
PHYSICAL REVIEW E 88, 012109 (2013)

Statistical mechanics of a neutral point-vortex gas at low energy
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The statistics of a neutral point-vortex gas in an arbitrary two-dimensional simply connected and bounded
container are investigated in the framework of the microcanonical ensemble, following the cumulant expansion
method of Pointin and Lundgren [Phys. Fluids 19, 1459 (1976)]. The equation for vorticity fluctuations, obtained
when a thermodynamic scaling limit is taken, is solved explicitly. The solution depends on an infinite sequence
of negative “domain inverse temperatures,” determined by the domain shape, which are obtained from solutions
of a “vorticity mode” eigenvalue problem. An explicit expression for the thermodynamic curve relating inverse
temperature and energy is found and is shown to depend on the geometry and not on the scale of the domain.
Explicit formulas are then obtained for the time variance of the projection of the vorticity field onto each
vorticity mode. The results are verified by two methods. First, for a chosen single-parameter family of domains,
direct sampling of the microcanonical ensemble is used to demonstrate the accuracy of the formula for the
thermodynamic curve. Second, direct numerical simulations are used to verify the formulas for the variance of
the projections of the vorticity field, with convincing results.
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I. INTRODUCTION

Point-vortex models (e.g., Newton [1]) are widely held to
be important and instructive, if somewhat idealized, paradigms
relevant to the study of two-dimensional fluid turbulence [2–4],
plasma physics [5], the dynamics of superfluids [6], and the
statistical mechanics of long-range interacting particles [7,8].
There is also an interesting analogy between the statistical
mechanics of the point-vortex system and models of self-
gravitating particles used to investigate the self-organization
of stellar systems [8].

A typical formulation is that of a neutral point-vortex gas,
consisting of N two-dimensional point vortices, equal numbers
of which have circulation �i = ±1/N (i = 1, . . . ,N). The
time evolution of vortex positions xi = (xi yi)T , within a
simply connected domain D ⊂ R2, is governed by Hamilton’s
equations

�iẋi = −∂H

∂yi

, �i ẏi = ∂H

∂xi

, i = 1, . . . ,N. (1)

The Hamiltonian, which is a conserved quantity of the motion,
is [9]

H (x1, . . . ,xN ) = −
N∑

i=j+1

N∑
j=1

�i�jG(xi ,xj )

− 1

2

N∑
i=1

�2
i g(xi ,xi), (2)

where G(x,x′) is the Green’s function of the first kind of
the Laplacian in D, i.e., satisfying the Dirichlet boundary
condition

G(x,x′) = 0, for x on ∂D,
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where ∂D is the boundary of D. The function g(x,x′) is given
by

g(x,x′) = G(x,x′) − 1

2π
log |x − x′|.

Note that it is the diagonal evaluation g(x,x), sometimes
known as the Robin function, that appears in (2).

The system is isolated and, consequently, subject to a
suitable ergodic hypothesis, the statistics at a prescribed energy
level (H = E) are governed by the microcanonical ensemble

p(x1, . . . ,xN ) = δ(E − H (x1, . . . ,xN ))
W (E)

, (3)

where W (E) is the density of states (akin to a microcanonical
partition function),

W (E) =
∫
DN

δ(E − H (x1, . . . ,xN ))dx1 . . . dxN . (4)

Two quantities of particular interest are the (nondimensional)
entropy S and the inverse thermodynamic temperature β given
by

S(E) = log W (E), β(E) = 1

N

dS

dE
= 1

N

W ′(E)

W (E)
. (5)

In the present work a new solution, describing the limiting
form as N → ∞ of the entropy and inverse thermodynamic
temperature curves, is derived. The new solution describes the
statistics of the neutral point-vortex gas at energies (positive
or negative) sufficiently low for a significant mean flow to be
absent.

It is in fact straightforward to make numerical estimates
of the density of states W (E) using statistical sampling
of the uniform distribution, i.e., by repeatedly generating
random distributions of vortices in D, calculating their energy,
and constructing a histogram representation of the results
[10,11]. Campbell and O’Neil [10] used results from the
theory of U -statistics to show that, for certain D (e.g., a
regular parallelogram), the density of states function converges
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FIG. 1. (Color online) Convergence of statistical estimates of the
density of states W (Ẽ/N )/N → Wt (Ẽ) as N → ∞. The calculations
are for N = 10, 20, 50, and 100 vortices, respectively (N/2 positive
and N/2 negative) for the Neumann oval shape illustrated (discussed
in more detail in Sec. IV A). The statistical estimates of W (E) are
generated using the kernel density method described in Sec. IV B. The
theoretical (red or upper) curve is the result obtained by numerical
quadrature of Eq. (41).

according to

lim
N→∞

1

N
W (Ẽ/N) = Wt (Ẽ). (6)

That similar limiting behavior also holds in a general domainD
appears likely. As a simple illustration [12], for the “Neumann
oval” shape illustrated, Fig. 1 shows histogram-based estimates
of W (Ẽ/N)/N against Ẽ. Ignoring for the present the
theoretical (red or upper) curve, convergence to the invariant
function Wt (Ẽ), referred to here as the thermodynamic density
of states, is arguably evident. It is to be emphasized that
Wt (Ẽ) is a function of the scaled thermodynamic energy
Ẽ = NE.

Evidently, if the limiting form of Wt (Ẽ), and the corre-
sponding thermodynamic inverse temperature

βt (Ẽ) = W ′
t (Ẽ)

Wt (Ẽ)
(7)

are to be determined by the methods of statistical mechan-
ics, the system (1) must be examined in the joint limit
N → ∞, Ẽ = NE (constant), referred to hereafter as the
thermodynamic scaling limit. This thermodynamic scaling
limit, however, is not the standard textbook thermodynamic
limit in which the domain area |D| is simultaneously increased
(holding the vortex density N/|D| constant), and which might
be expected to lead to a domain-independent equation of
state for the system. The textbook limit has been studied
mathematically by Fröhlich and Ruelle [13] and statistically
by Campbell and O’Neil [10]. However, examination of (1)
and (2), together with the appropriate logarithmic Green’s
functions defined in Appendix B, reveals that, under a rescaling
of the domain with scale factor α, the governing equations of
the point-vortex system are invariant up to a change in the
conserved energy H → H − (1/4πN ) log α. Consequently,
no additional physics is uncovered by including rescaling

of the domain size in the thermodynamic scaling limit, and
relevant physics can in fact be obscured by the shift in energy
[14]. It follows that, because of the long-range nature of the
interactions in the vortex gas, the influence of the domain
boundary is an inescapable feature of the system even as
N → ∞.

The thermodynamic scaling limit is to be contrasted with
the hydrodynamic (or Euler) limit for which E is held fixed
as N → ∞. The hydrodynamic limit leads to the well-known
sinh-Poisson equation, satisfied by the streamfunction ψ of
the (leading-order) mean-flow,

∇2ψ = C sinh (βψ) (8)

(here C is a constant determined by the integral constraint
on the vorticity). Equation (8) can be obtained from either
a variational principle based on a mean-field approximation
[5] or by using the cumulant expansion method outlined
in Sec. II A below [15]. In combination with the energy
constraint, solutions of the sinh-Poisson equation in D,
subject to suitable boundary conditions, can be used to
obtain a limiting thermodynamic relationship β = βh(E).
However, βh(E) clearly cannot account for the limiting form
βt (Ẽ) discussed above. Not only does the energy scale
differently with N , but it is also known [16] that βh(E)
has a negative upper bound. By contrast, by inspection of
Fig. 1, it is clear that βt (Ẽ) takes both positive and negative
values.

The thermodynamic scaling regime adopted here has been
studied previously by Pointin and Lundgren [15] (PL76
hereafter) using the cumulant expansion method described
in Sec. II A below. Under the assumption that a mean
flow is absent, PL76 derived an equation [their Eq. (35)]
describing the statistics of vorticity fluctuations. Here, it
will be demonstrated that a variant of PL76’s equation,
the vorticity fluctuation equation [Eq. (32) below], together
with appropriate boundary conditions, completely determines
the statistics of the thermodynamic scaling regime. The
main purpose of the present work is to present a solution
to the vorticity fluctuation equation and to show that the
new solution accounts for the shape of the thermodynamic
density of states Wt (Ẽ) and therefore that of the corre-
sponding thermodynamic caloric or inverse temperature curve
βt (Ẽ).

Section II presents a new treatment of PL76’s cumulant
equations in the thermodynamic scaling limit, resulting in
the derivation of the vorticity fluctuation equation (32).
PL76’s method is adapted to emphasize the different roles
played by vorticity and vortex density in the dynamics.
In Sec. III the vorticity fluctuation equation is solved and
explicit formulas are given for Wt (Ẽ) and βt (Ẽ). The new
solution leads to predictions of the amplitudes of fluctuations
of the vorticity field, as measured by the projection of the
vorticity field onto certain normal modes of the domain, to
be defined. In Sec. IV the predictions of the new solution
are tested, first by comparison with statistical reconstructions
of βt (Ẽ) and second by comparing the predicted variance
of certain spatial projections of the vorticity field with the
results of direct numerical simulations. In Sec. V conclusions
are drawn.
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II. DERIVATION OF THE VORTICITY FLUCTUATION
EQUATION

A. The cumulant expansion

Here, PL76’s derivation of the cumulant expansion for the
neutral vortex gas is revisited from a new perspective. PL76
[15] obtained a hierarchy of cumulant equations satisfied by
the marginal densities of (3), that is,

p+(x1) =
∫
DN−1

p(x1, . . . ,xN )dx2 · · · dxN,

p−(xN ) =
∫
DN−1

p(x1, . . . ,xN )dx1 · · · dxN−1, (9)

p++(x1,x2) =
∫
DN−2

p(x1, . . . ,xN )dx3 · · · dxN,

. . . ,

where the ± subscripts refer to vortices with positive (first
N/2) and negative (remaining N/2) circulations respectively.
An alternative starting point is to consider the vorticity and
vortex density distributions

ω(x) =
N∑

i=1

�iδ(x − xi), ρ(x) = 1

N

N∑
i=1

δ(x − xi) (10)

(where recall that here �i = ±1/N). By denoting the ensemble
average of a function f (x1, . . . ,xN ) by

〈f 〉 =
∫
DN

f (x1, . . . ,xN )p(x1, . . . ,xN )dx1 . . . dxN, (11)

the cumulant expansion can be developed in terms of the
ensemble means

ω1(x) = 〈ω(x)〉 = 1
2 [p+(x) − p−(x)],

(12)
ρ1(x) = 〈ρ(x)〉 = 1

2 [p+(x) + p−(x)]

and the desingularized second-order cumulants

ω2(x,x′) = 〈[ω(x) − ω1(x)][ω(x′) − ω1(x′)]〉
− (1/N)ρ1(x)δ(x − x′),

c2(x,x′) = 〈[ρ(x) − ρ1(x)][ω(x′) − ω1(x′)]〉
− (1/N)ω1(x)δ(x − x′), (13)

ρ2(x,x′) = 〈[ρ(x) − ρ1(x)][ρ(x′) − ρ1(x′)]〉
− (1/N)ρ1(x)δ(x − x′).

The unorthodox delta-function terms in (13) are “natural” in
the sense that they remove all singular terms and permit ω2,
c2, and ρ2 to be expressed in terms of p++, p+−, etc. It is
straightforward to define higher cumulants by analogy. Some
relevant expressions are given in Appendix A.

The advantage of recasting PL76’s cumulant expansion in
this fashion are twofold. First, it simplifies some of PL76’s
expressions, notably the energy equation [Eq. (16) below].
Second, it emphasizes that vorticity and vortex density scale
differently in the hydrodynamic and thermodynamic limits
introduced above, with the more fundamental terms, in the
sense that they eventually determine the thermodynamic curve,
being those related to vorticity and its fluctuations, ω1 and
ω2, respectively. It is useful at this point to introduce a
streamfunction ψ1 for the mean flow arising from the mean

vorticity distribution ω1, satisfying

ψ1(x) =
∫
D

G(x,x′)ω1(x′)dx′ or

∇2ψ1 = ω1, ψ1 = 0 on ∂D.

Here, and throughout the rest of this work unless otherwise
indicated, the Laplacian and gradient operator act on the
variable x. Similarly, one can introduce streamfunctions for
the higher order cumulants, e.g.,

ψ2(x,x′) =
∫
D

G(x,x′′)ω2(x′′,x′)dx′′

= 〈[ψ(x) − ψ1(x)][ω(x′) − ω1(x′)]〉
− 1

N
ρ1(x′)G(x,x′). (14)

In order to express the energy in terms of the cumulants
defined above, it suffices to take the ensemble average of H ,

〈H 〉 =
∫
DN

H (x1, . . . ,xN )p(x1, . . . ,xN )dx1 · · · dx1xN = E.

(15)

Substituting for H from its definition (2) and for the cumulants
defined above leads to

E = −1

2

∫
D2

G(x,x′)[ω1(x)ω1(x′) + ω2(x,x′)]dx dx′

− 1

2N

∫
D

g(x,x)ρ1(x)dx. (16)

Equation (16), which is exact, simplifies PL76’s equivalent
expression [their Eq. (12)], and more importantly it admits
simple interpretation. The first term involving ω1 is the energy
of the (ensemble) mean flow, exactly as appears in regular
Eulerian two-dimensional fluid dynamics. The second term
involving ω2 gives the energy associated with fluctuations or
eddies about this mean flow, and the final density correction
term corrects for the de-singularizing term in the definition (13)
of ω2.

PL76’s cumulant equations follow from applying the
gradient operator to the marginal densities. For example, using
∇1 to denote the gradient operation with respect to variable x1,
one has

∇1p+(x1) = 1

W (E)

∫
DN−1

∇1δ(H − E)dx2 · · · dxN

= − 1

W (E)

∫
DN−1

∇1H ∂E δ(H − E)dx2 · · · dxN

= −N (∂Ẽ + β)
∫
DN−1

∇1H (x1,..,xN )

×p(x1,..,xN )dx2 · · · dxN,

where Ẽ = NE has been substituted and use has been made
of the identity

∂Ep = W−1∂Eδ(E − H ) − βNp, (17)

obtained from differentiating (3). Expanding H in terms of
its definition (2), and then substituting x for x1 and x′ for the
variable of integration, which cannot be evaluated in each term
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in the sum, leads to

∇p+(x) = (∂Ẽ + β)

(
1

2

∫
D

∇G(x,x′)[p++(x,x′) − p+−(x,x′)]dx′ − 1

N

∫
D

∇G(x,x′)p++(x,x′)dx′ + 1

2N
∇g(x,x)p+(x)

)
.

(18)

A similar expression for ∇p− is given in Appendix A [Eq. (A1)]. By combining (18) and (A1), analogous expressions for ∇ω1

and ∇ρ1 are found to be

∇ω1(x) = (∂Ẽ + β)

(
ρ1(x)∇ψ1(x) +

∫
D

∇G(x,x′)c2(x,x′)dx′ + 1

2N
ω1(x)∇g(x,x)

)
, (19)

∇ρ1(x) = (∂Ẽ + β)

(
ω1(x)∇ψ1(x) +

∫
D

∇G(x,x′)ω2(x,x′)dx′ + 1

2N
ρ1(x)∇g(x,x)

)
. (20)

Equivalent equations for second-order and higher order cumulants are obtained by following the same procedure. Details are
given in Appendix A. The resulting second-order cumulant equations are

∇ω2(x,x′) = (∂Ẽ + β)

(
ρ1(x)∇ψ2(x,x′) + c2(x,x′)∇ψ1(x) +

∫
D

∇G(x,x′′)c3(x,x′,x′′)dx′′

+ 1

N
∇G(x,x′)[ρ2(x,x′) + ρ1(x)ρ1(x′)] + 1

2N
ω2(x,x′)∇g(x,x)

)

+ (∂Ẽω1(x′))
(

ρ1(x)∇ψ1(x) +
∫
D

∇G(x,x′′)c2(x,x′′)dx′′ + 1

2N
ω1(x)∇g(x,x)

)
, (21)

∇c2(x,x′) = (∂Ẽ + β)

(
ω1(x)∇ψ2(x,x′) + ω2(x,x′)∇ψ1(x) +

∫
D

∇G(x,x′′)ω3(x,x′,x′′)dx′′

+ 1

N
∇G(x,x′)[c2(x′,x) + ω1(x)ρ1(x′)] + 1

2N
c2(x,x′)∇g(x,x)

)

+ (∂Ẽω1(x′))
(

ω1(x)∇ψ1(x) +
∫
D

∇G(x,x′′)ω2(x,x′′)dx′′ + 1

2N
ρ1(x)∇g(x,x)

)
, (22)

∇ρ2(x,x′) = (∂Ẽ + β)

(
ω1(x)∇φ2(x′,x) + c2(x,x′)∇ψ1(x) +

∫
D

∇G(x,x′′)c3(x′,x,x′′)dx′′

+ 1

N
∇G(x,x′)[ω2(x,x′) + ω1(x)ω1(x′)] + 1

2N
ρ2(x,x′)∇g(x,x)

)

+ (∂Ẽω1(x′))
(

ω1(x)∇ψ1(x) +
∫
D

∇G(x,x′′)ω2(x,x′′)dx′′ + 1

2N
ρ1(x)∇g(x,x)

)
. (23)

The second-order cumulant expression φ2 and the desin-
gularized third-order cumulants ω3 and c3 are defined in
Appendix A,

Together, the energy equation (16), the ensemble mean
equations (19) and (20), the fluctuation equations (21)–(23),
and the analogous equations for higher order cumulants [cf.
PL76’s Eq. (17)] form an infinite hierarchy that, in principle,
exactly describes the statistics of the point-vortex system for an
arbitrary number of vortices N . Progress can evidently be made
by consideration of the limit N → ∞. PL76 realized that the
cumulant hierarchy can serve as the parent model for more than
one possible asymptotic limit. In particular, the hydrodynamic
and thermodynamic regimes can be explored separately by
fixing E to be a constant as N → ∞ (hydrodynamic), or fixing
Ẽ = NE as N → ∞ (thermodynamic). It is worth noting that
other limits, as yet unexplored, might also lead to nontrivial
results.

B. The vorticity fluctuation equation

In order to obtain the governing equation of the ther-
modynamic scaling regime, the thermodynamic limit [N →
∞, Ẽ = NE (constant)] must be taken. When taking this
limit, PL76 simultaneously truncate the infinite hierarchy of
cumulant equations. No formal justification of this truncation
is given, beyond citing the success of a similar approach for
other problems in physics.

The following conjecture would, if proved, provide formal
justification for PL76’s truncation. The conjecture is based
on the scaling and convergence properties of the ensemble-
averaged quantities defined above, identified in the statistical
sampling calculations described below, as the number of
vortices N is varied. It will be termed the “asymptotic
hierarchy conjecture” and, simply stated, is that the cumulant
equations admit asymptotic solutions in the small parameter
ε = N−1/2.
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Here, the existence of an asymptotic hierarchy satisfying
the cumulant equations in the thermodynamic limit will be
assumed. However, if preferred by the reader, this assump-
tion can be replaced by truncating the cumulant equations
following PL76, the results of the two procedures being
essentially equivalent. The relevant asymptotic hierarchy in
the thermodynamic scaling limit relies upon the assumption
of no mean flow (ω1 = 0). Symmetry of the microcanonical
ensemble then dictates that odd vorticity moments are zero
(e.g., ω3 = 0) and consequently cross-correlations involving
odd powers of the vorticity are also zero [e.g., c2 = 0; see
Eq. (22)]. It is natural then to look for asymptotic series
solutions for the remaining terms of the form

ρ1(x) = ρ0 + ε2ρ
(1)
1 + · · · ,

ω2(x,x′) = ε2
(
ω

(0)
2 + ε2ω

(1)
2 + · · · ),

ρ2(x,x′) = ε4
(
ρ

(0)
2 + ε2ρ

(1)
2 + . . .

)
, etc. (24)

Hereρ0 = |D|−1, the inverse of the domain area, is the leading
term in the vortex density expansion in the low-energy
thermodynamic scaling regime. Note that an exactly uniform
distribution of vortices corresponds to ρ1(x) = ρ0.

Inserting the expansions (24) into (21) and equating at the
leading power of ε2 leads to the following equation satisfied
by the leading-order vorticity fluctuations:

∇ω
(0)
2 (x,x′) = ρ0(∂Ẽ + β)

(∇ψ
(0)
2 (x,x′) + ρ0∇G(x,x′)

)
,

(25)

where ω
(0)
2 is symmetric in its arguments and is subject to an

integral constraint∫
D

ω
(0)
2 (x,x′)dx = −ρ0 (26)

obtained by inserting the expansion (24) into the defini-
tion (13). Similarly, the leading order correction to the mean
vortex density is found to be given by

∇ρ
(1)
1 (x) = (∂Ẽ + β)

∫
D

∇G(x,x′)ω(0)
2 (x,x′)dx′

+ 1

2
βρ0∇g(x,x). (27)

The energy equation (16) is at leading order given by

Ẽ = −1

2

∫
D

ψ
(0)
2 (x,x)dx − g0

2
,

(28)
where g0 = ρ0

∫
D

g(x,x)dx.

Upon taking the divergence of (25), the resulting equation,
together with (27) and (28), can be seen to be related to
equations appearing in PL76 [15]. [Specifically, the divergence
of Eq. (25) and Eq. (28) are identical to Eqs. (35) and (37)
of PL76, upon identifying ω

(0)
2 with PL76’s F (1,2) − 1, and

rescaling β → 8πβ, and (27) is analogous to PL76’s Eq. (36).]
PL76 used equation (25) both to obtain an exact solution

in the special situation of a doubly-periodic domain and to
derive an equation for the thermodynamic curve in the limit
β → ∞, corresponding to large negative energies. Taking the

divergence of (25) results in

∇2ω
(0)
2 = ρ0(∂Ẽ + β)ω(0)

2 + βρ0δ(x − x′). (29)

In the doubly-periodic domain, the issue of boundary condi-
tions does not arise, and the periodic basis of sinusoidal modes
allows the integral constraint (26) to be satisfied automatically.
PL76 consequently were able to use (29) directly to obtain a
solution [their Eq. (41)] that can be regarded as a particular case
of the general solution given below. In fact, their solution had
been previously found using the random-phase approximation
by Edwards and Taylor [17]. In the limit β → ∞, PL76 argue
that |∂Ẽ| 	 β and that correlations become short range so that
boundary conditions can be replaced with decay conditions at
large radius. Equation (29) then has a solution involving the
modified Bessel function K0(·),

ω
(0)
2 (x,x′) = −βρ2

0

2π
K0((βρ0)1/2|x − x′|). (30)

Equation (30) satisfies the integral constraint (26), and, after
insertion in (28) and careful expansion of the resulting integral,
leads to the thermodynamic relation

β(Ẽ) = 1

ρ0
exp (−8πẼ + 2 log 2 − 2γ ), (31)

where γ ≈ 0.57722 is the Euler gamma constant. Edwards and
Taylor [17] had also previously obtained (31), starting from
the random-phase approximation. The Ẽ → −∞ asymptotic
result (31) provides a useful check on the exact solution to be
obtained below.

To obtain a general solution to the system (25)–(28) it
turns out to be necessary to integrate (25) rather than take
its divergence as above. By using the integral constraint (26)
to obtain the arbitrary function of integration, (25) can be
expressed as an integro-differential equation for ω

(0)
2 :

ω
(0)
2 = −ρ2

0 + ρ0(∂Ẽ + β)Lω
(0)
2 + βρ2

0Lδ(x − x′), (32)

where the linear integral operator L acts on a function φ(x)
according to

Lφ(x) ≡
∫
D

K(x,x̄) φ(x̄) d x̄,

where K(x,x̄) = G(x,x̄) − G0(x) − G0(x̄), (33)

G0(x) = ρ0

∫
D

G(x,x̄)d x̄.

Equation (32) is the key equation of the thermodynamic
scaling regime, analogous to the sinh-Poisson equation in the
hydrodynamic regime. Henceforth (32) will be referred to
as the vorticity fluctuation equation and its solution will be
described next.

III. SOLUTION OF THE VORTICITY
FLUCTUATION EQUATION

The key to solving (32) is the identification of a natural
basis for the vorticity fluctuation field ω

(0)
2 . It follows from

the symmetry of the kernel K(x,x̄), and the close relationship
between K and the well-studied Dirichlet Laplacian kernel
G(x,x̄), that the compact operator L is self-adjoint. The
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Hilbert-Schmidt theorem [18] then states that the eigenvalue
problem

L� = 1

βρ0
�, j = 0,1,2, . . . (34)

generates a set of real eigenvalues {βj } with corresponding
eigenfunctions {�j (x)} that form a complete orthonormal ba-
sis for square-integrable functions defined on D. Importantly,
�0(x) = constant is the first eigenfunction. It follows that the
remaining eigenfunctions, referred to hereafter as the vorticity
modes, satisfy∫

D
�j (x)dx = 0, j = 1,2,3 . . . (35)

by orthogonality. The corresponding eigenvalues {βj }, for j �
1, will be referred to as the domain inverse temperatures (DITs
hereafter). The DITs are all negative, and by construction they
depend only on the geometry of the domain; i.e., they are
invariant under a rescaling of the domain.

Evidently, it makes sense to seek solutions of (32) in the
form of an expansion in the basis functions {�k},

ω
(0)
2 (x,x′) = −ρ2

0 + ρ0

∞∑
j=1

∞∑
k=1

ajk(Ẽ)�j (x)�k(x′). (36)

The ansatz (36) automatically satisfies the integral con-
straint (26) because the first integral (35) of each vorticity mode
vanishes. Inserting (36) into (32) and equating coefficients
leads to

βjajk = (∂Ẽ + β)ajk + βδjk(j,k � 1). (37)

Solutions of the homogeneous equation for ajk are unphys-
ical, i.e., unbounded as Ẽ → −∞; hence only the diagonal
elements are nonzero. It follows that the solution is consistent
with the x ↔ x′ symmetry implicit in the definition (13).

Evidently the inverse temperature β in (37) must be re-
garded as a function of the scaled energy in the thermodynamic
scaling limit, i.e., β = βt (Ẽ) in (37). The diagonal terms in
equation (37) can be obtained in terms of the corresponding
entropy

St (Ẽ) =
∫ Ẽ

βt (Ê)dÊ

by direct integration:

ajj (Ẽ) = −1 − βj exp (−[St (Ẽ) − βj Ẽ])

×
∫ Ẽ

−∞
exp (St (Ê) − βj Ê)dÊ. (38)

Inserting (36) into the energy equation (28) results in

−1

2

∞∑
j=1

ajj

βj

= Ẽ − Ẽ0, where Ẽ0 = G00 − g0

2
and

G00 = ρ2
0

∫
D2

G(x,x̄)dx d x̄. (39)

Inserting (37) into the sum in (39), and substituting Wt =
exp (St ), results in the linear integral equation

(Ẽ − Ẽ0)Wt (Ẽ)

= 1

2

∞∑
j=1

(
Wt (Ẽ)

βj

+
∫ Ẽ

−∞
Wt (Ê) exp [βj (Ẽ − Ê)]dÊ

)
.

(40)

Equation (40) can be solved by taking its Fourier transform.
The result is

Wt (Ẽ) = W0√
2π

∫ ∞

−∞
f1(k; βj ) exp[i(Ẽ − Ẽ0)k − if2(k; βj )]dk,

(41)

where f1 and f2 are real-valued functions given by

f1(k; βj ) =
∞∏

j=1

(
1 + k2

β2
j

)−1/4

, (42)

f2(k; βj ) = 1

2

∞∑
j=1

[
k

βj

− tan−1

(
k

βj

)]
, (43)

and W0 is a normalizing constant. The corresponding inverse
temperature can be written, in a form convenient for numerical
quadrature, as the ratio of the two real integrals:

βt (Ẽ) = −

∫ ∞

0
kf1(k; βj ) sin [k(Ẽ − Ẽ0) − f2(k; βj )]dk

∫ ∞

0
f1(k; βj ) cos [k(Ẽ − Ẽ0) − f2(k; βj )]dk

.

(44)

It is evident from (44) that the limiting thermodynamic curve
is completely determined, up to a shift in the ordinate due to
a change [19] in Ẽ0, by the distribution of DITs {βj }. The
amplitude function f1(k) decays exponentially as k → ∞,
rendering numerical quadrature of (44) straightforward. The
domain-dependent constants Ẽ0 are obtained by Clenshaw-
Curtis quadrature [20] and the values obtained are Ẽ0 =
−0.09979 for the q = 0.3 oval and Ẽ0 = −0.1114 for the
q = 0.8 oval (four significant figures in each case).

Inserting the expression (41) for Wt (Ẽ) into (38), and eval-
uating the Ê-integral results, allows the diagonal coefficients
ajj to be evaluated:

ajj (Ẽ) = −

∫ ∞

0
f1(k)(k2 + β2

j )−1{k2 cos [k(Ẽ − Ẽ0) − f2(k)] + βjk sin [k(Ẽ − Ẽ0) − f2(k)]}dk

∫ ∞

0
f1(k) cos [k(Ẽ − Ẽ0) − f2(k)]dk

. (45)

The coefficients {ajj } determine the partitioning of the energy into fluctuations associated with each vorticity mode. It will be
shown below that they have a simple interpretation in terms of the variance of the projection of the vorticity field ω(x) onto the
corresponding vorticity mode �j (x). Changes in energy partitioning among the vorticity modes, as Ẽ increases, will be seen to
give insight into the nature of the transition between states without and with a mean flow.
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IV. VERIFICATION OF THE VORTICITY
FLUCTUATION SOLUTION

A. Determination of domain inverse temperatures

In order to compare the predictions of the formulas (44)
and (45) with the results of the direct statistical and dynamical
calculations described below, it is first necessary to find the
DITs {βj } for the domain D under investigation. In general
the DITs must be found numerically. One exception is for D a
circle, for which all DITs can be expressed in terms of Bessel
function zeros. However, the microcanonical ensemble (3) is
not correct for the circle due to the additional constraint of
conservation of angular momentum [21].

Evidently, the new formulas (44) and (45) should be tested
for domains for which (3) is the correct ensemble. A convenient
choice is a single-parameter (0 � q < 1) family [22] of equal-
area “Neumann ovals.” As q is varied the domain D changes
smoothly between a circle (q = 0) and two touching circles
(q = 1). Two intermediate cases are illustrated in Fig. 2, with
(a) q = 0.3 and (b) q = 0.8. The Neumann ovals are conformal
to the unit circle with map given by

z = α(q)Z

(1 − q2Z2)
with α(q) = (1 − q4)

(1 + q4)1/2
, (46)
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FIG. 2. (a) The q = 0.3 Neumann oval domain (top) and q = 0.8
(bottom) domain, and the distributions of DITs within the range
βj ∈ [0, − 200] for each. (b) The statistical estimates of β(Ẽ) (broken
curves) versus theoretical predictions [solid curves, Eq. (44)]. Gray
curves show results for the q = 0.3 Neumann oval domain and black
curves the q = 0.8 domain. The dashed curve shows the Edwards-
Taylor estimate (see text). The first DIT (β1) is also marked for the
two domains.

where z ∈ C is identified with x ∈ R2 in the Neumann oval
domain, and Z ∈ C with the circle domain. The advantage of
using a conformal map is that the Green’s function G(x,x′)
appearing in the Hamiltonian (2) is easily found. The relevant
formulas are given in Appendix B.

There are numerous numerical methods that might be
adapted to solve the eigenvalue problem (34) and obtain the
DITs {βj }. A convenient choice, which exploits the conformal
map (46), is to adapt the Fourier-Chebyshev spectral method
(e.g., Trefethen [20]). Details of how the spectral methods are
adapted to solve (34) in a general conformal domain D are
given in Appendix C.

The distributions of DITs within the range 0 > βj > −200,
for the two domains illustrated, (a) q = 0.3, (b) q = 0.8, is
shown in Fig. 2 (lines with ticks). The significant difference
between the two domains is that the first three DITs for q = 0.3
are tightly clustered (β1 = −42.61, β2 = −46.15, and β3 =
−51.02), whereas for q = 0.8 the first DIT is well separated
from the subsequent ones (β1 = −36.37, β2 = −70.15, and
β3 = −91.12). This qualitative difference between the two
domains will be shown to be significant in determining the
partitioning of energy among the vorticity modes.

B. Verification by statistical sampling of the
microcanonical ensemble

Statistical sampling of the uniform distribution [10,11] has
previously been used to generate (unnormalized) histogram
representations of the density of states W (E). The results
of both Campbell and O’Neil [10] and Fig. 1 suggest that
convergence of W (Ẽ/N)/N to an invariant function Wt (Ẽ)
is evident for as few as N = 100 vortices. In Sec. III the
theoretical form for Wt (Ẽ) was shown to be (41). Equation (41)
has been evaluated by numerical quadrature (see below) and
plotted on Fig. 1 (red or upper curve). Comparison with the
finite-N statistical results reveals that (41) is indeed a plausible
limiting curve for the particular domain in question.

Our main focus here, however, will be on the more stringent
test provided by convergence toward βt (Ẽ) = W ′

t (Ẽ)/Wt (Ẽ),
given by (44). The results of Fig. 1 suggest that numerical
verification of (44) is computationally feasible using only N =
100 vortices. A robust verification of (44) requires comparison
between domains with significantly different distributions of
DITs {βj }. Two suitable domains are the Neumann ovals with
(a) q = 0.3 and (b) q = 0.8 introduced above.

To estimate βt (Ẽ) = W ′
t (Ẽ)/Wt (Ẽ) for each domain, the

uniform distribution is sampled by generating 107 random
locations within the ovals. Repeatedly, a random selection of
N = 100 of these locations is made for the vortices (N/2
positive, N/2 negative), and each time a sampled energy
Ẽi = NH is calculated for the resulting distribution of vortices
using (2). The distributions Wt (Ẽ) and W ′

t (Ẽ) are then
generated from M = 107–108 sampled values of Ẽi using the
kernel density estimation method [23], with Gaussian kernels.
Specifically, for samples {Ẽi} (i = 1, . . . ,M), the estimates are

Wt (Ẽ) = 1

M

M∑
i=1

Kd

(
Ẽ − Ẽi

σ

)
, (47)

W ′
t (Ẽ) = − 1

σM

M∑
i=1

K ′
d

(
Ẽ − Ẽi

σ

)
, (48)
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where Kd (x) = exp(−x2/2) is the Gaussian kernel. The
kernel width σ should be chosen to minimize the expected
error due to bias (σ large) and variance (σ small). Although
there is a large body of theory [23] describing how best to
choose σ to minimize errors in Wt , in the construction above,
we are not aware of a corresponding theory to minimize error
in βt , the main quantity of interest here. In the absence of such
a theory, an empirically chosen kernel width of σ = 4 × 10−3

is chosen. Comparison with reconstructions using different
kernel sizes σ served to verify that the statistical error in the
reconstructed βt is small compared to the convergence error
(due to finite N ), for the range of Ẽ values for which results
are presented (e.g., for the Fig. 1 results a smaller kernel
size σ = 5 × 10−4 was used, with no significant difference
between the reconstructions). The range of values of Ẽ

(here approximately −0.2 � Ẽ � 0.1) for which statistical
convergence is possible is limited by the central region in
which most samples {Ẽi} are located. An alternative method
for sampling outside of the central region has been used [21];
however, it is unclear whether there is an associated bias, and
there is no obvious means of estimating its magnitude.

Figure 2 shows the resulting comparison between the
theoretical predictions [Eq. (44), solid curves] and statistical
estimates [from Eqs. (47) and (48), broken curves] for βt (Ẽ).
There is good agreement for both domains, except at relatively
low energies, where the theoretical prediction is higher.
Statistical calculations with lower N (not shown) suggest that
the remaining discrepancy with (44) is partially a convergence
(finite-N ) issue, although bias in the statistical estimate due to
the finite kernel size begins to make a small contribution to the
error at the edges of the plotted range. Also plotted in Fig. 2 is
the Edwards-Taylor [17] (Ẽ → −∞) estimate (31), which is
seen to be inaccurate throughout the range in which statistical
convergence is possible.

C. Verification by direct numerical simulation

The theory of Sec. III is relevant to the dynamical
system (1) only under the ergodic hypothesis, i.e., that long-
time averages and ensemble averages (11) are equivalent.
However, numerical calculations [24] have cast doubt on the
validity of the ergodic hypothesis, at least for relatively low
numbers of vortices (N = 6). Consequently, it is prudent
to test the predictions of Sec. III using time averages of
quantities obtained from dynamical integrations of (1), in
addition to the verification against the statistical sampling of
the microcanonical ensemble described above.

The equations of motion (1), with N = 100 vortices, are
integrated numerically by first transforming into the circular
image domain [1]. An adaptive time-stepping algorithm, with
an advancement criterion based upon convergence of final
vortex positions over a fixed time interval, is used to update
vortex positions. Further details of the integration method and
numerical parameters used are given elsewhere [25]. For each
of the two Neumann oval domains, integrations are performed
for 11 different energy levels, evenly spaced between Ẽ =
−0.15 and Ẽ = 0.1. Initial conditions are generated randomly
using the algorithm described in Sec. IV B. The adaptive time-
stepping algorithm ensures that the Hamiltonian is conserved

during these simulations up to an accuracy of six significant
figures.

For each energy level, eight integrations of 1000N time
units are performed. The reason that more than one integration
per energy level is necessary is that the time-averaged statistics
are found to converge only very slowly. Time averages
of longer integrations (10 000N time units) are not found
to be entirely independent of initial conditions, indicating
that ergodicity is not attained on time scales that can be
easily accessed by numerical simulations, although the system
(with N = 100) may be ergodic on longer time scales. As
a compromise between strict time averaging and ensemble
averaging, therefore, the results presented below will be the
mean and standard deviation of the small ensemble of time
averages obtained from the eight dynamical runs at each energy
level.

In order to compare the results of the dynamical runs
with the theory and statistical calculations, it is necessary to
look beyond the thermodynamic inverse temperature βt (Ẽ),
because βt (Ẽ) cannot easily be estimated from dynamical
runs at fixed Ẽ. Instead, the quantities of interest will be
the projections of the vorticity fluctuation function ω2 onto
the vorticity modes �j (j = 1,2,3 . . . ). By defining the
projections

Ajk =
∫
D2

ω2(x,x′)�j (x)�k(x′)dx dx′, (49)

from the asymptotics introduced above it follows that

lim
N→∞

NAjk = ρ0

{
ajj , j = k,

0, j �= k,

with the theoretical result for the ajj given by (45).
To calculate the diagonal projection coefficients {Ajj }

associated with a particular vorticity mode �j , note that
inserting the definition (13) into (49) leads to

Ajj = 〈�2
j 〉 − 〈�j 〉2 − (1/N)〈Rj 〉. (50)

Here angle brackets can be interpreted as either ensemble
averages (for the statistical verification) or time averages (for
the dynamical verification), and

�j =
∫
D

ω(x)�j (x)dx =
N∑

i=1

�i�j (xi), (51)

Rj =
∫
D

ρ(x)�j (x)2dx = 1

N

N∑
i=1

�j (xi)
2 (52)

are the projection of the vorticity field ω onto the j th vorticity
mode and the projection of the vortex density ρ onto the square
of the j th vorticity mode, respectively. In the limit N → ∞,
〈ρ〉 = ρ1 = ρ0 + O(1/N) and therefore Rj → ρ0 at leading
order. It follows that, as N → ∞, the variance of �j satisfies

lim
N→∞

Var(�j ) = ρ0

N
(ajj + 1), (53)

In other words, the coefficients {ajj } are linearly related to the
variance of the vorticity field with respect to each vorticity
mode, providing a simple interpretation of their meaning.
Further meaning is provided by the energy equation in the
form (39), from which it is clear that the energy trapped in each
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mode is given by −ajj /2βj , a quantity that can be positive or
negative.

Based on the relationship (53), a comparison between the
theoretical predictions for and statistical and dynamical calcu-
lations of the variance associated with the first four vorticity
modes for the q = 0.3 Neumann oval (illustrated) is shown
in Fig. 3. The left panels show contour plots of the vorticity
modes �j (x) for j = 1, 2, 3, and 4, plotted underneath the
corresponding DITs (βj ). The right panels compare theoreti-
cal, statistical, and dynamical Var (�j ) (scaled by ρ0/N ). The
theoretical predictions ajj (Ẽ) + 1 (solid curves) from (45)
are plotted against statistical estimates of the ensemble average
Var(�j ) (broken curves). The gray points show Var(�j ) in the
dynamical runs, interpreted as variance in time, and averaged
over the set of eight runs performed at each energy level Ẽ.
(Note that the theoretical long-time mean 〈�j 〉 = 0 is used as
the basis of the dynamical run calculations.) The error bars on
the gray points show the standard deviation among the eight
runs. Good agreement is evident among the theoretical curves,
statistical data, and dynamical runs. Finally, the dotted lines,
plotted at Var(�j )×N/ρ0 = 1, show the level at which the
fluctuations associated with the vorticity mode in question are
neutral with respect to the system’s energy.

Figure 4 shows the corresponding picture for the q = 0.8
Neumann oval. Good agreement between theory and data is
again evident. Some interesting differences between the two
domains are apparent in the energy partitioning. In the q = 0.3
domain the energy contained in the first three vorticity modes
(proportional to ajj /βj ), each of which have tightly clustered
DITs, is seen to increase near linearly with the total energy.
The fourth mode, by contrast, saturates at low energy. In the
q = 0.8 domain the situation is quite different. There, as total
energy Ẽ increases, all vorticity modes saturate at low energy
except for the first, which increases linearly at the same rate as
Ẽ. The only possible reason for the different behavior between
the domains is the different distributions of the DITs, which in
the q = 0.8 domain are well separated, unlike in the q = 0.3
case.

Figure 5 shows the time evolution of the vorticity projec-
tions �j (t), for the first four vorticity modes (j = 1,2,3,4),
during four different numerical simulations. The upper panels
contrast the q = 0.3 and q = 0.8 Neumann ovals at negative
energies (Ẽ = −0.1). The striking feature of these time series,
which cannot be anticipated from the analysis above, is the
comparatively long time scales associated with �1(t) in the
q = 0.8 oval. Otherwise, the variance of �j among the four
modes is comparable for each domain, as could be anticipated
at this energy (Ẽ = −0.1) from the predictions of Figs. 3 and 4
[since Var(�j ) ∼ ajj + 1].

The lower panels show the same time series for simulations
at a positive value of the energy (Ẽ = 0.05). It is evident
immediately that the variance in �j , and hence the energy,
associated with each mode is greatly increased. In the q =
0.3 domain the first three modes have comparable variances,
whereas for the q = 0.8 the first mode clearly contains most
of the energy. Again, this is consistent with Figs. 3 and 4.
Not predicted by Figs, 3 and 4, however, are the changes
in the time scales associated with each mode. In the q = 0.3
domain, the first three modes clearly exhibit variability on time
scales ∼ 50N , whereas for the fourth mode the persistence
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FIG. 3. Left panels: Contour plots of the first four vorticity
modes �j (x) (j = 1,2,3,4) and the corresponding DITs βj for the
q = 0.3 Neumann oval domain. Positive contours are black and
negative contours are gray. Right panels: The theoretical (N → ∞)
amplitude ajj (Ẽ) of the projection of the vorticity fluctuations onto
the corresponding vorticity mode �j (solid curves), together with
the statistical estimate of the microcanonical ensemble mean of the
corresponding projection NAjj/ρ0 for N = 100 (broken curves), and
the same quantity for the dynamical runs (gray points with error bars).
For the dynamical runs an average over the time means of 8 runs of
1000N time units is taken, with the error bars showing the standard
deviation in those time means.

time scale is an order of magnitude shorter. In the q = 0.8
domain, modes 2, 3, and 4 exhibit relatively short time scales,
not much longer than the eddy turnover time. By contrast
the first mode projection �1(t) changes sign only once in the
T = 1000N simulation, indicating that the system is prone to
oscillations between metastable states with large positive or
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FIG. 4. Same as Fig. 3 but for the q = 0.8 Neumann oval domain.

negative �1(t). It is interesting to note the behavior during
the period t = 400N to 550N during which the sign of �1(t)
changes. The variance of �2, �3, and �4 is significantly greater
during this period, as the energy stored in mode 1 is temporarily
shared among the remaining modes.

Integrations in the q = 0.8 domain at higher energies
(not shown) show that the system often remains in one
such metastable state, diagnosed by �1(t) being strongly
positive or negative, for the duration of the integration. As
energy increases the time scales for such oscillations evidently
become progressively longer. This is consistent with the
idea that, as energy increases, a symmetry-breaking Bose
condensation [26] takes place; i.e., a mean flow becomes
established because one metastable state is selected at random
by the system, which then persists indefinitely. The mean
flow situation is best described by the hydrodynamic scaling
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FIG. 5. Time series of the projections �j (t) of the vorticity field
ω(x) onto the vorticity modes �j (x) for the first four vorticity modes
j = 1,2,3,4 (see left panels of Figs. 3 and 4). Left panels show results
for the Neumann oval with q = 0.3 and right panels show results for
q = 0.8. Upper panels show results at negative energy Ẽ = −0.1 and
lower panels show those at positive energy Ẽ = +0.05. In each panel
�1(t) to �4(t) are plotted as solid curves with offsets of +0.6, +0.2,
−0.2, and −0.6, respectively. Dotted lines show the zero line for each
curve.

and the mean flow itself by the solution to the sinh-Poisson
equation.

The picture emerging from the results above is that a
significant qualitative difference can be expected between
the dynamics of domains with their first few DITs closely
clustered (e.g., the q = 0.3 oval) and those with a significant
separation between their first and second DITs (e.g., the
q = 0.8 oval). In the former domains, as total energy increases,
the energy in the system is (largely) partitioned among the
modes associated with the clustered DITs, and a persistent,
symmetry-breaking mean flow is slow to emerge. In the latter
domains, by contrast, energy becomes concentrated in the first
vorticity mode, and as energy increases the system spends
progressively longer times in metastable states. For a system
with a fixed number of vortices N , the value of the energy
above which a persistent mean flow is established will be
substantially higher for domains with clustered DITs. The
present results therefore provide a simple qualitative guide to
the likely range of applicability of the sinh-Poisson equation
in different domains.

012109-10



STATISTICAL MECHANICS OF A NEUTRAL POINT- . . . PHYSICAL REVIEW E 88, 012109 (2013)

V. CONCLUSIONS

Equations (41) and (44) are analytical expressions for
the limiting form, as the number of vortices N → ∞, of
the thermodynamic density of states Wt (Ẽ) and inverse
temperature βt (Ẽ) of a neutral point-vortex gas. Both formulas
are functions of Ẽ = NE, the thermodynamic (scaled) energy,
and, consequently, for a gas with finite N , lead to accurate
predictions for states with low (positive or negative) energies
in which the distribution of vortices is close to uniform.
The statistical results of Fig. 1, confirming the results of
earlier work [10], illustrate that specifying that thermodynamic
energy remains constant as N → ∞ corresponds to the
“central limit” for the vortex gas, whereas the more widely
studied hydrodynamic or sinh-Poisson limit (N → ∞, E =
constant) can be viewed as a large-deviation result for positive
E. Interestingly, there does not appear to be a corresponding
theory for negative E.

A notable feature of (41) and (44) is that the structure of
both curves depends only on the domain inverse temperatures
calculated from the eigenvalue problem (34). The DITs
themselves depend only on the shape, and not on the size,
of the domain D. The domain size independence is expected
because the governing equations (1) are themselves invariant
under a rescaling of D. It follows that the influence of the
domain on the physics of the system cannot be scaled away by
taking a “true” thermodynamic limit (|D| → ∞ as N → ∞)
and that no domain-independent equation of state exists for the
vortex gas. The long-range interactions in the vortex system
have no associated length scale that limits the influence of
the boundary (or equivalently the associated “image” vortices,
which enter at leading order in the dynamics). Because the
influence of the domain remains central to the dynamics, an
interesting problem in spectral theory concerns how exactly the
geometry ofD controls the distribution of DITs and thus βt (Ẽ).
It is worth emphasizing that the doubly-periodic geometry,
so widely used in the study of two-dimensional turbulence,
is a particular domain D with its own (highly degenerate)
distribution of DITs.

A relatively unexplored aspect of considerable interest is
the transition, in a gas with finite N , between behavior best
described by the thermodynamic scaling and the vorticity
fluctuation equation (32) and behavior described by the
hydrodynamic scaling and the sinh-Poisson equation (8)
[5]. The latter regime is characterized by the spontaneous,
symmetry-breaking emergence of a mean circulation in the
domain, a phenomenon which has been described in the

two-dimensional turbulence literature [26] as Bose conden-
sation. The transition between the two behaviors involves,
as is typical of phase transitions, a rapid increase in the
share of the energy and decorrelation time scale associated
with fluctuations of a particular type or structure. The results
of Figs. 3–5 show clearly that the relevant structure for the
vortex gas is that of the leading vorticity mode. An intriguing
qualitative result, evident from examination of (45), is that the
extent to which energy becomes trapped in this structure, as Ẽ

increases, is sensitive to the separation between the first few
DITs. The question of whether the apparent significance of the
leading vorticity mode can be reconciled with sinh-Poisson
results will be studied in detail in future work. As noted
by PL76 [15] it is a question that must involve asymptotic
matching between the thermodynamic scaling results as Ẽ →
∞ and hydrodynamic scaling results as E → 0. Progress in
the latter limit has been made by Chavanis and Sommeria
[27], who investigated the Miller-Robert-Sommeria [28–30]
finite-vorticity extension of the point-vortex statistical theory,
in a low-energy regime that they referred to as the “strong
mixing limit.” The statistical equilibria in this limit were
found to be determined by an eigenvalue problem that, after a
transformation, can be shown to be equivalent to (34) above.

The discovery of the natural basis of vorticity modes raises
the possibility of a more complete statistical description of the
neutral point-vortex gas. In particular, temporal correlations
can be investigated using recently derived kinetic equations
(see, e.g., Chavanis [31]). It is also noteworthy that the
methodology described here also allows the statistics of a range
of related systems, e.g., quasi-geostrophic vorticity dynamics
[32], to be solved in arbitrary bounded domains.
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APPENDIX A: DERIVATION OF THE SECOND-ORDER
CUMULANT EQUATIONS

In this Appendix the missing detail in the derivation of (19)
and (20) is supplied and a full account of the derivation of the
second-order cumulant equations (21)–(23) is given.

The missing detail needed to obtain (19) and (20) is the
equation for ∇p−, which is straightforward to obtain following
the method used for (18):

∇p−(x) = (∂Ẽ + β)

(
1

2

∫
D

∇G(x,x′)[p−−(x,x′) − p−+(x,x′)]dx′ − 1

N

∫
D

∇G(x,x′)p−−(x,x′)dx′ + 1

2N
∇g(x,x)p−(x)

)
.

(A1)

Equation (19) follows from taking 1/2 × [(18)−(A1)], and (20) follows from taking 1/2 × [(18) + (A1)].
Careful application of the same procedure to the marginal density p++ leads to

∇p++(x,x′) = (∂Ẽ + β)

(
1

2

∫
D

∇G(x,x′′)[p+++(x,x′,x′′) − p++−(x,x′,x′′)]dx′′

− 2

N

∫
D

∇G(x,x′′)p+++(x,x′,x′′)dx′′ + 1

N
∇G(x,x′)p++(x,x′) + 1

2N
∇g(x,x)p++(x,x′)

)
. (A2)
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Similarly,

∇p+−(x,x′) = (∂Ẽ + β)

(
1

2

∫
D

∇G(x,x′′)[p+−+(x,x′,x′′) − p+−−(x,x′,x′′)]dx′′ − 1

N

∫
D

∇G(x,x′′)[p+−+(x,x′,x′′)

−p+−−(x,x′,x′′)]dx′′ − 1

N
∇G(x,x′)p+−(x,x′) + 1

2N
∇g(x,x)p+−(x,x′)

)
, (A3)

∇p−+(x,x′) = (∂Ẽ + β)

(
−1

2

∫
D

∇G(x,x′′)[p−++(x,x′,x′′) − p−+−(x,x′,x′′)]dx′′ + 1

N

∫
D

∇G(x,x′′)[p−++(x,x′,x′′)

−p−+−(x,x′,x′′)]dx′′ − 1

N
∇G(x,x′)p−+(x,x′) + 1

2N
∇g(x,x)p−+(x,x′)

)
, (A4)

∇p−−(x,x′) = (∂Ẽ + β)

(
1

2

∫
D

∇G(x,x′′)[p−−−(x,x′,x′′) − p−−+(x,x′,x′′)]dx′′

− 2

N

∫
D

∇G(x,x′′)p−−−(x,x′,x′′)dx′′ + 1

N
∇G(x,x′)p−−(x,x′) + 1

2N
∇g(x,x)p−−(x,x′)

)
. (A5)

To obtain the equation for ∇ω2 take

1

4
([(A2) − p+(x′)(18)] − [(A3) − p−(x′)(18)] − [(A4) − p+(x′)(A1)] + [(A5) − p−(x′)(A1)]) − 1

2N
[(A2) + (A5)]

and for ∇c2

1

4
([(A2) − p+(x′)(18)] − [(A3) − p−(x′)(18)] + [(A4) − p+(x′)(A1)] − [(A5) − p−(x′)(A1)]) − 1

2N
[(A2) − (A5)]

with a similar calculation for ∇ρ2 leading to (23). In the latter case, the second-order cumulant

φ2(x,x′) =
∫
D

c2(x,x′′)G(x′′,x′)dx′′ = 〈[ρ(x) − ρ1(x)][ψ(x′) − ψ1(x′)]〉 − 1

N
ω1(x)G(x,x′)

has been introduced. The third-order desingularized cumulants are defined to be

ω3(x,x′,x′′) = 〈[ω(x) − ω1(x)][ω(x′) − ω1(x′)][ω(x′′) − ω1(x′′)]〉
− 1

N
(δ(x′′ − x)c2(x,x′) + δ(x − x′)c2(x′,x′′) + δ(x′ − x′′)c2(x′′,x)) + 2

N2
δ(x′ − x)δ(x′′ − x)ω1(x)

c3(x,x′,x′′) = 〈[ρ(x) − ρ1(x)][ω(x′) − ω1(x′)][(ω(x′′) − ω1(x′′)]〉
− 1

N
(δ(x′ − x′′)ρ2(x,x′) + δ(x − x′)ω2(x,x′′) + δ(x − x′′)ω2(x,x′)) + 2

N2
δ(x′ − x)δ(x′′ − x)ρ1(x)

and can be introduced into the calculation by means of the identities

ω3(x,x′,x′′) + ω1(x)ω2(x′,x′′) + ω1(x′)ω2(x′′,x) + ω1(x′′)ω2(x,x′) + ω1(x)ω1(x′)ω1(x′′)

= 1

8
[p+++(x,x′,x′′) − p[++−](x,x′,x′′) + p[−−+](x,x′,x′′) − p−−−(x,x′,x′′)]

− 1

4N
[3p+++(x,x′,x′′) − p[++−](x,x′,x′′) + p[−−+](x,x′,x′′) − 3p−−−(x,x′,x′′)]

+ 1

N2
[p+++(x,x′,x′′) − p−−−(x,x′,x′′)],

c3(x,x′,x′′) + ρ1(x)ω2(x′,x′′) + ω1(x′)c2(x,x′′) + ω1(x′′)c2(x,x′) + ρ1(x)ω1(x′)ω1(x′′)

= 1

8
[p+++(x,x′,x′′) + p(−++)(x,x′,x′′) + p(+−−)(x,x′,x′′) + p−−−(x,x′,x′′)]

− 1

4N
[3p+++(x,x′,x′′) + p(−++)(x,x′,x′′) + p(+−−)(x,x′,x′′) + 3p−−−(x,x′,x′′)]

+ 1

N2
[p+++(x,x′,x′′) − p−−−(x,x′,x′′)],

where the shorthand p[++−] = p++− + p−++ + p+−+ and p(−++) = p−++ − p+−+ − p++− has been used.
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APPENDIX B: GREEN’S FUNCTIONS FOR
CONFORMAL DOMAINS

For the analysis in this work to be widely applicable, it is
necessary to be able to find explicit formulas for the Green’s
functions G(x,x′) in a wide range of domains D. Results for
many simple geometries are well known; for example,

Gc(x,x′) = 1

2π
log |x − x′|

− 1

4π
log (1 − 2x · x′ + |x|2|x′|2) (B1)

is the Green’s function for the unit circle [11]. Other authors
[10] have used Ewald summation to add the contributions
from infinitely many images to obtain results for regular
parallelograms. Here, more general formulas are presented
[1,9], allowing Green’s functions to be found for all domains
D for which an explicit conformal map exists between D and
the unit circle.

The method for finding the functions G(x,x′) and g(x,x)
appearing in the Hamiltonian (2) in this case is as follows.
Consider the conformal map Z = f (z) that maps the simply
connected domain D in the z plane to the unit disk in the
Z plane. The usual correspondence between C and R2 is
taken to hold, so that Z = X + iY ∈ C is identified with X =
(XY )T ∈ R2, and likewise z = x + iy with x. The important
point, outlined, e.g., in Newton [1], is that the Green’s function
itself is preserved by the mapping; hence in D

G(x,x′) = Gc( f (x), f (x′)), (B2)

with the vector-valued function X = f (x) simply being the
R2 expression of Z = f (z).

A subtlety arises in the evaluation of the Robin function
g(x,x) appearing in the Hamiltonian formula. Careful evalua-
tion of the limit x′ → x leads to

g(x,x) = gc( f (x), f (x)) + 1

2π
log

∣∣f ′(z)
∣∣

= gc( f (x), f (x)) − 1

2π
log

∣∣F ′(Z)
∣∣, (B3)

where the final expression, given in terms of the inverse
map to Z = f (z), namely, z = F (Z), allows evaluation using
the circular domain coordinates only. Evaluation of the
Hamiltonian using these expressions for G and g leads to
the well-known Kirchoff-Routh formula [1].

APPENDIX C: NUMERICAL SOLUTION OF THE
VORTICITY MODE EIGENVALUE PROBLEM (34)

The numerical method used to solve (34) is based on
standard spectral techniques [20]. Note first that, upon taking
the Laplacian, (34) can be written as

∇2� = βρ0

(
� − ρ0

∫
D

�dx
)

. (C1)

The vorticity modes {�j (x),j � 1} also satisfy the integral
condition (35); hence they also are solutions of

∇2� = βρ0�. (C2)

To define an eigenvalue problem from (C2), from which
the vorticity modes can be found, it is necessary to supply
appropriate boundary conditions. From the fact that G(x,x′) =
0 for x on ∂D, it can be deduced that solutions of (34) satisfy

�(x) = constant on ∂D. (C3)

Further, integration of (C1) reveals that∫
D

∇2�dx = 0, or
∮

∂D
∇� · n ds = 0, (C4)

where n is the unit normal to ∂D. The two boundary condi-
tions (C3) and (C4), which are easily interpreted physically
as “no-normal flow” and “zero circulation,” applied to (C2),
generate a well-posed eigenvalue problem satisfied by the
vorticity modes �j (x) (j � 1). It is to be emphasized that
the resulting eigenvalue problem is distinct from those defined
by pure Dirichlet or Neumann boundary conditions.

The eigenvalue problem (C2) + (C3) + (C4) is next trans-
formed to the unit circle using the conformal map. In the circle
domain, the problem transforms to

∇2
X� = βρ0|F ′(Z)|2�,

[cf. Eq. (B3) above] with the boundary conditions unchanged.
In the circle, standard techniques from Trefethen [20] can
be used to form a discrete (matrix) Laplacian. The matrix
Laplacian acts on a vector with entries consisting of �

evaluated on a grid that consists of the Chebyshev points in
the radial direction (0 < R < 1) and is uniformly spaced in
the azimuthal direction. A standard matrix eigenvalue solver
is then used to find the eigenvalues (DITs) and eigenfunctions
{�j }, which are then mapped back to D. The method is
spectrally accurate, and convergence to nine significant figures
can typically be obtained using 39 radial and 40 azimuthal
points.
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Ẽ0 − (1/4π ) log α. The DITs remain unchanged.

[20] L. N. Trefethen, Spectral Methods in MATLAB (SIAM,
Philadelphia, 2000).

[21] R. A. Smith, Phys. Rev. Lett. 63, 1479 (1989).
[22] S. Richardson, J. Fluid Mech. 102, 263 (1981).
[23] B. Silverman, Density Estimation for Statistics and Data

Analysis (Chapman and Hall, London, 1986).
[24] J. B. Weiss and J. C. McWilliams, Phys. Fluids A 3, 835 (1991).
[25] T. L. Ashbee, J. G. Esler, and N. R. Mcdonald, J. Comput. Phys.

246, 289 (2013); see the image model described therein. The
equations are integrated using intervals �t = 0.1N time units
and tolerance parameter δ = 10−8; see Eq. (6) of Ashbee et al.
and surrounding discussion for details.

[26] L. M. Smith and V. Yakhot, Phys. Rev. Lett. 71, 352 (1993).
[27] P.-H. Chavanis and J. Sommeria, J. Fluid Mech. 314, 267 (1996).
[28] J. Miller, Phys. Rev. Lett. 65, 2137 (1990).
[29] R. Robert, J. Stat. Phys. 65, 531 (1991).
[30] R. Robert and J. Sommeria, J. Fluid Mech. 229, 291 (1991).
[31] P.-H. Chavanis, Physica A 391, 3657 (2012).
[32] M. T. DiBattista and A. J. Majda, Theor. Comput. Fluid Dyn.

14, 293 (2001).

012109-14

http://dx.doi.org/10.1073/pnas.27.12.570
http://dx.doi.org/10.1007/BF01053742
http://dx.doi.org/10.1063/1.1483305
http://dx.doi.org/10.1007/BF01211054
http://dx.doi.org/10.1007/BF01211054
http://dx.doi.org/10.1063/1.861347
http://dx.doi.org/10.1007/BF00739374
http://dx.doi.org/10.1098/rspa.1974.0018
http://dx.doi.org/10.1098/rspa.1974.0018
http://dx.doi.org/10.1103/PhysRevLett.63.1479
http://dx.doi.org/10.1017/S0022112081002632
http://dx.doi.org/10.1063/1.858014
http://dx.doi.org/10.1016/j.jcp.2013.03.044
http://dx.doi.org/10.1016/j.jcp.2013.03.044
http://dx.doi.org/10.1103/PhysRevLett.71.352
http://dx.doi.org/10.1017/S0022112096000316
http://dx.doi.org/10.1103/PhysRevLett.65.2137
http://dx.doi.org/10.1007/BF01053743
http://dx.doi.org/10.1017/S0022112091003038
http://dx.doi.org/10.1016/j.physa.2012.02.014
http://dx.doi.org/10.1007/s001620050142
http://dx.doi.org/10.1007/s001620050142



