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Steady rotating flows over a ridge
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A model describing rotating single-layer flows over a parabolic ridge is investigated. A method of
constructing steady solutions is introduced, and is used to extend previous results and determine
exact regime diagrams describing the qualitative nature of the solution. Analytic expressions for the
boundaries between transcritical flow and supercritical and subcritical flows are given as a function
of obstacle height, Froude number of the upstream flow, and the flow inverse Burger number �a
nondimensional number proportional to the square of the rotation rate�. For fixed obstacle height,
the nature of the supercritical transition is found to change as the rotation rate increases, with a
hysteresis region like that in nonrotating flow being present only at lower rotation rates. At higher
rotation rates, solutions with stationary jumps over the obstacle become stable, and abrupt
transitions between supercritical and transcritical flow no longer occur. An exact analytic expression
is also found for transcritical flow over the obstacle, which is closely related to the solutions for
nonlinear inertia-gravity waves of limiting amplitude found by Shrira. For sufficiently high ridges
in initially supercritical flow, a wave train of nonlinear inertia-gravity waves of limiting amplitude
appears behind a downstream hydraulic jump. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2130740�
I. INTRODUCTION

The shallow water model plays a central role in our un-
derstanding of nonrotating flow over topography �see, e.g.,
the review material in Baines1�. The model’s utility derives
from its amenability to analytic solution, its robustness in
being fully nonlinear, and the readiness with which nonlinear
concepts related to hydraulic control can be explicitly dem-
onstrated. Under conditions where the aspect ratio of the
layer flow in question is sufficiently small, the shallow water
model can be quantitatively relevant to both oceanic and
atmospheric flows.2 Hydraulic jumps may be included as
“weak” solutions of the equations �mass and momentum
conserving jumps in surface height and velocity�, and it has
been argued3 that these are a reasonably accurate model of
the situation at steadily propagating bores, i.e., after initial
nonlinear wavebreaking has taken place.

Although linear solutions in rotating flow over topogra-
phy have a relatively long history,4,5 solutions involving the
direct extension of the full nonlinear equations to rotating
flows appear not to have been considered until Sambuco and
Whitehead6 and Baines and Leonard7 �hereafter referred to
as BL�. Sambuco and Whitehead give an approximate treat-
ment of the case of transcritical flow over an obstacle, sup-
ported by experiments, whereas BL describe a numerical
study of the flow over a semi-infinite linear ridge. Both stud-
ies found that in the presence of rotation, critical conditions
over the obstacle still control the flow, as in the case of
nonrotating flow. The point of critical transition, however,
need no longer coincide with obstacle crest.6 BL went on to
show that rotation causes upstream propagating bores either
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to stop at some distance ahead of the obstacle, or, in the case
of initially subcritical flow, disappear completely in the
steady state. In the case of initially supercritical flow, finite-
amplitude inertia-gravity wave trains appeared downstream
of the obstacle. Rotation also reduced the size of the region
of parameter space allowing transcritical flow over the
obstacle.

Unlike nonrotating solutions, rotating solutions necessar-
ily apply only to the case of an infinite ridge without side-
walls, since rotation induces a flow parallel to the ridge.
However, the solutions are still one-dimensional as the flow
is independent of the along-ridge coordinate. Figure 1 illus-
trates three possible physical scenarios to which the solutions
apply. The first scenario describes “one-and-a-half” layer
flow, where a layer of density �2 and finite depth lies under-
neath a semi-infinite layer of density �1. In the Boussinesq
limit ��2−�1� /��1, the interface between the two layers re-
mains flat when a constant uniform flow of arbitrary but
equal strength is present in each layer. A one-and-a-half layer
flow of this type is a useful physical model for commonly
occurring atmospheric flows, where the lower layer may be
taken to be the marine boundary layer, with depth around
1 km, and the upper layer the free troposphere above. The
second scenario illustrated is that of oncoming flow in a
single layer. For the solutions presented herein to remain
relevant in this case, the flow must be subject to an imposed
pressure gradient in the along-ridge direction. If the imposed
pressure gradient is absent, the free surface will tilt in the
along-ridge direction to balance the Coriolis force on the
flow, which is a further complicating feature of rotating
channel flows. However, BL’s solutions have also been dis-
cussed in the single-layer oceanic context8 as a useful para-

digm for understanding aspects of rotating hydraulic flow in
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a channel, in order to help quantify sidewall effects �e.g., due
to Kelvin waves�.

The third scenario for which the solutions are relevant is
the “experimental scenario” where the obstacle is accelerated
into an initially undisturbed fluid. In this case, no imposed
pressure gradient is necessary. The interpretation of towing-
tank experimental studies such as those of Maxworthy9 and
more recently Johnson et al.10 may be facilitated by the so-
lutions presented in BL and in this paper, although dispersive
effects remain important in the parameter regimes of the ex-
periments. Recent analytical and numerical work, corre-
sponding to the experimental scenario, by Vilenski and
Johnson11 has highlighted rich behavior involving multiple
solitary wave generation ahead of and behind the obstacle in
single-layer flow in the two-dimensional Ostrovsky �or rotat-
ing Kadomtsev-Petviashvili� equations.12–14 Baines15 also
makes the point that the experimental scenario shown in Fig.
1 is relevant to the atmospheric situation of an advancing
cold front, where the cold air mass is treated as the advanc-
ing obstacle.

One point of particular interest in all of the above sce-
narios concerns the presence or absence of a downstream
jump followed by the generation of wave trains of inertia-
gravity waves downstream of the obstacle. It is well
known16,17 that inertia-gravity waves of finite amplitude exist
in the rotating shallow water system. These waves are known
to have a maximum limiting amplitude, and at this amplitude
the waves have broad troughs and sharply pointed crests,
with a finite jump in wave slope at each crest. However, little
is known about the generation by topography of these waves.
For example, BL did note the existence of downstream
jumps and wave trains but did not highlight the conditions
under which they are generated. A deeper understanding of
the generation of downstream jumps and waves may allow
interpretation of the apparently climatic nonlinear flow pat-

FIG. 1. Schematic showing the three physical scenarios described in the
text.
terns around islands such as Guadalupe, Baja California, and
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St. Lawrence Island in the Bering Sea as illustrated by pho-
tographs of cloud distributions and synthetic aperture
radar.10,18,19

This paper extends the discussion of BL by presenting
exact solutions for the specific case of flow over a parabolic
ridge, with the aim of developing understanding of this im-
portant paradigm of rotating flow over topography. In Sec. II,
the steady flow equations to be solved are derived from the
shallow water equations. The behavior at the obstacle bound-
ary and at stationary hydraulic jumps is highlighted, and the
regime diagram for nonrotating flow is briefly reviewed. In
Sec. III, a method of construction of steady solutions of the
rotating equations is introduced, and used to determine exact
regime diagrams for the solutions in the rotating case. A
connection with the limiting amplitude inertia-gravity wave-
train solutions of Shrira16,17 is highlighted and exploited to
obtain exact analytic expressions for transcritical flow over
the obstacle. In Sec. IV, numerical solutions using a finite-
volume numerical scheme are used to verify the semianalytic
solutions, and explore the behavior in the regions of hyster-
esis identified analytically. Section V discusses the results.

II. MODEL EQUATIONS AND BACKGROUND

A. Rotating one-dimensional shallow water equations

Consider the experimental scenario, shown in Fig. 1�c�,
of a one-dimensional obstacle of height h and width L ad-
vancing at speed U into a fluid of depth H, rotating at rate
f /2 and under gravity g, which is initially at rest. The non-
dimensional shallow water equations in the frame of the ob-
stacle are

ut + uux − �Bv = − �x − Mbx,

vt + uvx + �B�u − F� = 0, �1�

�t + �u��x = 0.

Here, the layer depth � is scaled on H, the velocity compo-
nents in the frame of the obstacle �u ,v� are scaled on the
gravity wave speed c=�gH, the obstacle elevation b is
scaled on h, length x is scaled on L, and time t on L /c. The
nondimensional parameters in Eq. �2� are

F =
U

c
, M =

h

H
, B =

f2L2

c2 =
f2L2

gH
.

These may be interpreted as a Froude number F of the rela-
tive flow, a nondimensional obstacle height M, and an in-
verse Burger number B, the square of the ratio of the ob-
stacle scale to the radius of deformation �note that B is
related to BL’s obstacle length A via B=A2�. Additionally,
the upstream conditions to be satisfied are �→1, u→F as
x→−�.

If the resulting flow is assumed steady, and solutions are
sought that are purely a function of x, the thickness equation
may be integrated to give u�=F, allowing u and subse-
quently v to be eliminated from �1� to give a single

20
equation,
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�� +
F2

2�2�
xx

+ B�1 − �� = − Mbxx. �2�

Note that u and v are related to � by

u =
F

�
, v =

1
�B

�bx + �x��1 −
F2

�3�	 .

As a parabolic obstacle is considered below, it is necessary to
consider the situation at points where the obstacle gradient bx

is discontinuous �e.g., at the edges of the parabola�. Integrat-
ing �2� across such a discontinuity at x=xe gives

�1 −
F2

�3���x�−
+ = − �bx�−

+ at x = xe. �3�

B. Stationary hydraulic jump solutions

BL,7 following Houghton,21 argue that because a hydrau-
lic jump may be considered to take place across a very short
distance compared to the Rossby radius of deformation �LR

=c / f�, rotation may be considered to have a negligible effect
on its internal dynamics. Hence, across a stationary jump,
mass and momentum are conserved. Conservation of mass is
implicit in the derivation of �2�, as the mass flux is assumed
equal to its upstream value everywhere in the steady solu-
tion. Conservation of momentum gives

��2

2
+

F2

�
	

−

+

= 0, �4�

which can be rearranged as

�+ =
�−

2
��8F2

�−
3 + 1	1/2

− 1� . �5�

Continuity of v across the jump follows from the original

equations �1�, and this ensures that
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��x�1 −
F2

�3�	
−

+

= 0. �6�

Stationary jumps may therefore appear anywhere in the so-
lutions provided both �5� and �6� are satisfied.

C. One-dimensional flow over an obstacle in the limit
of weak rotation

Figure 2 gives the relevant regime diagram for flow be-
havior in the limit of zero rotation �B→0� for flow over a
two-dimensional obstacle. The regime diagram has much in
common with those of Lawrence22,23 and Baines1 for nonro-
tating flows. Lawrence’s diagram illustrates the flow regimes
that occur when flow controlled by an upstream sluice gate
or downstream weir is allowed to become steady over the
obstacle. By contrast, the Baines regime diagram describes
the steady and quasisteady flows that occur when an obstacle
is towed at a constant speed through a fluid initially at rest.
Here, a quasisteady solution refers to a solution that includes
nonlinear hydraulic jumps propagating outwards to ±�.
Curves on Fig. 2 represent the boundaries between different
types of steady or quasisteady solution. Of the two regime
diagrams, Lawrence is more relevant to the rotating solutions
described below in the limit of weak rotation �B→0�, and
hence our classification of solution regimes I-V closely fol-
lows those of Lawrence. Figure 2 and the Lawrence and
Baines diagrams share the curves BAE and AG, while a
curve in a similar position to AD is present in the Lawrence
diagram. The dotted curves AD� and AH� which are unique
to the Baines diagram are included for completeness.

In region I, the solution is purely supercritical, with the
free surface raised over the obstacle, whereas in region V the
flow is purely subcritical with the free surface lowered over
the obstacle. In region III, the flow is transcritical with a
stationary hydraulic jump a large distance ��L� upstream,
and a stationary downstream recovery jump �DRJ� a simi-

FIG. 2. An obstacle height/Froude number �M ,F� re-
gime diagram for steady �and quasisteady� solutions in
the nonrotating case, following Lawrence �Refs. 22 and
23� and Baines �Ref. 1�. Solid curves mark the bound-
aries between steady regimes for the rotating solutions
described in Sec. III in the limit of weak rotation B
→0. Dotted curves mark the boundaries between qua-
sisteady regimes in the nonrotating case B=0 �see text�.
The steady regimes are as follows: �I� Supercritical flow
everywhere. �III� Transcritical flow over the obstacle
with an upstream jump. �IVa� Transcritical flow over
the obstacle with no upstream jump and a downstream
recovery jump �DRJ� after the obstacle. �IVb� Tran-
scritical flow over the obstacle with no upstream jump
and a DRJ on the obstacle. �V� Subcritical flow every-
where. The region I/III is a hysteresis region where
more than one solution is possible.
larly large distance downstream. In nonrotating flow, in the
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Baines scenario, these jumps propagate at constant speed to
±�, but the presence of even very weak rotation causes them
to eventually become arrested. A critical point is located at
the obstacle crest where the flow changes from subcritical to
supercritical. Region IVa is similar to region III except there
is no stationary jump upstream, as the presence of very weak
rotation causes the upstream propagating jump present in the
nonrotating solution to decay to zero amplitude. In region
IVb, there is no stationary upstream jump and the stationary
downstream recovery jump is located on the obstacle itself.
A brief review of the derivation of the curves in this diagram
will be helpful in what follows. The original results are due
to Long24,25 and Houghton and Kasahara,26 and the hyster-
esis region �I/III� has been explored in detail by Baines and
Davies.27

First of all, note that with B=0, Eq. �2� can be integrated
twice to give

� +
F2

2�2 + Mb = K . �7�

The condition for this cubic equation to have three real roots
at the obstacle summit �where b=1� is straightforwardly
shown to be

K � M + 3
2F2/3. �8�

A symmetric solution such as those in regimes I and V is
possible only if K=1+F2 /2, i.e., the upstream value of the
undisturbed flow. For a transcritical solution, with a transi-
tion at the top of the obstacle, there must be equality in Eq.
�8�, so that two roots of �7� coalesce at the summit. Hence
symmetric solutions are possible only for obstacles of height
M �M0, where

M0 = 1 +
F2

2
−

3

2
F2/3. �9�

This equation defines the curve BAE in Fig. 2. The curve AG
on the supercritical side arises because transcritical solutions
can also exist within part of the supercritical region. Curve
AG is the outer boundary of this hysteresis region �I/III�,
where the flow following a stationary jump exactly meets the
transcritical solution over the obstacle. From �4� and �8�, this
occurs where

1

2
��8F2 + 1 − 1� +

2F2

��8F2 + 1 − 1�2
= M1 +

3

2
F2/3,

or where

M1 =
�8F2 + 1�3/2 + 1

16F2 −
1

4
−

3

2
F2/3. �10�

Finally the curve AD, which separates solutions with a
jump on the downstream side of the obstacle �region IVb�
from those without �region IVa�, can be obtained from the

following system of equations:
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F = �0F − ��0 − 1��1

2
�0��0 + 1� ,

�i
3 − �M +

3

2
F2/3��i

2 +
1

2
F2 = 0, i = 0,1, �0 � 1,

0 � �1 � 1,

�11�

�+ =
1

2
�1��8F2

�1
3 + 1 − 1� ,

F
�+

− 2�+ = F − 2.

System �11� can be solved numerically to obtain F=F�M�
�the dotted curve AD� in Fig. 2�, which defines the boundary
between solutions with downstream recovery jumps on the
obstacle from those without in the Baines scenario. Also ob-
tained are �0 and �1, which are the layer thicknesses at the
beginning and end of the obstacle, respectively, and �+, the
layer thickness after the stationary hydraulic jump at the end
of the obstacle. The curve AD, which is the relevant curve
for the regime boundary of the rotating solutions in the limit
B→0, is given by F=F�M� in the solution of �11�. The
differences between the Baines scenario and Fig. 2 arise be-
cause the steady-state equation �2� does not hold in the non-
rotating transcritical regime. Hence, there is a blocking re-
gime in the Baines picture to the right of curve AH�, defined
by F=0 in �11�, which is entirely absent in the limit of weak
rotation. In the derivation of �11� it is necessary to consider
the properties of moving jumps and rarefaction waves, and
the nondimensional mass flux over the obstacle F differs
from the upstream and downstream mass flux F. In contrast,
when even a small amount of rotation is present, steady so-
lutions appear to be always attainable7 and attention can be
confined to the system �2� together with �3�. As discussed by
BL, the presence of rotation introduces a length scale into the
system, the Rossby radius of deformation LR=c / f , and the
obstacle cannot influence the flow on scales greater than LR.
Instead, the flow undergoes geostrophic adjustment within
this region to reach a state of geostrophic balance in which
the pressure gradients associated with variations in the sur-
face height are balanced by Coriolis forces on the jets in the
along-ridge direction that have velocity v.

III. SEMIANALYTIC STEADY SOLUTIONS FOR
ROTATING FLOWS OVER A PARABOLIC OBSTACLE

A. Method of construction of solutions

Much insight can be gained into flow over one-
dimensional obstacles in the presence of rotation by restrict-
ing attention to parabolic obstacles. Considering an obstacle
with

b = 4x�1 − x�, 0 � x � 1,
Eq. �2� becomes
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�� +
F2

2�2�
xx

+ B�1 − �� = 
8M , 0 � x � 1,

0, x � 0, x � 1,
� �12�

with the conditions at the edges of the obstacle being

�1 −
F2

�3���x�−
+ = 
− 4M at x = 0,

+ 4M at x = 1.
� �13�

Equation �12� may be integrated once20 to give

��x�2�1 −
F2

�3�2

− B��2 − 2� +
2F2

�
−

F2

�2�

= �
K0 x � 0,

K1 + 8M�2� +
F2

�2� 0 � x � 1,

K2 x � 1.
 �14�

From Eq. �14�, solutions can be constructed in the phase
plane �� ,�x�. In the phase plane, solutions follow contours
of constant Ki �i=0,1 ,2� until they meet either the edge of
the obstacle, as discussed below, or a stationary hydraulic
jump where the solution leaps to a new position according to
�5� and �6�. As is clear from Eq. �14�, the phase-plane con-
tours have a different pattern above the obstacle �0�x�1�
compared to outside the obstacle. The solution therefore fol-
lows the “outside obstacle” set of contours until x=0, where
�=�0. Here the solution jumps to a new position in phase
space according to �13�, and then follows the “above ob-
stacle” set of contours until x=1. At x=1, �=�1 is deter-
mined by the condition

x��1� − x��0� = 1,

where

x��� = �
�0

� d�

G��;K1�
, �15�

and G�� ;K1� is obtained by rearranging �14�,

�x = G��;K1�

= ±
�3

�3 − F2�K1 + B��2 − 2� +
2F2

�
−

F2

�2�
+ 8M�2� +

F2

�2�	1/2

.

Note that � need not necessarily be monotonic above the
obstacle, in which case the integral expression �15� must be
appropriately modified. Phase-plane contours may cross the
�x=0 axis, and the opposite sign must then be taken for the
function G�� ;K1�. Similarly, the shape of solutions before
the obstacle may be determined from the equation

x��� = �
�0

� d�

F��;K0�
, �16�
with
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F��;K0� = ±
�3

�3 − F2�K0 + B��2 − 2� +
2F2

�
−

F2

�2�	1/2

.

The shape of solutions after the obstacle may also be ob-
tained using �16� with �1 and K2 replacing �0 and K0.

Figure 3 shows the regime diagrams for the solutions
obtained at rotation rates corresponding to �a� B=2 and �b�
B=8. These rotation rates are chosen in order to best illus-
trate the development of different regimes of solution from
the nonrotating limit. The equations of the curves and the
details of their derivation are given below. Figure 3 can be
compared with BL’s Fig. 6 where the numerically calculated
regime diagram for a semi-infinite piecewise-linear ridge is
presented at several different rotation rates. The regime dia-
gram in Fig. 3 has, however, several different and important
features that are not discussed in BL, aspects of which are
not unique to the parabolic obstacle shape considered here,
but are universal to all rotating flow over topography. In
particular, the new issues addressed here are as follows:

�1� What controls the position and occurrence of a down-
stream hydraulic jump?

�2� What controls the amplitude of the wave train of non-
linear inertia-gravity waves downstream of the obstacle.
Under what circumstances are waves of limiting ampli-
tude generated?

�3� What happens to the region of hysteresis �AEG in Fig.
2� present in nonrotating flow. BL did not find such a
region for the semi-infinite ridge considered in their
study, even at very low rotation rates. Is this a special
property of the piecewise linear function chosen for their
obstacle?

Additionally, exact analytic expressions are given below for
the supercritical and subcritical transition curves, and it is
shown explicitly how these evolve as rotation is increased.

Examples of steady solutions constructed in the manner
described above are given in Figs. 4–6, with the details of
derivation described below. On the left-hand panels, contours
of constant Ki are plotted, with the constant K1 contours on
the “above obstacle” solution shown as dotted curves, and
the constant K0 �or K2� contours, corresponding to the solu-
tion away from the obstacle, as solid curves. The gray curves
show the path of the solution in phase space, with important
points such as the obstacle boundaries and jump positions
being labeled. The right-hand panels illustrate the free sur-
face heights �+Mb in the vicinity of the obstacle.

Transcritical flow occurs when the local Froude number
passes through unity, or equivalently when �=F2/3 some-
where in the domain. Inspection of the phase-plane diagrams
in Figs. 4–6 shows that the solution phase space is effec-
tively divided into two by a vertical line at �=F2/3, with
supercritical flow to the left and subcritical flow to the right.
A single curve on both the “above obstacle” solution and
another on the “away from obstacle” solutions passes
through the �=F2/3 dividing line. These are the transcritical
curves, and are plotted as the thick solid and thick dotted
curves on each phase-space panel. The values of K1=K1c and
K0=K0c �or K2=K2c� corresponding to the transcritical

curves may be calculated by setting �x=0 in �14� and finding
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the value of Ki for which the resulting quintic polynomial
has a double root at �=F2/3. The following results are
obtained:

K0c = K2c = 3B�F2/3 − F4/3� ,

�17�
K1c = 3B�F2/3 − F4/3� − 24MF2/3.

The equations of the transcritical curves are essential in the
construction of the solutions as described below. The differ-
ent qualitative solution regimes depend crucially on whether
the flow is purely subcritical, purely supercritical, or, in the
case where the flow is transcritical, where the flow switches
between subcritical and supercritical relative to the obstacle.
The nature of the transition between the different flow re-
gimes is found to depend on the obstacle inverse Burger
number Bm, defined as

Bm =
B

=
f2L2

.

M gh
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The different types of possible transitions are described in
turn below.

B. Supercritical transition at rapid rotation rates
Bm>8

Here we consider the supercritical transition when rota-
tion is sufficiently rapid so that the obstacle inverse Burger
number Bm�8. In parameter space, this corresponds to the
region to the left side of point H �M �0.25� in the regime
diagram Fig. 3�a�, and everywhere illustrated in Fig. 3�b�
�M �1�. The derivation of the location of point H and the
Bm�8 criterion is discussed below.

Steady solutions illustrating the supercritical transition
for M =0.1, B=2 are shown in Fig. 4. The four cases F
=1.45, F=1.37, F=1.35, and F=1.25 show the progression
between solution regimes Ia, Ib, II, and IIIa in Fig. 3�a�, as
labeled there by stars. On the left panels, the solution is
illustrated in phase space �� ,�x�, while the right panels show
the free surface height �+Mb of the flow over the obstacle.
For those branches of the solution where exact closed-form
analytic expressions are not available, the shape of the solu-

FIG. 3. Obstacle height/Froude number �M ,F� regime
diagrams for the steady solutions in the presence of
rotation with �a� B=2 and �b� B=8. The regimes are as
follows: �Ia� Supercritical flow everywhere. �Ib� Super-
critical flow over obstacle with a stationary downstream
recovery jump �DRJ�. �II� Transcritical flow over ob-
stacle with a jump on the obstacle and a DRJ. �IIIa�
Transcritical flow over obstacle with an upstream jump
and DRJ after the obstacle. �IIIb� Transcritical flow
over obstacle with an upstream jump, and a DRJ on the
obstacle. �IVa� Transcritical flow over obstacle with no
upstream jump and a DRJ after the obstacle. �IVb�
Transcritical flow over obstacle with no upstream jump
and a DRJ on the obstacle. �V� Subcritical flow every-
where. The region labeled Ia/IIIa is a hysteresis region
where more than one solution is possible. In the upper
panel, stars mark the parameter settings of the solutions
shown in Figs. 4–6.
tion is obtained by evaluating the integrals �15� and �16�
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using a fourth-order Runge-Kutta algorithm. Below, to illus-
trate in detail the application of methodology introduced
above, the derivation of the solutions for the Ia, Ib, II, and

FIG. 4. Illustrating the steady solutions as they appear in �� ,�x� phase s
parameter settings are B=2, M =0.1, and �Ia� F=1.45, �Ib� F=1.37, �II� F=1
of constant K1, and the solid curves of constant K0 �K2� with transcritical cur
flows, the location of the critical point on the obstacle controlling the flow
IIIa solutions are described. In each case, when F�1 ahead

Downloaded 14 Nov 2005 to 131.111.8.101. Redistribution subject to 
of the obstacle or initial jump, the flow is supercritical ev-
erywhere and inertia-gravity waves cannot propagate up-
stream. Hence �=1, �x=0 up to the edge of the obstacle at

�left panels� and free-surface height near the obstacle �right panels�. The
and �IIIa� F=1.25. In the phase-space panels, the dotted curves are contours

phasized in bold. The gray curves show the solution itself. For transcritical
re �=F2/3� is labeled by a star.
pace
.35,

ves em
x=0 or an initial hydraulic jump.
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Solutions with entirely supercritical flow over the ob-
stacle, i.e., in parameter regimes Ia and Ib, are constructed as
follows. At the obstacle edge �x=0, �0=1�, the solution
jumps in phase space according to �13� to the point A, which
lies on the “above obstacle” solution curve with K1=K1o,
where

K1o = 16M2 + B�1 − F2� − 16M − 8MF2.

The solution follows this curve in phase space, crossing the
�x=0 axis until it reaches point B where x=1, �=�1, with �1

given by the root of

x��1� + x�1� − 2x��m� = 1. �18�

Here x��� is determined from the integral �15�, with the posi-
tive sign taken for G, and �m is the maximum thickness on
this branch of the solution, given by the largest real root of

B��4 − 2�3 + 2F2� − F2� + 8M�2�3 + F2� + K1o�2 = 0.

At point B, the spatial gradient �x changes according to �13�
as the solution has reached the rear edge of the obstacle.
Subsequently, the solution follows a contour of constant K2

on the “away from obstacle” solution �solid black contours�,
with the value of K2 calculable from �14�. Two possibilities
exist. If the flow is to remain entirely supercritical, as it does
throughout region Ia in Fig. 3, we must have K2�K2c, in
which case a contour of constant K2 forms a closed orbit as

illustrated in Fig. 4 �Ia�. This closed orbit corresponds to a
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wave train of finite-amplitude inertia-gravity waves down-
stream of the obstacle.

An alternative possibility is that K2�K2c �this possibil-
ity corresponds to region Ib in Fig. 3, and an example of the
resulting solution is shown in Fig. 4, on the Ib panel�. In this
case, the solution can no longer follow a closed orbit after
the obstacle, and must undergo a hydraulic jump to subcriti-
cal flow at some point after the obstacle. The point C at
which this takes place is uniquely determined by the condi-
tion that the solution after the jump must lie on the transcriti-
cal curve with K2=K2c. The transcritical curve is the only
curve that allows the solution to return to supercritical, after
which the solution describes inertia-gravity waves with lim-
iting amplitude. On this transcritical curve, a closed-form
expression for the solution shape has been obtained by inte-
grating Eq. �16�,17 the derivation of which is discussed in the
Appendix. The exact form of the wave shape is given by Eq.
�A1�. In physical terms, the region Ib solution therefore in-
volves a downstream jump followed by an infinite wave train
of limiting amplitude inertia-gravity waves. The transition
between regimes Ia and Ib, corresponding to the appearance
of the downstream jump, and given by the gray curve AH on
Fig. 3�a� and AJ on Fig. 3�b�, is derived by solving itera-
tively to obtain the value of M for which K2=K2c at fixed
values of F.

Consideration of the above methodology allows the deri-

FIG. 5. As Fig. 4 but illustrating the three possible
steady solutions �Ia, II, IIIa� in the hysteresis region
�labeled Ia/IIIa� when B=2, M =0.4, and F=1.79. The
purely supercritical solution �Ia� and the transcritical
solution with upstream jump �IIIa� are stable, but the
transcritical solution with a jump on the obstacle �II� is
unstable.
vation of the equation of the supercritical transition curve AE
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illustrated in the regime diagrams of Fig. 3. Supercritical
flow as in regimes Ia/b is possible if and only if K1o�K1c, or

16M2 + B�1 − F2� − 16M − 8MF2

� 3B�F2/3 − F4/3� − 24MF2/3.

Curve AE is defined by equality in the above equation, which

FIG. 6. As Fig. 4 but for the initially subcritical flows with B=
may be rearranged to yield
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M = M̂0 =
M0

2
+

1

2
�M0

2 +
B

4
�F2/3 − 1�3	1/2

, �19�

where M0=M0�F� is the nonrotating expression �9� for the

curve AE. Clearly, M̂0→M0 as B→0.
In regime II of Fig. 3, located between curves AE and AJ

and to the left of point H, the only possible solution includes

=0.4, and with �V� F=0.45, �IVb� F=0.55, and �IVa� F=0.8.
2, M
a jump on the obstacle. At the leading edge of the obstacle,
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the solution jumps in phase space to follow K1=K1o�K1c. It
is clear from the phase-plane diagram that the solution can-
not continue indefinitely on this curve and must jump to
subcritical flow. The position at which this occurs, labeled
point B in phase space and with thickness �−, is defined by

2�B − 8M���+ +
F2

2�+
2 − �− −

F2

2�−
2� = K1c − K1o, �20�

together with �5�, since the solution must join the transcriti-
cal curve �K1=K1c�. Along this curve, the solution returns to
supercritical flow, and thereafter behaves as a regime Ib flow
with a further jump after the obstacle.

The solution in regime IIIa, corresponding to transcriti-
cal flow with an upstream jump, is constructed as follows.
The initial jump must satisfy �5�, which determines the thick-

ness after the jump �+= ��1+8F2−1� /2 �point A in phase
space�. The solution then follows a path of constant K0,
where

K0 = − B��+
2 − 2�+ +

2F2

�+
−

F2

�+
2� ,

on the “away from obstacle” solution �solid black contours�
until it reaches point B at the edge of the obstacle �x=0, �
=�0�. Point B is uniquely defined as it is the only possible
point where the solution may join the transcritical solution
over the obstacle �i.e., the thick dotted curve, with K1=K1c�.
Therefore, �0 must satisfy

��K1c + B��0
2 − 2�0 −

2F2

�0
+

F2

�0
2� + 8M�2�0 +

F2

�0
2�	

+��K0 + B��0
2 − 2�0 −

2F2

�0
+

F2

�0
2�	 − 4M = 0.

After reaching the obstacle edge, the solution follows the
contour of constant K1=K1c. As shown in the Appendix, Eq.
�15� can be integrated for K1=K1c to give a closed analytic
expression �A2� for the shape of the free surface over the
obstacle in the case of the transcritical branch of the flow.
Point C �x=1, �=�1� is therefore given by the root of
x��1�−x��0�=1, with x��� given by �A2�. As with supercriti-
cal flow, Eq. �13� may then be used to find the initial value of
K2 for the “after the obstacle” solution. For the cases exam-
ined �B=2 and B=8�, it was invariably found that K2�K2c,
so that a downstream jump is present after the obstacle
throughout region IIIa. However, the possibility that tran-
scritical solutions exist for other values of B in which no
downstream jump is necessary has not been ruled out.

The equation of the regime diagram curve AG, separat-
ing regimes II and IIIa in parameter space, as well as the
location �point H in Fig. 3�a�� of its intersection with AE, can
be derived as follows. Transcritical flow with an upstream
jump is possible only if the value of K1 from a stationary
jump located exactly at the obstacle boundary x=0 satisfies

K1�K1c, or
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K1 = 16M2 − B��+
2 − 2�+ +

2F2

�+
−

F2

�+
2� − 8M�2�+ +

F2

�+
2�

� 3B�F2/3 − F4/3� − 24MF2/3,

where �+= ��8F2+1−1� /2, as above. The curve AG is de-
termined by equality in this equation �i.e., K1=K1c�, which
may be rearranged to give

M = M̂1 =
M1

2
+

1

2
�M1

2 +
B

4
�1 + 2F2 − 3F4/3 − 2M1�	1/2

,

�21�

where M1=M1�F� is the nonrotating result �10� for the curve

AG. Again, M̂1→M1 as B→0. Note that corrections due to
rotation differ significantly in magnitude for curves AE and
AG, for example in Fig. 3�b� AG and AE have flipped posi-
tions compared with their positions in the nonrotating regime
diagram �Fig. 2�.

Next, consider the location of point H in Fig. 3�a�. It is

straightforward to demonstrate that if B=8M, then M̂0=M̂1

= �1+2F2−3F4/3� /2, that is, curves AE and AG meet at point
H, where M =B /8. To the left of point H in Fig. 3�a�, where
Bm=B /M �8, the supercritical transition is clearly different
in nature from that to the right �where Bm�8, and discussed
below�, as curves AE and AG are encountered in the opposite
order. Interestingly Bm, and hence the type of supercritical
transition which occurs, is entirely independent of the depth
H of the layer of the oncoming flow.

The Bm�8 transition described above can be summa-
rized as follows: As the Froude number is decreased, the
amplitude of inertia-gravity waves generated downstream in-
creases until the limiting amplitude is reached, and a hydrau-
lic jump of initially infinitesimal size appears downstream of
the obstacle. This downstream jump grows in amplitude as F
is decreased further. Next, an upstream jump appears on the
obstacle, just ahead of the critical point where �=F2/3, and
moves upstream until it reaches the edge of the obstacle. At
this point, the upstream jump has maximum amplitude. As F
is further decreased, the upstream jump decreases in ampli-
tude as it moves ahead of the obstacle, finally reaching zero
amplitude at F=1 where the flow evolves smoothly into a
regime IV solution as described in the subcritical discussion
below.

C. Supercritical transition and hysteresis at weaker
rotation rates Bm<8

If the obstacle inverse Burger number Bm�8, the super-
critical transition has a different character from that de-
scribed above, and in fact resembles the supercritical transi-
tion in the nonrotating case. In the nonrotating case �Fig. 2�,
there is a region of hysteresis AEG where there are two pos-
sible stable solutions, corresponding to regimes I and IIIa,
respectively. There is also known to be a third unstable so-
lution, as recently shown by Baines and Whitehead,28 with
an upstream jump on the obstacle. This belongs to the regime
II �upstream jump on the obstacle� class of solutions de-
scribed above. Pratt29 has shown that the type of steady so-

lution that emerges in region I/IIIa depends on how the flow
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is initialized. If the upstream Froude number F is subse-
quently changed to leave the hysteresis region I/IIIa, causing
the preexisting flow solution to be no longer permissible, the
flow can undergo an abrupt, finite-amplitude transition to the
opposite solution. It is the suppression by rotation of these
abrupt changes that is the remarkable feature of the Bm�8
supercritical transition described above.

In the case of rotating flow, the hysteresis region is re-
duced in size to HEG in Fig. 3�a�, and exists only for M
	1 when B	8 �e.g., Fig. 3�b��. Figure 5 shows the three
solutions that may be constructed for parameters B=2, F
=1.79, and M =0.4 in the hysteresis region. The method of
construction is essentially identical to the regime Ia, II, and
IIIa solutions described above, with the distinction that the
analytic expression for transcritical flow over the obstacle is
given by �A4� rather than �A2�. As in the nonrotating case,
the “jump on the obstacle” solution �middle panel� may be
shown to be unstable.

The stability of the “upstream jump on the obstacle”
solutions in regions II and I/IIIa of the regime diagram can
be investigated explicitly as follows. Suppose for a given
stationary solution the jump is at position x=xJ� �0,1� �i.e.,
on the obstacle�. A “nearby” stationary solution with a jump
at x=xJ+
x may be constructed by introducing a �small�
impulsive force �per unit depth� I
�x−xJ−
x� /� on the
right-hand side of the x-momentum equation �1�, applied at
the jump location. The jump condition �4� is modified to

��2

2
+

F2

�
	

−

+

= I ,

and this can be used together with the fact that any steady
solution with a jump on the obstacle must jump in the phase
plane from K1=K1o to K1=K1c �as in Eq. �20��, to determine
a relationship between I and the displacement of the
jump 
x,

I = 
x
B − 8M

��+ − 1�B + 8M
��+ − �−��−�x−�F2

�−
3 − 1� . �22�

It is clear from �22�, since �x−�F2 /�−
3 −1��0 and �+�1, that

a restoring impulsive force is necessary to maintain the
“nearby” steady solution if B�8M �Bm�8�, indicating that
in its absence the jump would propagate away from xJ, and
therefore that the initial stationary solution is unstable. By

contrast, if B�8M �Bm�8�, the impulsive force necessary
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to maintain the nearby solution is directed away from the
initial jump location, indicating that in its absence the jump
would return to its original position, and therefore that the
initial steady solution is stable. The stability of nonrotating
jumps over the obstacle �Bm=0� has been investigated by
Baines and Whitehead,28 who employed different arguments
to show that, as found here, the upstream jump on the ob-
stacle solution is unstable.

D. Subcritical transition and downstream recovery
jump location

Figure 6 shows steady solutions constructed for subcriti-
cal oncoming flow, F�1. The nondimensional mountain
height M =0.4, the flow inverse Burger number B=2, and
F=0.45, 0.55, and 0.8 in the three panels, respectively. The
three solutions illustrate the three different possible regimes:
entirely subcritical flow �V�, transcritical flow with no up-
stream jump and a recovery jump on the obstacle �IVb�, and
transcritical flow with no upstream jump and a recovery
jump after the obstacle �IVa�.

It is possible to deduce from the phase-space diagram in
Fig. 6 that if the flow is to remain entirely subcritical over
the obstacle, then it must also be symmetric over the ob-
stacle. In subcritical flow, as x→ ±� the flow must return to
its undisturbed state with �=1, �x=0, since there are no
closed curves on the subcritical side of the phase plane. The
“away from obstacle” solutions therefore have K0=K2=B�1
−F2�. At the edge of the obstacle x=0 the solution must
“jump” in phase space according to �13� onto an over the
obstacle curve with constant K1�K1c, and follow this curve
until it jumps back at x=1 according to the same condition
onto a curve with constant K2=K0. As the change K1−K0

=K1−K2 may be shown to be a monotonic function of � in
the relevant region, the x=0 and x=1 transitions must occur
at the same value of � �i.e., �0=�1�, rendering the whole
solution symmetric. The solution is entirely determined by
the further condition that

x��0� − x��m� = 1
2 ,

where x��� is given by �15�, and �m is the minimum value of
� along the curve with K1 determined from �3�.

The curve describing the transition between subcritical
and transcritical flow on the �M ,F� diagram corresponds to

the situation where K1=K1c. In this case,
��B��0
4 − 2�0

3 + 3�F2/3 − F4/3��0
2 + 2F2�0 − F2� + 8M�2�0

3 − 3F2/3�0
2 + F2��

+ ��B��0
4 − 2�0

3 + �1 − F2��0
2 + 2F2�0 − F2�� − 4M�0 = 0,

�23�
x��0� − x�F2/3� = 1

2 ,
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where Eq. �A2� or �A4� is used to evaluate x���, depending
on whether the obstacle Burger number Bm is less than or
greater than 8. This system can be readily solved numerically
using the secant method to find M and �0 given �F ,B�, and
hence obtain the curve. In the nonrotating case �B=0�, it is
straightforward to evaluate �15� directly and show that �0

=1, and thus that M =M0�F� with M0 given by �9�.
The other main feature on the subcritical side of the

regime diagram is the curve separating solution regime IVa
�recovery jump after obstacle� and IVb �recovery jump on
obstacle�. The location of this curve is determined by assum-
ing a stationary jump at the downstream edge of the obstacle,
resulting in the following system of equations, where �0 also
satisfies the first equation in set �23�:

x��1� − x��0� = 1,

�+ = �+ =
�1

2
��8F2

�1
3 + 1	1/2

− 1� , �24�

��K+�+
2 + B��+

4 − 2�+
3 + 2F2�+ − F2� + 8M�2�+

3 + F2��

+ ��B��+
4 − 2�+

3 + �1 − F2��+
2 + 2F2�+ − F2��

− 4M�+ = 0,

where K+=K1c+ �B−8M��2�++F2 /�+
2�, and x��� is evalu-

ated from �A2� or �A4� as appropriate. Note that the curve
defined by the set �24� converges to the curve AD in Fig. 2
when B→0, and not to AD�, which is the relevant curve in
Baines’s nonrotating regime diagram. This is because no
matter how low the rotation rate, the mass flux over the
obstacle in a rotating steady solution is always equal to the
upstream mass flux. This is not true for the nonrotating qua-
sisteady solutions in Baines’s problem.

Increasing the rotation rate, i.e., increasing B while
maintaining F and M, has an effect on the solutions as fol-
lows. The most obvious effect is to reduce the horizontal
scale of the response relative to the obstacle length L, which
as discussed above scales according to the Rossby radius
�B−1/2L�. Upstream and downstream stationary jumps, if
present, move closer to the obstacle until, as B is increased
further, they move on to the obstacle itself and decay in
amplitude until they vanish entirely. For F�1 the wave-
length of limiting amplitude inertia-gravity waves generated
downstream of the obstacle is reduced with increasing rota-
tion, although their amplitude is unchanged.

IV. NUMERICAL VALIDATION AND INVESTIGATION
OF THE REGION OF HYSTERESIS

In order to validate the steady solutions derived above,
including their stability properties, a shock-capturing, finite-
volume numerical code was employed to solve the time-
dependent, rotating shallow water equations �1�, following
LeVeque.30 A grid of 10000 points was employed to dis-
cretize the domain from x=−5 to x=10, with the incoming

mass flux specified at x=−5 and an outflow condition at
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x=10. The model was integrated forward in time with initial
conditions of a flat interface �+Mb=1 and constant relative
velocity �u ,v�= �F ,0� �except where otherwise stated be-
low�, until a rigorous steady-state numerical criterion was
satisfied. The steady solutions shown in Figs. 4 and 6 were
reproduced with errors in jump position on the order of 10−2

and errors in surface height typically of the order of 10−4.
The time-dependent numerical model is of further use in

investigating convergence to the steady solutions, corre-
sponding to the hysteresis region �Ia/IIIa�, shown in Fig. 5.
Figure 7 shows the time evolution of the flow with B=2, F
=1.79, and M =0.4 with two different initial conditions. Both
the free surface height h=�+Mb and the along-obstacle ve-
locity v are shown. As shown by Pratt,29 in the nonrotating
hysteresis region I/IIIa shown in Fig. 2, the solution con-
verges to one or another of the two stable solutions depend-
ing on the initial conditions. This sensitivity to the initial
conditions is explicitly demonstrated for the rotating case in
Fig. 7, where the gray curves show the evolution of the nu-
merical solution from the initial conditions at t=0 �dotted
curves� to the steady solutions constructed as in Fig. 5 �black
curves�. In the top panel, the initial conditions correspond to
a flat interface and uniform flow, as described above, and the
solution converges to the supercritical solution �Ia�. In the
lower panel, the initial conditions consist of the steady state
obtained from the model for a larger mountain �M =0.6�. In
this latter case, the solution converges to the transcritical
solution �IIIa�.

Several promising new numerical algorithms have been
recently developed to include efficiently the nonconservative
topographic and rotation terms using Gudonov-type
methods.31,32 The exact analytical transcritical solutions �A2�
and �A4� should prove to be useful in developing computa-
tional tests for these algorithms.

V. CONCLUSIONS

Solutions for flow over a one-dimensional parabolic ob-
stacle in rotating single-layer and one-and-a-half layer fluids
have been presented. Analytical expressions for the regime
boundaries defining the various qualitative solutions have
been determined, for both supercritical and subcritical flow.
As pointed out by Baines and Leonard7 �BL herein�, rotation
has the effect of increasing the range of flow speeds for
which purely supercritical or subcritical solutions are pos-
sible. Perhaps the most striking new feature discovered here
is the change in the nature of the supercritical transition de-
pending on whether the nondimensional obstacle inverse
Burger number Bm= f2L2 /gh is greater than or less than 8.
For Bm�8, rotation is found to suppress hysteresis, and the
transition from supercritical to transcritical flow is character-
ized by the gradual emergence of hydraulic jumps ahead of
and behind the obstacle, rather than an abrupt transition from
a jump-free solution to a solution with a finite-amplitude

jump. Interestingly, Bm, and hence the type of supercritical
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transition, is independent of the layer depth H of the oncom-
ing flow. It seems likely, and initial numerical simulations
with different ridge-like obstacles seem to confirm this, that a
similar condition on Bm holds for other obstacle shapes. An
exception may be the semi-infinite, piecewise-linear ridge
investigated numerically by BL, as they did not discover a
region of hysteresis at low rotation rates.

It is hoped that these solutions will be instructive to re-
searchers investigating atmospheric and oceanic flows over
topography in both two and three dimensions, and also in the
study of the boundary layer flows in the vicinity of oncoming
cold fronts.15 A further application concerns the interpreta-
tion of rotating tank towing experiments.9,10 One of the main
results of the latter study was the identification of a large-
amplitude wave on the downstream side of the obstacle, fol-
lowed by a wave train of inertia-gravity waves. Another in-
teresting question concerns the location and amplitude of
solitary waves, relative to the location of the hydraulic jumps
discussed herein, when near-critical shallow water flow is
regularized by dispersion, as in the Ostrovsky equation11–13

in both one- and two-dimensional flows. Finally, the closed-
form analytic solutions for transcritical flow over the para-
bolic obstacle discovered may prove useful as a test case for
shock-permitting numerical schemes that seek to solve sys-
tems of partial differential equations, such as �2�, which can-

31,32
not easily be written in conservative form.
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APPENDIX: CLOSED-FORM SOLUTIONS
FOR TRANSCRITICAL FLOWS
AND INERTIA-GRAVITY WAVES
OF LIMITING AMPLITUDE

Closed-form solutions for nonlinear inertia-gravity
waves of limiting amplitude, corresponding to exact solu-
tions of �16� with K2=K2c, have been given by Grimshaw et
al..17 The solutions can be obtained because when K2=K2c,
i.e., on the transcritical curve, each term in Eq. �14� is divis-
ible by ��−F2/3�2. It is straightforward to integrate the result-
ing equation to obtain closed-form solutions for the shape of
the free surface in the form x=x�� ;B ,F�. The same tech-
nique may also be applied to Eq. �15� when M �0 to obtain
solutions for transcritical flow over the obstacle.

Grimshaw et al.’s solution for the limiting wave shape
2/3

FIG. 7. Illustrating convergence to different stable
steady solutions within the hysteresis region �B=2, M
=0.4, F=1.79�. The top panel shows the flow evolving
toward the supercritical steady solution �Ia, solid black
curve� from an initial condition of a flat surface �dotted
line�. The evolution of both the free-surface height h
=�+Mb �lower curves� and the along-obstacle velocity
v �upper curves� is shown in each case. The gray curves
in both panels show the time-dependent numerical so-
lution at nondimensional times t=0.25,4. The bottom
panel shows the solution evolving toward the transcriti-
cal solution �IIIa�, from an initial condition as described
in the text �dotted curve�.
is, for �=F , given by
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x − x0 = ±
1

�B
�log 2���2 + 2�� − 1�� − � + � + � − 1�

+
�

�
��2 + 2�� − 1�� − �

+ �3/2 sin−1
 �� − 1�� − �

���2 − � + 1
�	 , �A1�

meaning that the waves have a nondimensional amplitude

a = 2� − 1 − ��2 − � + 1.

In terms of a nondimensional wavelength � this leads to a
dispersion relation for the nonlinear waves of the form �
=����,

��B

2
= log

�3��� − 1� + 2� − 1
��2 − � + 1

+ �3��� − 1�

+ �3/2 sin−1
 �� − 2�
2

+
� .
�� − � + 1 2

in weakly dispersing media,” Sov. Phys. Dokl. 15, 539 �1970�.
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When M �0, Eq. �15� may be integrated to find analytic
expressions for the transcritical flow over a parabolic ridge.
Different solutions exist depending on the value of the ob-
stacle inverse Burger number Bm defined above. Define �
=8/Bm=8M /B. Then for 0���1,

x − x0 = ±
1

�B
�log 2��C��� + � + � + � − 1� +

��C���
��1 − ��

+ � �

1 − �
�3/2

sin−1
 �� + � − 1�� − ��1 − ��
���2 − ��1 − �� + �1 − ��2�	 ,

�A2�

whereas for �=1,

x − x0 = ±
1

�B
�log 2���2 + 2�� + � + ��

−
�2� + ���� + 2�

3�3/2 � , �A3�
and for ��1,
x − x0 = ±
1

�B
�log 2��C��� + � + � + � − 1� −

��C���
��� − 1�

+ � �

� − 1
�3/2

�log
2���� − 1���� + � − 1�� + ��� − 1� + ���� − 1�C����
��3 �	, �A4�

with C���=�2+2��+�−1��−��1−�� in each case. Inserting �=0 into �A2� recovers the limiting amplitude nonlinear wave-
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