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ABSTRACT

Vortex displacement stratospheric sudden warmings (SSWs) are studied in an idealized model of a quasi-

geostrophic columnar vortex in an anelastic atmosphere. Motivated by the fact that observed events occur at

a fixed orientation to the earth’s surface and have a strongly baroclinic vertical structure, vortex Rossby waves

are forced by a stationary topographic forcing designed to minimize excursions of the vortex from its initial

position. Variations in the background stratospheric ‘‘climate’’ are represented by means of an additional flow

in solid body rotation. The vortex response is determined numerically as a function of the forcing strength M

and the background flow strength V.

At moderate M it is found that a large response, with many features resembling observed displacement

SSWs, occurs only for a narrow range of V. Linear analysis reveals that for this range of V the first baroclinic

azimuthal wave-1 Rossby wave mode is close to being resonantly excited. A forced nonlinear oscillator

equation is proposed to describe the nonlinear behavior, and a method for determining the relevant co-

efficients numerically, using unforced calculations of steadily propagating vortex ‘‘V states,’’ is adopted. The

nonlinear equation predicts some qualitative details of the variation in the response at finite M. However, it is

concluded that strongly nonlinear processes, such as wave breaking and filament formation, are necessarily

quantitatively important in determining the amplitude of the near-resonant response at finite M.

1. Introduction

Major midwinter stratospheric sudden warmings

(SSWs) are defined to occur when there is a reversal of

the usual westerly zonal mean winds at 608N and 10 hPa,

followed by their subsequent recovery. The topological

evolution of the polar vortex during SSWs varies con-

siderably between displacement events, where the vortex

at a given level is observed to be displaced off the pole,

and splitting events during which the vortex divides in

two. The observational classification of Charlton and

Polvani (2007) revealed that approximately 15 vortex

displacement SSWs occurred in the Northern Hemi-

sphere during 1957–2002 compared to 14 splitting events.

Hence, each type of event spontaneously occurs approx-

imately once every three years. Observed displacement

events have recently been shown to exhibit two in-

teresting features (Matthewman et al. 2009, see their

Figs. 7–9):

(i) Vortex displacement SSWs are strongly baroclinic

events with the displacement of the lower vortex

typically opposite in sense to the upper vortex.

(ii) The sense of the vortex displacement at each level is

generally fixed relative to the earth’s surface.

Dynamical studies have primarily attributed the cause of

SSWs to Rossby waves emanating from the troposphere,

following the pioneering mechanistic model experiments

of Matsuno (1971). Tung and Lindzen (1979) subsequently

argued that, for a given stationary (Rossby wave) forcing,

a large SSW-like response will result only if a linear free-

traveling Rossby wave mode of the stratospheric flow is

resonantly excited. Evidence that resonance played a role

in a model study of the splitting SSW of 1979 has been

given by Smith (1989), who used a quasi-linear1 wave-mean

flow model to show that the free-traveling wave 2 in
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1 The weakly nonlinear analysis of Matthewman and Esler (2011)

shows that to correctly capture the leading-order nonlinear aspects

of wave-2 Rossby wave disturbances to a vortex, both mean flow and

second harmonic terms must be considered, strongly suggesting that

the quasi-linear model approach of Smith (1989) is not quantitatively

accurate for investigation of the nonlinear aspects of resonance.
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a primitive equation model approaches linear resonance

toward the onset of the SSW. Here, the aim is to explore

the relevance of the resonant excitation theory for the

specific case of vortex displacement SSWs. The modeling

philosophy will follow that of previous works on vortex

splitting SSWs (Esler and Scott 2005; Esler et al. 2006),

including the companion paper (Matthewman and Esler

2011, hereafter Part I). The idea is to select a model of the

polar vortex that is sufficiently simple to facilitate analysis

of the linear problem but that nevertheless retains suffi-

cient complexity to capture realistic nonlinear behavior,

including the observed baroclinic development and sub-

sequent Rossby wave breaking. The following question

can then be addressed: does nonlinear vortex development

resembling observed SSWs result from resonant excitation

of a free-traveling Rossby wave mode?

Most previous idealized studies of forced vortex Rossby

waves in simple models allowing vertical propagation (e.g.,

Dritschel and Saravanan 1994; Waugh and Dritschel 1999;

Wang and Fyfe 2000; Polvani and Saravanan 2000) did not

focus on the issue of resonance, but they nevertheless

uncovered behavior that has proved robust across different

models. The response of a (effectively semi-infinite) vortex

to forcing almost invariably results in strongly nonlinear

wave breaking aloft, and it can result in the complete de-

struction of the vortex at upper levels (e.g., Fig. 5 of

Polvani and Saravanan 2000). Superficially such Rossby

wave breaking resembles that observed during SSWs.

However, it is notable that although zonal mean winds are

decelerated aloft, the total stratospheric angular momen-

tum change recorded in the above studies (e.g., Fig. 6 of

Polvani and Saravanan 2000) is typically much less than

that observed during an SSW. At the lower levels that

contribute the majority of the stratospheric angular mo-

mentum, the zonal winds remain relatively unchanged.

Esler and Scott (2005) showed explicitly that off-resonant

wave-2 forcing can lead to the upper-level wave breaking

reported in the studies above, but only forcing that reso-

nantly excited the gravest wave-2 vortex Rossby wave

mode (the ‘‘barotropic’’ mode) can lead to a vortex split.

It is natural to ask the question whether or not a similar

result holds for vortex displacement SSWs. The reso-

nantly excited mode in the displacement case must be

a baroclinic mode, since the gravest wave-1 barotropic

mode corresponds to a simple displacement of the en-

tire vortex, a dynamically reversible process correspond-

ing to a uniform translation of the entire (model)

potential vorticity (PV) distribution.2 Observed vortex

displacement SSWs do not resemble uniform trans-

lations of the vortex.

Questions concerning the nonlinear dynamics of the

model response to forcing are also of interest. Plumb

(1981) extended the Tung and Lindzen (1979) linear

analysis of vertical Rossby wave propagation in a b

channel to include leading-order nonlinear effects.

Leading-order nonlinearity arises from the variation in the

angular frequency of vortex Rossby waves with their

amplitude. In Part I a theory similar to Plumb’s is de-

veloped to investigate vortex splits in a single-layer model

of the polar vortex. The angular frequencies of nonlinear

vortex Rossby waves are shown to have a significant de-

pendence on amplitude. Further, a bifurcation is associ-

ated with this dependency, in which a small change in the

model parameters can lead to an abrupt change in the

maximum amplitude attained by the vortex Rossby

waves as the vortex undergoes a nonlinear oscillation.

The bifurcation can be clearly identified as the cause of

vortex splitting SSWs in the simple model. Provided that

the question in the second paragraph can be answered in

the affirmative, the results of Part I prompt the following

related questions relating to the specific nature of the

nonlinearity in vortex displacement SSWs:

(i) What is the role of the leading (quadratic in wave

amplitude) correction to the Rossby wave phase

speed of the relevant baroclinic mode for the non-

linear dynamics? The success of the simple model

equations used in Part I to predict the vortex re-

sponse depends on the leading Rossby wave phase

speed correction dominating over other nonlinear

effects over a wide range of wave amplitudes.

(ii) Does the nonlinear oscillator equation [Eq. (31) in

Part I; see also, e.g., Nayfeh and Mook 1979] give

good quantitative predictions of the vortex re-

sponse to moderate forcings?

(iii) What is the impact of ‘‘strong’’ nonlinearities, such

as the wave breaking and ejection of filaments of

vortex air reported in the above studies?

In section 2, the idealized quasigeostrophic model of

a polar vortex in an anelastic atmosphere on an f plane is

described in detail, including its numerical implementa-

tion. The linear theory of both forced and unforced vortex

Rossby waves is revisited and generalized and a nonlinear

oscillator equation is proposed to describe the nonlinear

behavior. Section 3 describes the results from the full

nonlinear model. The extent to which the dynamical

evolution during particular experiments resembles that

during observed SSWs is examined in detail, and the ex-

tent to which linear and nonlinear predictions of the dis-

turbance amplitudes are qualitatively and quantitatively

accurate is discussed. In section 4 conclusions are drawn.

2 Much of the angular momentum change in the Polvani and

Saravanan (2000) experiments discussed above appears to be

barotropic and may therefore be primarily due to a uniform dis-

placement of the vortex.
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2. A model of vortex displacement SSWs

a. Model description and parameters

The equations describing the quasigeostrophic motion

of fluid in an anelastic atmosphere on an f plane (e.g.,

Pedlosky 1987) are

[›t 1 (u � $H)]q 5 0,

=2
Hc 1

1

r
r

f 2
0

N2
cz

 !
z

5 q,

u 5 2$ 3 ck. (1)

Here q(x, t) is the quasigeostrophic PV, c(x, t) is the

horizontal streamfunction, and u(x, t) is the horizontal

velocity. The vector k is the vertical unit vector and =2
H

is the horizontal Laplacian. The density r(z) is a mono-

tonically decaying function of log-pressure height z,

which for the special case of an isothermal stratosphere

to be examined here becomes an exponential function

exp(2z/H) with density scale height H. The buoyancy

frequency N and Coriolis parameter f0 determine the

stratification and rotation rate, respectively.

The system (1) is subject to the following boundary

condition (e.g., Held et al. 1995) at a solid near-horizontal

lower boundary with topography z 5 hm(x):

[›t 1 (u � $H)] cz 2
k

H
c 1

N2

f0

hm

� �
5 0, on z 5 0.

(2)

Physically Eq. (2) corresponds to parcelwise conserva-

tion of potential temperature on the lower boundary. If

the initial condition is such that the potential temperature

[i.e., the advected quantity in Eq. (2)] is zero everywhere

on the boundary at t 5 0, the condition simplifies to

cz 2
k

H
c 1

N2

f0

hm 5 0 on z 5 0, (3)

where k 5 0.288 is the ratio of the gas constant of air to

its specific heat at constant pressure. Note that previous

works (Waugh and Dritschel 1999; Esler and Scott 2005)

have used an ersatz lower boundary condition of uniform

temperature on the lower boundary [i.e., a lower boundary

condition where the c term in Eq. (3) is omitted]. The

effect of changing to the correct boundary condition

here will be discussed below. Further conditions c / 0 as

z / ‘ and c / 0 as jxj / ‘ ensure decay of pertur-

bations at high altitudes and large radial distances.

The stratospheric ‘‘climate’’ in the model is varied by

adjusting the magnitude of a solid body rotation flow

with streamfunction C 5 (1/2)V
b
r2. The flow equates to

an additional uniform PV field Q 5 2Vb throughout the

domain and is therefore dynamically passive.

Following Scott and Dritschel (2005), Eq. (1) is non-

dimensionalized using the scale height H as the vertical

length unit and the ‘‘scale height Rossby radius’’ LR 5

NH/f0 as the horizontal length scale; PV is scaled by

a typical vortex PV anomaly D0, time by D21
0 , horizontal

velocities by D0LR, and the streamfunction by D0L2
R.

The topography is nondimensionalized by writing hm 5

Hmh(x), where Hm is a representative height and h(x)

a dimensionless function. Replacing dimensional variables

by their nondimensional counterparts where appropriate

from here onward, and including the additional back-

ground rotation flow, the equations and boundary condi-

tions can be written in the following nondimensional form:

[›t 2 (Vy 1 cy)›x 1 (Vx 1 cx)›y](=2
Hc 1 czz 2 cz) 5 0,

cz 2 kc 5 2Mh, on z 5 0,

c / 0, for z / ‘. (4)

The nondimensional parameters (V, M) measuring the

significance of the background flow and the strength of

the topographic forcing, respectively, are defined by

V 5
Vb

D0

, M 5
Hmf0

HD0

(5)

and will control the outcome in the experiments de-

scribed below.

The initial condition for each experiment is an iso-

lated vortex with excess PV profile:

=2
Hc 1 czz 2 cz

5
D(z) for r , R(z), zb , z , zt,

0 otherwise.

(
(6)

The dynamics is subsequently controlled by advection

of the vortex boundary [i.e., the boundary of the high

PV region; it is assumed that D(z) . 0 throughout zb ,

z , zt]. To fix the definitions of D0 and D(z), the nor-

malization conditionðz
t

z
b

e2zD(z)R(z)2 dz 5

ðz
t

z
b

e2zR(z)2 dz 5 M

is imposed on D(z). The quantityM is the vortex mass.

Table 1 gives a list of suitable choices for dimensions

and parameters, referred to as the dimensionalization

STANDARD below, that can be used for comparison

between model quantities and stratospheric parameters.

The values are largely those used by Waugh and Dritschel
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(1999) except that a larger value of D0 is chosen. The new

value is necessary to obtain realistic stratospheric winds in

the experiments below, as a vortex of finite height located

between levels z 5 zb and z 5 zt above the lower boundary

is used, as opposed to a vertically uniform semi-infinite

vortex in z $ 0. The present value D0 5 f0 is consistent with

observations (e.g., Fig. 2 of Matthewman et al. 2009) but is

at the outer limit of the validity of the quasigeostrophic

theory, which is formally valid for D0� f0.

b. Linear theory of forced vortex Rossby waves

In this section the linear theory of unforced and forced

vortex Rossby waves is reconsidered. Waugh and Dritschel

(1999) considered the general linear problem for arbi-

trary vortex radius R(z) and PV profile D(z) but dis-

cretized the problem at an early stage, rendering the

mathematical structure of the problem opaque. Although

the continuum limit has been considered for certain

special cases (Wang and Fyfe 2000; Esler and Scott 2005),

to our knowledge there has been no general treatment.

Linear theory follows from consideration of distur-

bances to the vortex boundary that are small in the sense

to be discussed below. First, note that the stream-

function for any arbitrary disturbance to the columnar

vortex can be expressed as a Green’s function integral

(see appendix A):

c(x, z) 5

ðz
t

z
b

ð
S

G(jx 2 x9j, zjz9)q(x9, z9) d2x9 dz9,

5

ðz
t

z
b

D(z9)

ð
D(z9)

G(jx 2 x9j, zjz9) d2x9 dz9, (7)

where S denotes the horizontal plane and D(z9) de-

notes the area occupied by the vortex at level z9. Taking

2$ 3 ck and applying Green’s theorem in the plane at

every level results in an expression for the velocity

u(x, z) 5 2

ðz
t

z
b

D(z9)

þ
›D(z9)

G(jx 2 x9j, zjz9) dx9 dz9 (8)

where the inner path integral is around ›D(z9), the

boundary of D(z9).

Next, linearity is introduced by taking the vortex

boundary to be located at

x9(u, z9, t) 5 [R(z9) 1 �h(u, z9, t)]̂r(u), 0 # u , 2p,

where r̂(u) and û(u) denote the radial and azimuthal unit

vectors in cylindrical polar coordinates (r, u, z); it is

taken that �� 1 and jhuj, the magnitude of the azimuthal

gradient of h, is of order unity. The next step is to use the

expression (8) for u in the kinematic condition for the

vortex edge

�(ht 1 Vh
u
) 5 (u � n)c, (9)

where n is the (horizontal) normal vector given by

n(u, z) 5 r̂ 2
�h

u

(R 1 �h)
û, (10)

and the subscript c denotes evaluation on the contour.

Linearizing the expression for (u � n)c, which following

the analogous steps in Part I [see their Eqs. (12), (13), and

(A2)–(A5)] results in

(u � n)c(u, z, t) 5 �Lh
u

1 O(�2), (11)

where L denotes the linear operator defined for a gen-

eral function f(u, z) to be

Lf (u, z) 5
1

R(z)

ðz
t

z
b

ð2p

0
D(z9)R(z9)G[R(~u, z, z9), zjz9][f (u, z) cos~u 2 f (u 1 ~u, z9)] d~u dz9,

TABLE 1. Detailing the model dimensions and dimensionalization STANDARD used throughout.

Quantity

Scale in

model

STANDARD

dimensionalization Notes

Vertical length H 6.14 km Scale height H 5 RTs/g (R 5 287.06 m2 s22 K21 is gas constant for air;

Ts 5 210 K is isothermal stratosphere temperature;

g 5 9.81 m s22 is gravitational acceleration)

Horizontal length LR 900 km Rossby radius LR 5 NH/f0 (N 5 0.0214 s21 is buoyancy frequency;

N2 5 g2/cpTs, where cp 5 1000 m2 s22 K21 is specific heat at constant

pressure of air; f0 5 1.454 3 1024 s21 is Coriolis parameter)

Time D0
21 1/4p days D0 5 f0 scaling choice

Horizontal velocity D0LR 130.9 m s21

Streamfunction D0LR
2 5.798 3 104 m2 s21
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where

R(~u, z, z9) 5 [R(z)2
1 R(z9)2

2 2R(z)R(z9) cos~u]1/2.

The linearized kinematic condition at the vortex edge

can thus be written

ht 1 Vh
u

5 Lh
u
. (12)

Equation (12) is an integro-differential equation de-

scribing the evolution in time of a general disturbance

h(u, z, t). It can be simplified if the evolution of a dis-

turbance consisting of a single azimuthal wavenumber is

considered

h(u, z, t) 5 Reĥk(z, t)eiku. (13)

Inserting the above ansatz (13) into Eq. (12), using the

expression (A2) for G in the integral, and using the

Neumann addition formula [Watson 1944, see ch. 11,

Eq. (8)] to expand the modified Bessel function terms as

K0[(a2 1 b2 2 2ab cos~u)1/2]

5 I0(a)K0(b) 1 2 �
‘

n51
In(a)Kn(b) cosn~u (a # b),

results in the following integro-differential evolution

equation:

ĥk
t 1 ik[V 1 Vc(z)]ĥk 5 ik

ðz
t

z
b

Sk(z, z9)ĥk(z9) dz9, (14)

with the ‘‘self-induced’’ angular velocity Vc given by

Vc(z) 5

ðz
t

z
b

S1(z, z9) dz9,

and the integral kernel Sk given by

Sk(z, z9) 5
(1 2 2k)D(z9)R(z9)ekz2(12k)z9

R(z)
Ik(g0R

2
)Kk(g0R

1
) 1

2D(z9)R(z9)e(z2z9)/2

pR(z)

3

ð‘

0
Ik[g(m)R

2
]Kk[g(m)R

1
] cos[mz9 1 q(m)] cos[mz 1 q(m)] dm,

where

R
1

(z, z9) 5 max[R(z), R(z9)],

R
2

(z, z9) 5 min[R(z), R(z9)],

g0 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k(1 2 k)

p
,

g(m) 5 m2 1
1

4
, and

q(m) 5 tan21 1 2 2k

2m

� �
.

Despite its somewhat complicated appearance, for typ-

ical well-behaved R(z) and D(z) the integral kernel

Sk(z, z9) is a relatively benign continuous function of its

two arguments, except for an integrable (logarithmic)

singularity at z 5 z9, typical of Green’s function kernels

appearing in vorticity dynamics. Note that Sk(z, z9) can

be interpreted as a measure of the influence of the wave-

number k Rossby wave at level z9 on the development

of the wavenumber k Rossby wave at level z within the

vortex, account being taken of the lower boundary.

If solutions of Eq. (14) are sought of the form

ĥk(z, t) 5 Z(z)e2ivt, (15)

the result is the following eigenvalue problem for v/k:

LkZ [

ðz
t

z
b

Sk(z,z9)Z(z9)dz9 2 [V 1 Vc(z)]Z(z) 5 2
v

k
Z.

(16)

Equation (16) is a linear homogeneous Fredholm equa-

tion of the third kind (e.g., Porter and Stirling 1990). It

is well known that a third-kind Fredholm equation such

as Eq. (16) can be transformed into the more familiar

second-kind equations provided that (in this case) v/k 2

V 2 Vc(z) 6¼ 0 for z 2 [zb, zt]. Different behavior can

therefore be expected for eigenvalues in the range

minz[V 1 Vc(z)] ,
v

k
, maxz[V 1 Vc(z)], (17)

as opposed to outside this range. Equation (16) can be

readily discretized on a grid of N points [z
i
5 z

b
1

(i 2 1/2)(zt 2 zb)/N, i 5 1, . . . , N] and solved using a

standard numerical eigenvalue routine, recovering essen-

tially the discrete problem examined by Waugh and

Dritschel (1999, see section 4a). Repeated solution over

a range of values of N reveals that normal mode solu-

tions, associated with discrete eigenvalues, have v/k

outside the range (17), whereas within the range (17)

results converge toward a continuous spectrum of ei-

genvalues as N / ‘. An example calculation is dis-

cussed in section 3a below. Physically there is a clear
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explanation for the different behaviors: normal modes

do not have critical levels within the vortex (where v/k

equals the rotation rate of the vortex at the vortex edge),

whereas critical levels exist for the continuous range of

phase speeds within expression (17).

An important special case of a normal mode eigen-

function solution of Eq. (16) occurs for k 5 1. The ei-

genfunction Z(z) 5 constant can be seen to be an exact

solution of Eq. (16) corresponding to the angular fre-

quency eigenvalue v/k 5 V. This is the pure displace-

ment mode corresponding to a uniform displacement of

the entire vortex from the pole. The dynamics associated

with the pure displacement mode are essentially trivial

and are entirely reversible. There is no nonlinearity as-

sociated with the mode and its role in vortex displace-

ment SSWs will be argued below to be of secondary

importance. A further property of the eigenvalue Eq.

(16) is that the frequency v of each mode varies linearly

with V(;Vk). The background rotation parameter V

can therefore be used to bring each mode into linear

resonance, and it plays essentially the same role as in the

corresponding analysis in Part I.

One key property of the linear operator Lk, which

follows directly from the symmetry relation

Sk(z, z9)D(z)R(z)2e2z 5 Sk(z9, z)D(z9)R(z9)2e2z9

,

is that it is Hermitian with respect to an inner product

defined for complex valued functions f(z) and g(z) on

[zb, zt] to be

h f , gi 5

ðz
t

z
b

e2zD(z)R(z)2f (z)g*(z) dz, (18)

where the superscript asterisk denotes complex conju-

gate. That is,

hLkf , gi 5 h f ,Lkgi*. (19)

It follows (cf. Sturm–Liouville theory) that eigenfunctions

Za(z), Zb(z) associated with distinct eigenvalues va, vb are

orthogonal with respect to the inner product, such that

hZa, Zbi5 0, (a 6¼ b). (20)

Henceforth all such eigenfunctions Za(z) will be assumed

normalized so that hZa, Zai5M.

The inner product is an angular pseudomomentum

norm, where angular pseudomomentum is defined (fol-

lowing Dritschel and Saravanan 1994) to be

A 5 J t 2 J 0, where

J t 5
1

2

ðz
t

z
b

ð
D

e2zr2q(x, t) d2x dz (21)

is the vortex angular impulse and J
0

is its value for the

undisturbed vortex. For a single-wavenumber disturbance

consisting of a linear combination of n discrete normal

modes3

h(u, z, t) 5 Re�
n

j51
�Ak

j (t)Zk
j (z) exp(iku), (22)

expansion of the explicit expression for A [e.g., Eq. (14)

of Esler and Scott 2005] and use of the orthogonality

condition [Eq. (20)] reveals that

A 5 �2
p

2
M�

n

j51
jAk

j j
2

1 O(�3); (23)

that is, each linear mode makes an independent contri-

bution to A that is quadratic in its amplitude.

The above analysis indicates that the natural frame-

work to analyze the forced problem is in terms of the

projection of the disturbances onto the relevant vertical

eigenfunctions, and the natural quadratic norm for wave

amplitude is A. The forcing enters the problem through

the topography distribution h(x) appearing in the lower

boundary condition. As in the single-layer model of Part I,

the effect of the nonhomogeneous lower boundary con-

dition in the system (4) is equivalent to including an ad-

ditional advecting ‘‘forcing velocity’’ uM in the unforced

problem, defined here by

uM 5 2$ 3 cMk,

=2
HcM 1 cMzz 2 cMz 5 0,

cMz 2 kcM 5 2Mh z 5 0,

cM / 0 z/‘. (24)

Exploiting the above equivalence, the integro-differential

Eq. (12) in the presence of forcing becomes, in cylindrical

coordinates,

ht 1 (V 2 L)h
u

5 F
u
,

F(u, z) 5 Re �
‘

k51
F̂keiku 5 2

cM[R(z), u, z]

R(z)
.

(25)

The forcing F in Eq. (25) is simply the radial component

of the velocity due to the forcing evaluated at the vortex

boundary. Inserting the ansatz (22) into Eq. (25), setting

3 Note that to express a general disturbance in terms of the ei-

genfunctions of Eq. (16), both a sum over all wavenumbers k and,

for each k, an integral over the continuous spectrum in addition to

a sum over all discrete normal modes is required.
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� 5 M� 1, and then taking the inner product with each

vertical eigenfunction reveals that the complex ampli-

tude Ak
j of a linear mode with frequency v0(k,j) and

vertical structure function Zk
j (z) evolves according to

dAk
j

dt
1 iv0(k,j)A

k
j 5 iFk

j , where Fk
j 5 khZk

j , F̂ki.

(26)

The linear amplitude Eq. (26) is analogous to the linear

evolution Eq. (17) of Part I, with the forcing Fk
j given

by the projection of F onto the relevant azimuthal and

vertical eigenfunction. Understanding how a given h(x)

generates a forcing function F(u, z), and how the vertical

structure of F projects onto that of the eigenfunctions is

key to the linear problem.

c. A weakly nonlinear model equation

There is clearly a close relationship between the linear

problem described above and the single layer case de-

scribed in Part I. There is no obstacle, in principle, to

extending the weakly nonlinear analysis given in Part I

to the three-dimensional system considered here. The typ-

ical weakly nonlinear scenario occurs when a single discrete

eigenmode, with indices (k, j), is near-resonantly excited.

The eigenfrequency of this mode must therefore be close

to zero and can therefore be written v
0(k,j)

5 M2/3 ~v
0(k,j)

(under the assumption that M� 1). Following the anal-

ysis in Part I, the amplitude of the near-resonantly excited

mode will scale with M1/3 and the disturbance at leading

order can be written

hðu, z, t) 5 Re�Ak
j (T)Zk

j (z)eiku,

where �5 M1/3 and T is a rescaled long time variable T 5

�2t. All other eigenfunctions have amplitudes O(M 5

�3). Following the analysis of Part I, Ak
j (T) will evolve

according to

dAk
j

dT
1 i~v0(k,j)A

k
j 1 iv2(k,j)A

k
j jAk

j j
2

5 iFk
j , (27)

where the nonlinear coefficient v2(k, j) is determined

from the details of the nonlinear expansion of the ve-

locity field.

Given its lengthy character, however, an explicit cal-

culation of v2(k, j) will not be pursued here. Instead, the

value of v2(k, j) will be estimated from nonlinear calcu-

lations of the unforced problem. The frequencies of

V-state solutions, meaning steadily propagating non-

linear vortex Rossby waves (e.g., Polvani et al. 1989) or

equivalently steadily rotating disturbed vortices, can be

estimated from Eq. (27). If a V state has constant wave

amplitude �jAk
j j, the nonlinear Eq. (27) indicates that it

must propagate with angular frequency

v 5 v0(k,j) 1 �2jAk
j j

2
v2(k, j) 1 O(�3). (28)

Equation (28) can be used to estimate v2(k, j) using cal-

culations of the angular frequencies of a family of V

states in which the fundamental �jAk
j j is varied, as will be

described below.

Figure 1 summarizes results from the theory of non-

linear oscillators (e.g., Nayfeh and Mook 1979) covered

in more detail in Part I. The schematic plot shows the

peak response in the amplitude of the fundamental wave

maxt[�jAk
j (t)j] as a function of V, when M is fixed. For

values of V far from the critical value for linear reso-

nance V 5 Vc (Vc is defined as the value of V for which

linear frequency of the fundamental v0(k, j) 5 0), both

the weakly nonlinear Eq. (27) and linear Eq. (26) predict

an identical response. Qualitatively different behavior is

predicted, however, as V / Vc. The linear response is

singular at Vc, but the nonlinear response remains finite

and in fact peaks at Vnl 5 Vc 2 3k21[v2(k, j)M
2(Fk

j )2/2]1/3,

where the maximum amplitude attained is

�jAk
j j5 A0 5 [16MFk

j /v2
2(k, j)]

1/3. (29)

The prediction (29) will be compared with numerical

results from the full nonlinear model below.

d. Numerical implementation of full
nonlinear model

The nonlinear numerical model used to solve the

system (4) is essentially that of Macaskill et al. (2003)

where full details are given. Briefly, the model employs

the contour advective semi-Lagrangian (CASL) algo-

rithm (Dritschel and Ambaum 1997), in which the PV

advection step uses a contour representation for the

PV field with contours then interpolated onto a regular

grid for the inversion step. A grid of 96 radial 3 192

azimuthal 3 120 vertical points is used for the inversion

step, with the radial points equally spaced in s 5 r1/2. The

equivalent resolution of the contoured PV corresponds

to a horizontal grid of around 4 times the above density.

Only a subset of the vertical levels, corresponding to

zb , z , zt are ‘‘active’’ in the sense that they contain

vortex PV anomalies. Additional boundary conditions

are employed, of no normal flow on the outer wall, cu 5

0 on r 5 30LR, and zero potential temperature anomaly

on an upper lid cz 2 kc 5 0 on z 5 12H. Tests revealed

that the outer wall and upper lid positions are suffici-

ently distant that the dynamics closely approximates

that of the unbounded volume x 2 S, z . 0 used in the

analysis of sections 2a–c.
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The main adaptation of the present model compared

to that of Macaskill et al. (2003) is the use of the cor-

rect lower boundary condition in Eq. (4). The Sturm–

Liouville procedure described in Macaskill et al. (2003,

see section 2.2.2) was modified for the new boundary

condition, resulting in a modified set of vertical eigen-

functions and eigenvalues for use in the PV inversion

step.

The initial vortex is discretized at each level by rep-

resenting the vortex edge by a single circular contour

made up of discrete points or nodes. The initial node

density is 51 nodes per contour, except where stated

otherwise below. The model is then integrated forwards

with a time step of dt 5 0:1pD21
0 , with contour surgery

performed on the PV contours at each time step to re-

move PV at scales below that of the fine horizontal grid.

3. Results: Nonlinear experiments and comparison
with theory

In this section a parameter sweep of nonlinear model

experiments will be described. Results will be interpreted

using the linear and weakly nonlinear theories introduced

in sections 2b and 2c.

a. Experimental setup

An identical initial PV distribution is used for each

model experiment within the main parameter sweep.

The initial flow is due to a cylindrical vortex with a ver-

tical depth of four scale heights (4H), located between

z 5 H and z 5 5H, as is consistent with observations prior

to displacement SSWs (e.g., Fig. 2c of Matthewman et al.

2009), if the tropopause is identified with z 5 0. The

vortex radius profile (units of LR) and PV jump profile

(units of D0) are given by [see Eq. (6)]

R(z) 5 3 2 a
z 2 (1/2)(zb 1 zt)

zt 2 zb

� �2
,

D(z) 5 1, zb , z , zt, (30)

where a 5 4.8. The position of the vortex edge is shown

in Fig. 2a (thick curve). The parabolic profile is a rough

fit to observations before displacement SSWs, although

the value of a is chosen primarily to minimize the early

onset of weak wave breaking at the top and bottom of

the vortex. The initial vortex might therefore be consid-

ered ‘‘preconditioned’’ by prior wave-breaking events.

Experiments performed with other values of a, while

exhibiting slightly more complex behavior, nevertheless

give similar results.

The stratospheric jet, or azimuthal mean winds u(r, z),

associated with the initial vortex when V 5 0 is shown

in Fig. 2a. The jet maximum (.90 m s21 under the

STANDARD dimensionalization given in Table 1) is lo-

cated at a radius close to the vortex edge (2.6LR ’ 2300 km

from the pole) and four scale heights above the lower

boundary (tropopause), and the flow overall is reminiscent

of a strong midwinter stratospheric jet. It will be shown

below, however, that SSW-like behavior occurs only when

the jet in Fig. 2a is weakened by 25 m s21 or so by the

addition of the background rotation flow (i.e., V , 0).

The three leading eigenfunctions for the azimuthal

wavenumber-1 (k 5 1) linear problem (again with V 5 0)

are shown in Fig. 2b, and are denoted Z1
1(z), Z1

2(z), and

Z1
3(z) in the notation introduced above. Note that Z1

1(z)

is the vertically uniform ‘‘pure displacement mode’’ dis-

cussed above. The second eigenfunction Z1
2(z), to be re-

ferred to as the ‘‘first baroclinic eigenfunction’’ below,

will be shown to play the dominant role in the dynamics of

the forced experiments. The reason that Z1
3(z) and other

possible modes, including the continuous spectrum, are

not found to have a significant role is the nature of their

excitation by the topographic forcing, to be discussed

below. The corresponding eigenvalues [v0(1,1) 5 0, v0(1,2),

v0(1,3)] are illustrated in Fig. 2c. The calculation is re-

peated on discrete grids of varying resolution (N 5 40, 80,

120) to ensure convergence, and all eigenvalues of the

FIG. 1. Schematic illustrating the predictions for the maximum

amplitude of the disturbance for the linear Eq. (26) (dotted curve)

and the weakly nonlinear Eq. (27) (solid curve) for fixed M, as a

function of V. The value of V leading to linear resonance is marked

as Vc and the value leading to the maximum nonlinear response is

marked as Vnl.
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discretized problem are shown in Fig. 2c. For the vortex in

Fig. 2a the calculation appears to converge to give four

discrete eigenvalues for k 5 1, corresponding to four

discrete normal modes. All other eigenvalues, within the

range (17) delineated by the dotted lines, do not converge

to fixed values with increasing N but instead fill out

the continuous spectrum. The eigenfunctions of Eq. (16)

within the continuous spectrum are singular at the critical

level z 5 zc where the rotation rate of the vortex equals the

rotation rate of the discrete ‘‘mode’’ V 1 Vc(zc) 5 v/k.

An identical h(x), shown in Fig. 3, is used in each model

experiment. The topography represents the forcing effects

of both surface topography and of stationary planetary

Rossby waves at tropopause level. The view adopted here

of the most consistent modeling choice for a mechanistic

lower boundary forcing is as follows. The lower boundary

condition should be chosen to match cM throughout the

stratosphere, because of the remote influence of the

physical lower boundary and troposphere (i.e., all parts of

the atmosphere not represented in the model), rather than

to reflect the geopotential height or isentropic displacement

at a particular level. The choice of the physical boundary

condition (3) as opposed to specifying temperature (as in

Waugh and Randel 1999; Esler and Scott 2005) or geo-

potential on the lower boundary is important in ensuring

physically realistic decay rates with z for cM. In particular,

the correct lower boundary condition does not lead to cM

having a barotropic component, unlike the ersatz temper-

ature boundary condition (Scott and Dritschel 2005).

For simplicity, h(x) is given in polar coordinates by

h(r, f) 5 [J1(l1r) 1 ~aJ1(l2r)] cosf. (31)

The functional form of the topography has been chosen

to make it straightforward to solve Eq. (24) for the to-

pographic streamfunction

FIG. 2. (a) Initial zonal (azimuthal) mean wind u(r, z) for no solid body rotation (V 5 0). The contour interval is

10 m s21 using the dimensionalization STANDARD. The vortex boundary used in the calculations is marked as

a thick solid line. (b) The three leading eigenfunctions Z1
1(z), Z1

2(z), and Z1
3(z) of the k 5 1 linear vortex Rossby wave

Eq. (16), for the vortex plotted in (a). (c) The corresponding eigenvalue spectra, calculated on a discrete grid of N 5

40, 80, and 120 points, respectively. The first three eigenvalues are labeled, as is the continuous spectrum. The

boundaries of the continuous spectrum, given by range (17), are marked with dotted lines.
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cM(r, f, z) 5 c1J1(l1r) exp 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
1 l2

1

r
2

1

2

 !"
z

( #
1 c2~aJ1(l2r) exp 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
1 l2

2

r
2

1

2

 !"
z

#)
cosu,

ci 5
1

k 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
1 l2

i

r
2

1

2

, i 5 1, 2 (32)

and thereby obtain F using Eq. (25). The possible values

of li are constrained by the need to satisfy the no-normal-

flow condition on the outer boundary, which requires

30li 5 j1m, where j1m is a root of the Bessel function J1(r).

The fifth and third roots are chosen, giving l1 ’ 0.549

and l2 ’ 0.339. The constant ~a 5 20:7885 is chosen,

using a Newton-type iteration, so that hZ1
1, F̂1i5 0. In

other words, the forcing is constrained so that the linear

pure displacement mode (see section 2b) is not directly

excited by the forcing. This is a key point in the exper-

imental design. Since vortex displacement SSWs are

strongly baroclinic, it is clear that excitation of the pure

displacement mode does not play a key role in the dy-

namics, and since the displacement mode simply rep-

resents a shift in the vortex position relative to the

surface it will at most contribute only to ‘‘reversible’’

dynamics. To design a clean set of experiments in which

the focus is on the nonreversible baroclinic dynamics,

it makes sense to minimize the excitation of the dis-

placement mode throughout the experiment, so that the

vortex remains over the model pole and thus experiences

the same forcing velocity throughout. For the purposes of

comparison with observations, the model pole (i.e., the

origin) is best identified with the density-weighted verti-

cally averaged centroid of the observed vortex, which lies

slightly off the pole (e.g., Waugh and Randel 1999). The

filtering of the topography ensures that the modeled

vortex centroid, in common with the observed centroid

during a displacement SSW, does not undergo a large

excursion from its initial position. Tests confirmed that

the above choice of ~a minimized migrations of the

three-dimensional vortex centroid from the model pole

throughout all experiments.

The level of excitation of other modes, such as the

second baroclinic mode Z1
3(z), can be assessed in com-

parison with the excitation of the first baroclinic mode.

Only large horizontal scales * LR are present in h(x)

and, as a consequence of the inversion procedure (24),

cM thus decays slowly in the vertical and is a slowly

varying function of z. Therefore, if a particular eigen-

function varies rapidly in the vertical (i.e., has many

zeroes), the amplitude of the projection of the forcing

function onto it will be small, and the level of its excitation

will be weak. In the particular example given, and indeed

for all physically plausible forcings h(x), we find that

hF̂1, Z1
2i � hF̂1, Z1

3i

by an order of magnitude. Projections of F̂1 onto ei-

genfunctions within the continuous spectrum are also

found to be comparably weak. The first baroclinic mode

is therefore the only mode significantly excited by the

forcing. It will therefore be the focus in all that follows.

The main parameter sweep consists of 72 experiments

with parameters in the range V 2 [20.11, 20.0375] and

M 2 [0, 0.5]. All experiments are integrated for time

T 5 160pD21
0 5 40 days in the STANDARD dimen-

sionalization. Results will be reported in section 3c be-

low. Results from a set of unforced experiments will be

considered next.

b. Unforced experiments and vortex V states

Figure 4 shows results from an unforced experiment

with (V, M) 5 (20.125, 0). In contrast to the forced

experiments described above, the initial conditions for

Fig. 4 are derived from the V-state algorithm described

in appendix B. The left panel shows a three-dimensional

view of a calculated V state constructed around the first

baroclinic mode for azimuthal wavenumber 1 (see Fig.

2b for the corresponding vertical structure function

Z1
2(z). The amplitude of the fundamental is set to

jA1
2j5 a 5 0:4405 (setting � 5 1 without loss of general-

ity) and the higher harmonics are then calculated as

described in appendix B. The right panels show three

snapshots of cross sections through the lower (z 5 2H)

and upper (z 5 4H) vortex. The snapshots show clearly

that the calculated V state is rotating uniformly.

The aim of the set of V-state experiments is to esti-

mate the unknown nonlinear coefficient v2(1,2) for use in

Eq. (27). The value of v2(1,2) is a measure of the rate of

change of the fundamental wave frequency with the square

of the vortex Rossby wave amplitude. The amplitude de-

pendence of the wave propagation speed was shown in

Part I to be the key nonlinear process for understanding

the simple model of vortex splitting SSWs, and the aim

here is to investigate if the same is true for displacement

SSWs. Figure 5 shows the calculated frequencies v for

V states with three different fundamental amplitudes

(jA1
2j 5 a 5 f0:3524, 0:4405, 0:5286g), together with a

cubic fit to v(a) (solid curve). The fitting parameters

can be used to obtain a numerical estimate of the linear
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frequency v0(1,2) ’ 20.0407 to confirm the value from

the linear theory calculation above (the estimated and

theoretical values differ by approximately 2% because

of discretization errors and the fitting process, with the

estimate located in Fig. 5 where the curve intersects the

vertical frequency axis) for the critical value of the ro-

tation parameter Vc 5 V 2 v0(1,2)/k ’ 20.0843. Fur-

ther, the fitting parameters can be used to estimate v2(1,2)

based on Eq. (28), giving v2(1,2) 5 20.020 (two significant

figures). This calculated value of v2(1,2) will inform the

calculations below.

c. Modeled vortex response versus theoretical
predictions

Figure 6a shows the maximum wave activity

maxt[A(V, M)], defined in Eq. (21) and normalized here

by the angular impulse of the undisturbed vortex, re-

corded during the nonlinear model experiments. The

critical value V 5 Vc leading to linear resonant excita-

tion of the k 5 1 baroclinic mode [with vertical structure

Z1
2(z)] is marked with a dashed line. It is clear that the

largest responses are for V near Vc, with a bias toward

more positive values of V as M increases. There is an

asymmetry in the response, as for fixed M the magni-

tude of the response increases slowly to a maximum as

V increases, before decreasing relatively rapidly as V

increases further. A weak secondary maximum in the

response is present near V ’ 20.05. Analysis of the

linear problem shows that the k 5 2 barotropic mode

comes into resonance for V ’ 20.05 [i.e., v0(2,1) ’ 0].

The k 5 2 barotropic mode is not forced directly in our

model experiment, but it is significantly excited by

nonlinearity associated with the fundamental mode.

The secondary maximum is therefore most likely an

example of a subharmonic resonance (see, e.g., Nayfeh

and Mook 1979).

Figure 6b shows the maximum wave activity calcu-

lated from the weakly nonlinear predictions (29) and

(23). Comparing Figs. 6a and 6b it is apparent that, in

contrast to the single-layer vortex splitting experiments

discussed in Part I, the amplitude Eq. (27) significantly

overestimates the maximum wave activity in the non-

linear model experiments for V close to Vc. Hence the

amplitude Eq. (27) does not lead to quantitatively suc-

cessful prediction of the maximum wave activity in the

nonlinear model experiments, although several quali-

tative features of Fig. 6a are captured nonetheless. These

include the sense of the asymmetry in the response, the

rapid decrease as V is increased past the value giving

the maximum response, and the predicted amplitude of

the response when M & 0.1. The fact that the amplitude

Eq. (27) overpredicts the maximum amplitude attained by

the disturbances to the vortex leads to the conclusion that

FIG. 3. The topographic forcing function Mhm(r, f) for M 5 0.5

(the maximum value used in the experiments). The contour in-

terval is 400 m using the dimensionalization STANDARD and

negative values are dotted. The region within r 5 3LR, the outer

boundary of the initial vortex, is shaded.

FIG. 4. An example of a steadily rotating vortex V state. The

amplitude of projection of the leading k 5 1 baroclinic mode is

fixed at jA1
2j5 0:4405. (left) A three-dimensional rendering of the

vortex edge. (right) Three snapshots of cross sections through the

vortex at z 5 2H (lower vortex, yellow) and z 5 4H (upper vortex,

red).
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some other nonlinear mechanism must act to limit the

amplitude. At the present forcing amplitude (M 5 0.5),

the weakly nonlinear mechanism of quadratic correction

to the Rossby wave phase speed is evidently too weak to

be the dominant mechanism, otherwise Eq. (27) would be

accurate. Next, the full nonlinear experiments will be in-

vestigated in more detail to discover more about the na-

ture of the nonlinearity that does determine the limiting

amplitude.

d. Vortex displacement SSWs in the model

To focus on model behavior resembling observed

vortex displacement SSWs, a subset of the above ex-

periments with M 5 0.375 will be considered next. The

relevant subset, for which the rotation parameter varies

in the range V 2 [20.1, 20.05], is labeled as experiments

(EXPTs) A–G in Fig. 6a. Figure 6a shows that the peak

response in terms of wave activity A occurs for experi-

ment D (V 5 20.075), which will be examined in detail

first.

Figure 7 shows three-dimensional snapshot repre-

sentations of the vortex edge (left panels) and cross

sections (right panels) through the lower vortex (z 5 2H,

yellow) and upper vortex (z 5 4H, red) during EXPT D.

The times of the snapshots are selected to emphasize

key stages in the vortex evolution. At early times the

disturbance is well described by linear theory and the

cylindrical initial condition (top panel) appears weakly

perturbed. Filaments begin to be ejected from the cen-

tral and lower vortex at around day 10, and the lower

vortex in particular becomes increasingly distorted as

can be seen at t 5 25.2 days. From t 5 25.2 to t 5 29.6

days the disturbance to the vortex grows rapidly at all

levels, and at upper levels the vortex becomes strained

FIG. 5. Calculated frequencies of vortex V states in the full

nonlinear model against the amplitude of the projection of vortex

Rossby waves onto the leading baroclinic mode jA1
2j.

FIG. 6. (a) Maximum normalized wave activity [Eq. (21)], or excess angular impulse, during the first 40 days (0 , D0t/

4p , 40) as a function of (V, M) for the full nonlinear model experiments. The contour interval is 0.1 (starting at

0.05), values greater than 0.5 are shaded, and the dashed lines indicate the value of V leading to linear resonance in

each case. (b) Maximum normalized wave activity as a function of (V, M) as predicted by Eq. (27). Contour values

greater than 1 are suppressed. See text for details.
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out into the long ‘‘comma’’ shape characteristic of both

composite and individual examples of observed dis-

placement SSWs (e.g., Fig. 7 of Matthewman et al.

2009). Over the next 6 days disturbances to the vortex,

which is by now significantly eroded, are seen to decay

and by t 5 36 days a significantly reduced vortex has

reformed above the pole.

Figure 8 shows snapshots of the azimuthal mean wind

u(r, z) during EXPT D, using the STANDARD di-

mensionalization. Note that because the background

rotation is retrograde (V 5 20.075) the initial jet is

weaker than that shown in Fig. 2a, and in fact closely

resembles the observed midwinter jet structure and

strength (e.g., Andrews et al. 1985, Fig. 1.4). As the ex-

periment progresses the jet gradually weakens, partic-

ularly in the lower stratosphere where the zonal wind

reverses, as can be seen by day 16. By day 25.2 the jet

maximum is just over 30 m s21, compared with its peak

of 65 m s21 on day 0. Over the next four days the jet

decelerates rapidly and disappears completely so that by

day 29.2 the flow is easterly everywhere. The modeled

evolution of the stratospheric jet therefore strongly re-

sembles that during observed displacement SSWs, with

a rapid reversal in jet strength over four model days.

The time evolution of u(R, z, t) during EXPT D is

contrasted in Fig. 9 with that during EXPTs B and F

(V 5 20.08 and V 5 20.07, respectively), where R 5

2.5LR is a fixed radius close to the vortex edge. The

change to the background rotation between EXPTs D,

B, and F is small, equivalent to a velocity change of just

61.6 m s21 at r 5 R, but nevertheless sufficient to sig-

nificantly alter the response of both the vortex and the

stratospheric jet. Unlike EXPT D, neither EXPT B nor

EXPT F exhibit a rapid SSW-like deceleration of the

stratospheric jet or a distortion to the vortex comparable

in amplitude to that seen in Fig. 7 (day 29.2). The range

of V producing an SSW-like response at M 5 0.375 is

clearly extremely narrow, again indicating the signifi-

cance of resonance.

Figure 10 compares a snapshot of the vortex, as in

Fig. 7, for EXPTs C, D, and E (V 5 20.0775, 20.075,

and 20.0725, respectively) each of which does exhibit

SSW-like behavior in the sense of an abrupt decelera-

tion of the stratospheric jet. There are evidently signif-

icant differences between the three cases. In EXPT C

the upper vortex remains relatively undisturbed through-

out, while the lower vortex is strained out, partially mixed

into the background, and then reforms. For EXPT D the

amplitude of the displacements to the upper and lower

vortex are seen to be roughly comparable, as discussed

above. For EXPT E, it is the lower vortex that remains

relatively unperturbed as the upper vortex is strained

out and mixed. The nature of the nonlinear stage of the

SSW-like behavior in the model therefore seems to

depend extremely sensitively on exactly how close the

linear first baroclinic mode is to resonance.

Figure 11 contrasts the time evolution of the baro-

clinic centroid xbc(t), defined as

FIG. 7. (left) Snapshots of the three-dimensional vortex bound-

ary at t 5 0, 25.2, 29.6, and 36.0 days in EXPT D (V, M) 5 (20.075,

0.375). For visualization purposes the figure is rotated 608 clock-

wise relative to the topography shown in Fig. 3. (right) Cross sec-

tions through the lower vortex (z/H 5 2, yellow) and upper vortex

(z/H 5 4, red) at the same times.
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xbc 5
1

M

ðz
t

z
b

e2zZ1
2(z)

ð
D

xq(x, z, t) dx dz, (33)

in EXPTs A–G. The baroclinic centroid measures the

direction and amplitude of the vertical tilt of the vortex.

For EXPT A (V 5 20.1) xbc(t) evolves in a closed clock-

wise (anticyclonic) orbit, consistent with near-linear and

off-resonant excitation of vortex Rossby waves. Similarly,

during EXPT G (V 5 20.05) the motion is anticlockwise/

cyclonic, as here the excitation is off-resonant in the

opposite sense. In the intermediate cases (C–F) the

baroclinic centroid moves northward4 in each case until

the disturbance is large, nonlinear effects become im-

portant, and eventually either anticyclonic (C–E) or

cyclonic (F) motion dominates. Hence, just as for the

single-layer case examined in Part I, the resonant region

of parameter space separates regimes of near-periodic

anticyclonic and cyclonic oscillations. It is notable that

FIG. 8. Azimuthal mean wind u(r, z) in EXPT D (V, M) 5 (20.075, 0.375) at times t 5 0, 16, 25.2, and 29.6 days.

The contour interval is 10 m s21 under the dimensionalization STANDARD and negative contours are dotted.

(top left) The initial vortex boundary.

4 Note that ‘‘north’’ in the model is defined with respect to the

map of topographic forcing in Fig. 2.
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in EXPTs C–F there is little change in the rotation rate

of the baroclinic centroid as the amplitude of the dis-

turbance to the vortex grows, until the time when the

maximum displacement of the centroid is reached. This is

clear evidence that the quadratic correction to the Rossby

wave phase speed has only a minor role in the dynamics,

and the disturbance amplitudes are instead limited by

the strongly nonlinear wave breaking that occurs at large

amplitudes.

4. Conclusions

The main objective of this work was to explore the

relationship between behavior resembling observed

vortex displacement SSWs in a simple model and the

predictions of linear and weakly nonlinear resonant ex-

citation theory. In nature vortex displacement SSWs are

baroclinic in their vertical structure (e.g., Matthewman

et al. 2009), and the linear analysis performed here sug-

gests that this is because the first baroclinic vortex Rossby

wave mode is closest to linear resonant excitation by

a general stationary wavenumber-1 forcing. This is in

contrast to the vortex splitting SSWs modeled in Esler

and Scott (2005) and Part I, where it is the wave-2

barotropic mode that is resonantly excited, again con-

sistent with observations. To answer the first question

posed in the introduction:

The results show clearly that to obtain a significant

response at moderate forcing, the first baroclinic mode

of the vortex must be excited near-resonantly by the

forcing. Higher normal modes of the vortex, including

the continuous spectrum, are not found to be signifi-

cantly excited as the forcing velocity field uM [defined

in Eq. (24)] does not strongly project onto their vertical

structure. A wide range of nonlinear behaviors can re-

sult from the linear excitation of the first baroclinic

FIG. 9. Evolution in time and altitude of zonal (azimuthal) mean wind u(R, z, t) in EXPTs B

(V, M) 5 (20.08, 0.375), D (V, M) 5 (20.075, 0.375), and F (V, M) 5 (20.07, 0.375) at a fixed

radius representative of the vortex edge (R 5 2.5LR). The contour interval is 10 m s21 under

the dimensionalization STANDARD and negative contours are dotted.
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mode, including both ‘‘top-down’’ and ‘‘bottom-up’’

breakdowns of the vortex. Top-down breakdowns are

often reported as occurring in nature, especially during

minor warming events, and are consistent with the ex-

planation of descending critical layers given by Matsuno

(1971).

It must be noted that even off-resonant forcing of the

barotropic mode in our simple model can lead to sig-

nificant departures of the entire vortex from the model

pole, hence the use of the filtered topographic forcing

used in our experiments. Since large barotropic de-

partures from the pole are not typically observed, it can

only be concluded that the polar vortices find equilib-

rium locations at which barotropic forcing is weak, or

some other mechanism not present in the simple model

acts to maintain their mean position.

It is evident that the nonlinear behavior of vortex

displacement SSWs appears to be significantly more

complicated than that of splitting SSWs [as reported in

Esler and Scott (2005) and Part I], even within the

present model. The nonlinear results and comparison

with the linear and weakly nonlinear theory allow

questions (i)–(iii) posed in the introduction to be an-

swered as follows:

(i) For moderate forcings, the leading (quadratic in

wave amplitude) nonlinear correction to the Rossby

wave phase speed is insufficiently strong to act as the

mechanism by which the amplitude of the funda-

mental vortex Rossby wave is limited. Unless the

forcing amplitude is weak (M & 0.1), the growth

of the fundamental wave follows the predictions

of linear theory to a good approximation until an

amplitude is reached at which high-order nonlinear

effects become important. The vortex displacement

SSWs can therefore be contrasted with the vortex

splitting SSWs studied in Part I, for which a near-

quadratic Rossby wave-phase speed correction was

shown to be the dominant nonlinear mechanism.

(ii) The ‘‘nonlinear oscillator’’ amplitude Eq. (27)

greatly overestimates equilibrium wave amplitudes

close to resonance. However, Eq. (27) captures

some qualitative features of the response, such as

the peak response at finite forcing occurring for

V . Vc, and the rapid decrease in peak response as

V is increased further.

(iii) Strong nonlinearities, such as erosion of the vortex

by wave breaking and ejection of filaments (see

FIG. 10. Comparison of vortex structure at t 5 30 days between

EXPTs C (V, M) 5 (20.0775, 0.375), D (V, M) 5 (20.075, 0.375),

and E (V, M) 5 (20.0725, 0.375). (left) Three-dimensional

snapshots of the entire vortex boundary; (right) cross sections

through the lower vortex (z/H 5 2, yellow) and upper vortex

(z/H 5 4, red).

FIG. 11. Evolution of the vortex baroclinic centroid, defined in

Eq. (33), in EXPTs A, C, D, E, F, and G. Days 0–21.2 are shown

with squares plotted every 4 days.
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Figs. 7 and 10), must therefore act to cause the

disturbances to the vortex to equilibrate at lower

amplitudes than predicted under the quadratic phase

speed correction mechanism. A plausible mechanism

is that erosion of the vortex by ejection of filaments

acts to alter its (effective) radial profile R(z), and

the changes to R(z) lead to significant changes in

the resonant frequency of the first baroclinic mode.

The first baroclinic mode may thereby be brought

out of resonance.

There remains the question of exactly how relevant

the present model is for the situation in the winter

stratosphere. Questions naturally arise as to the roles of

neglected physics including inertia–gravity waves, more

distributed vortex PV profiles (Scott et al. 2004), sensi-

tivities to the structure of the lower boundary forcing

including transient effects at tropopause level (Scinocca

and Haynes 1998), relaxation of the quasigeostrophic

approximation and spherical geometry (cf. Polvani and

Saravanan 2000), the seasonal cycle, and the general state

of the atmosphere elsewhere. The aim of future research

will therefore be to establish the extent to which the

nonlinear resonance mechanism identified here occurs in

progressively more realistic models. Our view is that the

present model captures the essential dynamics, but this

view must be tested, starting with mechanistic models

solving the primitive equations on a sphere and moving

toward general circulation models used for direct nu-

merical simulations of observed events.
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APPENDIX A

A Form of the Green’s Function in an Anelastic
Atmosphere

Here a form of the Green’s function G(jx 2 x9j, zjz9)

appearing in the streamfunction–PV relationship (7) is

obtained. By definition the Green’s function satisfies

=2
HG 1 Gzz 2 Gz 5 d2(x 2 x9)d(z 2 z9) (A1)

subject to the boundary conditions

Gz 2 kG 5 0 on z 5 0, G / 0 as z / ‘,

where d(�) and d2(�) denote the Dirac delta function in

one and two dimensions, respectively.

To solve Eq. (A1) for G, a hybrid sine-cosine Fourier

transform is introduced as follows in order to separate

the vertical problem. Consider first the Sturm–Liouville

problem defined by

d2Z

dz2
2

dZ

dz
1 g2Z 5 0,

dZ

dz
2 kZ 5 0 on z 5 0, D.

This is an eigenvalue problem in g, and Sturm–Liouville

theory dictates that there is a discrete unbounded in-

finite sequence of real eigenvalues fgjg, with associated

eigenfunctions Zj(z). These can be calculated as

g0 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k(1 2 k)

p
,

Z0(z) 5 ekz,

gj 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
1

j2p2

D2

s
,

Zj(z) 5 ez/2 cos
jpz

D
1 �( j)

� �
, ( j $ 1)

where

tan�( j) 5
D(1 2 2k)

2 jp
.

Sturm–Liouville theory allows any function f(z) on

[0, D] to be expanded in a generalized Fourier series as

f (z) 5 �
‘

j50

h f , Zji
hZj, Zji

Zj(z),

where the inner product h�,�i is defined for functions f(z),

g(z) to be

h f , gi5
ðD

0
e2zf (z)g(z) dz.

It is straightforward to calculate

hZ0, Z0i5
1 2 e2(122k)D

1 2 2k
, hZj, Zji5

D

2
,

leading to the relation

f (z) 5
1 2 2k

1 2 e2(122k)D

ðD

0
e2(12k)zf (z) dz

2
4

3
5ekz 1 �

‘

j51

2

D

ðD

0
f (z)e2z/2 cos

jpz

D
1 �( j)

� ��
dz

�
ez/2 cos

jpz

D
1 �( j)

� �
.
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Introducing m 5 pj/D, the limit D / ‘ may now be

taken. Using the standard definition of a Riemann in-

tegral on [0, ‘), the relation above becomes the trans-

form pair

f (z) 5 f̂
0

Hekz 1

ffiffiffiffi
2

p

r ð‘

0
f̂ H(m)ez/2 cos[mz 1 q(m)] dm,

f̂
0

H 5 (1 2 2k)

ð‘

0
f (z)e2(12k)z dz,

f̂ H(m) 5

ffiffiffiffi
2

p

r ð‘

0
f (z)e2z/2 cos[mz 1 q(m)] dz,

where

tanq(m) 5
1 2 2k

2m
.

Applying the forward transform to Eq, (A1) results in

=2
HĜ

0

H 2 k(1 2 k)Ĝ
0

H 5 (1 2 2k)e2(12k)z9d2(x),

=2
HĜH 2 m2 1

1

4

� �
ĜH

5

ffiffiffiffi
2

p

r
e2z9/2 cos[mz91q(m)]d2(x),

which can be solved to give

Ĝ
0

H(r) 5
1

2p
(1 2 2k)e2(12k)z9K0[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k(1 2 k)

p
r],

ĜH(r,m) 5
1ffiffiffi

2
p

p3/2
e2z9/2 cos[mz91 q(m)]K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 1

1

4

r
r

 !
,

where K0(�) is a modified Bessel function of the second

kind. Inserting into the inverse transform yields the

result

G(r, zjz9) 5
1

2p
(1 2 2k)ekz2(12k)z9K0[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k(1 2 k)

p
r]

1
1

p2
e(z2z9)/2

ð‘

0
cos[mz9 1 q(m)] cos[mz 1 q(m)]K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 1

1

4

r
r

 !
dm, (A2)

which gives the form of the Green’s function used in

section 2b above.

APPENDIX B

Calculation of Vortex V States

Here the method of calculation of the steadily rotating

vortex V states described in section 3b is reported. The

standard V-state algorithm (Wu et al. 1984) was found

not to converge in conjunction with CASL. The problem

relates to the underlying grid used to obtain the velocity

u from the vortex edge position h(u, z). Unlike for stan-

dard contour dynamics, the presence of the grid ensures

that the functional u[h] within CASL does not vary suffi-

ciently smoothly with h for the purposes of the algorithm.

Hence a new algorithm, based on a modal decom-

position of the disturbance, is described next. The new

algorithm is not intended as an improvement on that of

Wu et al. (1984), but rather as a technical fix to overcome

as far as possible the grid problem associated with

CASL. In fact the problem is only partially alleviated,

and the calculated states described in section 3b remain

approximate. Furthermore, solutions are found only for

V states close to linear normal modes. The aim of the

new algorithm is to make reasonable estimates for v2(k, j)

as described in section 3b.

First, the disturbance to the vortex edge is expanded

in terms of its linear eigenfunctions, where the system is

treated as being fully discretized such that the continu-

ous spectrum can be treated in the same manner as the

normal modes from the outset:

h(u, z) 5 Re �
K

k51
�

J

j51
Ak

j Zk
j (z) expiku. (B1)

The amplitude of a single mode ( j 5 j*, k 5 k*), namely

the fundamental, is fixed as Aj*
k*

5 a. The aim of the al-

gorithm is then to find the JK 3 JK unknowns [v; Ak
j ; j 5

1, J; k 5 1, K; (j, k) 6¼ ( j*, k*)] consistent with a solution

that is steadily rotating with angular frequency v. For a

given set of coefficients Ak
j the CASL algorithm can be

used to obtain the velocity on the vortex edge everywhere:

(u � n)c 5 Re �
K

k51
�

J

j51
iUk

j (A)Zk
j (z) expiku,

where A is a vector with JK components fAk
j g. Inserting

into Eq. (9), and seeking a solution that is steadily

propagating with v, the system of JK nonlinear equa-

tions to be solved is
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(v 2 Vk)Ak
j 5 Uk

j (A) j 5 1, J k 5 1, K

( j, k) 6¼ ( j*, k*), (v 2 Vk*)a 5 Uj*
k*(A). (B2)

The system (B2) is solved numerically using a damped

fixed point iteration, with the numerical eigenvalues

v0(k, j) found for the linear problem used to improve the

update formulas as follows:

F
k,(n)
j 5

Uk
j [A(n)] 2 v0(k,j)

v(n) 2 v0(k,j)

,

A
k,(n11)
j 5 gA

k,(n)
j 1 (1 2 g)F

k,(n)
j ,

v(n11) 5 Vk* 1
1

a
Uj*

k*[A(n)], (B3)

where the superscripts (n) refer to the nth estimate of v

and fAk
j g. The initial guesses are taken to be zero, and g

is a damping parameter for the iteration. A value of g 5

0.5 facilitated convergence for the solutions shown in

section 3b. The iteration is continued until successive

guesses converge to within a predetermined tolerance:

jAk,(n11)
j 2 A

k,(n)
j j , d 5 1025.

The results of section 3b are constructed from a small

subset of modes J 5 K 5 4, as tests revealed that the

given estimate of v2(1,2) is relatively insensitive to the

inclusion of higher harmonics. Calculated V states are

tested by integrations of the nonlinear model in order to

ensure that a steadily rotating state has indeed been

found (see Fig. 4).
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