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ABSTRACT

A quasigeostrophic, two-layer, b-plane channel model is used to investigate the dynamics of baroclinic wave packets.
A series of experiments are performed in which an unstable flow is maintained by lower-level Ekman friction and
radiative relaxation toward a temperature profile that corresponds to a broad parabolic upper-level jet. The final
statistically steady state achieved in each experiment is found to depend on the magnitude of the hyperdiffusivity n0

and the supercriticality, which is controlled by b. The most important qualitative difference in such states between
experiments is found to be the degree to which a waveguide in the upper level is found to develop. The mechanism
for this upper-level waveguide development is the mixing effect of the eddies at the flanks of the jet, which leads to
a strong potential vorticity gradient at the center of the channel, with well-mixed regions to the north and south.

Two distinct regimes with different qualitative behavior are observed and illustrated by two particular ex-
periments. In the first regime strong hyperdiffusivity inhibits the development of the waveguide. Steady wave
packets are shown to stabilize the background flow upstream by increasing the meridional shear of the jet. This
upstream stabilization is argued to be a mechanism for packet maintenance in this regime. In the second regime
the diffusivity is lower, and a well-developed upper-level waveguide results. The wave packets in this regime
are unsteady and are shown to stabilize the background flow at, and slightly upstream of, their maxima. Wave
activity diagnostics suggest that the most important mechanism in maintaining these packets is the zonal con-
vergence of wave activity, indicating that the wave packets are undergoing a form of nonlinear self-focusing,
analogous to that identified in weakly nonlinear models.

Finally, results are presented from a 10-level primitive equation model with parameter values relevant to the
real atmosphere. In this experiment the nonlinear response of the background flow to the wave packets is shown
to be qualitatively very similar to that observed in the low-diffusivity two-layer model experiment.

1. Introduction

Recent observational studies (Chang 1993; Lee and
Held 1993; Berberry and Vera 1996) have illustrated
that in the midlatitudes of both hemispheres, baroclinic
eddies tend to organize spontaneously into discrete co-
herent wave packets. Using maps of upper-tropospheric
meridional wind, they showed that these packets prop-
agate across the Pacific and Atlantic storm tracks in the
Northern Hemisphere and can often circulate around the
globe in the Southern Hemisphere. More recently Chang
and Yu (1999) have shown that very coherent wave
packet propagation is also common across the Asian
continent. They also have defined a stationary wave-
guide that defines a path of maximum coherence for the
packets. Their results show that there is ‘‘seeding’’ of
disturbances at the entrance to the Pacific storm track
by eddies propagating from upstream. Understanding
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wave packet dynamics therefore seems pivotal to un-
derstanding storm track variability in both hemispheres.
Not only is it an important theoretical issue, but as sug-
gested by Lee and Held (1993) it may also may have
some value in medium-range forecasting, as the wave
envelope may be more predictable than individual
troughs and ridges.

Modeling studies of wave packets have followed two
paths. Lee and Held (1993, LH hereafter) investigated
wave packets in a hierarchy of forced-dissipative mod-
els, including a quasigeostrophic two-layer channel
model. The wave packets in their experiments were
shown to have at the rear (or upstream) edge enhanced
meridional radiation of wave activity toward the jet edg-
es (associated with barotropic decay of the eddies). They
also described a corresponding increase in the barotropic
shear of the jet toward the upstream edge of the packet.
They drew an analogy between this downstream to up-
stream packet structure and the temporal evolution of a
longitudinally symmetric wave train in an initial value
experiment, which is well known to undergo a cycle of
baroclinic growth–barotropic decay (e.g., Simmons and
Hoskins 1978; Feldstein and Held 1989).
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Several other studies have focused on initial value
experiments, in which an unstable flow is perturbed by
a zonally localized disturbance (e.g., Chang and Orlan-
ski 1993; Swanson and Pierrehumbert 1994, SP here-
after). Swanson and Pierrehumbert (1994) showed that
in the subsequent evolution the zonal extent of such a
disturbance is bounded and that the bounds are in agree-
ment with those predicted by large-time asymptotic lin-
ear theory. The largest amplitudes were seen at the lead-
ing edge of their evolving wave packet, with the eddies
upstream stabilized by lower-level potential vorticity
(PV) mixing and those further upstream by an increase
in the barotropic shear of the jet (see, e.g., James 1987).
One hypothesis to explain the behavior seen both in the
SP initial value experiments and the LH forced-dissi-
pative experiments is that it is the upstream stabilization
that is responsible for maintaining the packet structure.
This upstream stabilization would occur if there were
a spatial displacement between where the waves reach
their maximum amplitude and where they exert their
maximum influence on the background flow (e.g., this
spatial displacement might be related to the time lag
associated with the waves radiating outward to the jet
edge and breaking).

The results discussed above may be contrasted with
the wave packet behavior exhibited by the weakly non-
linear system A studied by Esler (1997, E97 hereafter).
This system is based on the Phillips model: the two-
layer model with a uniform flow as the basic state in
each layer. If a small parameter e2 is taken as a measure
of the supercriticality of this basic-state flow, then the
magnitude of the background flow response is found to
be constrained to be proportional to the square of the
amplitude of the wave envelope given by eA(z, T9),
where T9 5 e2t is a ‘‘long’’ timescale and z 5 X 2 cgT
is a function of the ‘‘intermediate’’ space scales and
timescales X 5 ex and T 5 et. The wave envelope can
then be shown to evolve according to the Ginsburg–
Landau equation:

AT 9 1 mAzz 5 DrA 1 nA|A| 2. (1)

Here D 5 61, and r and m are complex coefficients
that are determined by the properties of the linear dis-
persion relation. The parameter n is also a complex co-
efficient that is related to the correction dv to the com-
plex frequency of the fundamental wave that is induced
by the background flow correction, by the relation dv
5 ie2|A| 2n. In the weakly nonlinear problem the fun-
damental wave is defined as that which is marginally
stable, all others having negative growth rates. In the
numerical experiments that follow the fundamental
wave will be defined as that which is fastest growing
on the time mean flow.

The constraints of this weakly nonlinear system mean
the following.

1) If the amplitude of the wave envelope grows at a
given location, the background flow necessarily be-

comes further stabilized at the same location. This
property was shown in E97 to oppose wave packet
formation. This local coupling of the background
flow response to the amplitude of the wave envelope
prevents upstream stabilization of the flow from hav-
ing a role in packet maintenance.

2) The meridionally uniform flow also inhibits any me-
ridional radiation of the waves, so that any part that
the downstream–upstream asymmetry of the mo-
mentum fluxes plays in maintaining the wave packets
in the experiments of LH can have no role in packet
formation in the weakly nonlinear model.

However, the weakly nonlinear equation [(1)] allows
wave packet formation under certain conditions. The
nonlinear self-focusing mechanism that causes this
packet formation acts as follows. For the mechanism to
occur, the background flow response to the wave packet
must act to reduce the frequency of the fundamental
wave (dvr , 0). This causes the packet to adjust to a
state where the ‘‘local’’ wavenumber is increased toward
the rear of the packet and decreased toward the front
(see Figs. 7 and 9c of E97). This is because the kine-
matics of phase propagation imply that if there is a local
minimum in frequency, then the wavenumber on the left
side of the minimum, that is, where the frequency is
decreasing as function of x, must increase with time and
the wavenumber on the right side must decrease with
time. As a consequence of ]2vr/]k2 . 0 for the two-
layer model with uniform flow, the group velocity of
the waves then increases with time at the rear of the
wave packet and decreases with time at the front. This
leads to a convergence of wave activity at the packet
center, leading to packet growth. An important point
about wave packets described by (1) is that generally
they are unsteady;1 they tend to form by nonlinear self-
focusing and then decay due to dissipation (see, e.g.,
Balmforth 1995 and references therein).

The primary objective of this paper is to investigate
wave packet dynamics in a quasigeostrophic two-layer
model with an upper-level jet, the details of which are
described in section 2a. In particular the viability and
relevance of the mechanisms of upstream stabilization
and nonlinear self-focusing are evaluated. Two methods
are used to describe the dynamics of the wave packets
and differentiate between the two mechanisms. The first
was motivated by viewing the problem as one of wave–
background flow interaction, in which the wave packets
force a nonlinear response in the background flow, which
feeds back upon the linear growth rate and phase speed
of the fundamental wave. Complex linear phase speeds
of the fundamental baroclinic wave were therefore cal-

1 A steady wave packet solution of (1) can in fact be obtained in
a periodic channel when the length of the channel is only slightly
greater than the length scale associated with the sideband instability
of the steady wave train.
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TABLE 1. A table summarizing the parameter settings used in the
experiments. Note: for the purpose of comparison with the results in
E97, the scaling factors for the coefficients used in that paper do not
apply here.

Expt b n0 r E2

A
B
C
D
E

0.250
0.250
0.250
0.208
0.313

5.66 3 1022

3.54 3 1022

1.41 3 1022

5.66 3 1022

1.41 3 1022

7.07 3 1022

7.07 3 1022

7.07 3 1022

7.07 3 1022

7.07 3 1022

3.54 3 1022

3.54 3 1022

3.54 3 1022

3.54 3 1022

3.54 3 1022

FIG. 1. Illustrating the difference between the time-mean state and the (initial) radiative states in expts A and C
(‘‘a’’ and ‘‘c’’). (left) The zonal mean winds; (right) the zonal mean potential vorticity gradients. In each panel the
upper-level time-mean profiles are illustrated by solid lines, and the lower-level profiles by dashed lines. The dotted
lines show the radiative profiles in each level.

culated with respect to the background zonal flow profiles
observed across the wave packets. The complex eigen-
value method used to do this is described in section 2b.
By exploiting the relationship between the constant-k,
variable-v linear stability problem and the dynamics of
the wave envelope that was discovered for the weakly
nonlinear system described by Eq. (1), we can diagnose
properties of the wave envelope. For example, if we de-
fine in this case dv 5 v 2 vtm, where vtm is the complex
frequency of the fundamental with respect to the time-
mean flow, we can predict a tendency for the wave en-
velope to decay where dvi , 0 and to grow where dvi

. 0. There should also be a tendency for wavelength

shortening upstream of regions where dvr , 0, as well
as wavelength lengthening downstream, which can act
as precursor to nonlinear self-focusing.

The second method introduced in section 2c was based
on the use of a wave activity conservation relation to
diagnose the wave packets. An upper-level diagnostic
equation for the wave packets is derived from this con-
servation relation in section 2d. This diagnostic equation
allows the maintenance of the wave packet to be inter-
preted as a competition between a baroclinic source from
the level below, a barotropic and dissipative sink, and a
source or sink of wave activity associated with the zonal
convergence of the wave activity flux. The occurence of
nonlinear self-focusing is associated with zonal conver-
gence of this flux near the wave packet center.

A range of numerical experiments were performed.
In section 3 a subset of the experiments is chosen to
illustrate the different behaviors found. The dynamics
are found to be characterized by the extent to which an
upper-level waveguide develops. This is controlled by
the extent to which PV mixing occurs in the critical-
layer regions located at the edges of the upper-level jet,
as well as the center of the channel in the lower level.
The degree to which this PV mixing takes place is de-
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termined by both the mean wave amplitude in the upper
layer, which is controlled by the supercriticality, and the
strength of the small-scale dissipation.

The two experiments chosen to represent the different
regimes of behavior are shown to differ in several fun-
damental ways. The more dissipative experiment (in
which the upper-level waveguide is not well developed)
is characterized by steady wave packets that force a
barotropic response in the background flow. As in LH
the latitudinal shear of the jet is found to increase toward
the rear of the packet. It is shown that this additional
shear has the effect of stabilizing the flow upstream of
the packet. Wave activity diagnostics show that nonlin-
ear self-focusing has no role in maintaining these steady
packets. However, when the waveguide is well devel-
oped (e.g., in a low-dissipation experiment) the maxi-
mum background flow response occurs near the packet
maximum, stabilizing the flow there, as in the weakly
nonlinear system A. In this regime wave activity di-
agnostics indicate that nonlinear self-focusing is the
more important mechanism for packet maintenance.

The results from integrations of a 10-level primitive
equation model are briefly analyzed in section 4. These
show that the response of the background flow to the
wave packets in the low-dissipation experiment is not
simply an artifact of the two-layer channel model.

2. The numerical model and methodology

a. The quasigeostrophic two-layer model

The coupled PV equations that govern the evolution
of the quasigeostrophic two-layer model are of the form

D Qi i 45 d 1 n ¹ f i 5 1, 2, (2)i 0 iDt

where the subscripts denote the layer number (i 5 1 is
the upper layer and i 5 2 the lower layer). In this equa-
tion Qi is the PV, di the forcing or dissipation, and Di/Dt
is the quasigeostrophic advective derivative given by

D ] ] ]i 5 2 F 1 F . (3)iy ixDt ]t ]x ]y

The quasigeostrophic streamfunction Fi is related to the
PV through the relation

Qi 5 by 1 ¹2Fi 1 (21)i11F(F2 2 F1), (4)

where F is the nondimensional internal Froude number
given by

2 2f L0F 5 , (5)
g9H

and b is the nondimensionalized gradient in the Coriolis
parameter f. Here H and L are the vertical and horizontal
length scales, respectively, and g9 is the reduced gravity
due to the density difference between the layers. The
reader is referred to Pedlosky (1987, pp. 416–430) for
details.

The domain is periodic in the zonal direction, with
sidewalls at y 5 0 and y 5 Ly. The flow is maintained
by the dissipation di, which is given the form

di 5 2Ei¹2Fi

1 (21) i11rF[(F1 2 F2) 2 ( )].s sF 2 F1 2 (6)

The streamfunction of the radiative equilibrium state
corresponds to a shear flow that has a broad parabolicsFi

jet structure in the upper level (unlike in E97). This jet
structure is given by

y y
s sU 5 2F 5 4U 1 2 and1 1y 01 2L Ly y

s sU 5 2F 5 0. (7)2 2y

Only the lower-layer Ekman friction, denoted by E2, is
nonzero to provide a crude parameterization of surface
friction.

The numerical model is spectral in the zonal direction,
with 64 waves, and grid point in the meridional direc-
tion, with 100 grid points. The maximum shear U0 5
1.0, F 5 0.5, and b is the parameter that controls the
criticality. The channel length Lx 5 20 2p and channelÏ
width Ly 5 5 2p, respectively.Ï

The hyperdiffusion acts only on the perturbation
streamfunction f i (defined as a perturbation to the ra-
diative equilibrium state, so that Fi 5 1 f i). ThesFi

hyperdiffusivity n0 is treated as a parameter that acts as
a control on the extent of the wave breaking and PV
mixing allowed at the edge of the jet.

The values of b and the hyperdiffusivity n0 are varied
between the experiments. In each case the model was
given sufficient time to ‘‘spin up’’ into a state of sta-
tistical equilibrium before results were analyzed. The
different experiments are summarized in Table 1.2

b. The method of linear stability analysis of zonal
flows

In section 3 composite diagrams showing various
quantities calculated for an ‘‘average’’ wave packet are
presented, including the response of the ‘‘background’’
zonal flow. This is defined as the zonal mean flow plus
the contributions from the first seven zonal wavenum-
bers. This effectively filters out the baroclinic waves
that have maximum enstrophy at wave 10 and wave 11.
All the composites shown are calculated by first iden-
tifying the maxima of the wave packets at each model
day. This is achieved by generating an envelope func-
tion, by Fourier decomposition, of the field of latitu-

2 It is worth noting that when the value of radiative relaxation r
was decreased below the values shown in Table 1, oscillations of the
zonal jet such as those described in Lee and Feldstein (1996) became
so pronounced that it became difficult to apply some of the statistical
methods used in this paper.
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dinally averaged upper-level perturbation meridional
wind squared3 , and identifying its maximum at eache2y 1

time. The longitude of the packet maximum is taken as
the zero longitude in the composite diagram. The com-
posite quantity at a given longitudinal lag, denoted by
xlag, from the packet maximum can then be calculated
at each latitude, effectively averaging the quantity in
question about each packet maximum.

The complex phase speeds for the fundamental bar-
oclinic mode at each longitudinal lag can then be cal-
culated. The background zonal flow is assumed to be
slowly varying in longitude, in order that the effect of
the background meridional flow on the waves can be
neglected. This is consistent with a weakly nonlinear

approach to the wave packet behavior. To calculate the
complex phase speeds for the two-layer model with a
general zonal flow in each layer, it is necessary to solve
a complex eigenvalue problem. The basic method used
to do this is reviewed in SP. In this paper the method
is adapted in order that accurate linear growth rates
could be calculated for zonal flows that were close to
the time-mean zonal flow for each individual experi-
ment. This involved including the dissipation for each
experiment in the growth rate calculation.

The eigenvalue problem in matrix form is

Lf 5 cMf, (8)

where, in the absence of dissipation,

2 2 2Q 1 U (d /dy 2 k 2 F ) U F1y 1 1L 5 , (9)
2 2 21 2U F Q 1 U (d /dy 2 k 2 F )2 2y 2

2 2 2d /dy 2 k 2 F F
M 5 , (10)

2 2 21 2F d /dy 2 k 2 F

and

f1f 5 . (11)1 2f2

In order to add dissipation, it is necessary to add extra terms to the matrix L, which generalizes the problem by
making L complex:

2 2 2 4 4 2 2 2 4E (d /dy 2 k ) 2 rF 2 n (d /dy 2 2k d /dy 1 k ) rF1 0DL 5 L 1 i .
2 2 2 4 4 2 2 2 41 2rF E (d /dy 2 k ) 2 rF 2 n (d /dy 2 2k d /dy 1 k )2 0

(12)

The eigenvalue problem is then solved by inverting M,
and using a standard complex eigenvalue routine for the
complex matrix M21LD. This method was tested for the
case where Ui 5 2F iy is uniform in each layer. Phase
speeds were compared with those calculated from the
linear dispersion relation [Eq. (6) in E97]. Typical errors
were 0.2% for a grid of 26 points in each layer. For the
calculations presented in this paper a grid of 51 points
was used.

3 The superscript e is used to denote a perturbation quantity with
respect to the time-mean field, as opposed to the radiative equilibrium
field.

The complex phase speeds that are calculated in this
way give information about the wave–background flow
interaction that is taking place along a typical wave
packet. The linear growth rate (vi 5 k0ci) of the fun-
damental indicates where the nonlinear response to the
wave packet has caused the background zonal flow to
be stabilized (where v i , 0) or destabilized (where v i

. 0). Equally important, however, is the real frequency
of the fundamental (vr 5 k0cr), and how it is adjusted
by nonlinear response to the wave packet. As noted in
the introduction, changes in the sign and magnitude of
the correction to the real freqency (dvr) are, in systems
such as ‘‘system A’’ described by E97, associated with
nonlinear self-focusing.
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c. A three-dimensional wave activity relation

In order to provide a framework in which to under-
stand the evolution of the wave packets that are ob-
served in the experiments that follow, it is helpful to
construct a suitable wave activity relation. For the two-
layer system the appropriate form for the relation is

]Ai 1 = · F 1 S 5 D , i 5 1, 2, (13)i i i]t

where Ai is a measure of the wave activity in layer i,
Fi the horizontal flux or transport of wave activity in
that layer, Di the nonconservative sources or sinks of
Ai, and Si an exchange term between the two layers
(with S1 5 2S2). The exchange term is the analogue in
the two-layer system of the term involving the vertical
derivative of the vertical flux that appears in conser-
vation relations for continuously stratified systems.

It will be shown, following Plumb (1985), that such
a relation, valid for small-amplitude waves, may be con-
structed in a form that each term is independent of the
phase of the wave in the limit of a slowly varying basic
state. Furthermore, Plumb’s approach will be general-
ized to allow for the possibility of nonstationary waves.

A starting point is the two-layer pseudomomentum
conservation relation of Shepherd (1988), without phase
averaging and valid to order a2 in wave amplitude a,
which has components in (13) given by

2qiA 5 , (14)i 02Qiy

2 2 i1 2U A 1 (f ) 2 (f ) 1 (21) Ff (f 2 f )i i ix iy i 1 2F 5 ,i 1 22 2f fix iy

(15)
i11(21)

S 5 F(f f 2 f f ),i 2x 1 2 1x2
(16)

and

d qi iD 5 , (17)i 0Qiy

where Ui and are basic-state quantities as before, and0Qi

the other quantities represent perturbations from those.
Equations (14)–(15) are generalized to give the required
phase-invariance properties as follows. First following
Plumb (1985), a vector Gi with the property = · Gi 5
0 (in the nondissipative limit) is added to Fi. The vector
chosen is

21 (f )i yyG 5 . (18)i 21 24 2(f )i xy

The nonuniqueness of the conservation relation is ex-
ploited yet further in order to obtain a more general
relation that will have the required properties for trav-

eling as well as stationary waves. This is achieved by
making the transformation

(h q ) (h q )i i x i i t(x) (x)A → A 2 , F → F 1 , (19)i i i i0 04Q 4Qiy iy

with no net effect on (13). Here hi is a perturbation
quantity defined by hix 5 qi 2 qi , where the overbar
denotes a time-mean zonal mean. The components of
(13) can now be shown to be [correct to O(a2) in wave
amplitude]

2q 2 q hi ix iA 5 , (20)i 04Qiy

1 
2(f ) 2 f f 1 2U A 1 (f q 2 f h ) ix i ixx i i i i ix i1 2 F 5 , (21)i  2 f f 2 f f ix iy i ixy

and

2d q 2 r q 2 d hi i i ix ix iD 5 , (22)i 04Qiy

with Si unchanged. Here ri is another perturbation quan-
tity defined by rix 5 di 2 di . All the terms in (13) can
now be shown to be phase independent.

This conservation relation has the following prop-
erties, which are analogous to those given by Plumb.

1) For steady (]Ai/]t 5 0), conservative (Di 5 0) flow
= · Fi 1 Si 5 0 or Fi is nondivergent where there
is no exchange of wave activity between the layers.

2) Where Ai . 0, regions of convergence, where = · Fi

1 Si , 0, indicate the import of wave activity,
whereas regions of divergence indicate its export.

3) In the appropriate WKBJ limit, the group velocity
property

1 5 cg(A1 1 A2)(x) (x)F F1 2 (23)

holds, where cg 5 ]vr/]k is the linear group velocity.
(This property is verified for the case of nondissi-
pative, nongrowing waves in the appendix).

4) In the zonal average, the flux reduces to the two-
layer analogue of the Eliassen–Palm flux, with the
exception of the addition of a zonal component,
which is of no consequence.

The fact that the relation defined above does not rely
upon phase averaging gives two advantages over Shep-
herd’s flux (which does rely on some kind of averaging
in order that it is easily interpreted). First, phase av-
eraging will tend to substantially smooth quantities that
vary on the packet length scale, as typically a wave
packet may measure only two to three wavelengths. Sec-
ond, taking a phase average over a fixed zonal wave-
length may cause difficulties when flux quantities are
sensitive to variations in the actual zonal wavelength
within the wave packet or between different wave pack-
ets. The main disadvantage, as discussed at some length
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in section 3d, is that advection of wave activity by the
eddy wind fields is neglected.

d. A diagnostic equation for the wave packet
maintenance mechanisms

The upper-level wave activity equation [(13) with i
5 1] may be rewritten in the form

(y)] ] ] ]F1(x)1 c A 5 2 (F 2 c A ) 2g1 1 1 g1 11 2]t ]x ]x ]y
| | | |]}}}}}}}} }]}z z

Zonal convergence Barotropic
of wave activity sink

2 S 1 D1 1
| | | | ,}] }]z z (24)Baroclinic Dissipation

source

where cg1 5 cg1(y) can be chosen to be representative
of the zonal mean upper-level group velocity of the
waves. In what follows, cg1 is defined as the time-mean
zonal mean of divided by the time-mean zonal mean(x)F1

of A1. This definition of cg1 was found to give a better
first approximation to the wave packet group velocity
in the experiments to be described, compared with either
the local WKBJ group velocity relevant to both layers
cg 5 ( 1 )/(A1 1 A2) (see the appendix) or the(x) (x)F F1 2

group velocity calculated from linear theory withlincg

respect to the time-mean flow (as in section 2b). This
was perhaps because low-level mixing changed the na-
ture of the coupling between the eddies in the two levels
from that in linear theory.

When the wave activity equation is in this form, the
terms on the right-hand side may be regarded as rep-
resenting effective sources and sinks of wave activity
for a wave packet moving with the group velocity cg1.
These sources and sinks can be related to the dynamical
processes that are responsible for maintaining the wave
packet and have been labeled appropriately in (24). In
section 3 composites of these quantities are presented.
The interpretation of these composites is facilitated by
dividing each source or sink term into three separate
contributions.

1) The contribution of the term to the time-mean zonal
mean budget of upper-level wave activity.

2) The correction to the group velocity cg1 of the wave
packet due to the dipolar component of the source
or sink term. For example, if a wave activity source
is disproportionately strong to the front of the wave
packet, and disproportionately weak to its rear, the
main effect of the term may be to cause the wave
packet to move faster than cg1.

3) A residual term that may ‘‘focus’’ or ‘‘defocus’’ the
wave packet.

The residual terms are defined for a generic source term
^S& as follows:

S
res ^S &^S & 5 ^S & 2 ^A & 2 c (y)^A & . (25)1 g1 1 xA1

The angular brackets denote composites, as defined in
section 2b, and the overbars time and zonal averaging.
Here (y) is a correction to the group velocity chosen^S&cg1

to effectively remove the dipolar component of ^S&. A
suitable choice was found to be

^S & |x x 50lag^S &c (y) 5 2 . (26)g1 ^A & |1 xx x 50lag

Subtracting out the time-mean zonal mean contribution
[the second term on the right-hand side of (25)] from
each source/sink term is equivalent to subtracting ^A1&
3 the time-mean zonal mean wave activity equation

S1 1 1 D1 5 0(y)F1y (27)

from (24). By then subtracting the group velocity cor-
rections (i.e., the third term on right-hand side of (25)]
we are in effect rewriting (24) as

] ]
zc bt bc ds1 (c 1 c 1 c 1 c 1 c ) ^A &g1 g1 g1 g1 g1 11 2]t ]x

5 . . . residual sources/sinks, . . . , (28)

where , , . . . are the corrections associated withzc btc cg1 g1

each term on the right-hand side of (24), respectively.
Each term on the right-hand side of (24) is left with

a residual part that may now be considered to be com-
peting tendencies to focus or defocus the wave packet.
The first term, the zonal convergence of wave activity,
can be associated with nonlinear self-focusing mecha-
nism for wave packet formation described in E97. This
is distinct from the second term, the barotropic sink due
to the meridional radiation and divergence of wave ac-
tivity. This second term, so called as a zonally sym-
metric wave train undergoing barotropic decay [in the
sense of, e.g., Feldstein and Held (1989)], would lose
wave activity from the center of the channel through
this term. The remaining terms are the baroclinic source
of wave activity from the lower level and the sink of
wave activity due to dissipation of the waves.

3. Results from the two-layer model experiments

Over the course of many experiments, of which those
reported below and listed in Table 1 form only an il-
lustrative subset, it was observed that the dynamics of
the wave packets in this model are sensitive primarily
to the extent to which wave breaking and PV mixing
are allowed at the edge of the jet. Experiments A and
C have been chosen for detailed analysis in this section,
as they illustrate the two different regimes of behavior.
In section 3a the stabilization of the time-mean flow in
these experiments is discussed. In section 3b results
from the linear stability analysis and wave activity di-
agnostics are presented for experiments A and C, and
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the transition between the two regimes, illustrated by
experiment B, is also briefly discussed. In section 3c
the results from experiments with higher and lower val-
ues of b are presented, which are intended to illustrate
that similar qualitative behavior can be identified at dif-
ferent criticalities. Section 3d contains a discussion of
the results obtained when the full nonlinear wave ac-
tivity flux of Shepherd (1988) is used in place of the
corrected flux derived in section 2c [(20)–(21)]. The
results from other experiments (not presented) in which
the values of E2 and r were varied showed that although
the structure of the time-mean jet was sensitive to these
parameters, the wave packet behavior was qualitatively
similar.

a. Stabilization of the time-mean zonal mean winds
In each experiment the time-mean zonal mean flow

was investigated in order to compare its stability prop-
erties to that of the radiative equilibrium flow profile
given by (7). Figure 1 shows the time-mean zonal winds,
as well as the time mean PV gradients in experiments
A and C. The zonal winds in both experiments differ
from the radiative profile by the addition of a barotropic
component, which is stronger in the case of experiment
C. In both experiments the PV gradient in the lower
level is reduced, and in the upper level a region of strong
gradient is created near the center of the channel. The
degree of this PV mixing is greater in experiment C
(less dissipative) than in experiment A (more dissipa-
tive).

When the linear stability analysis described in section
2b is applied to the time-mean flows illustrated in Fig.
1, the flow is found to be stabilized in each case. Table
2 shows a comparison of the complex phase speeds of
the fundamental for the radiative and time-mean states
in each experiment. For experiments A and C the me-
ridional and vertical structure of the fundamental wave
calculated for the time-mean flow was broadly similar
to the structure of the waves observed in the full non-
linear experiments (Figs. 2a and 10a).

This spinup of a stabilizing barotropic jet by the ed-
dies is well documented in zonally symmetric initial
value experiments in the two-layer model by, for ex-
ample, Feldstein and Held (1989), and in similar ex-
periments by LH. Importantly, it is analogous to the
spinup of a barotropic jet upstream of a developing wave
packet in an initial value problem (e.g., SP). Increased
meridional shear was also observed at the upstream edge
of the wave packets in the experiments of LH. However,
the following experiments will show that the develop-
ment of wave packets need not be associated with a
large upstream barotropic correction to the background
zonal flow.

b. The effect of varying the small-scale diffusivity
1) EXPERIMENT A: HIGH DIFFUSIVITY

Figure 2 shows a snapshot of various fields from ex-
periment A, in which the higher-order diffusion n0 is

set at a relatively high value. In this experiment the
waves in both layers behave almost as linear waves,
even in the upper-level critical-layer regions. As the
diffusion is strong, the waves are dissipated in these
regions before the PV contours overturn. The wave ac-
tivity snapshot (Fig. 2c) shows the two-layer model
wave activity flux, which is described in section 2c,
corrected for the time-mean zonal mean group velocity
at each latitude, cg1(y). Relative to this group velocity,
in this experiment the wave activity flux is entirely di-
rected in the meridional direction. The critical-layer re-
gions can be described as largely absorptive, in the sense
of Killworth and McIntyre (1985), as the flux can be
seen to be strongly convergent there.4

There is also evidence in this picture to complement
the results of LH that the wave packet structure is asym-
metric from its downstream to upstream side. If one
considers the wave packet in the stationary frame, at
the east or downstream end of the packet the waves
grow from radiation of wave activity from the larger
upstream disturbances. Evidence of this downstream de-
velopment occuring for baroclinic waves in observa-
tions was presented by Chang (1993). The waves at this
end of the packet have less latitudinal phase tilt toward
the jet edges in Fig. 2a than the waves at the upstream
end of the packet. This is consistent with weaker ra-
diation of wave activity toward the jet edges. As the
relative rate of radiation of wave activity to the jet edges
increases toward the rear of the packet, one would ex-
pect wave decay through absorption at the critical layer
to become more important there. It could be argued that
the packet adjusts to this higher rate of wave activity
absorption at its upstream end by decaying away sharply
there, compared with the gradual increase in wave am-
plitude at its downstream end.

The cross-sectional EOFs method described in E97
(appendix 3) was used here in order to compare the
evolution in longitude and time of the baroclinic waves
to that of the leading-order background flow response.
This method separates the variability of a field into
‘‘optimal’’ structures in the meridional-height plane that
describe the maximum possible variance. The principal
components of each structure are defined by its projec-
tion onto the flow field at a given longitude and time.
The evolution of these principal components in longi-
tude and time can give a greatly simplified picture of
the important coherent variability of the field.

Figure 3 shows the leading symmetric and antisym-
metric cross-sectional EOFs for the perturbation zonal
wind field ue from experiment A. The principal anti-

4 Absorptivity in Killworth and McIntyre (1985) is defined as the
jump in the value of (minus) the zonally averaged momentum flux
across the critical layer or, equivalently, the convergence of wave
activity flux into the critical layer. The meridional component of the
flux F1 is a three-dimensional analogue of the zonally averaged mo-
mentum flux.
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TABLE 2. Comparing the complex phase speeds of the fundamental
wave calculated for the radiative equilibrium flow and the time-mean
flow.

Expt

Phase speed c
(radiative

equilibrium flow)
Phase speed c

(time-mean flow)

A
(wave 10, k 5 0.7071)

C
(wave 11, k 5 0.7778)

0.1734 1 0.1067i

0.2133 1 0.1127i

0.3757 1 0.0136i

0.7295 1 0.0002i

symmetric EOF describes the baroclinic waves, which
consist of the two coherent, rapidly propagating wave
averaged momentum flux packets seen in Fig. 2. These
wave packets can be seen in Fig. 3 to remain steady
throughout the course of the integration. The first sym-
metric EOF (top right) shows the nonlinear wave-2 re-
sponse to the wave forcing due to these packets. It has
structure that is very close to being barotropic. The
positive phase of this mode is located at the downstream
(east) side of each packet, showing that the local zonal
jet is broader and weaker there. The negative phase is
located on the westward side of the packets, which in-
dicates that the local jet is stronger and narrower there.
This is reasonable as the extra breaking and dissipation
of the waves at the rear of the packet leads to more
effective mixing and weakening of the PV gradient at
the jet edges. This is consistent with the stronger nar-
rower jet that is observed. The phase speed for the waves
calculated from this picture agrees well with that cal-
culated from linear theory, shown in Table 2.

Figures 4a and 4b show the composites of background
zonal wind correction around a packet maximum (at
zero longitude), the calculation of which is described
in section 2b. A barotropic correction is observed, which
is nearly identical to the leading symmetric EOF in Fig.
3. The barotropic correction is similar in structure to
the correction to the time-mean zonal flow forced by
the eddies, shown in Fig. 1. The linear stability of this
composite background zonal flow can be calculated
along the length of the wave packets. Figures 4c and
4d show how the real and imaginary linear phase speeds
cr and ci of the fundamental baroclinic wave vary in
longitude around the packet maximum. The real part of
the phase speed cr varies smoothly along the packets,
with minima just downstream of the packet maxima.
The imaginary part of the phase speed ci shows that the
background flow is unstable to the downstream side of
the wave packets, and slightly unstable at the packet
maximum. However, it becomes strongly stabilized by
the barotropic correction to the background flow to its
upstream side, apparently due to the barotropic governor
effect (e.g., James 1987). As the fundamental wave
would decay in the stabilized region and grow in the
unstable downstream region, this background flow
structure should maintain the twin packet structure, pro-
vided that nonlinear self-focusing–defocusing is not im-

portant. For this experiment this turns out to be the case
as the analysis of the wave activity equation [(24)],
which shows that for this experiment the nonlinear self-
focusing term is negligible compared with the other
terms (Figs. 5b, 7c). It therefore seems that there is a
viable mechanism, which we might call the ‘‘upstream
stabilization mechanism’’ for maintenance of the wave
packets.

Overall, the background flow correction causes non-
linear enhancement of the linear group velocity of the
waves, simply by causing wave growth at the down-
stream edge of the packet and wave decay at the up-
stream edge. The magnitude of this effect is proportional
to the degree of instability of the flow downstream of
the packet. It can be thought of as analogous to the
(linear) enhancement of packet group velocity described
in the experiments of SP, which similarly is a function
of the degree of instability of the undisturbed flow
downstream of the packet. In our experiment it causes
the observed group velocity ( 5 1.484) to be muchobscg

greater than that predicted by the linear calculations
( 5 1.076 with respect to the time-mean flow).lincg

An important property of the proposed upstream sta-
bilization mechanism is that it feeds back positively
upon itself. If one considers a perturbed wave train that
induces a tiny barotropic correction to the flow, with
structure similar to that in Fig. 4, it will cause wave
decay at the upstream edge (due to the barotropic gov-
ernor effect), as well as growth at the downstream edge
and packet maximum, therefore steepening the wave
packet. This leads to an increased barotropic correction,
reinforcing the process. It is therefore a viable secondary
instability of a symmetric wave train in the sense of
E97.

Further insight into the nature of this mechanism can
be obtained by considering the upper-level wave activity
equation [(24)]. As discussed in section 2d, it is the
zonal variation of the wave activity statistics along the
wave packets that is of most interest. Estimates of these
are obtained by taking composites about the packet max-
imum, as for the background zonal wind (see section
2b).

Figure 5 shows longitude–latitude contour plots of
composite quantities of the terms in (24) before the
residuals have been calculated. Note that different con-
tour intervals have been used in order to illustrate the
spatial structure of each field. Figure 5a also shows the
composite wave activity ^A1& itself. Note that the wave
activity maxima occur away from the center of the chan-
nel in this experiment. Figure 5b confirms that little
zonal convergence of wave activity is taking place. Fig-
ure 5c shows the remaining terms on the right-hand side
of the equation, ^D1 2 S1 2 &. This picture shows(y)F1y

a net increase of wave activity due to these terms down-
stream of the wave activity maxima, and a net decrease
upstream of the maxima. Figures 5d and 5e show the
barotropic sink term ^2 & and the baroclinic source(y)F1y

term ^2S1&, which largely cancel with the dissipation
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→

FIG. 2. A snapshot of various dynamical fields from expt A. From the top they are (a) upper-layer meridional velocity f 1x, (b) upper-
layer potential vorticity Q1, (c) wave activity exchange S1 between the lower and upper level, and (d) lower-layer potential vorticity Q2. (c)
Arrows show the upper-level wave activity flux, vector ( 2 cg1A1, ), defined in section 2d. Contour intervals are (a) 0.16, (b) 1.4, (c)(x) (y)F F1 1

0.035, and (d) 0.27. Arrow scaling is 1 length unit to 0.1.

^D1& (note the different contour intervals), leaving a
small residual.

Figure 6 shows how the dipolar part of these ten-
dencies influence the wave packet group velocity as
described in section 2d. Figure 6a shows cg1(y) (dashed
line), the corrected group velocity (solid line), as well
as the upper-level mean flow (dotted line). It shows that
the net effect of the dipolar structure of the total ten-
dency (shown in Fig. 5c) is to accelerate the fringes of
the wave packet so that it all moves at a near-constant
velocity (close to the observed group velocity 5obscg

1.484). [Note that this method of obtaining the total
wave packet group velocity neglects advection by the
eddy wind field, which is not included in (20)–(21).]
Figure 6b shows the how the individual terms influence
the group velocity. Because the baroclinic term is dis-
proportionately strong toward the rear of the packet (in
the channel center), as can be seen in Fig. 5e, it therefore
has a decelerating effect. The barotropic sink is also
disproportionately strong toward the rear of the packet,
and therefore has an accelerating effect. Figure 6c shows
^ &/^A1&, averaged across the channel center, showing(x)F1

the variations in the local, uncorrected zonal group ve-
locity along the length of the wave packet. It is nearly
constant everywhere except where the wave amplitude
is very small, again indicating that zonal convergence
of wave activity is not important here.

Figure 7a shows a snapshot of upper-level meridional
velocity y 1 shifted in longitude so that a packet maxi-
mum is at the zero point, to act as a reference for the
curves below. Figure 7b shows the composite quantities
plotted in Fig. 5, now averaged across the channel cen-
ter, from y 5 0.42Ly to y 5 0.58Ly, to act as a reference
for the residual tendencies shown in Fig. 7c, also av-
eraged across the channel center. It is clear from Fig.
7c that the only residual term that causes the wave pack-
et to be concentrated, by causing growth at its maximum
and decay at its upstream and downstream edges, is the
barotropic sink term. This can be explained by noting
that the barotropic sink at the packet maximum is dis-
proportionately weak, as there the jet is somewhat
broader and weaker than the time-mean jet (see Fig. 4).
This focusing is balanced by defocusing due to the bar-
oclinic term (which is disproportionately weak at the
packet maximum as the jet is weaker) and the dissipation
term. Note that there is a net tendency to defocus the
packet, which is most likely balanced by nonlinear ad-
vection (see the discussion in section 3d).

2) EXPERIMENT B: MEDIUM DIFFUSIVITY

Experiment B, in which the value of the hyperdif-
fusion n0 has been decreased from that in A, is a tran-

sitional case. Figure 8 shows a snapshot of the same
dynamical fields shown for experiment A. Note that
wave breaking takes place to a greater degree in the
upper-level critical layers at the edge of the jet. This
results in a region of PV that is relatively well mixed,
stretching behind the wave packet at the edges of the
jet. As in experiment A, the PV gradient is slowly re-
stored in the critical-layer regions behind the wave pack-
et by the effects of radiative relaxation. There is also
clear evidence of wave breaking in the lower-level PV
picture. This mixes the PV gradient right across the
center of the channel. Viewed relative to the group ve-
locity cg1(y), the zonal fluxes are eastward (and hence
disproportionately strong) toward the rear of the wave
packet, where the local wavelength is shorter. The me-
ridional fluxes also increase to the rear of the packet.
Of the two wave packets visible, it is clear that one has
much greater wave amplitude than the other. Over time,
the two wave packets visible in the channel can be ob-
served to grow and decay with a timescale of around
100–150 model days.

Figure 9 shows the mean background flow correction
along the wave packet for experiment B. The barotropic
correction extends less far upstream of the wave packet
than that for experiment A, and there is now a baroclinic
component to the flow correction at the packet maxi-
mum. Linear stability analysis shows that the region at
and upstream of the packet maximum is strongly sta-
bilized by this baroclinic component. This is seen to a
much greater extent in the following experiment.

3) EXPERIMENT C: LOW DIFFUSIVITY

Figure 10 shows the equivalent snapshots for exper-
iment C. These show that the upper-level waveguide is
well developed in this experiment in the sense that in
the upper-level there is a region of tight PV gradient
near the center of the channel, surrounded by strongly
mixed regions to each side where the PV gradient is
very weak. This is true at all longitudes, and although
it is noticeable that there is more mixing taking place
at the upstream edge of the wave packets, the critical-
layer regions remain well mixed everywhere. The lower-
level PV is well mixed toward the center of the channel,
with stronger PV gradients located at the latitudes of
the upper-level critical layers.

The relatively strongly mixed upper-level critical lay-
ers appear to act as partial reflectors (or rather nonab-
sorbers) of wave activity (see, e.g., Killworth and
McIntyre 1985). This is consistent with the wave activ-
ity vectors in Fig. 10c pointing more in the zonal di-
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FIG. 3. (top) The latitudinal profile of the most important antisymmetric and symmetric cross-sectional EOFs of u,
for expt A. The solid line shows the upper-level structure and the dotted line the lower-level structure. The modes
describe 52.8% and 6.1% of the variance in u, respectively. (bottom) Longitude–time plots showing the evolution of
the corresponding principal components in longitude and time. Contour intervals are (left) 0.2 and (right) 0.1.
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rection than those in experiments A and B. (The more
zonal the arrows, the lower the jump in the value of the
wave activity flux across the critical-layer regions.) As
in experiment B, stronger zonal fluxes (eastward-point-
ing arrows) are associated with regions where the local
wavelength is shorter. This is usually the rear of the
wave packets.

Figure 11 shows the structure of the leading antisym-
metric and symmetric EOFs for experiment C, and the
time evolution of their principal components. The an-
tisymmetric EOF, which describes the baroclinic waves,
shows that individual wave packets tend to remain well
defined for a shorter period of time in this experiment
(around 50 days). Unlike in experiment A, the sym-
metric EOF has a strong baroclinic component. It also
differs in that only its negative phase can be strongly
correlated with wave packet position in the evolution
pictures of Fig. 11. Figures 12a and 12b, which show
the composite background zonal winds around the wave
packet maximum for this experiment, illustrate why this
is the case. Near the composite packet maximum there
is a strong baroclinic component to the correction to the
background flow, with a relatively weak barotropic cor-
rection slightly upstream. It is important to emphasize
that in this experiment, the correction to the radiative
flow due to the presence of eddies (see Figs. 1c and 1d)
is quite different in structure to the correction to the
background flow due to the wave packets. The more
baroclinic structure of the background flow correction
suggests that as the upper-level critical layers are well
mixed, the background flow is in some sense partially
saturated to further barotropic correction.

Figures 12c and 12d show the real and imaginary
parts of the linear phase speed of the fundamental wave,
calculated with respect to the composite background
flow around the packet maximum. The correction to the
real phase speed of the waves is in phase with the cor-
rection to the zonal flow at the center of the channel.
The strong reduction in the phase speed of the funda-
mental suggests that, as in the case of the weakly non-
linear model described in the introduction, the packet
will tend to adjust to a state in which the wavelength
of the waves at the rear of the packet is reduced relative
to those at the front. This adjustment is a precursor to
nonlinear self-focusing taking place.

The plot of imaginary phase speed shows that the
flow has also been strongly stabilized at and just up-
stream of the packet maximum. Both the barotropic and
baroclinic components of the correction appear to have
contributed to stabilizing the flow. The negative values
in the region of the packet maximum suggest that the
growth rate of the waves may be more strongly influ-
enced by the baroclinic component of the flow correc-
tion rather than the barotropic component. To confirm
this the linear stability of a composite zonal flow with
a barotropic correction (bt) only, and a similar flow with
a baroclinic correction only (bc) were investigated.
These flows are given by

c cu 1 u1 2btu 5 u 1 (29)i i 2
c cu 2 u1 2bc i11u 5 u 1 (21) , (30)i i 2

where ui is the time-mean zonal flow, and is thecui

composite background zonal wind correction (shown in
Figs. 14a,b for i 5 1, 2). The barotropic correction flow

was found to be unstable in the region of the packetbtui

maximum, with maximum growth rate equal to 0.0570.
The baroclinic correction flow was by contrastbcui

strongly stabilized near the packet maximum with fast-
est decay rate equal to 20.0907. The stabilizing effect
of the baroclinic component of the flow correction is
therefore dominant, as seen in Fig. 12d.

Figure 13 shows longitude–latitude composites of the
quantities in Eq. (24) for this experiment. Figure 13a
shows the upper-level wave activity ^A1&, which has a
maximum slightly upstream of the packet maxima de-
fined in section 2b. Figures 13b and 13c illustrate the
zonal convergence term and the sum of the remaining
terms in Eq. (24), respectively, for this experiment. Note
that the zonal convergence term has the effect of con-
centrating wave activity toward the packet maximum.
Figure 13d shows the barotropic sink term, which at the
packet maximum has a magnitude less than half that of
the baroclinic source term shown in Fig. 13e.

Figure 14 illustrates the effect of these tendencies on
the wave packet group velocity. Figure 14a shows that
the corrected group velocity (solid line) is substantially
greater than cg1 (dashed line). Figure 14b shows that it
is the zonal convergence term that is chiefly responsible
for this increase. However, for this experiment in par-
ticular, we cannot expect to accurately predict the ob-
served wave packet group velocity ( 5 1.5465)5obscg

without including the effect of advection by the eddy
wind fields (see section 3d). Figure 14c shows the local
uncorrected group velocity at the channel center, given
by ^ &/^A1&. It has a minimum at the front of the pack-(x)F1

et, with a maximum just behind the packet maximum,
and another minimum to the rear of the packet. This
suggests that there will be convergence of wave activity
at the packet maximum, and that zonal convergence is
an important mechanism in maintaining the wave pack-
et.

Figure 15a shows a composite meridional wind field
from this experiment, which has been derived as fol-
lows. The reference point is taken to be the longitude
at which the maximum of the square of the eddy me-
ridional wind field occurs. If y 1 , 0 at this point for2y 1

the wave packet in question, then the transformation y 1

→ 2y 1 is made before adding the wave packet to the
composite. The composite was taken over 661 wave

5 For comparison the group speed from the linear calculations lincg

5 1.2387.
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FIG. 4. (a) A composite showing the mean upper-level background zonal flow correction around a packet maxima in expt A. The contour
interval is 0.02, positive contours are solid, and negative contours are dashed. (b) As in (a) but for the lower layer. (c) The real phase speed
cr of the fundamental baroclinic wave (k 5 221/2) calculated with respect to the time-mean flow plus the background flow correction illustrated
in (a) and (b). The dotted line shows cr calculated with respect to the time-mean flow alone. (d) As in (c) but for the imaginary phase speed
ci.

packets and is intended to illustrate the characteristic
length scale and structure of the wave packets recorded
in the experiment. A shortening of the wavelength of
the waves toward the center and rear of this composite
packet may be seen. The composite process tends to
smooth out the wavelength shortening, which is much
more visible in the snapshot Fig. 10a.

Figure 15b shows averages across the channel center,
again from y 5 0.42Ly to y 5 0.58Ly of the composite
quantities shown in Fig. 13, for the purpose of com-
parison with their residuals (calculated according to the
method described in section 2d) shown in Fig. 15c. The
residual terms are dominated by a relatively strong fo-
cusing tendency due to the zonal convergence of wave
activity. There is also a weak tendency toward focusing
due to the barotropic term (as in expt A) and a weak
tendency toward defocusing due to the baroclinic and
dissipative terms.

These results show that the maintainence of the wave
packets in this experiment is due almost entirely to the
zonal convergence of wave activity. The qualitative sim-
ilarity of the background flow stability characteristics
with those of the weakly nonlinear system A of E97
suggest that the same nonlinear self-focusing mecha-
nism is taking place. The net focusing of the wave pack-
et shown by the heavy solid curve is likely to be at least
partially balanced by the residual effect of advection by
the eddy wind fields (see section 3d).

c. The effect of varying the supercriticality

1) EXPERIMENT D: HIGH SUPERCRITICALITY

In order to illustrate that the wave packet dynamics
are controlled by the effective amount of PV mixing
allowed in the critical layers, in a further two experi-
ments, D and E, the parameter b was varied. Reducing
b effectively increases the supercriticality of the system.
Figure 16 shows a snapshot of fields from experiment
D, in which the criticality was increased, with b 5
0.208. The dissipation y 0 is set to a relatively high value,
equal to that in experiment A. The high criticality has
the effect of increasing the eddy amplitude in the time-
mean state. The larger waves are observed to mix the
PV in the upper-level critical layers to a greater extent
than those in experiment A, and, in fact, to a similar
extent as in experiment B. As a result the wave packets
remain well defined for a similar length of time as in
experiment B, around 100–150 days. Other diagnostics,
such as the wave activity flux snapshots are also qual-
itatively similar to experiment B. A composite of the

background zonal wind (not shown) was also found to
be very similar to that for experiment B (Fig. 9), al-
though its amplitude was found to be slightly larger,
most likely due to the wave amplitude being larger.

2) EXPERIMENT E: LOW SUPERCRITICALITY

Figure 17 shows the snapshots from experiment E.
This experiment is characterized by a low criticality, b
5 0.313. The small-scale dissipation n0 is in this case
set to a low value (equal to that for expt C). These
parameters result in wave behavior that is almost linear
everywhere, except in the upper-level critical layers. As
a result this experiment gives a very good example of
asymmetric downstream–upstream packet structure, in-
dicating upstream stabilization by a barotropic correc-
tion. There is a trail of breaking waves in the critical
layers upstream of the packet maximum, and the wave
activity flux vectors are in the meridional direction rel-
ative to the group velocity cg1(y). Although the time and
length scales on which the wave packet evolves are
much longer, as the radiative jet is only weakly super-
critical, the wave packet shares these features in com-
mon with those seen in experiment a (Fig. 2). This sub-
stantiates the claim that it is the degree to which the
waves are allowed to break and in particular the reflec-
tivity or absorptivity of the critical layers that deter-
mines the fundamental dynamics of these experiments.
If a higher value of dissipation was used when the b
parameter was at this value, a steady wave train was
formed. (This in fact was found to be the case for ex-
periments with lower b also.)

d. On the use of a full nonlinear wave activity flux

In this section we discuss the results obtained using
the full nonlinear wave activity relation of Shepherd
(1988). This relation, which also has the form (13), has
wave activity given by

eqi

eA (Q , q ) 5 Y(Q 1 q̃) 2 Y(Q ) dq̃, (31)i i i E i i

0

where Y(Qi) is the inverse function of the basic-state
PV, Qi(y) in layer i. The flux is given adding an eddy
advection term to F i as given in Eq. (15):

eu Ai iF → F 1 . (32)i i e1 2y Ai i

Here Si remains unchanged.
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FIG. 6. (a) The latitudinal structure of the upper-level group velocity cg1(y) (dashed line), the corrected group
velocity cg1 1 1 1 1 (solid line), and the upper-level mean wind in expt A (dotted line). (b) Thezc bt bc dsc c c cg1 g1 g1 g1

individual corrections to the wave packet group velocity due to each term in Eq. (24), (dot–dash line),zc btc cg1 g1

(dashed line), (solid line), and (dotted line). (c) Longitudinal structure of ^ &/^A1& averaged across thebc ds (x)c c Fg1 g1 1

center of the channel from y 5 0.42Ly to y 5 0.58Ly, showing the variations in the notional local group velocity along
the wave packets. The dotted line shows /A1 .(x)F1

←

FIG. 5. Composites of various fields taken around the packet maxima in expt A. (a) The-upper level wave activity A1; (b) 2^ 2 cg1A1&x,(x)F1

the zonal convergence of wave activity term in Eq. (24); (c) ^D1 2 S1 2 &, the remaining terms on the rhs of Eq. (24); (d) the barotropic(y)F1y

sink term ^2 &; (e) the baroclinic source term ^2S1&. In each panel solid contours denote positive values and dotted contours negative(y)F1y

values. The zero contour is omitted. Contour intervals are (a) 0.5, (b) 0.002, (c) 0.005, (d) 0.01, and (e) 0.01.

This fully nonlinear flux is then used in place of the
corrected flux derived in section 2c [Eqs. (20) and (21)],
which is formally valid only up to O(a2) in wave am-
plitude a. The main advantage of the nonlinear relation
is that it includes the effect of the advection of wave
activity by the eddy wind field. Its main disadvantage
is that unlike (20)–(21) it relies on some form of phase
averaging across individual eddy wavelengths. When a
fixed wavelength is chosen for this phase averaging, we
have discovered that it is difficult to evaluate terms in
(24) that are sensitive to the local variation in the zonal
wavenumber, such as , in a consistent method-in-(x)F1

dependent manner.6 The other composites calculated
(e.g., ^A1&, ^S1&, ^ &) gave nearly identical results be-(y)F1y

tween (14)–(15) and (20)–(21).
By analogy with tracer transport problems, mere ad-

vection of wave activity by an incompressible eddy

6 The most consistent results between Eqs. (15) and (21) were
obtained for ^ & when the compositing alone was the method of(1)F x

phase averaging, although this led to very noisy results. This suggests
that the problem may have been due to the smoothing effect of phase
averaging prior to compositing.
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FIG. 7. From expt A. (a) A snapshot of upper-level meridional velocity f 1x, with a packet maxima shifted
in longitude to the ‘‘zero’’ reference point. The contour interval is 0.1. (b) A comparison of the relative
magnitude of the composite terms in Eq. (24), averaged across the channel center from y 5 0.42Ly to y 5
0.58Ly. The dot–dash curve is the zonal convergence term 2^ 2 cg1A1&x, the thin solid curve is the(x)F1

baroclinic term ^2S1&, the dashed curve is the barotropic term ^2 &, and the dotted curve is the dissipation(y)F1y

^D1&. The thick solid curve is the total of all these terms. (c) A comparison of the corresponding residual
terms, when contributions to the time-mean zonal mean wave activity budget, and effective changes to the
wave packet group velocity, have been subtracted out, as described in section 2d.
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FIG. 8. As in Fig. 2 but for expt B. Contour intervals are (a) 0.44, (b) 1.4, (c) 0.165, and (d) 0.28. Arrow scaling is 1 length
unit to 0.125.
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FIG. 9. As in Figs. 4a and 4b but for expt B. The contour interval is 0.05.

wind field cannot lead to concentration of a maximum
in wave activity, although stirring of the wave activity
field by the eddies might be expected to contribute to
its eventual dissipation through diffusion. One might
therefore expect the major effect of including the extra
advective tendencies in Shepherd’s flux to be a correc-
tion to the wave packet group velocity. By this argu-
ment, a tendency to defocus the wave packet would be
apparent when the residual tendency defined in section
2d is calculated for the eddy advection term.

Figure 18 shows some results when the composite
method is applied with the full nonlinear flux to ex-
periment C. Figure 18a shows the composite wave ac-
tivity calculated using Eq. (31). There is a slight rear-
rangement compared with Fig. 13a, with the wave ac-
tivity more concentrated in the center of the channel.
Figure 18b shows the composite tendency due to the
(phase averaged) advective term: ^( A1)x 1 ( A1)y&e eu y1 1

minus its zonal mean component (see section 2d). As
it is largely dipolar about the packet center, one would
expect the main effect of this term to be a correction
to the group velocity. In Fig. 18c the residual of this
term is shown, averaged across the center of the channel
as before. From this curve we see that the advective
term has a tendency to defocus the packet, as speculated
above. Although we are using a different wave activity
relation and it is not possible to compare directly, it is
probably not a coincidence that the residual eddy ad-
vection tendency is close to being equal and opposite
to the total net tendency for packet focusing due to the

waves, illustrated by the heavy curve in Fig. 15c. Figure
18d shows the correction to the group velocity due to
the advective term. Unsurprisingly, this is similar in
structure and magnitude to the background flow cor-
rection at zero lag shown in Fig. 12a.

For experiment A, the eddy advection terms were
found to have the effect of advecting the wave packet
with a velocity comparable to the zero lag background
flow velocity, as in experiment C. Also, in experiment
A the residual eddy advection tendency in the center of
the channel was to focus the wave packet, with an in-
tensity close to being equal and opposite of the total net
tendency illustrated by the heavy curve in Fig. 7c. This
focusing is due to the background flow field advecting
wave activity into the center of the channel from the
outer maxima shown in Fig. 5a. [Here ^A1& is not greatly
changed by using the nonlinear wave activity density
(31) in place of the linear density (20).]

In conclusion, it seems that the main effect identified
by including the eddy advection terms in the nonlinear
flux is the resultant correction to the wave packet group
velocity, which is close in magnitude to the background
flow correction defined in section 2b. The residual effect
is the defocusing of wave activity away from the wave
maximum (or maxima in the case of experiment A) by
eddy stirring of the wave activity. The magnitude of the
eddy stirring effect is close to being equal and opposite
to the sum of the eddy flux residual tendencies identified
in section 3a, suggesting that the total net focusing bal-
ances net defocusing in the composite mean.
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FIG. 10. As in Fig. 2 but for expt C. Contour intervals are (a) 0.56, (b) 1.4, (c) 0.23, and (d) 0.28. Arrow scaling is 1 length
unit to 0.25.
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FIG. 11. (top) The latitudinal profile of the most important antisymmetric and symmetric cross-sectional EOFs of
u, for expt C. The solid line shows the upper-level structure and the dotted line the lower-level structure. The modes
describe 48.2% and 15.0% of the variance in u, respectively. (bottom) Longitude–time plots showing the evolution
of the corresponding principal components in longitude and time. Contour intervals are (left) 0.8 and (right) 0.5.
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FIG. 12. As in Fig. 4 but for expt C. (a), (b) The contour interval is 0.08.
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FIG. 13. As in Fig. 5 but for expt C. Contour intervals are (a) 1.0, and (b)–(e) 0.025.
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FIG. 14. As in Fig. 6 but for expt C.

4. Results from a multilevel primitive equation
model

a. The model and equations

The model integrates the primitive equations in spher-
ical geometry and pressure coordinates. These are given
by

du
G5 2 f k 3 u 2 = F 2 ku, (33)Hdt

dQ
5 2r(Q 2 Q ), (34)0dt

]vP
1 = · u 5 0, (35)H]p

and
G]F

5 2c Q, (36)p]z

where FG is geopotential, and =H denotes the horizontal
component of the gradient operator. Here z 5 (p/ps)k

denotes an auxiliary vertical coordinate, vP is pressure
velocity, Q denotes potential temperature, and Q0 is the
equilibrium potential temperature field, to which Q is

being relaxed on a timescale r21, which is set to 25
days. The model has mechanical damping on a timescale
of k21, nonzero and equal to 0.5 days only in the lowest
level. This represents surface friction effects. Compo-
nents of motion are u and vp, and cp is specific heat of
constant pressure. The model used has 10 equally spaced
pressure levels, with spectral discretization in the hor-
izontal of resolution T42. Here ¹8 hyperdiffusion is
included in (33) and (34) to prevent the cascade of en-
strophy to grid scales. The timescale of this diffusion
acting upon the largest wavenumber was 6 h. The
boundary conditions on the upper and lower surfaces
are taken to be vp 5 0, which is equivalent to con-
straining the vertically integrated horizontal divergence
to be zero.

Figure 19a shows the radiative equilibrium zonal
wind field, and Fig. 19b shows the time-mean zonal
mean wind that results when the model has spun up to
statistical equilibrium. Wave packets were found to be
ubiquitous throughout the model experiment. The EOFs
method identified the propagating wave packets but was
not able to isolate the background flow response as in
the two-layer model experiments above. This was due
to the excitation of long waves by the internal variability
of the system. These experiments will be discussed in
greater detail in a future paper.
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FIG. 15. (a) A composite wave packet calculated for expt C. Positive contours are solid, the zero contour is dashed,
and the negative contours are dotted. The contour interval is 0.3. (b),(c) As in Figs. 7b,c but for expt C.
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FIG. 16. As in Fig. 2 but for expt D. Contour intervals are (a) 0.48, (b) 1.3, (c) 0.36, and (d) 0.36. Arrow scaling is 1
length unit to 0.25.
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FIG. 17. As in Fig. 2 but for expt E. Contour intervals are (a) 0.04, (b) 1.5, (c) 0.005, and (d) 0.18. Arrow scaling is 1
length unit to 0.02.
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b. The composite method applied to the background
flow

An important question raised by the above two-layer
model results is what form the background zonal flow
correction forced by a wave packet takes in a more
realistic three-dimensional model. Does the flow appear
to be stabilized by a barotropic correction to the jet
upstream of the wave packet, or does the wave packet
tend to force a semibaroclinic correction near its max-
imum as in the low-dissipation two-layer model exper-
iment C? In order to answer this question the composite
method was applied to several 100-day periods of model
results. No attempt was made to address the more subtle
and complex question of whether the system can be
viewed in the same weakly nonlinear framework as the
two-layer model. Future work may include calculating
linear growth rates using an analogous eigenvalue meth-
od, but such an analysis seems likely to be complicated
by the presence of unstable shallow modes.

Figure 19c shows a cross section of the composite
background zonal wind at the the packet maxima. For
comparison, Fig. 19d shows the same picture for the
far-field flow.7 Unsurprisingly, the far-field flow is close
in structure to the time-mean flow (see Fig. 19b). The
composite flow at the packet maxima, however, shows
that the jet is considerably weaker at the location of the
packet maximum.

Figure 20 shows a plot of the composite background
zonal wind correction on the 250-mb level and the 750-
mb level. These levels can be thought to be equivalent
to the upper and lower levels in the two-layer model.
The contour plots show that the jet becomes weaker and
broader near the packet maximum, and slightly sharper
and stronger just upstream. The meridional and vertical
structure is strikingly similar to the semibaroclinic cor-
rection to the background flow in the low-dissipation
two-layer model experiment C (see Figs. 12a and 12b).
This suggests that the wave packets maintain themselves
in this model by a similar semibaroclinic mechanism.
Independent results by J. F. Scinocca (1996, personal
communication) showed that if the small-scale dissi-
pation in a similar model was much stronger, then steady
wave packets would result, as in experiment A for the
two-layer model. This suggests that the dynamics of the
wave packets in this type of experiment are controlled,
as in the two-layer model, by the degree of wave break-
ing and PV mixing that takes place.

5. Summary and conclusions

The main focus of this paper has been to investigate
the wave packet dynamics observed in a series of ex-
periments in a quasigeostrophic two-layer model. When

7 This composite is an average over those points with spacial lag
greater than 11608 or less than 21608 from the packet maxima.

the model was relaxed radiatively toward a baroclincally
unstable state with a jet profile in the upper level, two
different regimes of wave packet behavior were ob-
served. In the first regime the wave packets were argued
to be maintained by upstream stabilization, and in the
second by nonlinear self-focusing. What determined the
type of behavior was found to be the extent of PV mix-
ing that took place in the upper-level critical layers at
the sides of the jet, and at the center of the channel in
the lower level. The degree to which the PV was well
mixed controlled how well developed the upper-level
waveguide became in each experiment.

When this waveguide was not allowed to develop,
for example, when n0 was large (expt A) or when b was
large (expt E), the resultant wave packets were steady
in time. The wave packets were characterized by a local
balance between baroclinic growth and barotropic de-
cay, and nonlinear self-focusing was found not to be
important. Upstream stabilization by a barotropic cor-
rection to the flow was suggested as a mechanism for
maintaining these packets. Linear calculations revealed
that the jet with stronger meridional shear to the rear
of the wave packets in experiment A was stabilized
relative to the broader weaker jet at the packet maximum
and to its downstream side. As the flow remains unstable
in the region of the packet maximum, packet growth is
encouraged rather than inhibited by the background flow
response. This barotropic correction appears to be ex-
cited because there is a time delay t between waves
reaching their maximum amplitude at the center of the
wave packet and their eventual dissipation at the jet
edges. The waves effectively transport eastward zonal
momentum from the center of the channel to the jet
edges upstream of the packet where it is deposited. One
estimate for t might therefore be Ld/ , where Ld is the(y)cg1

meridional distance from the channel center to the re-
gion of maximum dissipation of the waves, which de-
pends upon various factors such as wave amplitude, and

is the upper-level meridional group velocity given(y)cg1

by /A1 . This would give a length scale for the packets(y)F1

of cg1t 5 cg1Ld/ . While a more detailed study would(y)cg1

be necessary to test the validity of this scaling, it does
give appropriate length scales for the packets observed
in experiments A and E.

The increase in the meridional shear of the jet toward
the rear of the wave packets was also observed in the
experiments of LH. They also noted that it is related to
increased barotropic decay of the eddies toward the rear
of the wave packet, which was evident in the wave
activity composites for experiment A. These experi-
ments also appear to have much in common with the
results of the initial value experiments of SP. They too
describe stabilization upstream of the packet maximum
by low-level mixing and the spinup of a barotropic jet.
The enhanced group velocity caused by growth at the
downstream edge of the packet in experiment A also
seems analogous to the enhanced group speed of the
leading edge modes in the experiments of SP. In initial
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FIG. 19. (a) The zonal wind field in balance with the radiative temperature profile Qs; (b) the time-mean zonal mean
zonal wind field; (c) a composite of the background zonal wind at the packet maxima; (d) a composite far-field background
zonal wind. Contour intervals are 4 m s21 and values greater than 20 m s21 are shaded. The zero contour is dashed and
the dotted contours denote negative values.

←

FIG. 18. (a) Composite upper-level wave activity ^A1& as in Fig. 13a, but from Shepherd’s relation. (b) A composite of the nonlinear
advection term ^( A1)x 1 ( A1)y& in Shepherd’s equation (minus its time-mean zonal mean component). The contour interval is 0.025. (c)e eu y1 1

A curve such as those in Fig. 15c showing the residual effect of this term at the channel center. (d) A curve such as those in Fig. 14b
showing the group velocity correction due to this term.

value problems of this type there is necessarily a strong
gradient of baroclinicity along the wave packet from the
undisturbed fluid downstream to the stabilized flow up-
stream. This gradient, which does not necessarily exist
in the forced-dissipative experiments reported here, ap-
pears to constrain upstream stabilization to be important
in initial value experiments.

One of the main results of this paper is that upstream
stabilization alone cannot account for wave packet for-
mation when the waveguide is well developed (e.g., in
expt C). This is because the wave packets act to stabilize
the background flow at the packet maximum as well as
just upstream. Nonlinear self-focusing, which was di-
agnosed in this paper as the zonal convergence of wave

activity in the upper level, was shown to have an im-
portant role. In the simple weakly nonlinear model (sys-
tem A) of E97, in which the wave packets form through
nonlinear self-focusing alone, the dynamics of the am-
plitude equation allow the wave packets to exist for a
relatively short period before they are dissipated. This
may account for the short lifetimes of the wave packets
in experiment C (ø50 model days). This regime is al-
most certainly of more relevance to the dynamics of the
midlatitudes, as the extratropical tropopause is well
known to be characterized by local regions of strong
PV gradients on isentropic surfaces, surrounded by rel-
atively well-mixed regions (e.g., Hoskins 1991).

To help understand why the background flow re-
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FIG. 20. A longitude–latitude plot of the composite background zonal wind correction along the wave packet (a) at
the 250-mb level and (b) at the 750-mb level. The contour interval is 1 m s21, positive contours are solid, and negative
contours dashed.

sponse due to the wave packets is so different in ex-
periment C compared with experiment A, it is useful to
consider the dynamical similarities between experiment
C and the weakly nonlinear model. In the weakly non-
linear model the eddies are constrained by the sidewalls,
and the baroclinic background flow response is deter-
mined by the structure of the in situ wave forcing and
the rate of restoration of the background flow in each
layer. In experiment C, the eddies are confined to the
waveguide by (partially) reflecting critical-layer re-
gions. This means that the weak in situ dissipation of
the waves becomes a more important component of the
wave forcing of the flow than the barotropic decay (see
Fig. 15c), which may account for the large baroclinic
component of the response. The reason for the inclusion
of the results from the primitive equation experiment
(section 4) was to illustrate that the background flow
response observed in experiment C could be observed
in a more realistic model.

The nonlinear self-focusing mechanism is closely re-
lated to the zonal convergence of wave activity, which

can take place on zonally varying basic flows (see, e.g.,
Swanson et al. 1997). The simplest case shown in that
paper describes the dynamics of a single contour that
separates regions of constant vorticity. This simple mod-
el can be thought to crudely represent the upper-level
waveguide of experiment C. The conservation of wave
activity W for that system was derived to be

]W ]
1 (c W ) 5 0, (37)g]T ]S

where cg 5 U(S) is the group velocity of the waves that
is equal to the basic flow speed (S is distance along the
contour). Equation (37) can be considered a greatly sim-
plified version of (24) for zonally varying flows. From
(37) it is clear that nonlinear self-focusing of wave pack-
ets is likely to be greatly enhanced by convergence of
wave activity in regions where U9(S) , 0 and dimin-
ished where U9(S) . 0.

Another important issue that these experiments raise
is related to the modeling of internal variability of the
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troposphere. Scinocca and Haynes (1997) discussed the
importance to the stratospheric circulation of the long
waves generated by nonlinearity in the troposphere. The
experiments reported here show that such internal var-
iability will be grossly distorted if the numerical model
is overdamped (or equivalently underresolved), since
the wave packets will then be steady, as in experiment
A, rather than variable, as in experiment C. This issue
will be touched on again in a future paper.
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APPENDIX

Derivation of the Group Velocity Property for the
Wave Activity Relation

In this appendix, the group velocity property [(23)]
is verified for the wave activity relation defined in sec-
tion 2c for the case of nongrowing waves in the absence
of dissipation. A new discretized two-layer model group
velocity is also introduced.

In the appropriate WKBJ limit, of a slowly varying

background flow and infinitesimal sinusoidal waves, we
can write

f A sin(kx 1 ly 2 vt)1 5 . (A1)1 2 1 2f gA sin(kx 1 ly 2 vt)2

As the waves are nongrowing and nondissipative, v 5
ck and g are real and are given by (e.g., Pedlosky 1987,
pp. 416–430)

2v U 1 U b(a 1 F )1 25 c 5 2
2 2k 2 a (a 1 2F )

1
2 2 2 4 2 4 1/26 [4b F 2 U a (4F 2 a )]s2 2a (a 1 2F )

(A2)

and

2(c 2 U )(a 1 F ) 1 b 1 FUs sg 5 . (A3)
(c 2 U )Fs

Here a2 5 k2 1 l2 and Us 5 U1 2 U2, and U2 can be
set equal to zero without loss of generality. Then, if the
relation sin2u 1 cos2u 5 1 is exploited, it can be derived
from (20) that

2 2 2 2 2A [gF 2 (a 1 F )] [F 2 g(a 1 F )]
A 1 A 5 11 2 5 64 b 1 FU b 2 FUs s

2A F
2 25 {F [gF 2 a 2 F ] 1 E [F 2 g(a 1 F )]},

4EF
(A4)

since F(b 1 FUs) 5 E(gF 2 a2 2 F), and F(b 2 FUs)
5 F(F 2 g(a2 1 F)). The constants E and F are given
by

E 5 (c 2 Us)F and F 5 c(a2 1 F) 1 b 2 FUs.
(A5)

Similarly, from (21),

2 2 2A U (gF 2 a 2 F )s(x) (x) 2 2 2 2F 1 F 5 1 2k (1 1 g ) 1 (gF 2 a 2 F ) 1 g[F 2 g(a 1 F )]1 2 5 64 b 1 FUs

2A F
2 25 {FU (gF 2 a 2 F ) 1 2k [(c 2 U )F 1 cgE ] 1 F (b 1 FU ) 1 gE (b 2 FU )}. (A6)s s s s4EF

From these it is a small step to Eq. (23),

1 5 cg(A1 1 A2),(x) (x)F F1 2

as the relation
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2 2 2]v F [U (gF 2 a ) 1 2k (c 2 U ) 1 b] 1 Eg[2ck 1 b 2 FU ]s s sc 5 5 (A7)g 2 2]k F (gF 2 a 2 F ) 1 E (F 2 g(a 1 F ))

can be obtained by implicit differentation of (A2). This
wave activity relation is not only consistent with the
idea of the overall global group velocity cg for the two-
layer model, but interestingly it also defines a separate
group velocity vector in each layer, which is exploited
in section 3. This is given by cgi 5 /Ai. This vector(x)F i

gives the group velocity of waves in one layer in the
absence of coupling with the other layer. In the exper-
iments of section 3, cg1 was found to be much closer to
the observed group velocity of the wave packets, per-
haps because lower-level mixing had the effect of re-
ducing the coupling between the layers.
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