29)

whereL is the linear operator defined in (16) with τi used in place
of τ̄i. The reflecting boundary conditions at z = 0, 1 are

φ(0, λ, ω, ξ) = φ(0, λ, −ω, ξ),

φ(1, λ, ω, ξ) = φ(1, λ, −ω, ξ).

}
(30)

The family of eigenvalue problems (29)–(30) are parametrized
by q = g′(ξ), in the sense that there is a one-to-one mapping
between q and the ‘velocity’ of interest ξ . The lead eigenvalues
f (q) and the rate function g(ξ) are related through the Legendre
transform pair

f (q) = sup
ξ

{
q ξ − g(ξ)

}
,

g(ξ) = sup
q

{
ξ q − f (q)

}
.

⎫⎪⎬
⎪⎭ (31)

Consequently, if the eigenvalue problem (29)–(30) is solved
numerically for a range of values of q, the values of the principle
eigenvalue f (q) can be used to obtain g(ξ) by (numerically)
inverting the transform (31). In practice a nonlinear programming
algorithm (MATLAB’s fminsearch) is used.

Details of the numerical solution of (29)–(30) are given in
Appendix C. A key test of the accuracy of the numerical solution
is to check for consistency with the effective diffusivity results of
section 3.2. A property of the Legendre transform pair (31) is that
f ′′(0)g′′(0) = 1, from which it follows that κeff = f ′′(0)/2. From
the Maclaurin expansion, using the fact that f (0) = f ′(0) = 0,
it follows that κeff = limq→0 f (q)/q2. Consequently a numerical
estimate for κeff can be obtained by solving (29)–(30) for suitably
small q. The calculated values of κeff are plotted in Figure 2
(blue curves) and show excellent agreement with the analytical
results (24)–(25) for δ � 1, as well as the numerical results from
the RFM itself. Importantly, these results give confidence in the
accuracy of the numerical solver at finite q, and thus the resulting
rate function g(ξ) obtained by numerical inversion of (31).

Figures 3(a)–(c) shows g(ξ) calculated for the three profiles in
Table A1 for both the RFM (blue curves) and RDM (red curves).
The transitions between inner and outer regions at ξ = umin, umax

are clearly marked, as is the parabolic approximation g0(ξ) for the
RFM (black dashed curves). In both the RFM and RDM, and for
all three profiles, g(ξ) increases rapidly compared to its parabolic

approximation g0(ξ), as the transitions to the outer region are
approached. The result is that particle concentrations fall off
particularly rapidly compared to the Gaussian approximation.
The neutral profile exhibits an interesting asymmetry, in that
g(ξ) increases more rapidly for negative ξ than for positive ξ .
The explanation is that the vertical diffusivity κ2(z) is rather
small towards the top of the domain in the neutral case. Parcels
therefore have comparatively long residence times in the upper
part of the domain, where the velocity is large and positive,
compared to near the ground where the velocity is large and
negative. Hence it is more probable that a parcel remains close
to z = 1 and experiences a large net positive transport than the
corresponding negative transport near z = 0.

Figures 3(d)–(f) show the percentage difference between the
RFM and RDM results, and show that the small differences
reported in κeff are not typical of the differences in g(ξ)
everywhere. In both the stable and neutral profiles, in the
downstream tail g(ξ) is significantly larger (� 20%) for the RDM.
It follows that the effect of realistic Lagrangian decorrelation
times in the RFM is to enhance transport into the tail regions. The
effect is largest in the downstream tail because those trajectories
are in the upper part of the domain where the local Lagrangian
time-scales are longest.

In fact as ξ → ±∞, the rate functions for the RDM and RFM
can be expected to converge, because in this limit the contribution
of the mean flow can be neglected completely. In that case the
horizontal component of (5) is a canonical Ornstein–Uhlenbeck
process, whereas that of (9) is a simple Brownian process, each
of which have identical (quadratic) rate functions. There is a
strong hint of this convergence at large |ξ | in the ideal and stable
calculations shown in Figure 3.

To demonstrate that large-deviation theory correctly captures
the spatial structure of the distribution of particles in the
tail regions, Figure 4 compares normalized vertical profiles of
concentration, according to the theory (28) (curves), and from
an ensemble of RFM calculations (3) (points). The stable ABL
scenario of Table A1 (also Figure 1) is used, and Figure 4(a) shows
results at t = 20 at various positions in the positive tail region,
with (b) showing the negative tail.

Direct Monte-Carlo simulation of (3) is too expensive, by
some orders of magnitude, to obtain the necessary statistics
in the tail regions to generate the plots shown in Figure 4.
For example, the concentration 〈c〉(x = 45, t = 20) ≈ 5 × 10−7,
indicating that at the end of a direct calculation, only one in
every two million trajectories will be located within a unit area
surrounding the measurement site. To overcome this problem,
the unbiased pruning and cloning method ‘go-with-the-winners’
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(GWTW; Grassberger, 2002) is used to focus the calculation,
following Haynes and Vanneste (2014). The key to the successful
implementation of GWTW is a suitable choice of scoring function,
used to decide which trajectories are to be pruned/cloned. Here,
following the argument of Esler (2015), the scoring function is
chosen to be the product of each trajectory’s current weight and
a local approximation to the solution of the appropriate adjoint
problem. The adjoint problem in this case is the ‘reverse-time’
transport problem, solved backwards from the receptor where
the measurement is to be taken. For a receptor at (x0, t0) in the
tail region, with x0/t0 = ξ0 (say), the adjoint concentration can
be crudely estimated from the large deviation form, which by

symmetry with the forward problem, is

c∗(x, z, t) ∼ (t0−t)−1/2 φ∗(z, ξ∗) e−(t0−t) g(ξ∗), (32)

where ξ∗ = (x0−x)/(t0−t), and g(·) is the same rate function
as in the forward problem. Expanding g(ξ∗) around ξ0, the
leading-order x-dependence is given by

c∗ ≈ eq0(x−x0), q0 = g′(ξ0). (33)

Choosing the scoring function based on (33) consequently acts
to focus trajectories in the GWTW calculation along the ‘ray’
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x/t = ξ0, with ξ0 being related to q0 through the Legendre
transform (31). The result is that, by the end of the calculation, a
large number of trajectories end up close to the receptor region
(x0 ≈ ξ0t0), with each trajectory weight being suitably adjusted
so as to keep the calculation unbiased.

The GWTW Monte-Carlo results shown in Figure 4 are
obtained from separate calculations, which differ in the value of q0

chosen, in order to target each receptor region (x = 32, 38, 42, 45,
etc.) in turn. It is found that N = 105 trajectories are required to
obtain the agreement shown with the large-deviation predictions.
It is notable that there is an asymmetry in the positive and
negative tails, which can be explained by the vertical diffusivity
being somewhat higher in the lower part of the stable ABL,
resulting in an eigenfunction with a thicker boundary layer than
in the corresponding position in the forward tail.

3.4. RFM non-uniqueness

It is well-known that the ‘well-mixed’ condition of Thomson
(1987) is not sufficient to determine a unique RFM in two or
more dimensions. It is interesting to explore how this non-
uniqueness can result in changes to κeff . Arguably the simplest
family of non-unique models is obtained by replacing (5) with

d� = −
(

�

τ1
+ �

τr

)
dt +

(
2

τ1

)1/2

dB1,

d� =
(
−�

τ2
+ �

τr
+ dσ2

dz

)
dt +

(
2

τ2

)1/2

dB2,

dX = (u + �σ1) dt,

dZ = �σ2 dt.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(34)

Here τr(z) can be any smooth function. Its (local) interpretation is
that |τr| is a ‘rotational’ time-scale which controls the rate of spin
of trajectories in the (x, z)-plane, with the sign of τr determining
the sense of rotation. The RFM (34) also has the invariant measure
(8) and therefore cannot be objectively distinguished from (5).

Since it has been established above that, for late-time
dispersion, in practice the RFM model represents only a small
correction to the RDM, we will focus only on the latter here. In
Appendix B3 the method of homogenization (e.g. Pavliotis and
Stuart, 2007) is applied to the RFM to show that, in the RDM limit,
the Fokker–Planck equation of (34) is the advection–diffusion
equation

ct + {u + (κr�)z} cx = κ1� cxx + (κ2 � cz)z . (35)

Here κi = σ 2
i τi for i = 1, 2 as above, κr = σ1σ2τ1τ2/τr and

� = τ 2
r

τ 2
r + τ1τ2

(36)

is a non-dimensional ‘diffusivity suppression factor’ which takes
values in the range 0 < � ≤ 1. Notice that in the limit τr → ±∞,
in which (34)→ (5), � → 1 and κr → 0, so that (35) reduces to
(10).

The consequence of using the general RFM (34) in place of (5) is
therefore generally to increase the effective horizontal diffusivity by
reducing the physical vertical diffusivity. The effective diffusivity
result analogous to that in (2) is

κeff =
〈

F̄2

κ2�
+ κ1�

〉
, (37)

where F̄(z) is modified from F(z),

F̄(z) = F(z) + κr(z)�(z) − κr(0)�(0). (38)

Note that the mean advecting velocity in (2) is also modified to
〈u + (κr�)z〉.

3.5. Three-dimensional effects

Three-dimensional dispersion in the ABL merits separate
consideration in order to understand the effect of the turning
of the mean wind with height, i.e. in Ekman layers. Assuming
horizontally isotropic statistics, the three-dimensional extension
of the RDM (9) has Fokker–Planck equation

ct + u · ∇Hc = κH∇2
Hc + (κVcz)z , (39)

where u(z) = {u1(z), u2(z)}T is the (2D) horizontal mean wind
profile, ∇H denotes the horizontal gradient operator and
κH = σ 2

1 τ1 and κV = σ 2
2 τ2, as obtained from the profiles in

Table A1.
Applying the homogenisation procedure to the RDM (39),

in order to obtain its long-time behaviour, results in the two-
dimensional analogue of (2)

∂t〈c〉 + 〈u〉 · ∇H〈c〉 = ∇H · (κeff · ∇H〈c〉) . (40)

Here the effective diffusivity tensor κeff , split into a shear

dispersion term κ
(1)
eff and a direct dispersion term κ

(2)
eff , is given by

κ
(1)
eff =

⎛
⎝

〈
F2

1/κV
〉 〈F1F2/κV〉

〈F1F2/κV〉 〈
F2

2/κV
〉
⎞
⎠ , (41)

where

Fi(z) =
∫ z

0
{ui(z̄) − 〈ui〉} dz̄, (42)

and κ
(2)
eff = κ

(2)
eff I, where κ

(2)
eff = 〈κH〉 and I is the identity matrix.

In typical ABL conditions the tensor κ
(1)
eff can be expected to be

strongly anisotropic. It has eigenvalues

κ±
eff =

〈
F2

2κV

〉 {
1 ± (1 − �)1/2

}
, (43)

where F = (F2
1 + F2

2)1/2 and � is a measure of anisotropy, taking
values in the range 0 ≤ � ≤ 1, given by

� = 4
〈F2

1/κV〉〈F2
2/κV〉 − 〈F1F2/κV〉2

〈F2/κV〉2
. (44)

Notice that � is invariant under a coordinate rotation about the
vertical axis.

The eigenvalues give the effective diffusion rate in the principal
directions given by the associated eigenvectors (approximately,

the major axis associated with κ+
eff is in the direction of 〈Fκ

−1/2
V 〉

where F = (F1, F2)T , and the minor axis associated with κ−
eff is

perpendicular to this). When there is no turning of the wind with
height, then � = 0 and κ−

eff = 0, meaning that shear dispersion
acts in one direction only.

The physics of the three-dimensional ABL dispersion changes

significantly based on the ordering of the diffusivities κ+
eff , κ

(2)
eff

and κ−
eff . Generally, U � 1 and κ+

eff � κ−
eff , κ(2)

eff , so the interesting

question concerns the relative magnitudes of κ−
eff and κ

(2)
eff . The

answer is important, as the effective diffusivity along the minor
axis will control the width of emission plumes far downstream
of sources, and consequently their rate of mixing into the
environment. The two regimes are:

• 2D shear dispersion (2D-SD) regime (κ−
eff >κ

(2)
eff ). In this

regime shear dispersion dominates along the minor axis,
and the plume width will be proportional to the magnitude
of the wind strength, and inversely proportional to the
square root of the vertical diffusivity.
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Figure 5. (a) Contour plots of vertically integrated particle concentration density 〈c〉(x, y, t) at t = 30hu−1∗ , in RDM experiments with N = 105 trajectories. The mean
ABL velocity is the Ekman spiral flow (45), with parameters U = 10 and α = 0◦, 15◦, 30◦ and 45◦ (top to bottom), and with κH and κV corresponding to stable ABL
conditions. For clarity, the concentration fields have been rotated so that the major axis is parallel to the x-axis, and the box dimensions are 200 × 100 (this aspect
ratio is chosen in order to show detail in the y-direction). Concentration units are 10−4h−2 with the total amount of tracer fixed at unity. (b) Concentration fields

for the same conditions calculated from the large-deviation approximation (48). (c) Total effective diffusivity κ
(2)
eff + κ−

eff in the minor axis direction as a function

of α. The solid line is the theory (43) and the points are calculated from integrations of the RDM. The dotted line shows κ
(2)
eff and the dashed curve κ−

eff , with their
intersection at αc. The inset shows the relative velocity u − 〈u〉 in the Ekman spiral, rotated so that the mean shear is in the x-direction.[Colour figure can be viewed
at wileyonlinelibrary.com].

• Direct dispersion-shear diffusion (DD-SD) regime

(κ(2)
eff > κ−

eff ). In contrast, in the DD-SD regime plume
widths will be sensitive only to the vertical mean of the
direct horizontal diffusivity κH.

The diffusivities κ+
eff , κ

(2)
eff and κ−

eff can be evaluated for the
profiles of turbulent statistics given in Table A1. Taking a linear
shear flow with an Ekman spiral

u = Uz {cos (αz), sin (αz)}T , (45)

and using the fact that in the ideal profile κV = κH = κ , the
integrals in (43) can be evaluated exactly. The leading order result
for α � 1 is the most illuminating,

κ+
eff = U2

120κ
, κ−

eff = U2

120κ

α2

63
. (46)

The result for κ+
eff is well-known as the one-dimensional effective

diffusivity for a linear shear flow with a constant diffusivity

(e.g. Saffman 1962, their Eq. 17). The formula for κ−
eff is striking,

because it shows that for α � 1 (radians) the effective diffusivity
in the direction of the minor axis will be weaker by two to three
orders of magnitude or more. (The small-angle approximation
(46) is useful throughout this range, as the error relative to the
exact result (43) is just 7% for α = 1 radian). The result (46)
allows the critical angle αc, defined to be the angle α for which

κ−
eff = κ

(2)
eff , to be estimated. It follows that ABLs with α � αc are

in the DD-SD regime and those with α � αc in the 2D-SD regime

described above. Inserting κ
(2)
eff = κ = 0.1 for the ideal profile

gives (in radians)

αc = DU−1, with D =
(

7560

100

)1/2

≈ 8.69. (47)

Similar calculations can be made numerically for the stable and
neutral profiles, for which (47) also applies, but with D ≈ 4.16
and D ≈ 0.793 respectively. The lower value of D in the neutral
case results in smaller values of αc, meaning that, compared to
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the stable case, a wider region of (U , α) parameter space is in the
2D-SD regime than in the DD-SD regime.

Figure 5(a) shows 〈c〉(x, y, t) at t = 30hu−1∗ from three-
dimensional RDM calculations in the stable ABL withU = 10 and
α = 0◦, 15◦, 30◦ and 45◦. Trajectories are released at (0, 0, 1/2)
in each case. Based on (47) αc ≈ 24◦. The α = 0◦ and 15◦
calculations are well within the DD-SD regime, and show near-
identical diffusion rates in the direction of the minor (y) axis.
The third and fourth calculations with α = 30◦ and 45◦ are in the
2D-SD regime and have a clearly increased rate of diffusion in the
minor axis direction.

Figure 5(c) shows the total effective diffusivity in the minor

axis direction κ−
eff + κ

(2)
eff as a function of α. Estimates from the

RDM integrations results are shown as solid points, and the solid
curve shows the theoretical prediction (43), which is seen to be
accurate in this parameter regime. The transition between the
DD-SD and 2D-SD regimes occurs at αc ≈ 24◦.

It is notable that the plumes in Figure 5 begin to bend once
α � αc. A similar bending of pollutant plumes has been reported
in large-eddy simulations (LESs) in stable ABL conditions by
Kemp and Thomson (1996), who attribute the phenomenon
(as here) to the turning of the mean wind with height. The
phenomenon is qualitatively easy to understand with reference
to the relative wind vectors shown in Figure 5 (inset). Particles
making large excursions along the major axis spend more time
near the top or bottom of the ABL, where they experience a
positive relative flow in the minor axis (here y) direction, whereas
particles staying near the domain centre tend to sample a negative
relative flow.

The large-deviation framework introduced in section 2.2 allows
the bending of the plume to be quantified, by seeking a solution
of (39) of the form

c(x, y, z, t) ∼ t−1φ(z, ξ)e−tg(ξ), ξ = (x, y)T/t. (48)

The eigenvalue problem satisfied by φ is found to be (cf. Haynes
and Vanneste, 2014)

(κVφz)z + (
u · q + κH|q|2)φ = f (q)φ, (49)

φz = 0, z = 0, 1.

where q = ∇ξ g. The rate function g(ξ ) is related to the eigenvalues
f (q) via the Legendre transform

g(ξ) = sup
q

{
ξ · q − f (q)

}
. (50)

To obtain g(ξ) numerically, it is necessary to solve (49)
numerically for q taking values over a regular grid, recording
the principal eigenvalue f (q) everywhere on the grid. A standard
nonlinear programming algorithm (with cubic interpolation) can
then be used to solve (50). Figure 5(b) shows the prediction (48),
using the calculated g(ξ). A caveat is that the approximation
used is somewhat crude, because for simplicity we have made the
(unjustified) assumption that 〈φ〉 is independent of ξ . However,
notwithstanding this caveat, it is clear that the large-deviation
theory does a good job of capturing the extent of the plume
bending effect accurately over this time interval.

4. Conclusions

The main results of this study can be summarized as follows:

1. Horizontal effective diffusivity κeff in the ABL, under
realistic stable or neutral conditions, differs by at most
a few percent depending on whether particle dispersion
is modelled by the RFM or its RDM approximation.
The analytical formulae (24)–(25) allow the RFM→RDM
correction to κeff to be calculated for arbitrary vertical
profiles of velocity and turbulent statistics. The insensitivity

ofκeff supports the choice of researchers using models based
on the RDM (e.g. the model MLPD0; D’Amours et al.,
2010) for applications involving large-scale dispersion. In
fact, given that existing RFM ‘long’ time-stepping schemes
(e.g. Legg and Raupach, 1982) introduce large numerical
errors at operational time steps (Ramli and Esler, 2016), it
is reasonable to conclude that, given finite computational
resources, the RDM will be more accurate and robust for
a wide class of dispersion problems for which the RFM is
often currently used.

2. The large-deviation rate function (g(ξ) above), which
controls the evolution of the tracer concentration in the
tail regions of the cloud of particles, is more sensitive
to the use of the RDM approximation (Figure 3). In
particular, the RFM exhibits increased transport (reduced
rate function g(ξ)) to the positive tail region for the stable
and neutral profiles, compared to the RDM. For transport
problems in which the quantity of interest is the first time
a concentration meets a given (low) threshold (e.g. the
poison release problem), it may be advisable to use the
RFM to obtain accurate results.

3. The non-uniqueness of the ‘well-mixed’ RFM in two
dimensions (Thomson, 1987) means that RFMs exist
with significantly different κeff . For example, a rotational
component to the trajectory evolution equations can be
introduced ((34)). Models with a short rotational time-
scale τr have significantly suppressed (physical) diffusivity,
with a corresponding increase in κeff .

4. In three-dimensional ABL flows with an Ekman spiral,
the effective diffusivity due to shear dispersion in the
‘minor axis’ direction κ−

eff (approximately perpendicular
to the wind shear direction), is typically two orders of
magnitude weaker than that along the major axis κ+

eff , even
for wind rotations α of up to a radian. The nature of
the resulting ABL dispersion is controlled by the relative
magnitudes of κ−

eff and the direct horizontal diffusivity
〈κH〉. For κ−

eff � 〈κH〉 (the DD-SD regime above), plumes
widths are controlled by the direct horizontal diffusivity
and straight plumes emerge. For κ−

eff � 〈κH〉 (the 2D-SD
regime above), bent plumes, as observed in LESs of stable
conditions (Kemp and Thomson, 1996), are evident. The
effective diffusivity reveals no information about plume
bending, however its extent can be quantitatively predicted
using large-deviation theory.
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Appendices

Appendix A: Empirical profiles of turbulent statistics

Throughout the article, three example profiles for σi(z), the
standard deviation of the turbulent velocity field, and τi(z), the
corresponding Lagrangian decorrelation time-scales, are used.
Here the subscripts i = 1, 2 correspond to the x and z-directions
respectively. The profiles are detailed in Table A1 (Ramli and Esler,
2016, also give further discussion, including plots (their Figure 1).
Briefly, the first is an ‘ideal’ profile with constant σi(z) and
τi(z) (i = 1, 2), which allows for explicit analytical progress. The
remaining two profiles are widely used (Hanna, 1982; Stohl et al.,
2005) empirical fits to observed statistics in stable and neutral
conditions respectively. In practice, the exact profiles suggested by
Hanna (1982) are modified slightly (Table A1 caption), to avoid
singular behaviour at the ABL top and bottom. This is necessary
because in Hanna’s original profiles either σw → 0 or τ → 0 as
z → 0, 1, with neither type of behaviour being physical.
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Table A1. Non-dimensional profiles of the velocity standard deviation σi(z)
(i = 1, 2) and Lagrangian decorrelation time-scale τi(z) for three possible ABL
situations: (i) ideal (constant) profile, (ii) stable ABL, and (iii) neutral ABL 3 (e.g.

Hanna, 1982).

σ1(z) τ1(z)
σ2(z) τ2(z)

Ideal
1

1

0.1

0.1

Stable
2.0 (1 − z)

1.3 (1 − z)

0.15 z1/2/σ1

0.1 z4/5/σ2

Neutral
2.0 exp (−2z/ε)

1.3 exp (−2z/ε)

z

2σ2(1 + 15z/ε)
z

2σ2(1 + 15z/ε)

The units are u∗ and hu−1∗ respectively. The parameter ε = u∗/fh in the
neutral profile is set to 0.8. In the case of the stable and neutral profiles,
regularized profiles (σ̄i(z), τ̄i(z)) are used in practice, where σ̄i(z) = σi(Zm(z))
and Zm(z) = zb + z(1 − 2zb) for zb = 0.05.

Appendix B: Mathematical details

B1. Properties of (probabilists’) Hermite polynomials

In this appendix we detail some useful properties of the
probabilists’ Hermite polynomials. The kth polynomial, denoted
Hek(ω), is defined by

Hek(ω) = (−1)k eω2/2 dk

dωk
e−ω2/2. (B1)

Associated with each polynomial is a Hermite function

Hek(ω)e−ω2/2/
√

2π . Here we give those identities used in the
derivation of (B8), (B11) and (C2). All are standard results (e.g.
Abramowitz and Stegun, 1965, chapter 22).

First, the Hermite polynomials are solutions of Hermite’s
equation (

∂2

∂ω2
− ω

∂

∂ω

)
Hek(ω) = −k Hek(ω), (B2)

from which it follows that the Hermite functions satisfy(
∂2

∂ω2
+ ω

∂

∂ω
+ 1

)(
Hek(ω)e−ω2/2

√
2π

)

= −k
Hek(ω)e−ω2/2

√
2π

. (B3)

Second, because Hermite’s equation can be written as an
eigenvalue problem with a self-adjoint linear operator, the
Hermite polynomials can be shown to satisfy an orthogonality
relation, specifically∫ ∞

−∞
Hej(ω)Hek(ω)

e−ω2/2

√
2π

dω = k! δjk, (B4)

where δjk is the Kronecker delta. Notice that a special case of (B4),
for j = 0, is the integral identity∫ ∞

−∞
Hek(ω)e−ω2/2 dω = 0, (k ≥ 1). (B5)

Thirdly and fourthly, the following differentiation and recursion
relations can be obtained:

d

dω
Hek(ω) = kHek−1(ω), (B6)

ωHek(ω) = Hek+1(ω) + kHek−1(ω). (B7)

The results (B3)–(B7) are essential to the derivation of the systems
of Eqs (B8), (B11) and (C2).

B2. Asymptotic solution for p1 in Eq. (18)

To find the effective diffusivity in the calculation of section 3.1 the
particular integral for (18) must be found. The details follow. First
note that the boundary conditions require Ck(0) = Ck(1) = 0 and
Dk(0) = Dk(1) = 0 for k odd.

Inserting the expansion (19) into (18), the following hierarchy
is obtained for the {Ck},

0=δ(σ̄2C1)′+δ2u k = 0,

−kCk

τ̄2
=δσ̄2C′

k−1+δ(k+1)(σ̄2Ck+1)′ k ≥ 1.

⎫⎬
⎭ (B8)

The first equation can be integrated to obtain

C1(z) = −δσ̄−1
2 F(z). (B9)

Notice that the boundary conditions are satisfied because
F(0) = F(1) = 0. Rearranging the k = 1 equation,

C′
0 = F

κ2
− 2

(σ̄2C2)
′

σ̄2
(B10)

= F

κ2
− δ2

σ̄2

{
κ2

(
F

σ̄2

)′}′
+ 3δ

(
σ̄2τ̄2 (σ̄2C3)

′)′
σ̄2

,

where the k = 2 equation of (B8) has been used to to substitute
for C2.

Inserting the above expression for C′
0 into (23) for κ

(1)
eff ,

integrating by parts, and using the fact that C3(0) = C3(1) = 0,
gives

κ
(1)
eff =

〈
F2

κ2
+δ2κ2

(
F

σ̄2

)′2
+ 3δC3σ̄2

{
κ2

σ̄2

(
F

σ̄2

)′}′〉
.

Using the k = 3 equation of (B8) to substitute for C3, and
integrating by parts again, results in (after some working)

κ
(1)
eff =

〈
F2

κ2
+ δ2κ2

(
F

σ̄2

)′2
− δ4

2
κ2

{
κ2

σ̄2

(
F

σ̄2

)′}′2〉

+ O(δ6),

from which the result (24) follows upon substitution of δσ2 for
σ̄2.

The explicit horizontal diffusivity κ
(2)
eff can be handled in a

similar fashion. The corresponding hierarchy is

−D0

τ̄1
= δ(σ̄2D1)′ + δσ̄1 for k = 0,

− τ̄2+kτ̄1

τ̄1τ̄2
Dk = δσ̄2D′

k−1+δ(k+1)(σ̄2Dk+1)′

for k ≥ 1.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(B11)

Following the same procedure as above

κ
(2)
eff = −δ−1 〈σ̄1D0〉

= 〈
σ̄ 2

1 τ̄1 + σ̄2D1(σ̄1τ̄1)′〉 ,
where the second expression is obtained by substituting for D0

from (B11) and integrating by parts. It follows from the k = 1
equation of (B11) that

σ̄2D1 = δ2 τ̄1τ̄2

τ̄1 + τ̄2
σ̄ 2

2 (σ̄1τ̄1)′ + O(δ4),

from which

κ
(2)
eff =

〈
κ1 + δ2 κ2τ̄1

τ̄1 + τ̄2

(
κ1

σ̄1

)′2〉
+ O(δ4).

The result (25) follows upon substitution of δσi for σ̄i and δ−2τi

for τ̄i (i = 1, 2).
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B3. The RDM limit of the generalized RFM (34)

Here, the RDM limit of the generalized ‘non-unique’ RFM (34) is
obtained, using the method of homogenization (e.g. Pavliotis and
Stuart, 2008). The starting point is the Fokker–Planck equation
of (34), which following the substitution (13) is

δ2pt +
{

(δ2u+δλσ̄1)p
}

x
+δ

(
ωσ̄2p

)
z
+δ(σ̄ ′

2p)ω =Lrp, (B12)

where the linear operatorLr acts on functions f (λ, ω, z) according
to

Lrf ≡ τ̄−1
1

(
fλ + λf

)
λ

+ τ̄−1
2

(
fω + ωf

)
ω

+ τ̄−1
r

(
ωfλ − λfω

)
. (B13)

The Fokker–Planck of the RDM is recovered in the limit δ � 1.
Expanding p as a power series in δ,

p = p0 + δp1 + ..., (B14)

the leading-order equation is found to be Lrp0 = 0 which has the
‘well-mixed in velocity-space’ solution

p0 = c(x, z, t) exp
{− 1

2 (λ2 + ω2)
}

, (B15)

where c is at this stage an undetermined concentration field. At
next order

Lrp1 = λσ̄1p0x + (
ωσ̄2p0

)
z
+ (σ̄ ′

2p0)ω

= (λσ̄1cx + ωσ̄2cz) exp
{− 1

2 (λ2+ω2)
}

, (B16)

which has the particular integral

p1 =
{
−λτ̄1

(
σ̄1cx+ τ̄2

τ̄r
σ̄2cz

)
−ωτ̄2

(
− τ̄1

τ̄r
σ̄1cx+σ̄2cz

)}

×
(

1 + τ̄1τ̄2

τ̄ 2
r

)−1

exp
{− 1

2 (λ2 + ω2)
}
. (B17)

At O(δ2),

Lrp2 = p0t +up0x+λσ̄1p1x+
(
ωσ̄2p1

)
z
+(σ̄ ′

2p1)ω. (B18)

The solvability condition for this equation is that the integral
over (λ, ω) ∈ R

2 of the right-hand side must be identically zero.
Inserting for p0 and p1 and evaluating this integral leads directly
to (35).

Appendix C: Solution of the eigenvalue problem (29)–(30)

The numerical method used for the solution of the eigenvalue
problem (29)–(30) is as follows. First, φ is expanded

φ(z, λ, ω, ξ) = 1

2π

∞∑
k=0

∞∑
l=0

Ck,l(z, ξ)

× Hek(ω) Hel(λ) e−(λ2+ω2)/2, (C1)

in the Hermite polynomials Hek(·) detailed in Appendix B1.
The expansion (C1) is then inserted into (29). Using the
Hermite polynomial identities given in Appendix B1, the resulting
expression can be rearranged into a single summation of the same
form as (C1). Using orthogonality, the system can be then be
reduced to a doubly-infinite set of coupled ordinary differential
equations for the {Ck,l},

u q Ck,l + σ1 q
{

Ck,l−1 + (l + 1) Ck,l+1
}

− σ2 ∂zCk−1,l − (k + 1) ∂z
(
σ2 Ck+1,l

)
− (

k τ−1
2 + l τ−1

1

)
Ck,l = f (q) Ck,l, (C2)

where k, l ≥ 0, and the convention Ck,−1 ≡ 0 and C−1,l ≡ 0 is
used. The boundary conditions at z = 0, 1 are

Ck,l(0) = Ck,l(1) = 0, for k odd, (C3)

and there are no boundary conditions for k even.
The system (C2) can be truncated at finite (k, l) = (K, L), and

discretized using M points in z, resulting in a matrix eigenvalue
problem of the form

A c = f (q) c, (C4)

where the square matrix A has dimension
(K+1)(L+1)M×(K+1)(L+1)M. The vector c has components
{Ck,l(zm); k=0, ..., K; l=0, ..., L; m=1, ..., M}. The vertical dis-
cretization, based on the grid {zm = (m − 1

2 )/M; m=1, ..., M},
is discussed in detail in Appendix A of Ramli and Esler (2016)
as there are some subtleties related to the implementation of
the boundary conditions. In particular, the system will have the
correct number of boundary conditions only in the event that
the series is truncated at k = K odd. The discretised eigenvalue
problem (C4) is solved using the QR-algorithm adapted for
sparse matrices, as implemented in the MATLAB routine ‘eigs’
(Lehoucq et al., 1998).

To accelerate the calculations, a multi-grid approach is used.
Low-resolution solutions are first used to identify the principal
eigenmode. The low-resolution calculations are then interpolated
and used as initial guesses for higher-resolution calculations in
which only the principal eigenmode is sought. A continuation
method is used where calculations at new values of q are
initialized with solutions at nearby values. For the profiles detailed
in Table A1, the Hermite polynomial expansion converges
sufficiently rapidly that errors below the truncation error are
obtained for (K, L) = (7, 5). The highest vertical resolution used
is M = 100. Further details, including an analysis of numerical
convergence, are given in Ramli (2016).
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