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Dam-break and lock-exchange flows are considered in a Boussinesq two-layer fluid
system in a uniform two-dimensional channel. The focus is on inviscid ‘weak’ dam
breaks or lock exchanges, for which waves generated from the initial conditions do
not break, but instead disperse in a so-called undular bore. The evolution of such
flows can be described by the Miyata–Camassa–Choi (MCC) equations. Insight into
solutions of the MCC equations is provided by the canonical form of their long wave
limit, the two-layer shallow water equations, which can be related to their single-layer
counterpart via a surjective map. The nature of this surjective map illustrates that
whilst some Riemann-type initial-value problems (dam breaks) are analogous to those
in the single-layer problem, others (lock exchanges) are not. Previous descriptions of
MCC waves of permanent form (cnoidal and solitary waves) are generalised, including
a description of the effects of a regularising surface tension. The wave solutions allow
the application of a technique due to El’s approach, based on Whitham’s modulation
theory, which is used to determine key features of the expanding undular bore as a
function of the initial conditions. A typical dam-break flow consists of a leftwards-
propagating simple rarefaction wave and a rightward-propagating simple undular
bore. The leading and trailing edge speeds, leading edge solitary wave amplitude and
trailing edge linear wavelength are determined for the undular bore. Lock-exchange
flows, for which the initial interface shape crosses the mid-depth of the channel, by
contrast, are found to be more complex, and depending on the value of the surface
tension parameter may include ‘solibores’ or fronts connecting two distinct regimes
of long-wave behaviour. All of the results presented are informed and verified by
numerical solutions of the MCC equations.

Key words: internal waves, ocean processes, shallow water flows

1. Introduction
A bore can be defined as a fluid flow connecting two uniform basic states.

In the context of single-layer flow, some of the most famous examples include
river bores such as those on the Severn (UK) and Dordogne (France). Large
amplitude bores tend to be turbulent, and turbulent bores are typically modelled by a
localised discontinuity satisfying physically or empirically derived Rankine–Hugionot
conditions. For relatively small depth ratios, however, the bore consists of a nonlinear
wavetrain and is said to be ‘undular’ (the early experimental work of Favre 1935
suggests a critical depth ratio for water waves of around 1.28).
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In this work, the focus is on internal undular bores generated by (partial) dam
breaks in a two-layer fluid. Dam breaks may be regarded as the canonical generation
mechanism for undular bores, and the dam-break problem is an essential pre-requisite
for understanding undular bores in more complex flows, such as those generated by
transcritical flow over topography (e.g. El, Grimshaw & Smyth 2009). The present
study is motivated by the ever increasing number of observations revealing the
ubiquity of internal undular bores in the atmosphere (e.g. Clarke 1998; Rottman &
Grimshaw 2002), where they may influence local weather events (e.g. thunderstorm
initiation), as well as in the coastal oceans (e.g. Holloway, Pelinovsky & Talipova
2001; Grimshaw 2002), where they have a role in mixing processes and in the energy
budgets of tidal flows.

The typical situation to be considered is shown in figure 1(a, b), which illustrates
schematically how a typical dam break initial condition evolves into a rightward-
propagating undular bore and leftward-propagating ‘rarefaction wave’. The somewhat
more complicated situation of a lock-exchange flow, which occurs in the two-layer
system but not in the single-layer one, is illustrated in figure 1(c, d ). Understanding
how and why the development of the lock exchange differs from the dam break will
be a key focus below. An assumption made throughout the present work is that
the dam breaks considered are sufficiently weak, in the sense of the interface height
difference across the barrier being small (in some sense), and are initialised sufficiently
smoothly, that no wave breaking results. Based on this assumption, a suitable model
is the Miyata–Choi–Camassa (MCC) equations (following Miyata 1985; Choi &
Camassa 1999). The MCC equations are an extension of the two-layer shallow
water equations (SWE hereafter) with additional regularising dispersive terms which
preclude wave breaking entirely. Therefore, the results below are complementary
to previous analytical, experimental and numerical studies of dam breaks, lock
exchanges (e.g. Klemp, Rotunno & Skamarock 1997; Shin, Dalziel & Linden 2005) and
gravity currents (e.g. Benjamin 1968; Rottman & Simpson 1983; Klemp, Rotunno &
Skamarock 1994) in two-layer fluids. In the aforementioned studies, the focus has
been on ‘strong’ dam breaks, which include gravity currents as a special case, in which
wave breaking is observed (or assumed) and the internal bores are turbulent. There
has been much discussion in the literature about the appropriate Rankine–Hugoniot
conditions to apply at an internal bore or gravity current in a two-fluid system.
Possible jump conditions follow from the assumption of no energy dissipation in the
contracting layer (Chu & Baddour 1977; Wood & Simpson 1984), or the opposite
extreme that no energy dissipation occurs in the expanding layer. Theoretical (Li &
Cummins 1998) and experimental (Baines 1984; Rottman & Simpson 1989) results
indicate that spatially localised internal bores must propagate at speeds between the
values predicted by the above two hypotheses. In the present study, by contrast, we
will be concerned with undular bores which do not break and do not remain localised.

In single-layer flows the study of undular bores has followed Benjamin & Lighthill
(1954), who considered the steady undular bores that result when dissipation is present,
and Gurevich & Pitaevskii (1974), who solved a model ‘dam break’ initial-value
problem in the absence of dissipation. Both approaches exploit the assumption of
weak nonlinearity to derive solutions based on the cnoidal and solitary wave solutions
of the Korteweg–de Vries (KdV) equation. The dissipationless case can be argued to
be more fundamental, both as a description of the early time behaviour of an undular
bore before significant dissipation occurs, and as a generic paradigm relevant to many
branches of physics. The Gurevich–Pitaevskii solution is based on Whitham modula-
tion theory (following Whitham 1965), for which a scale separation is assumed between
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Figure 1. (a) Dam break t = 0: illustrating the physical set-up and step-like initial conditions
including definitions of the left and right interface heights h− and h+. (b) Dam break t > 0:
schematic illustration of a typical developing undular bore and rarefaction wave, including
the definition of the undular bore leading and trailing edge speeds s+ and s−, the mid-state
(v, h) = (vm, hm) and long wave speeds V l

+ and V l
m associated with the boundaries of the

rarefaction wave. (c) Lock exchange t =0: the initial conditions for a lock exchange cross
the mid-depth of the channel. (d ) Lock exchange t > 0: schematic illustration of a typical
lock-exchange development including solibores.
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the variation of mean quantities and a typical cnoidal wavelength. A consequence
of the integrability of the KdV equation is that the resulting modulation equations
may be obtained in Riemann invariant form and integrated to obtain full analytical
expressions for the variation of mean physical quantities across the undular bore.

Undular bores are generic features of nonlinear hyperbolic systems regularised by
(weak) dispersion, such as the MCC equations discussed above. Unlike the KdV,
however, the MCC equations, and their associated modulation equations, are not
thought to be integrable. Until recently, it was unclear how the Gurevich–Pitaevskii
approach could be usefully extended to non-integrable systems. However, El (2005)
(see also El, Khodorovskii & Tyurina 2003, 2005) have demonstrated that insights
from Whitham modulation theory can be used to determine details of undular bores
in a wide class of non-integrable hyperbolic equations supporting bidirectional wave
propagation. El’s (and co-authors’) technique allows simple undular bores to be
‘fit’ into solutions of the underlying long wave equations, much as localised jump
discontinuities are fit into solutions of the SWE as models of turbulent bores in the
classical dam-break problem.

A dissipationless undular bore differs from its localised turbulent counterpart in
that respect as it occupies a uniformly expanding region between a leading (e.g.
solitary wave) edge with speed s+ and a trailing (e.g. linear wave) edge with speed s−,
as illustrated in figure 1. Using El’s technique, an explicit resolution of the details of
the undular bore is not necessary to obtain key quantities, such as the propagation
speeds of the boundaries of the undular bore (s− and s+), the leading edge solitary
wave amplitude and the trailing edge linear wavenumber. The application of El’s
technique to a wide class of systems supporting bidirectional wave propagation,
which will be shown below to include the MCC, is discussed in detail in El (2005,
§ 5), as well as in El et al. (2005). The main points of their arguments will be reviewed
below. A successful application of El’s technique to dam breaks in the single-layer
Su–Gardner (Su & Gardner 1969) dispersive shallow water model is described in
El, Grimshaw & Smyth (2006). Details of the single-layer dam-break solution were
essential pre-requisites for solution of the important physical problem of near-critical
flow over topography in the dispersive regime (El et al. 2009).

The objective of the present work is to apply El’s technique to two-layer dam breaks
and lock exchanges. In § 2, the physical problem to be addressed is described together
with the MCC equations used to model the resulting fluid flows. The conservation
properties of the MCC are stated and the properties of the equations in the long
wave (SWE) limit are reviewed. A formal distinction is made between generalised ‘dam
break’ and ‘lock-exchange’ initial conditions. In § 3, a general treatment of the steadily
propagating wave solutions of the MCC is presented. Previous results for solitary
wave speeds are generalised to allow for arbitrary vertical shears and the properties
of the ‘solibore’ solution of the MCC are reviewed. Section 4 considers the dam-break
problem, and it is demonstrated how El’s technique can be used to ‘fit’ undular bores
into solutions of the two-layer SWE. In § 5, the predictions of El’s technique are
compared with numerical simulations of both dam-break and lock-exchange flows as
described by the MCC equations. Finally, in § 6, conclusions are drawn.

2. A dispersive model for internal dam-break and lock-exchange flows
2.1. The physical problem

Figure 1 illustrates the initial conditions for the general physical situation of interest. A
uniform infinite two-dimensional channel of height H contains two fluids of densities
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ρ1 and ρ2. For ease of exposition, the Boussinesq approximation ∆ =(ρ2 − ρ1)/2(ρ2 +
ρ1) � 1 is assumed in all that follows (the non-Boussinesq case is discussed by Choi &
Camassa 1999). At t =0 the initial conditions are taken to be step-like as illustrated
in figure 1, and the system evolves freely for t > 0, creating a dispersive ‘dam-break’
or ‘lock-exchange’ flows.

The validity of the analysis to follow depends upon a further assumption. The
wave field developing from the step-like initial condition must not include steep or
breaking waves, as the validity of the MCC set depends upon a shallowness parameter
remaining small. Strictly speaking the step-like initial condition of figure 1, with
infinite gradients in interface height, is invalid from the outset. However, asymptotic
solutions derived from Whitham modulation theory are valid only at times which
are sufficiently long to allow the development of a separation of scales between
the modulation scale of the wave envelope and a typical wavelength. It follows
that the initial conditions need only resemble a step-like discontinuity on the long
modulation scale for the analysis to be asymptotically valid. The modulation scale
itself increases linearly with time, so the wave envelope evolving from any smoothed
step will eventually resemble the formal solution evolving from the discontinuous step.
Consequently, an experimental set-up aimed at investigating internal undular bores
might, therefore, be initialised with a ‘smoothed-step’ profile to prevent wave-breaking
at early times from inhibiting the development of an undular bore.

2.2. The Miyata–Choi–Camassa equations

The Miyata–Choi–Camassa equations are a dispersive two-layer set that remain valid
for low wave slopes, but allow for strong nonlinearity. For Boussinesq flow in a
channel of unit depth as described above, the non-dimensional MCC equations are

u1t + u1u1x = −Πx +
1

3h1

(
h3

1G[u1]
)

x
,

u2t + u2u2x = −Πx − h2x +
1

3h2

(
h3

2G[u2]
)

x
+ τh2xxx,

h1t + (u1h1)x = 0,

h2t + (u2h2)x = 0,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.1)

where u1, u2 are the layer-averaged velocities in the upper and lower layers,
respectively, h1 and h2 are the corresponding layer thicknesses and Π is the pressure
at either a free upper surface or at the rigid lid (which result in equivalent systems in
the Boussinesq limit). All lengths are scaled on the channel depth H so that in (2.1)
0 � h1, h2 � 1, velocities are scaled on c =

√
�gH and pressures on c2. The nonlinear

differential operator G[·] acts on a given function f (x, t) as follows:

G[f ] = fxt + ffxx − (fx)
2. (2.2)

The non-dimensional parameter τ = γ /ρ0g
′H 2, where γ is the dimensional surface

tension, is an inverse Bond number. The surface tension terms in (2.1) have been
linearised under the assumption of small interface curvature, an approximation which
is justified as it is consistent with the regime of validity of the MCC itself (small aspect
ratio). Finite surface tension (or some other mechanism) is necessary to regularise the
MCC equations with respect to the MCC analogue of Kelvin–Helmholtz instability
(e.g. Liska, Margolin & Wendroff 1995), for which there is no short-wave cutoff. In the
absence of surface tension, short waves are invariably unstable in the presence of shear
between the layers. With regards to the oceanographic application discussed above,
the surface tension cannot be justified physically, and is perhaps best considered as a
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numerical filter that is required for regularisation. Note that an alternative approach to
regularisation has been described recently by Choi, Barros & Jo (2009). Nevertheless,
τ is retained throughout our analysis since there is no obstacle in principle to setting
up experiments in a two-fluid system with finite τ , with which the results below might
be compared.

The final two equations in (2.1) can be combined and integrated to give

u1(1 − h) + u2h = M(t), (2.3)

where M(t) is the total momentum of the flow. In the absence of fixed topography
and external body forces it is possible to set M ≡ 0 and work in the frame in which
the total momentum is zero, without loss of generality. The unknown upper surface
pressure Π can then be eliminated from the equations by introducing a baroclinic
velocity, v, and interface height, h,

v = u2 − u1, h = h2. (2.4)

The MCC equations can then be written as

ht + (vh(1 − h))x = 0,

vt +

(
1

2
v2(1 − 2h) + h

)
x

= τhxxx +

(
h3G[v(1 − h)]

)
x

3h
−

(
(1 − h)3G[−vh]

)
x

3(1 − h)

⎫⎬⎭. (2.5)

The step-like initial conditions illustrated in figure 1 are

v(x, 0) =

{
v− x < 0,

v+ x > 0,
h(x, 0) =

{
h− x < 0,

h+ x > 0,
(2.6)

and define the so-called Gurevich–Pitaevskii problem, to be addressed in §§ 4 and 5,
respectively.

2.3. Conservation properties of the Miyata–Choi–Camassa equations

The set (2.5) can be obtained from direct approximation of the Hamiltonian of the
two-layer Euler equations, and consequently satisfy various laws related to those of
the full system (Choi & Camassa 1999). Transformation to the frame with M = 0
implies automatic conservation of total momentum, hence the expected conservation
laws are for mass, ‘irrotationality’ (corresponding to conservation of depth-integrated
x–z vorticity) in the upper and lower layers and total energy. For the modulation
theory presented in § 4, it is advantageous to write the conservation laws in ‘flux form’
using only the dependent variables (v, h) (see e.g. Kamchatnov 2000).

The flux form of the mass conservation law is

Mt + Vx = 0, (2.7)

where M ≡ h and V = vh(1 − h), i.e. the first of the MCC equations (2.5). The
remaining conservation laws are, after some manipulation, found to be

I1t + J1x = 0, (upper layer irrotationality),

I2t + J2x = 0, (lower layer irrotationality),

Et + Fx = 0, (energy),

⎫⎪⎬⎪⎭ (2.8)

with the conserved quantities Ii (i = 1, 2) and their fluxes Ji given by

I1 = u1 + 1
6
(1 − h)2u1xx, J1 = Π + 1

2
u2

1 − 1
6
(1 − h)2(G[u1] + u1u1xx), (2.9)

I2 = u2 + 1
6
h2u2xx, J2 = Π + h + 1

2
u2

2 − τhxx − 1
6
h2(G[u2] + u2u2xx). (2.10)
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The two irrotationality relations can be combined by writing I = I2 − I1 and
J = J2 − J1 into a single relation involving only v, h and their derivatives

It + Jx = 0, (2.11)

where

I = v + 1
6
vxxh(1 − h) + 1

6
(1 − 2h)(2vxhx + vhxx), (2.12)

and

J = h + 1
2
v2(1 − 2h) + 1

2
(1 − h)2G[−vh] − 1

2
h2G[v(1 − h)]

− 1
6
vh(1 − h)(2vxhx + hxx) − τhxx. (2.13)

The energy density, E, and its flux, F, are given by

E = 1
2
τh2

x − 1
2
(1 − v2)h(1 − h)

+ 1
6

(
v2

xh
2(1 − h)2 + 2vxhxvh(1 − h)(1 − 2h) + (1 − 3h(1 − h))v2h2

x

)
, (2.14)

and

F = − 1
2
vh(1−h)(1−v2)(1−2h)+τhx(vh(1−h))x − 1

3
vh(1−h) ×

{
h2G[v(1 − h)]

− (1 − h)2G[−vh] + vxhxvh(1 − h) + 2(1 − 2h)v2h2
x + 3τhxx

}
. (2.15)

The three conservation laws (2.7)–(2.11) are required for the Whitham modulation
theory to be presented in § 4.

2.4. The long wave limit: the two-layer shallow water equations

Before using El’s technique to investigate undular bore solutions of the MCC
equations, it is necessary to have a clear understanding of the behaviour of the
MCC in the long wave limit, described by the two-layer SWE

ht + Ahx = 0, where h =

(
v

h

)
, A =

(
v(1 − 2h) 1 − v2

h(1 − h) v(1 − 2h)

)
. (2.16)

Equation (2.16) is simply the MCC equations (2.5) with dispersive and surface tension
terms neglected, as is consistent with the long wave limit. It is straightforward (e.g.
Cavanie 1969; Sandstrom & Quon 1993; Baines 1995; Milewski et al. 2004) to write
(2.16) in canonical Riemann invariant form. The result is[

∂

∂t
+

(
v(1 − 2h) ±

[
h(1 − h)(1 − v2)

]1/2) ∂

∂x

](
v(1 − 2h) ± 2

[
h(1 − h)(1 − v2)

]1/2
)

= 0.

(2.17)

There are several points to note as follows.
(a) A necessary condition for (2.16) to remain hyperbolic is |v| < 1. The canonical

form of (2.16) reveals that if initially |v| < 1 everywhere in the fluid then it will remain
so, at least up to the occurrence of wave breaking (e.g. Milewski et al. 2004; Zahibo
et al. 2007). Where |v| > 1 the fluid is unstable to a (long-wave) shear instability.
Notwithstanding the nomenclature adopted elsewhere in the literature, the two-layer
SWE shear instability is not directly related to the Kelvin–Helmholtz instability of
a two-layer fluid, which is a short-wave instability and consequently is excluded
by construction from the SWE. Both the long-wave shear and Kelvin–Helmholtz
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instabilities are present for linear waves in the MCC system, albeit with the latter in
a modified form.

(b) A remarkable result has been noted by Chumakova et al. (2009). The canonical
form (2.17) appears to be exactly identical to that of the single-layer SWE. The
single-layer SWE can be written, for velocity u and layer thickness σ , in the form[

∂

∂t
+

(
u ± σ 1/2

) ∂

∂x

] (
u ± 2σ 1/2

)
= 0, (2.18)

hence there exits a mapping v(1 − 2h) ≡ U → u, h(1 − h)(1 − v2) ≡ Σ → σ between
the two systems. Consequently, both systems can be recast as[

∂

∂t
+

(
3

4
L +

1

4
R

)
∂

∂x

]
L = 0,

[
∂

∂t
+

(
3

4
R +

1

4
L

)
∂

∂x

]
R = 0, (2.19)

in terms of their respective Riemann invariants L, R. Explicitly, for the two-layer
system these are

L = v(1 − 2h) − 2
[
h(1 − h)(1 − v2)

]1/2
,

R = v(1 − 2h) + 2
[
h(1 − h)(1 − v2)

]1/2
,

}
(2.20)

with the corresponding long wave speeds V l = (3L + R)/4 and V r = (L + 3R)/4 given
by

V l = v(1 − 2h) −
[
h(1 − h)(1 − v2)

]1/2
,

V r = v(1 − 2h) +
[
h(1 − h)(1 − v2)

]1/2
.

}
(2.21)

(c) The mapping (U, Σ) → (u, σ ) suggests a close relationship between solutions
of the two-layer SWE and its single-layer counterpart. However, the relationship
cannot be as straightforward as a one-to-one mapping, as suggested by Chumakova
et al. (2009). Physically, the reason for this is that there is no single-layer counterpart
to a ‘lock-exchange’ flow in a two-layer fluid, in which the initial interface profile
is a step spanning the centre of the fluid domain. Lock-exchange experiments (e.g.
Shin et al. 2005), reveal that such flows evolve into two gravity currents propagating
in each direction within the fluid, a situation which has no single-layer counterpart.
Mathematically, the important point is that the mapping (U, Σ) → (u, σ ) is surjective,
but not injective with respect to the original two-layer variables (v, h). In fact,
generally, for fixed (u, σ ) four different values of (v, h) will map to that value of
(u, σ ). This is partly accounted for by the obvious up–down symmetry h → 1 − h,
v → −v, but another less obvious symmetry is

v → 1 − 2h, h → 1 − v

2
. (2.22)

We will refer to the mapping from (v, h) to (u, σ ) as the ‘St Andrew’s Cross’ mapping,
because the mapping divides up the rectangular (v, h) domain ([−1, 1] × [0, 1]) along
the diagonals of the rectangle (thus resembling the flag of Scotland). The Riemann
invariants L and R are contoured as functions of (v, h) in figure 2(a), and attain their
extreme values along the ascending and descending diagonals, respectively, dividing
the (v, h) domain as described.
The surjective ‘St Andrew’s Cross’ map, and specifically the v → 1−2h, h → (1−v)/2
symmetry inherent within it, leads to the conclusion that at a given location the two-
layer shallow water system is in one of the two physically different (but mathematically
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Figure 2. (a) Contour plot of the Riemann invariants R(v, h) (solid curves) and L(v, h)
(dotted curves). (b) Possible right (+) and left (−) initial states for a simple leftward-travelling
rarefaction waves in the buoyancy dominated (BD) and shear-dominated (SD) regimes. The
end states must lie on contours of constant R(v, h) (solid curves). (c) The evolution of
the interface height h(x, t) during the development of a rarefaction wave in the buoyancy
dominated regime. The length of the arrows are proportional to the initial velocities in each
layer. (d ) As (c), but for the shear-dominated regime.

identical) states. The first state is ‘buoyancy-dominated’ with |v| < |1 − 2h| and the
second ‘shear-dominated’ with |v| > |1 − 2h|. Flows which are everywhere in a single
state are analogous to flows in the single-layer system. For these flows, a one-to-
one mapping to the single-layer system can be used following the arguments of
Chumakova et al. (2009). Flows which switch between states, however, are unique to
the two-layer system.

(d) The two-layer SWE are not genuinely nonlinear for all values of (v, h) as
the characteristic velocities do not vary monotonically in the direction of the right
eigenvectors of A. A straightforward calculation reveals that for the rightward-
characteristic velocity V r ,

r r · ∇hV
r = 3

2
(1 − 2h)

√
1 − v2 − 3v

√
h(1 − h),

= 0, when v = (1 − 2h). (2.23)

Here, ∇h denotes the gradient operator in (v, h) space and r r =(
√

1 − v2
√

h(1 − h))T

is the right eigenvector associated with V r . The significance of r r is that it is everywhere
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orientated in the direction in which L is constant, i.e. it is tangent to the integral curves
of L(v, h). It is easily verified that r r · ∇hL =0 everywhere. The result that r r · ∇hV

r = 0
along the R = 1 diagonal of the St Andrews cross (with v =1−2h) implies that within
a rightward-propagating simple wave (with L constant everywhere) the long wave
speed V r takes an extreme value there (in this case a maximum). This breakdown
of genuine nonlinearity has important consequences for the construction of simple
waves of rarefaction, to be discussed below.
The above observations prompt the following definitions.

(a) A generalised dam-break flow: A flow that develops from step-like initial
conditions (2.6) for which the end states (v−, h−) and (v+, h+) are located within the
same quadrant of the St Andrew’s cross. Based on the quadrant, generalised dam
breaks can be classified as being either ‘buoyancy-dominated’ or ‘shear-dominated’.

(b) A generalised lock-exchange flow: A flow that develops from step-like initial
conditions (2.6) for which the end states (v−, h−) and (v+, h+) are located within
different quadrants of the St Andrew’s cross.

2.5. Simple wave solutions in the shallow water limit

Important and well-known ‘simple wave’ solutions of (2.17) can be obtained by setting
one of the Riemann invariants to be a constant everywhere in the flow. The evolution
is then governed by a Hopf equation for the remaining Riemann invariant, which
has well-known solutions featuring wave steepening and breaking within a finite time
(e.g. Zahibo et al. 2007).

A special case, which will be of significance below, is that of the centred ‘rarefaction
wave’. Consider step-like initial conditions (2.6) satisfying

R(v−, h−) = R(v+, h+) = R0, L(v−, h−) = L−, L(v+, h+) = L+, (2.24)

with L− < L+, and with both (v−, h−) and (v+, h+) located within the same quadrant of
the St Andrew’s cross. The four possibilities for such an initial condition are illustrated
in figure 2(b). Clearly R(x, t) = R0 for all time, whereas L(x, t) is governed by(

∂t +
(

3
4
L + 1

4
R0

)
∂x

)
L = 0, (2.25)

which has solution

L(x, t) =

⎧⎪⎨⎪⎩
L−, x/t < 3

4
L− + 1

4
R0,

4x/3t − R0/3, 3
4
L+ + 1

4
R0 > x/t > 3

4
L− + 1

4
R0,

L+, x/t > 3
4
L+ + 1

4
R0.

(2.26)

which is a leftwards-propagating centred rarefaction wave.
Care must be taken in obtaining explicit expressions for v(x, t) and h(x, t) in terms

of R0, L− and L+, due to the multi-valued nature of the mapping from the Riemann
invariants to v and h. The quantity H = h(1 − h) can be recovered from (L, R) using

H (L, R) = 1
8

(
(1 − LR) ± [(1 − L2)(1 − R2)]1/2

)
, (2.27)

where the positive sign for the square root is chosen when working in a ‘shear-
dominated’ quadrant and the negative sign for a ‘buoyancy-dominated’ quadrant.
The two solutions of the quadratic h(1−h) = H (i.e. h = 1/2±

√
1/4 − H ) correspond

to the up–down symmetry in the problem.
Figures 2(c) and 2(d ) show examples of simple leftward-propagating rarefaction

waves resulting from Riemann problem initial conditions with R = R0 = 0.8
everywhere, and with L− = −0.971 and L+ = −0.501. The four possible locations in
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(v, h) space of the end points with these Riemann invariants are shown in figure 2(b).
Figure 2(c) shows a developing rarefaction example from the buoyancy-dominated
regime and figure 2(d ) from the shear-dominated regime.

The case, where (v−, h−) and (v+, h+) lie with different quadrants of the St Andrew’s
cross, with R− = R+ = R0 constant, must be considered separately. As discussed above,
genuine nonlinearity of the two-layer SWE breaks down at the diagonal (in this case
the L = −1, v = −(1 − 2h) diagonal). The corresponding maximum in the wave speed
(here V l) implies that the construction of a simple wave of rarefaction cannot be
continued across the diagonal, where the wave slope would become infinite. The
conclusion is that states with in R− = R+ =R0, located in opposite quadrants of
the St Andrew’s cross diagram must be connected by compound waves. Compound
waves are purely leftward- or rightward-propagating waves that are composed of
both rarefactions and (dispersive or dissipative) shocks, and are analogous to those
in single variable nonlinear hyperbolic systems with non-convex flux functions, such
as the Buckley–Leverett equation (Buckley & Leverett 1942).

3. Steadily propagating wave solutions of the MCC equations
Choi & Camassa (1999) have shown that the MCC equations (2.5) support travelling

waves of permanent form. For the purposes of the modulation theory below, it is
necessary to significantly adapt and extend Choi and Camassa’s results, notably for
consistency with the two variable (v, h) picture presented above.

3.1. Waves of permanent form: general case

Consider waves propagating steadily at speed c, so that ∂t → −c∂x . The mass
conservation MCC equation can then be integrated to give

v =
c(h − h∗)

h(1 − h)
, (3.1)

where the constant h∗ may be interpreted as the ‘level of zero shear’ for the particular
flow supporting the waves. The MCC velocity equation can now be written as(

−c2(h − h∗)

h(1 − h)
+

c2(1 − 2h)

2

(
h − h∗

h(1 − h)

)2

+ h

)
x

= τhxxx − c2h2
∗

3h

(
h

(
hx

h

)
x

)
x

− c2(1 − h∗)
2

3(1 − h)

(
(1 − h)

(
hx

1 − h

)
x

)
x

, (3.2)

where the identity

G[f ] = (f − c)2
(

(f − c)x
f − c

)
x

, (3.3)

for any f (x − ct) has been used. Integrating in x and rearranging gives

d

dh

(
c2(h − h∗)

2

2h(1 − h)

)
− h +

b1

2
=

1

6

d

dh

(
c2(hx)

2(h2
∗ + (1 − 2h∗)h)

h(1 − h)
− 3τ (hx)

2

)
, (3.4)

where b1 is an arbitrary constant of integration. The equation can now be integrated
with respect to h and rearranged to give

(hx)
2 =

3
[
h4 − (1 + b1)h

3 + (c2 + b1 − b2)h
2 + (b2 − 2c2h∗)h + c2h2

∗
]

c2h2
∗ + c2(1 − 2h∗)h − 3τh(1 − h)

=
3P (h)

N(h)
, (3.5)

where b2 is a second constant of integration.
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The quartic polynomial P (h) appearing in the numerator of (3.5) can be written as

P (h) = (h − h1)(h − h2)(h − h3)(h − h4), (3.6)

introducing the four (possibly complex) roots hi (i = 1, 2, 3, 4). Equating coefficients,
and eliminating the unknown constants b1, b2, reveals the following relations between
the roots hi , the wave speed, c, and the zero shear level, h∗:

h1h2h3h4 = c2h2
∗,

(1 − h1)(1 − h2)(1 − h3)(1 − h4) = c2(1 − h∗)
2.

}
(3.7)

Clearly, the hi must be either real or form complex conjugate pairs. In either case the
denominator in (3.5) can be written as

N(h) = h1h2h3h4(1 − h) + (1 − h1)(1 − h2)(1 − h3)(1 − h4)h − 3τh(1 − h). (3.8)

Rearrangement of (3.7) allows c and h∗ to be expressed in terms of the roots hi

h∗ =

√
h1h2h3h4√

h1h2h3h4 +
√

(1 − h1)(1 − h2)(1 − h3)(1 − h4)
, (3.9)

c = ±
(√

h1h2h3h4 +
√

(1 − h1)(1 − h2)(1 − h3)(1 − h4)
)
. (3.10)

It is notable that both c and h∗ have an elementary dependence on the roots hi

that does not directly involve the surface tension parameter, τ . It is also possible to
express v in terms of h and the roots hi by substituting (3.9)–(3.10) back into (3.1)

v = ±h
√

(1 − h1)(1 − h2)(1 − h3)(1 − h4) − (1 − h)
√

h1h2h3h4

h(1 − h)
, (3.11)

where the positive sign corresponds to rightward-propagating waves and the negative
sign to leftward-propagating waves.

Three possibilities are now considered for wave-like solutions of (3.5).
(a) Low surface tension case. The roots hi are real and ordered (h1 � h2 � h3 � h4)

and N(h) > 0 for h ∈ [h2, h3]. Inspection of N(h) reveals that such waves will exist
only for sufficiently low surface tension (low τ ). Waves exist between levels h = h2

and h = h3, with peak-to-trough amplitude a = h3 − h2 and with wavelength, k, given
by

π

k
=

1√
3

∫ h3

h2

√
N(h)√
P (h)

dh. (3.12)

It follows from the positivity of the right-hand sides of (3.7) that 0 � h1, h2, h3, h4 � 1.
A sufficient condition to guarantee N(h) > 0 throughout h ∈ [0, 1] can be obtained
under the assumption that h1 and h4 do not coincide with the boundaries. It follows
that N(0), N(1) > 0 and therefore that the condition N(hc) > 0, where

hc =
1

2
+

h1h2h3h4 − (1 − h1)(1 − h2)(1 − h3)(1 − h4)

6τ
, (3.13)

is the location of the minimum of N(h), will guarantee N(h) > 0 for h ∈ [0, 1]. The
condition N(hc) > 0 translates straightforwardly into a condition on τ as

τ < τ ′
c =

1

3

(√
h1h2h3h4 +

√
(1 − h1)(1 − h2)(1 − h3)(1 − h4)

)2

=
c2

3
. (3.14)

The critical condition τ ′
c = c2/3 has been obtained previously (e.g. Laget & Dias 1997)

as the boundary between regimes in which weakly nonlinear solitary waves relative
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to a stationary background in the two-layer Euler system have opposite polarities.
Weakly nonlinear solitary waves are described by the KdV equation and passing
through τ = τ ′

c corresponds to a change in sign of the coefficient of the dispersive
term. The weakly nonlinear (KdV) limit is contained within the MCC equations, with
the extended KdV equation resulting if the expansion is made close to the diagonals
of the St Andrew’s cross. Here, however, it has been shown that essentially the same
condition on τ extends to all permanent wave solutions of the MCC.

(b) High surface tension case I. The hi are real and ordered and N(h) < 0 for
h ∈ [h1, h2], or alternatively, the image of these waves under the up–down symmetry
(with N(h) < 0 for h ∈ [h3, h4]). For the former case a = h2 − h1 and

π

k
=

1√
3

∫ h2

h1

√
−N(h)√
−P (h)

dh. (3.15)

A necessary and sufficient condition for N(h) < 0 for h ∈ [h1, h2] is

τ > τ ∗
c =

c2

3
× max

i=1,2

{
h2

∗
hi

+
(1 − h∗)

2

1 − hi

}
. (3.16)

The expression in brackets to be maximised is greater than unity, so it is clear
that there is no overlap with the low surface tension regime. In fact, there is an
interval τ ∈ [τ ′

c, τ
∗
c ] within which the existence of waves from either regime cannot be

guaranteed.
(c) High surface tension case II. For this case N(h) < 0 for h ∈ [h1, h4] with h1,

h4 real, but h2 and h3 are a complex conjugate pair (with h1 � Re{h2} =Re{h3} � h4

to preserve the ordering). This regime allows for relatively exotic interfacial gravity
capillary waves of the type discussed in connection with the modified KdV equation
by Laget & Dias (1997, figure 5).
Example plots of generic ‘potential functions’ −3P (h)/N(h) for nonlinear waves in
the low and high surface tension (case I) regimes are illustrated in figure 3(a, b). A
potential function for the high surface tension situation (case II)is shown in figure 3(h).

3.2. Special case I: the linear wave limit

Results are presented here for the low surface tension case. Except where stated
otherwise, identical results emerge for the high surface tension (case I) regime. Taking
the limit h2, h3 → h̄ allows the wavenumber, k, (3.12) to be evaluated as

k =

√
3(h̄ − h1)(h4 − h̄)

N(h̄)
. (3.17)

The relations (3.10) and (3.11) reduce to the following results for the linear wave
speed, c0, and background shear, v̄,

c0 = h̄
√

h1h4+(1−h̄)
√

(1 − h1)(1 − h4) and v̄ =
√

(1 − h1)(1 − h4)−
√

h1h4, (3.18)

and these can be used to eliminate h1 and h4 from (3.17) in favour of c and v̄, yielding
the following dispersion relation for the linear phase speed c = c0(k),(

1 + 1
3
k2h̄(1 − h̄)

)
c2
0 − 2v̄(1 − 2h̄)c0

+ v̄2
(
1 − 3h̄(1 − h̄) + 1

3
k2h̄2(1 − h̄)2

)
− h̄(1 − h̄)(1 + τk2) = 0. (3.19)
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Figure 3. Typical structure of the potential function −3P (h)/N (h) in the general, linear and
solitary wave cases, corresponding to different values of the constants hi . Waves of permanent
form exist only in potential wells (shaded). (a,c,e,g) Low surface tension regime τ = 0.05.
(b,d,f,h) High surface tension regime τ = 0.09. (g) Potential function −3P (h)/N (h) for the case
of a solibore (unique to the low surface tension case) and (h) the ‘Type II’ high surface tension
situation.

It is straightforward to show that the phase speed c0(k) given by the roots of (3.19)
are real for all k, i.e. the MCC equations are regularised, provided that

τ > τs = 1
3
v̄2h̄(1 − h̄). (3.20)
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For relatively low values of v̄, τs < τ ′
c = c2

0/3, and consequently regular linear waves
of all wavenumbers exist in the low surface tension regime for τ ∈ [τs, τ

′
c]. The linear

dispersion relation (3.19) can of course be obtained directly by linearisation of the
MCC equations (2.5) about a mean state (v̄, h̄) following Liska et al. (1995). However,
the approach adopted above will allow an important point regarding the relationship
between the linear and solitary wave dispersion relations to be made explicit below.

It is convenient for the application of El’s technique to write (3.19) in terms of the
Riemann invariants (2.20)(

1 +
1

3
k2H

)
c2
0 −(L+R)c0+

1

16
(3L+R)(L+3R)−Hk2

(
τ +

1

48
(R − L)2 − 1

3
H

)
= 0,

(3.21)
where H = H (L, R) is given by (2.27). The quadratic can be solved to obtain the roots

cl
0 =

V l(L, R) − C(k2, L, R)

1 + k2H/3
, cr

0 =
V r (L, R) + C(k2, L, R)

1 + k2H/3
, (3.22)

where V r = (1/4)(3R +L) and V l = (1/4)(3L+R) are the long wave speeds (2.21) and

C(k2, L, R) =

(
R − L

4

)
×

({
1 +

4k2H

3(R − L)2

(
12τ − 4H − (L + R)2

+
(R − L)2

2

)
+

16k4H 2

3(R − L)2

(
τ − H

3
+

(R − L)2

48

)}1/2

− 1

)
. (3.23)

Example plots of the potential function −3P (h)/N(h) for both low and high surface
tension linear waves are illustrated in figure 3(c, d ).

3.3. Special case II: the solitary wave limit

The solitary wave limit in the low surface tension regime, for solitary waves with
positive polarity, is the limit h1, h2 → h̄, where (v̄, h̄) now refer to the background
baroclinic velocity and interface height far from the solitary wave. (Waves of negative
polarity, given by h3, h4 → h̄, are identical under the up–down symmetry and do not
require separate treatment.) Example plots of the potential function −3P (h)/N(h) for
both low and high surface tension solitary waves are illustrated in figure 3(e, f ).

Can the solitary wave speeds, cs , be expressed as a function of the wave amplitude
cs = cs(a)? In the solitary wave limit (3.10) and (3.11) become

cs = h̄
√

h3h4+(1− h̄)
√

(1 − h3)(1 − h4) and v̄ =
√

(1 − h3)(1 − h4)−
√

h3h4, (3.24)

which may be combined to give

h3h4 = (cs − v̄(1 − h̄))2 = (cs − ū2)
2,

(1 − h3)(1 − h4) = (cs + v̄h̄)2 = (cs − ū1)
2,

}
(3.25)

where ū1 and ū2 are the background upper and lower layer velocities. Subtracting the
first from the second gives

h3 + h4 = 1 − 2csv̄ + v̄2(1 − 2h̄), (3.26)

which can be used to eliminate h4 in favour of h3 = h̄ + a in (3.25). A new result,
generalising that given in Choi & Camassa (1999, their dimensional formula (3.57)
corresponds to the special case with v̄ =0), for the solitary wave speed–amplitude
relationship is

cs(a) = v̄(1 − 2h̄ − a) ±
[
(1 − v̄2)(h̄ + a)(1 − h̄ − a)

]1/2
. (3.27)
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An obvious property of (3.27) is that in the limit a → 0 the two solitary wave speeds
cr
s and cl

s tend to the long wave speeds V r and V l , respectively (2.21). Interestingly,
the result is also independent of the surface tension parameter, τ .

An alternative perspective on the solitary wave, useful for the Whitham theory
developed below, follows from the definition of the conjugate wavenumber, k̃, where

π

k̃
=

1√
3

∫ h2

h1

√
N(h)√

−P (h)
dh, (3.28)

in the low surface tension regime. In the solitary wave limit (k → 0), the conjugate
wavenumber serves as a parametrisation of the solitary wave amplitude, and below will
prove more convenient than the direct use of a itself. Taking h1, h2 → h̄ as above gives

k̃ =

√
3(h4 − h̄)(h3 − h̄)

N(h̄)
, (3.29)

and substituting for h3 and h4, following the procedure for the linear wave case, the
conjugate dispersion relation for cs = cs(k̃) is obtained(

1 − 1
3
k̃2h̄(1 − h̄)

)
c2
s − 2v̄(1 − 2h̄)cs

+ v̄2
(
1 − 3h̄(1 − h̄) − 1

3
k̃2h̄2(1 − h̄)2

)
− h̄(1 − h̄)(1 − τ k̃2) = 0. (3.30)

The linear dispersion relation (3.19) is related to the conjugate expression (3.30) via
c0(k) = cs(ik), and the Riemann invariant form of the conjugate dispersion relation,
which will be useful below, is(

1 − 1

3
k̃2H

)
c2
s − (L + R)cs +

1

16
(3L + R)(L + 3R)

+ Hk̃2

(
τ +

1

48
(R − L)2 − 1

3
H

)
= 0. (3.31)

3.4. Special case III: the solibore

An important solution, which exists only for the low surface tension case (a, discussed
in § 3.1), is the ‘solibore’ (Choi & Camassa 1999). A solibore smoothly connects a left
state (v−, h−) to a right state (v+, h+) and is an exact energy-conserving (i.e. non-
turbulent) internal hydraulic jump or bore. On long length scales (i.e. in the SWE
limit) the solibore appears as a discontinuity, and might be thought to be analogous
to the ‘weak solutions’ (momentum-conserving hydraulic jumps) of the single-layer
SWE. However, given a particular direction of propagation, a specified downstream
state (v+, h+) connects to just a single possible solibore solution with a uniquely
defined propagation speed. By contrast, a specified downstream state in the single-
layer SWE can be connected to a single-parameter family (a so-called ‘Hugoniot
loci’) of possible upstream states via a weak solution/hydraulic jump. The family of
hydraulic jumps is parametrised by the velocity of the hydraulic jump itself.

Here a somewhat different treatment to that of Choi & Camassa (1999) is presented
in order to support the results below. The solibore limit is given by h1, h2 → h−, h3,
h4 → h+ (see figure 3g). The solibore speed c = cb obtained from (3.10) is, therefore,

cb = ±(1 − (h+ + h−) + 2h−h+), (3.32)
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and (3.11) becomes

v+ = ±(1 − 2h−), v− = ±(1 − 2h+), (3.33)

where the positive signs correspond to rightward-travelling waves in each case.
The result above allows an important connection to be made with the underlying

two-layer SWE system discussed in § 2. The relation (3.33) is identical to the
shear/buoyancy symmetry described in § 2.4. Therefore, solibores connect left and
right states with equal long-wave Riemann invariants (L, R), which are conserved
under the shear/buoyancy mapping. Hence, the long-wave Riemann invariants are
conserved across, but not within, a solibore. In terms of the right state (v+, h+) and
the Riemann invariants (L, R) the solibore speed is

cb = 1
2

+ 1
2
v+(1 − 2h+) = 1

2
+ 1

4
(L + R). (3.34)

4. Dam breaks in the MCC equations
In this section the development of the MCC Gurevich–Pitaevskii problem, i.e. the

flow generated from initial conditions (2.6), is considered. First, it will be verified that
the MCC system satisfies the conditions necessary for El’s technique for ‘dispersive
shock fitting’ to be applied. The reader is referred to El (2005, see also El et al. 2005,
2006), where the theory is developed and the necessary conditions are derived. El’s
technique is then applied to the problem at hand.

4.1. Applicability of El’s technique for ‘dispersive shock fitting’

In order for ‘dispersive shocks’ or undular bores to be ‘fit’ into solutions of an
underlying non-dispersive set of equations, supporting bidirectional wave propagation,
the system of equations must be first amenable to Whitham averaging (following
Whitham 1965). The Whitham average can be interpreted as a local ‘wavelength
average’, on the understanding that the envelope of the wavetrain in question is
slowly varying in space and time. In the case of the (low surface tension) MCC
the Whitham average of any function F (v, h) of baroclinic velocity, v, and interface
height, h, can be written as

F̄ =
k

2π

∫ 2π/k

0

F (v, h) dx =
k√
3π

∫ h3

h2

F (v(h), h)
√

N(h)√
P (h)

dh. (4.1)

Here k is the wavenumber (3.12) and v(h) is given by (3.11), so it is notable that F̄ , i.e.
the Whitham average of any function of (v, h), can be expressed entirely in terms of
the four roots hi (see (3.5)). The four roots hi can be considered to be the prognostic
variables for the Whitham averaged equations, and for consistency are taken to vary
slowly across the modulated wavetrain. The choice of the overbar for the Whitham
averaging operator here is deliberate, as it is entirely consistent with its use in the
linear and solitary wave limits above. An important property of the Whitham average
(4.1) is that F̄ =F (v̄, h̄) in either the solitary h1 → h2 or linear h2 → h3 limits (e.g. El
2005).

El (2005) lists several further conditions that the system under investigation must
satisfy.

(a) The system admits the classical hyperbolic dispersionless limit which is formally
obtained by introducing stretched variables (X = εx, T = εt and taking ε → 0). As
discussed above, for the case of the MCC, the dispersionless limit is the two-layer
SWE (2.16).
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(b) The system supports at least three conservation laws. Whitham modulation
equations are best derived from conservation laws of the full system (e.g. Kamchatnov
2000), as the Whitham averaging operator commutes with space and time derivatives.
Therefore, the three laws can be averaged as

(Pit ) + (Qix) = P̄it + Q̄ix = 0, i = 1, 2, 3. (4.2)

In the case of the MCC the three conservation laws are those given above for mass
(2.7), energy (2.8) and irrotationality (2.11). The Whitham modulation equations are
completed by the wavenumber conservation law

kt + (ck)x = 0, (4.3)

which corresponds to a consistency condition in the formal asymptotic procedure
corresponding to the Whitham averaging, and can be treated as a fourth conservation
law (i.e. P4 = k, Q4 = ck).

(c) The system must support periodic travelling waves parametrised by four
independent integrals of motion. For the MCC the waves satisfy (3.5) and the
four parameters are, for example, the four roots hi of P (h). The potential function
is required to have at least three real zeros (−3P (h)/N(h) in (3.5) typically has four
roots, see figure 3) and must exhibit quadratic behaviour in the linear and solitary
wave limits, verified for the MCC under certain restrictions on surface tension τ in
§§ 3.2 and 3.3.

(d) The Whitham modulation system itself must remain hyperbolic and genuinely
nonlinear for the solutions under study. It is not possible to verify these final conditions
without direct solution of the Whitham system itself, a contingency which El’s
technique is designed to circumvent, so this condition can be verified only by an a
posteriori check on the modulational stability of the undular bore (e.g. by comparison
with a numerical solution). As shown in § 2.4, the underlying two-layer SWE are not
genuinely nonlinear for generalised lock-exchange flows, and the application of El’s
technique in this case will be discussed further below.

El’s technique determines the leading and trailing edges of the undular bore in
two separate calculations. The key step in finding the linear (assumed here to be the
trailing) edge involves the integration of the zero wave amplitude (a → 0), reduction
of the Whitham system across the undular bore. For the MCC, the a → 0 limit is

a = 0 :

{
h̄t + (v̄h̄(1 − h̄))x = 0, v̄t +

(
1
2
v̄2(1 − 2h̄) + h̄

)
x

= 0,

kt + (kc0(v̄, h̄, k))x = 0,
(4.4)

with c0 given by the appropriate root of (3.19). The a → 0 reduction is, therefore, the
two-layer SWE (2.16) augmented with a linear wavenumber conservation law, and the
integral is performed from the downstream state (v+, h+, 0) to find the upstream state
(v−, h−, k−). A unique solution (for a rightward-travelling undular bore) is determined
by imposing the condition that the left Riemann invariant L is conserved across the
bore (i.e. L− =L+). The conservation of L across the bore can be deduced from the
time-reversibility property of the MCC (see El 2005, § VB). The wavenumber k− is
the linear wavenumber at the trailing edge of the undular bore, and the speed of the
trailing edge is given by the linear group velocity there s− = ∂(kc0)/∂k (k−, v−, h−). It is
important to emphasise that the above calculation reveals nothing about the internal
structure of the undular bore but is useful only in matching the end conditions across
it (see the discussion in section IIIE of El 2005).

To find the details of the leading edge an analogous matching calculation must be
performed using the zero wavenumber (k → 0) reduction of the Whitham system. It
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turns out to be more useful to use the variables k̃ (the conjugate wavenumber given
by 3.28) and Λ = k/k̃ in place of a and k and to consider the limit Λ → 0. The k → 0
wavenumber limit of the Whitham system is then found to consist of the two-layer
SWE as in (4.4) augmented by a conjugate wavenumber conservation law

k̃t +
(
k̃cs(k̃, v̄, h̄)

)
x

= 0, (4.5)

where here cs is the solitary wave speed given by the appropriate root of (3.31). The
integral is this time from the upstream state (v−, h−, 0) to find the downstream state
(v+, h+, k̃+), with L− = L+ imposed as before. The amplitude of the solitary wave at
the leading edge speed is determined by k̃+ and the speed of the upstream edge is
given by the solitary wave speed s+ = cs(k̃+, v+, h+). Finally, a necessary consistency
check is that the trailing and leading edge speeds satisfy the appropriate ‘entropy’
conditions (El 2005)

V l
− < s− < V r

−, V r
+ < s+, s+ > s−. (4.6)

4.2. Application of El’s technique to Miyata–Camassa–Choi dam-break flows

It is now established that El’s technique can be applied to a typical MCC dam-
break flow. The most physically relevant initial conditions (2.6) satisfy v− = v+ = 0,
i.e. the fluid is initially at rest, and h+ <h− < 1/2. It is straightforward to deduce
that a generalised dam break will result, and that it will resolve itself as illustrated in
figure 1(a,b) (see El et al. 2006), because as established above the left Riemann
invariant L is conserved across a right-travelling simple undular bore and the
right Riemann invariant R across a left-travelling rarefaction wave. It follows that
the mid-state (vm, hm), illustrated in figures 4(b) and 4(d ), has Riemann invariants
(Lm, Rm) = (L+, R−), where L+ = −2

√
h+(1 − h+) and R− = 2

√
h−(1 − h−). Since the

behaviour of the leftwards-travelling rarefaction wave has been considered in § 2.5,
we only need to consider the simple undular bore connecting (v+, h+) and (vm, hm).

To obtain the speed of the ‘linear wave’ edge of the undular bore the zero-
amplitude reduction of the Whitham equations must be integrated across the bore.
For definiteness, as above, it will be assumed that the ‘linear wave’ edge is the
trailing edge (where (L, R) = (Lm, Rm)), an assumption which will be shown below
to be true for low surface tension undular bores. The left Riemann invariant L is
conserved across the undular bore, hence the two-layer SWE in (4.4) can be replaced
by Rt + V rRx = 0, and the nature of the characteristic solution requires that the
solution of (4.4) must have the form k = k(R). It follows that

dk

dR
=

k
(
∂cr

0/∂R
)

V r − cr
0 − k

(
∂cr

0/∂k
) with k(R+) = 0, (4.7)

where cr
0 is the right propagating solution of (3.21). Implicit differentiation of (3.21)

with respect to k and R, followed by some elementary rearrangements, results in

d(k2)

dR
=

3
4
R + 5

4
L − 2cr

0 + 2k2
[
HR

(
1
3

(
cr 2
0 + 2H

)
− τ − 1

48
(R − L)2

)
− 1

24
H (R − L)

]
k−2

(
V r − cr

0

)(
R + L − 2

(
1 + 1

3
k2H

)
cr
0

)
− 2H

(
1
3

(
cr 2
0 + H

)
− τ − 1

48
(R − L)2

) ,

=
3(R − L)

2H (2H + R(R + L) − 6τ )
, when k = 0, (4.8)

where H =H (L, R) is given by (2.27) and HR ≡ ∂H/∂R. The lower expression is
necessary to evaluate d(k2)/dR when k = 0, and is obtained from the upper expression
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Figure 4. (a) Development in the (x, t) plane of a simple rightward-propagating undular
bore. Time reversibility in the MCC system implies that such a solution can be continued
into t < 0, where the solution is a two-layer SWE simple wave of compression. (b) The typical
development in the (x, t) plane of ‘dam-break’ initial conditions (v− = v+ = 0, h+ <h− < 1/2).
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from the limit

lim
k→0

k−2(V r − cr
0) =

H (2H + R(R + L) − 6τ )

3(R − L)
. (4.9)
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A prediction for the wavenumber at the trailing edge of the undular bore k(R−) is
obtained by integrating the ordinary differential equation (ODE, (4.8)) forwards over
the interval [R+, R−] (R− >R+), with the boundary condition k(R+) = 0. In the single-
layer case, the corresponding ODE can be integrated analytically (El et al. 2006), but
here it appears we are restricted to numerical solution. The standard fourth-order
Runge–Kutta method is used. The trailing edge speed s− is obtained then from the
solution k(R−), using the expression for the group speed s− = ∂(kc0)/∂k evaluated at
(k, L, R) = (k(R−), L, R−).

The solitary wave leading edge speed is obtained by closely following the arguments
for the linear wave edge, except this time with the zero wavenumber reduction of the
Whitham system detailed above. Using the ansatz k̃ = k̃(R) in (4.5) results in

dk̃

dR
=

k̃(∂cr
s /∂R)

V r − cr
s − k̃(∂cr

s /∂k̃)
with k̃(R−) = 0, (4.10)

which can be written explicitly after implicit differentiation of (3.31) as,

d(k̃2)

dR
=

3
4
R + 5

4
L − 2cr

s − 2k̃2
[
HR

(
1
3

(
cr 2
s + 2H

)
− τ − 1

48
(R − L)2

)
− 1

24
H (R − L)

]
k̃−2

(
V r − cr

s

)(
R + L − 2

(
1 − 1

3
k̃2H

)
cr
s

)
+ 2H

(
1
3

(
cr 2
s + H

)
− τ − 1

48
(L − R)2

) .

= − 3(R − L)

2H (2H + R(R + L) − 6τ )
when k̃ = 0, (4.11)

where cr
s is the greater root of (3.31) corresponding to the rightward-propagating

solitary wave. The ODE (4.11) can be integrated backwards in R over the interval
[R+, R−], starting from the boundary condition k̃(R−) = 0, to obtain the leading edge
conjugate wavenumber k̃(R+). The leading edge speed of the undular bore is then
given by s+ = cr

s (k̃(R+), L, R+), and the amplitude, a, of the leading edge solitary wave
can then be obtained by numerical solution of (3.27) to obtain a from cs(a).

Figure 5(a, c, e) shows snapshots of the development of a simple undular bore in
the low surface tension regime (τ = 0.05) calculated numerically (see Appendix A for
details). The initial conditions are (v+, h+) = (0, 0.25) and (v−, h−) = (0.1388, 0.3125),
and the initial slope is smoothed with a tanh-profile of half-width 2 (scaled on
the channel depth H ). The vertical dotted lines denote the predicted locations of
the leading and trailing edges, and the horizontal line the solitary wave amplitude
prediction, derived from the results above. It is clear that the theoretical predictions
from El’s technique are reasonably accurate for this example. Figure 5(b, d, f )
shows snapshots of the development of a rightward-propagating rarefaction wave
generated if the initial conditions are reversed, i.e. (v+, h+) = (0.1388, 0.3125) and
(v−, h−) = (0, 0.25). In this case the dotted lines are predictions based on two-layer
SWE rarefaction waves (see § 2.5). A straightforward calculation reveals that the
entropy conditions (4.6) are satisfied for the case of this low surface tension undular
bore. At higher surface tensions the entropy conditions fail for this undular bore, and
there is a quite distinct behaviour, as discussed in Appendix B.

Theoretical predictions have been tested further using a range of numerical
simulations. The results are presented in figure 6. Fixing (v+, h+) = (0, 0.25) (so that
L+ = −

√
3/2 R+ =

√
3/2) for each experiment, the right-step height h− has been varied

in the range [0.25, 0.325], with corresponding adjustments in v− to maintain the simple
undular bore transition condition L− = L+. A comparison between theoretical (solid
curves) and numerical calculations (points, see Appendix A for details) of the undular
bore edge positions reveals good agreement up to h− = 0.3, with increasingly poor
agreement afterwards. The theoretical calculations are in fact halted where turning
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Figure 5. (a,c,e) Snapshots of interface height from a numerical simulation of a rightward-

propagating undular bore with initial conditions L− = L+ = −
√

3/2, R+ =
√

3/2, R− = 0.9701
and with low surface tension (τ = 0.05). Dotted lines show the theoretical predictions of
the locations of the leading solitary wave edge and trailing linear wave edge. (b, d, f )
Snapshots of a rightward-propagating rarefaction wave developed from ‘mirror image’ initial

L− = L+ = −
√

3/2, R+ = 0.9701, R− =
√

3/2, also for low surface tension (τ = 0.05).

points in s+ and s− are detected, as turning points generally indicate breakdown
in the original assumptions for the structure of the undular bore, suggesting that
partial undular bores (El et al. 2006), which are characterised by a rapid spatial
transition at the trailing edge from finite amplitude waves to an undisturbed flow, will
be formed.

The dotted curves show the predictions that follow from approximating weakly
nonlinear long wave (KdV) limit, obtained from Taylor expansions of (4.8) and (4.11)
for (R− − R+), k2, k̃2 � 1 and retaining only up to quadratic terms in k, k̃ in the
Taylor expansions of (3.21) and (3.31). The results for the trailing and leading edge
velocities are

s− = V r
+ − 3

4
(R− − R+), s+ = V r

+ + 1
2
(R− − R+), (linear/solitary) (4.12)

and are similar to results for the single-layer case presented in El et al. (2006, equations
(52) and (53)). Interestingly, surface tension drops out of the weakly nonlinear
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Figure 6. (a) Predictions using Whitham theory (solid curves) and its weakly nonlinear
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√
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of lead solitary wave amplitude versus numerical results for the τ = 0.05 set.

predictions of s− and s+ entirely, except for an interesting ‘switch in polarity’ effect
that occurs as a critical value of τ = τc is crossed, discussed in Appendix B below.

4.3. Application of El’s technique to Miyata–Camassa–Choi lock-exchange flows

The dam-break flows described above exhibit broadly similar behaviour to the
corresponding single-layer flows (El et al. 2006). What about lock-exchange
flows? Concentrating on the ‘fluid at rest’ initial conditions with h+ < 1/2 <h−
and v+ = v− =0, and following the same arguments as above, rightward- and
leftward-travelling waves will be connected to a mid-state (vm, hm) defined by
(Lm, Rm) = (L+, R−). Unlike the dam-break case, however, (vm, hm) will be in the shear-
dominated quadrant of the (v, h) plane, meaning that both leftward- and rightward-
travelling waves are generalised lock-exchange flows according to the definition given
in § 2.4.

For the low surface tension regime, in which the solibore is present, there exist
simple solutions which satisfy the entropy conditions for both the leftward- and
rightward-generalised lock-exchange flows. A schematic illustration is presented in
figure 1(c,d ). The basic anatomy of the solutions is given by the constructions in
figures 4(c) and (e), illustrating their development on the (x, t) plane, as well as
how the intermediate states are connected on a (v, h) diagram. The leftward- and
rightward-travelling solutions consist of a solibore followed by either a rarefaction
wave or an undular bore, respectively. The undular bore differs from those generated
in generalised dam breaks as it connects left and right states within the shear-
dominated (rather than the buoyancy-dominated) regime of the two-layer SWE. The
polarity of the solitary waves in the undular bore is, therefore, opposite to those
observed in a generalised dam break. The solibore is the fastest propagating (linear
or solitary) wave that can propagate into the undisturbed left and right states, and
there exists a discrete gap in the (x, t) plane between the propagating solibore and
the following undular bore/rarefaction wave. The flow within the gap region is
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determined by the ‘image’ state of the upstream state under the St. Andrew’s cross
mapping (2.22), marked as ‘−’ and ‘+’ in figure 4(e). The undular bore and rarefaction
waves that follow each solibore then connect the mid-state (vm, hm) to the respective
image states.

Numerical solutions of the MCC are required to verify that the above solutions are
indeed selected during MCC lock exchanges. A series of simulations of rightward-
propagating generalised lock exchange, with the left Riemann invariant held constant
across the step in each case (L− = L+), have been performed, the following four
qualitatively different possibilities exist.

(i) The left state is shear dominated (SD) and the right state is buoyancy dominated
(BD), with R− >R+.

(ii) Left state SD, right state BD, R− <R+.
(iii) Left state BD, right state SD, R− >R+.
(iv) Left state BD, right state SD, R− < R+.

Figure 7 shows snapshots of the interface height during numerical simulations of
flows corresponding to types I to IV. Dotted lines show the predicted positions of
the solibore as well as the leading and trailing edges of the undular bore/rarefaction
wave. Lock exchanges of types I and II, which both feature the solibore propagating
into an undisturbed ‘buoyancy-dominated’ state, are those which emerge naturally
in the physical lock-exchange problem with no initial flow and h+ < 1/2 <h−, as
illustrated schematically in figure 1. Types III and IV are likely to be relevant to flows
over topography with a ‘shear-dominated’ upstream flow.

It is notable that it takes significantly longer for the long-time asymptotic structure
of a generalised lock-exchange flow to emerge, compared with that of a generalised
dam-break flow. This can be explained because long wave speeds have a relatively
weak dependence on interface height near the relevant diagonal of the St Andrew’s
cross. Differences in wave speeds within a generalised lock-exchange flow are,
therefore, typically smaller than within a dam-break flow with the same initial interface
jump. Finally, it is noteworthy that the MCC equations predict the existence of a
‘perfect’ lock exchange for h− = 1 − h+, in which the initial interface jump separates
exactly into a leftward- and rightward-propagating solibore.

5. Summary and conclusions
‘Dispersive’ dam break and lock-exchange initial-value problems have been

considered in a Boussinesq two-layer fluid. The results are applicable to the physical
situation, where the height difference across the barrier is sufficiently small, and the
barrier release sufficiently smooth, to prevent significant wave breaking and to allow
an undular bore to develop. The analysis is, therefore, complementary to that of
‘strong’ dam-break problems, including gravity currents, which require an explicit
model of wave-breaking behaviour at a turbulent bore. For the dispersive problem,
an appropriate model is the Miyata–Choi–Camassa equations, which do not permit
wave breaking but capture leading-order dispersive effects in the presence of strong
nonlinearities. It has been demonstrated that the long-time asymptotic behaviour of
solutions of the MCC can be deduced using a technique due to El (2005, see also
references therein), based on Whitham modulation theory, which allows undular bores
to be ‘fit’ into solutions of the underlying long wave equations of a certain class of
regularised nonlinear hyperbolic systems supporting bidirectional wave propagation.

By considering the long wave (two-layer SWE) limit, a formal distinction has been
made between generalised dam-break and generalised lock-exchange flows, based on
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Figure 7. Snapshots of numerical simulations of the four types of generalised lock exchanges
with low surface tension (τ =0.05) (see text). Dotted lines show the theoretical predictions of
the locations of the solibore, and the leading edge and trailing edge speeds of the undular
bore/rarefaction waves. (a,c,e) Type I, initial conditions L− =L+ = −0.97, R− =0.99 (shear
dominated), R+ = 0.98 (buoyancy dominated). (g) Type II, L− = L+ = −0.97, R− = 0.98 (SD),
R+ = 0.99 (BD). (b,d,f ) Type IV, L− = L+ = −0.97, R− =0.98 (BD), R+ = 0.99 (SD). (h) Type
III, L− = L+ = −0.97, R− = 0.99 (BD), R+ =0.98 (SD).

the ‘St Andrew’s cross’ mapping between the two-layer and single-layer shallow water
equations. Generalised dam breaks must have boundary states located within a single
quadrant of the (v, h) domain, and depending on which quadrant can be classified as
being ‘buoyancy dominated’ or ‘shear dominated’. Unsurprising, given that the MCC
equations reduce to the single-layer (Su–Gardner) equations as a wall is approached,
buoyancy-dominated dam breaks are found to be closely analogous to dispersive dam
breaks in a single-layer fluid (El et al. 2006). Shear-dominated dam breaks do not
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exhibit radically different behaviour. The MCC model correctly captures sensitivity
to increasing surface tension effects, with a reversal in the polarity of solitary waves,
and hence the structure of undular bores once the inverse Bond number τ exceeds
a critical value τc. A rich variety of behaviours is to be expected for τ ≈ τc, which
merit further investigation.

Generalised lock-exchange flows can be defined as those with boundary states within
different quadrants of the ‘St Andrew’s cross’ map. Perhaps surprisingly, at low surface
tensions, causally correct solutions of the lock-exchange initial-value problem can be
constructed by straightforwardly combining an undular bore or rarefaction wave with
a ‘solibore’ solution of the MCC equations. It has been verified numerically that these
solutions do indeed emerge from the initial-value problem, although compared with
dam-break solutions they require a relatively long time to emerge from the initial
data. Interestingly ‘solibore’-like internal waves are regularly observed in shallow seas
and coastal oceans (e.g. MacKinnon & Gregg 2003; Hosegood & van Haren 2004),
and are often associated with the internal tide.

There are a number of practical obstacles to observing flows described by the
solutions above in an experimental setting. The main consideration is probably
the long aspect ratio of the channel required, although there may in addition be
initialisation issues relating to the barrier release. Nevertheless, we expect the above
solutions to be of practical use in the interpretation of internal wave measurements in
the ocean and in understanding two-layer flows over topography where wave breaking
is not initiated, among other problems of oceanographic importance.

Appendix A. Description of the numerical scheme
Here a brief description of the pseudo-spectral scheme used to solve the MCC

equations (2.5) is discussed. Full details are given in Pearce (2009). Solutions are
obtained on a periodic domain of length L = 400 (where the dimensional unit is
the depth H ), and a resolution N =2048 Fourier modes is used, corresponding to a
grid-resolution δx ≈ 0.1. The initial conditions (2.6) are smoothed by a tanh profile
of half-width 2, and to enforce periodicity a second ‘mirror-image’ step is introduced
at x = L/2. The dependent variables v and h are then expanded as

h(x, t) = 〈h〉 +

N∑
m=1

ĥm(t)e2πimx/L, v(x, t) =

N∑
m=0

v̂m(t)e2πimx/L, (A 1)

where 〈h〉 = (1/2)(h− +h+) is the mean depth. Inserting the truncated expansion (A 1)
into (2.5) the resulting equations can be written as(

1 + k2 〈h〉(1 − 〈h〉)
3

)
dv̂m

dt
= −ik

(
1 + τk2

)
ĥm + ikN̂v

m + N̂v∗
m ,

dĥm

dt
= −ik〈h〉(1 − 〈h〉)v̂m − ikN̂h

m,

⎫⎪⎪⎬⎪⎪⎭ (A 2)

where k =2πm/L is the wavenumber of each mode, and

Nv = − 1
2
v2(1 − 2h) + 1

3
h2G[v(1 − h)] − 1

3
(1 − h)2G[−vh] − 1

3
〈h〉(1 − 〈h〉)vxt , (A 3)

Nv∗ = − 1
3
hx (hG[−vh] + (1 − h)G[v(1 − h)]) , (A 4)

Nh = v(h − 〈h〉)(1 − h − 〈h〉), (A 5)

are the nonlinear and remainder terms to be calculated in real space. The important
point is that the dispersive terms involving vxxt appearing in the right-hand side



Two-layer dam breaks 581

of (2.5) have been linearised about 〈h〉 and the linear part subtracted from both
sides. Consequently, the solution to the explicit linear part of (A 2) are linear waves
satisfying (3.19) for the special case of no background flow v̄ = 0.

The inherent difficulty in time-stepping (A 2) is that both Nv and Nv∗ contain
nonlinear terms with mixed time and space derivatives. This difficulty is overcome
by utilising a multi-step time-stepping scheme in conjunction with an inner iteration
which is applied simultaneously to all wavenumbers in spectral space. For the leapfrog
scheme with time-step δt , the update formula is

v̂(n+1)
m = v̂(n−1)

m +2δtF(n)
m , where F(n)

m =

(
− ik(1 + τk2)ĥm + ikN̂v

m + N̂v∗
m

)(n)

1 + (1/3)k2〈h〉(1 − 〈h〉) , (A 6)

where the superscript (n) refers to the nth time level t = tn = nδt . Next we introduce
the baroclinic velocity tendency at the nth time level

D(n)
m =

v̂(n+1)
m − v̂(n−1)

m

2δt
. (A 7)

Because the nonlinear terms Nv and Nv∗ include time derivatives the update formula
at any given time level can be regarded as a system of nonlinear equations in the D(n)

m ,

D(n)
m = F(n)

m

(
d(n)

)
, (A 8)

where d(n) is the vector with components D(n)
m , m =0, . . . , N . Equation (A 8) must

be solved iteratively at each time step before the baroclinic velocity equation can be
updated.

The following iterative scheme is used to solve (A 8). Denoting the j th guess for at
time level n by the superscript (j, n), a damped iteration is used to obtain converged
updates for D(n)

m , with each iteration being applied to all spectral coefficients (values
of m) simultaneously

D(0,n)
m =

2
(
v̂(n)

m − v̂(n−1)
m

)
δt

− D(n−1)
m , (A 9)

D(j+1,n)
m = γ F(n)

m

(
d(j,n)

)
+ (1 − γ )D(j,n)

m , j � 0. (A 10)

The first guess D(0,n)
m exploits the multi-step method by making an extrapolation

based on the known time tendencies at earlier time levels. The parameter γ controls
the relaxation rate of the iteration. The optimal value of γ is found to depend on
the maximum interface slope and is generally in the range [0.2, 1]. The iteration is
continued until the convergence criterion

Maxm

∣∣D(j,n)
m − F(n)

m

(
d(j,n)

)∣∣
Maxm|D(j,n)

m |
< δc. (A 11)

is satisfied, with the numerical parameter δc = 10−10. Generally 5–10 iterations were
required for convergence of the moderate wave slopes investigated above.

The model code was tested by comparing solitary wave and solibore speeds against
those calculated analytically following the procedures described in § 3. At the stated
resolution, accuracy to six significant figures was obtained, for example waves which
were substantially steeper than those emerging from the dam-break flows reported
above (Pearce 2009), and the accuracy was found to improve further as the wave
slope was decreased.
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Appendix B. Behaviour of high surface tension dam breaks
Here dam breaks at high surface tension are considered briefly. The high surface

tension case is a mathematical curiosity, owing to the reversal in the polarity of
solitary waves reported in § 3, which leads to different behaviours to the low surface
tension case. Physically, high surface tension is not relevant to the oceanographic
application discussed above, but may nevertheless be realisable experimentally using
two immiscible fluids.

The breakdown of the theory presented in § 4.2 occurs, by the inspection of (4.8)
and (4.11) in the k, k̃ → 0 limits, when τ increases beyond the critical value

τc(L, R) = 1
3
H (L, R) + 1

6
R(R + L). (B 1)

The value τ = τc is the weakly nonlinear critical Bond number, defined as the criterion
for a switch in polarity of solitary waves in the KdV limit, i.e. the condition for
switching between the high and low surface tension regimes. Considering the more
general results of § 3 in the weakly nonlinear long wave limit (c → V r ), it is found
that τc = τ ′

c, as defined by (3.14), only for the case of a stationary background (v̄ = 0).
For v̄ �= 0, it is easily shown τc � τ ′

c, as must be the case since it was shown in § 3 that
τ < τ ′

c is a sufficient condition for the existence of waves in the low surface tension
regime. An upper bound can also be found to be τc � τ ′

c + 1/12.
For flows in the high surface tension regime with τ > τc, it is clear that the ODEs

(4.8) and (4.11) do not give real solutions near R = R+ and R = R−, respectively,
under the assumption of a solitary wave leading edge/linear wave trailing edge used
above. Under the opposite assumption of a linear wave leading edge/solitary wave
trailing edge, however, (4.8) and (4.11) do give real solutions near R = R− and R =R+

when the direction of integration of each equation is reversed. Solutions constructed
from the second assumption can be shown to satisfy the entropy conditions (4.6)
for the high surface tension flows. Hence, a reversal in the structure of the undular
bore is predicted as τ is increased past τc. There remains a possibility of the absence
of complete solutions of one or both of (4.8) and (4.11) for values very close to
τc, corresponding to more exotic behaviours not captured by El’s technique (see
e.g. the discussion of the fifth-order KdV equation in Laget & Dias 1997, Section
3.4.3). A snapshot of a high surface tension undular bore (for τ = 0.09 >τc =0.0625
based on the right state (v+, h+)) is illustrated in figure 8(a) for identical initial
conditions to the τ = 0.05 case shown in figure 5. The theoretical predictions for the
leading and trailing edge positions are seen to be well captured. Figure 8(b) shows a
snapshot of the corresponding rarefaction wave, which appears almost identical to the
corresponding τ = 0.05 rarefaction wave, confirming that surface tension effects are
weak outside the undular bore regions. Figure 8(c, d ) shows the high surface tension
predictions for a set of experiments corresponding to those discussed in connection
with figure 6. Similarly good predictions are obtained for the trailing solitary wave
edge and leading linear wave edge, which in the weakly nonlinear limit can be shown
to be (c.f. (4.12))

s− = V r
+ + 1

4
(R− − R+), s+ = V r

+ + 3
2
(R− − R+), (solitary/linear). (B 2)

Just as for the low surface tension case, τ drops out of the weakly nonlinear limit,
but owing to the switch in polarity of the solitary waves the result is nevertheless
quite different to (4.12).

Some calculations of high surface tension lock exchanges have also been performed.
These exhibit a markedly different behaviour to the low surface tension case, and
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Figure 8. (a, b) Snapshots of interface height at t = 1152 illustrating the development of an
undular bore (a) and rarefaction wave (b). Experimental parameters are as for figure 5, but
with τ =0.09 (high surface tension regime). Dotted lines show the Whitham theory predictions.
(c, d ) The Whitham theory predictions (solid lines) versus experimental results (squares) across
a suite of experiments, as in figure 6, but for τ = 0.09.

merit further study, arguably in the framework of the mathematically somewhat
more straightforward, but less realistic, weakly nonlinear context of the extended
Korteweg–de Vries equation (following e.g. Grimshaw et al. 2002). The solibore does
not exist at high surface tension, and solutions consist of dispersive ‘compound waves’
in which a rarefaction wave and undular bore are seen to merge seamlessly. There
may be a useful analogy with the dissipative compound waves featured in hyperbolic
systems with non-convex flux functions.
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