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The flow of a one-and-a-half layer fluid over a three-dimensional obstacle of nondi-
mensional height M , relative to the lower layer depth, is investigated in the presence of
rotation, the magnitude of which is measured by a nondimensional parameter B (inverse
Burger number). The transcritical regime in which the Froude number F , the ratio of
the flow speed to the interfacial gravity wave speed, is close to unity is considered in the
shallow water (small aspect ratio) limit. For weakly rotating flow over a small isolated
obstacle (M → 0) a similarity theory is developed in which the behaviour is shown to
depend on the parameters Γ = (F − 1)M−2/3 and ν = B1/2M−1/3. The flow pattern
in this regime is determined by a nonlinear equation in which Γ and ν appear explic-
itly, termed here the ‘rotating transcritical small disturbance equation’ (rTSD equation,
following the analogy with compressible gas dynamics). The rTSD equation is forced by
‘equivalent aerofoil’ boundary conditions specific to each obstacle. Several qualitatively
new flow behaviours are exhibited, and the parameter reduction afforded by the theory
allows a (Γ, ν) regime diagram describing these behaviours to be constructed numerically.
One important result is that, in a supercritical oncoming flow in the presence of suffi-
cient rotation (ν & 2), hydraulic jumps appear can appear downstream of the obstacle
even in the absence of an upstream jump. Rotation is found to have the general effect
of increasing the amplitude of any existing downstream hydraulic jumps and reducing
the lateral extent and amplitude of upstream jumps. Numerical results are compared
with results from a shock-capturing shallow water model, and the (Γ, ν) regime diagram
is found to give good qualitative and quantitative predictions of flow patterns at finite
obstacle height (at least for M . 0.4). Results are compared and contrasted with those
for a two-dimensional obstacle or ridge, for which rotation also causes hydraulic jumps
to form downstream of the obstacle and acts to attenuate upstream jumps.

1. Introduction

A transcritical flow over topography can be loosely defined to occur when the topo-
graphic forcing acts to (near)-resonantly excite a significant free wave mode of the flow.
In single layer flow, or equivalently the one-and-a-half layer flow to be examined in this
work, transcritical flow occurs when the Froude number, or ratio of the upstream flow
speed to the appropriate long gravity wave speed, is near unity. The result of the resonant
excitation is the generation of nonlinear waves, whether in the form of hydraulic jumps, if
the system is regularised by dissipation as in the standard shallow water treatment, or in
the form of nonlinear dispersive waves and solitons in flows where dispersive effects domi-
nate (e.g. Baines 1995, and refs. therein). An essentially analogous phenomenon is known
to occur in stratified shear flow when the flow speed is comparable to the phase speed
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of a significant vertically trapped free mode of the system (Grimshaw & Smyth 1986).
Developing understanding of the transcritical flow regime is of particular importance,
as it is the regime in which maximum drag is exerted on the flow by the obstacle, and
the treatment of vertically trapped (or horizontally propagating) waves in atmospheric
gravity wave drag parameterisation schemes is known to be relatively simplistic, as dis-
cussed by Lott & Miller (1997). Scale analysis reveals that transcritical flow is likely to be
ubiquitious in the ocean and atmosphere (e.g. Rottman & Einaudi 1993), and character-
istic transcritical flow patterns have been distinguished in cloud photographs (Stevenson
1980; Burk & Haack 1999), and by synthetic aperture radar (Li et al. 2004).

An established model for the study of transcritical effects is that of single layer shallow
water flow. For non-rotating flow over a two-dimensional obstacle, analysis of the nonlin-
ear shallow water model has a long history (e.g. Long 1954, 1970; Houghton & Kasahara
1968), and great utility derives from the relatively simple picture of hydraulic control that
emerges. Regime diagrams can be constructed as a function of Froude number and ob-
stacle height illustrating the possible flow configurations (e.g. Baines 1995), an approach
that will be followed below. For the case of non-rotating flow over three-dimensional,
isolated obstacles, a series of numerical studies (e.g. Schär & Smith 1993a,b; Jiang &
Smith 2000) have allowed the construction of similar regime diagrams classifying the
resulting flow patterns and behaviours. The well-known analogy with compressible gas
dynamics is particularly helpful for this problem, and Jiang & Smith (2000) identify ‘bow
shocks’ and ‘V-waves’ which also appear in the flow of a compressible gas over an aero-
foil. This analogy has been made explicit in Esler et al. (2007, ERJ07 hereafter), where
transcritical shallow water flow over a small isolated obstacle is shown to be isomorphic
to the flow of a compressible gas around a thin ‘equivalent’ aerofoil, in the transonic
small disturbance limit (e.g. Chapman 2000). The ‘equivalent aerofoil’ method of ERJ07
leads to a parameter reduction; for a given obstacle, the resulting flow depends only on
a ‘transcritical similarity parameter’, a measure of the criticality of the flow relative to
the topographic forcing. A similar approach will be followed below.

On the geophysical ‘mesoscale’ associated with atmospheric flow around isolated is-
lands or over mountain ranges, rotation becomes important in determining flow patterns
and drag. In the transcritical regime, rotation becomes important when the Rossby ra-
dius of deformation becomes comparable to the transverse scale of the obstacle wake,
which may be much larger than the horizontal scale of the obstacle itself. This indi-
cates a strong sensitivity of transcritical flows to even ‘weak’ rotation. One aspect is that
the waves generated by topographic forcing in the presence of rotation will be distinct
from those in non-rotating flow; in one-dimensional shallow water these will be nonlin-
ear inertia-gravity waves (e.g. Shrira 1986; Grimshaw et al. 1998; Zeitlin et al. 2003),
which are known to be modified by dispersion (Ostrovsky 1978). The generation of these
inertia-gravity waves in the relatively simple context of flow over a two-dimensional ob-
stacle in the presence of rotation has been studied previously (Baines & Leonard 1989;
Esler et al. 2005). Some basic qualitative effects of rotation in the transcritical regime
are apparent from these studies; upstream propagating hydraulic jumps are arrested a
finite distance ahead of the obstacle, the amplitude of these jumps decreases, and a hy-
draulic jump appears downstream of the obstacle when the amplitude of the wave-train of
inertia-gravity waves excited downstream exceeds a limiting value. In Esler et al. (2005,
ERJ05 hereafter), analytic solutions for the special case of a parabolic ridge are devel-
oped. New aspects of these solutions are discussed below. Rotating layerwise flow over
three-dimensional obstacles has, however, received less attention overall and is the main
topic of this work. Vilenski & Johnson (2004) examined rotating flow over a Gaussian
obstacle that is asymptotically elongated in the cross-stream direction, identifying several
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representative flow patterns in the (dispersive) rotating Kadomtsev-Petviashvili equation
(Kadomtsev & Petviashvili 1970). The problem of transcritical rotating flow over isolated
three-dimensional (e.g. axisymmetric) obstacles has not yet been addressed, however - in
particular the question of determining the explicit relationship between different steady
flow regimes and the physical parameters describing the problem.

The influence of rotation on transcritical flows can also be investigated experimentally.
Fig. 1 shows the interface displacement recorded during towing tank experiments (John-
son et al. 2006) performed at the LEGI-Coriolis rotating tank facility in Grenoble. In the
experiments, a surface-mounted obstacle is towed across the tank, exciting internal waves
at the interface between two layers of fluid of contrasting density. Fig. 1 (left) shows the
interface elevations for an oblong obstacle towed at 10cm s−1 in the absence of rotation.
The right hand panel shows a similar experiment, but with the tank rotating with period
120s, giving a Rossby radius of about 1m. The experimental values of the nondimensional
parameters introduced above are approximately F = 1.1− 1.3, M = 0.5 and B = 0.5 (in
the rotating case), where the Froude number estimate is partly informed by comparing
flow patterns in a number of experiments at different towing speeds with the flow patterns
in the model calculations of Johnson et al. (2006). Appreciable differences are apparent
between the non-rotating and rotating flows. In the absence of rotation (left panel), a
steady bow-wave several metres in lateral extent is generated ahead of the obstacle (la-
belled C1), followed by a smaller bow wave (C1b) and a trough (T1) to the rear. The
basic bow-wave structure is well captured in non-dispersive (shallow water) numerical
simulations (e.g. Jiang & Smith 2000), and representative model equations that include
dispersive effects can predict further qualitative details of the flow pattern (e.g. Johnson
& Vilenski 2004; Johnson et al. 2006). In rotating flow (right panel) the bow wave (C1) is
significantly decreased in lateral extent, and the secondary wave (C1b) is absent. Behind
this a broad trough (T1) is still present, but immediately behind the trough, downstream
of the obstacle, a large amplitude, narrow, nonlinear wave (C2) appears. The appear-
ance of this wave can be attributed to the rotation, and a central purpose of this work
is to demonstrate that amplification of nonlinear downstream disturbances such as C2,
and the decrease in amplitude and cross-stream extent of the bow wave (C1) are char-
acteristic features of rotating transcritical flow. Shallow water flows over both two and
three-dimensional obstacles are described in order to demonstrate the robustness of this
effect.

Section 2 presents a theoretical treatment of transcritical rotating shallow water flow
over both two-dimensional obstacles, re-examining the results of ERJ05, and three di-
mensional obstacles, extending and developing the ‘equivalent aerofoil’ analysis of ERJ07
to include rotation. It is shown that in both cases, for relatively small obstacle height,
flows are well-characterised in terms of ‘similarity parameters’ that measure the impor-
tance of criticality and rotation relative to the topographic forcing. A regime diagram is
constructed for the two-dimensional results in terms of these parameters, and a nonlin-
ear equation, the ‘rotating transcritical small disturbance (rTSD) equation’, is derived
to describe the three-dimensional flows. In section 3 numerical solutions of the rTSD
equation are used to construct a regime diagram describing the different flow behaviours
for the three-dimensional obstacle case. The effect of rotation on the drag exerted by the
obstacle on the flow is discussed. In section 4 numerical solutions of the rotating shallow
water solutions are used to evaluate the accuracy of the rTSD asymptotic theory, and to
verify the persistence of the rTSD flow regimes, at finite obstacle height. Section 5 gives
some conclusions.
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2. Similarity theories for transcritical rotating flows

2.1. Physical scenario and model equations

From a geophysical perspective, the relevant physical scenario to be modelled is that of
a one-and-a-half layer inviscid fluid, consisting of a layer of undisturbed depth H and
uniform density ρ2 underlying a less dense layer (density ρ1) of infinite vertical extent.
For ease of exposition the density difference is taken to be small, hence (ρ2 − ρ1)/ρ2 ≪ 1
and the Boussinesq approximation can be made. The fluid, acted on by gravity g, rotates
at angular frequency f/2 and both layers flow with an initially uniform horizontal speed
U over an obstacle with maximum height hm and horizontal scale L. Further, the aspect
ratio of the flow is taken to be small (H/L ≪ 1) so that shallow water dynamics applies
in the lower dynamically active layer, and to leading order the flow remains uniform in
the upper layer for all time.

It is straightforward to show that the non-dimensional rotating shallow water equations
hold for the lower layer flow, i.e.

ut + (u − F )ux + vuy −
√

Bv = −σx − Mhx,

vt + (u − F )vx + vvy +
√

Bu = −σy − Mhy, (2.1)

σt + [(u − F )σ]x + [vσ]y = 0,

where σ is the layer thickness, h = h(x, y) is the topography, and the total horizontal
velocity is u = (−F + u, v). The equations have be nondimensionalised by taking the
horizontal length scale to be L, the horizontal velocity scale to be c ≡ √

g′H (the long
interfacial gravity wave speed in the absence of rotation), the timescale to be L/c, and the
layer thickness scale to be H . Three non-dimensional parameters now appear explicitly
in (2.1): the Froude number F = U/c; the non-dimensional obstacle height M = hm/H ;
and an inverse Burger number B = f2L2/c2. Note that B is the square of the ratio of
the obstacle length scale L to the radius of deformation LR = c/f . Results are presented
in terms of F , M , and B, or similarity parameters explicitly related to them, in all that
follows.

As discussed in ERJ05, equations (2.1) apply also to an ‘experimental scenario’ in
which an obstacle is towed through a single layer of rotating fluid which is otherwise at
rest. However, because the single-layer rotating shallow water equations are not Galilean
invariant, the set (2.1) does not apply directly to single-layer flow over an obstacle.
In single layer flow, when rotation is present, the free surface must slope in order to
geostrophically ‘balance’ a steady current.

In order to model the physical situation of breaking waves, solutions of (2.1) are typi-
cally regularised by including the possibility of mass and (lower layer) momentum con-
serving hydraulic jumps (Klemp et al. 1997). The idea that rotation should not sig-
nificantly affect hydraulic jumps is due to Houghton (1969), who argues that since a
hydraulic jump may be considered to take place across a very short distance compared
to the Rossby radius of deformation (LR = c/f), rotation may be considered to have a
negligible effect on its internal dynamics. In two dimensions, therefore, hydraulic jumps
satisfy those conditions applicable to the non-rotating system, namely

−V [σ]+− + [σu.n]+− = 0,

−V [σu.n]+− + [σ(u.n)2 +
1

2
σ2]+− = 0, (2.2)

where n is a horizontal unit vector normal to the jump, V is the jump velocity in the
direction of n, and [·]+− denotes the difference between the evaluated quantity in brackets
upstream and downstream of the jump. Note that in stipulating the jump conditions (2.2),
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there is an implicit assumption that an unspecified dissipation acts on the (unresolved)
horizontal scale of the jumps (see e.g. Jiang & Smith 2000), and therefore the full system
does not conserve energy when jumps are present.

2.2. Two-dimensional obstacles

First, we present a novel summary of the theory for rotating flow over a two-dimensional
obstacle, or ridge, h = h(x). The two-dimensional (y-independent) version of the problem
formulated above has been addressed numerically by Baines & Leonard (1989), and more
recently by ERJ05. In ERJ05 the specific case of a parabolic obstacle of the form

h(x) =

{

4x(1 − x) 0 < x < 1,
0 x 6 0, x > 1

is addressed in detail, as for this particular obstacle analytic progress is possible. Seeking
y-independent steady solutions of (2.1), the layer thickness σ is found to satisfy

(

σ +
F 2

2σ2

)

xx

+ B (1 − σ) = −Mhxx. (2.3)

For the particular case of the parabola, equation (2.3) may be integrated and various
deductions can be made about the form of the solution for given F , M and B, including
the possible locations of steady hydraulic jumps, which, from (2.2), must satisfy

[

σ2

2
+

F 2

σ

]+

−

= 0,

[

σx

(

1 − F 2

σ3

)]+

−

= 0.

The results of ERJ05 are valuable for interpreting the results to be presented below
for rotating flow over isolated three-dimensional obstacles. In particular, we would like
to establish whether rotation has a robust, predictable effect on the flow patterns in
transcritical flows, that persists regardless of the geometry of the obstacle. To make the
comparison with the three-dimensional results below as straightforward as possible, a
new presentation of the ERJ05 results follows. Although the ERJ05 results are valid for
all values of (M, F, B), a particularly compact and useful way of presenting the results
for small M is to find similarity parameters which entirely determine the flow pattern in
the limit M → 0. Writing

Γ =
F − 1

M1/2
, ν =

B1/2

M1/4
, (2.4)

and setting σ = 1 + M1/2φ reduces equation (2.3), at leading order in M , to
(

−2Γφ +
3

2
φ2

)

xx

− ν2φ = −hxx. (2.5)

Equation (2.5) describes the leading order nonlinear behaviour of the steady flow solutions
of (2.3) in the weakly-rotating transcritical limit M, B → 0, F → 1, in which Γ, ν remain
finite. For small M the problem is thus seen to be characterised by the two similarity
parameters (Γ, ν), and it is therefore useful to present the results of the ERJ05 study
in terms of these parameters, particularly as a similar approach is taken for the three-
dimensional obstacle analysis described below.

Fig. 2 shows the regime boundaries dividing the different qualitative flow behaviours
found by ERJ05, presented as a function of the similarity parameters (Γ, ν). The qual-
itative behaviours themselves are shown in the insets on the right (note that DRJ is
‘downstream recovery jump’ and that the numbering and flow direction has been changed
from that in ERJ05, for consistency with the following section). The labelled curves S1
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and S2 on the supercritical side (Γ > 0) are derived from the formulae (19) and (21) in
ERJ05; in the weakly nonlinear (M → 0) case these can be shown to reduce to

ν2 = 6

(

9 − 6Γ
2

Γ
3

)

, ν2 =
6

5

(

9 − 6Γ
2

Γ
3

)

,

respectively. The remaining curve on the supercritical side, dividing regions V and VI,
and the curves on the subcritical side (Γ < 0) are derived from numerical solution of the
appropriate systems of nonlinear equations outlined in ERJ05.

Fig. 2a shows the regime diagram in the weakly nonlinear (M → 0) limit. The ν =
0 axis corresponds to nonrotating flow which is characterised by transitions between
between regimes I and IIb, and between regimes IV and VI, at Γ = ±

√

3/2 respectively,
(see e.g. Baines 1995). With increasing rotation the range of Γ for which transcritical flows
(regimes II-IV) occur is seen to decrease. New sub-regimes in which the hydraulic jumps
move onto the obstacle itself can now be identified in both subcritical (regime IIa) and
supercritical (regime IVb) oncoming flow. For ν & 2, a further possible regime appears
for supercritical oncoming flow. In regime V, a hydraulic jump is present downstream of
the obstacle, notwithstanding the complete absence of an upstream hydraulic jump.

To demonstrate that the weakly nonlinear description remains qualitatively useful in
practise even at finite M , Fig. 2b shows the (Γ, ν) regime diagram for M = 0.4. In non-
rotating flow (ν = 0) some significant differences are apparent between the M = 0.4 and
weakly nonlinear situations, as expected from Baines (1995). First, in subcritical oncom-
ing flow, jumps may now appear on the downstream side of the obstacle (regime IIa) in
non-rotating flow. Second, a region of hysteresis (IV/VI) for supercritical oncoming flow
in which either a purely supercritical flow (VI) or a transcritical flow with an upstream
jump (IV) may develop, depending on the flow initial conditions (see e.g. Baines & Davies
1980). One of the main results of ERJ05 is that rotation acts to suppress supercritical
hysteresis, as can be seen in Fig. 2b, since the region of hysteresis disappears for ν & 2.25.
In fact for ν greater than this value, the M = 0.4 regime diagram is very similar to its
weakly nonlinear counterpart (M → 0). In ERJ05 it was shown that hysteresis is present
only for B < 8M , i.e. ν < 81/2M1/4. At larger values of M , therefore, the hysteresis
region occupies a progressively larger proportion of the corresponding (Γ, ν) diagram.

The above results are specific to the parabolic obstacle. However, numerical calcula-
tions (not shown) have been used to verify that flows over other obstacles exhibit similar
behaviour. Specifically, a qualitatively similar regime diagram was derived for a ‘Witch of
Agnesi’ obstacle with cross-section h(x) = 1/(1+π2x2) (the cross-sectional area of which
is equal to that of the parabola above). Details of the calculations are exactly as those
described in ERJ05 for the parabolic obstacle. Hence the general structure of the regime
diagram Fig. 2 is likely to be generic to rotating flows over most simple two-dimensional
obstacles.

2.3. Three-dimensional obstacles

The above results will now be compared with those for flow over three-dimensional iso-
lated obstacles, again in the transcritical regime for small obstacle height M and Froude
number F is close to one. The analysis loosely follows that in ERJ07, for the case of non-
rotating weakly dispersive flow, but the introduction of rotation breaks the symmetry of
the flow about the centreline y = 0, which requires careful consideration. The relevant
scaling regime for rotating transcritical flow over an obstacle with small height M ≪ 1 is
suggested by ERJ07 and the derivation of the rotating Kadomtsev-Petviashvili equation
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(Grimshaw & Melville 1989). The parameters

Γ = (F − 1)M−2/3, ν = B1/2M−1/3, (2.6)

remain of order unity as M → 0. Following ERJ07, Γ is referred to as the transcritical
similarity parameter and measures the supercriticality (F > 1, Γ > 0) or subcriticality
(F < 1, Γ < 0) of the flow for a given obstacle height M . The parameter ν measures the
importance of rotation in the transcritical regime. Both positive and negative values of
ν are admissible depending on the sense of the rotation.

It is useful to introduce a free surface displacement

η = σ + Mh − 1,

a small parameter ǫ = M2/3, and to seek solutions of (2.1) that evolve on a ‘slow’ time
scale τ = ǫt. The variables (u, v) and η can be expanded in powers of ǫ1/2 as

u = ǫ
(

u0 + ǫ1/2u1 + ǫu2 + ....
)

v = ǫ3/2

(

v0 + ǫ1/2v1 + ǫv2 + ....
)

(2.7)

η = ǫ
(

η0 + ǫ1/2η1 + ǫη2 + ....
)

.

Expansions (2.7) are used to match leading order asymptotic solutions of (2.1) in two
separate regions defined by their cross-stream distance from the centre of the obstacle at
y = 0.

In the inner region, which describes flow on streamlines that pass over or near the
obstacle, the cross-stream co-ordinate is taken to be y. Denoting inner region variables
with the superscript i and inserting the expansion (2.7) in (2.1), establishes that

ui
0 = ηi

0(x). (2.8)

The leading order solution is therefore described by an (as yet) undetermined y-independent
function ηi

0(x), except for the leading order cross-stream velocity vi
0. At the next order

in the expansion

ui
1 = ηi

1(x, y), vi
0y = −hx. (2.9)

Integrating in y, the second condition gives

vi
0(x, y) = V (x) −

∫ y

0

hx(x, ŷ) dŷ, (2.10)

where V (x) is an undetermined function, with the velocity vi
0 related to the free surface

height through

−vi
0x + νηi

0 = −ηi
1y. (2.11)

Higher orders in the inner expansion reveal that ηi
0(x) cannot be determined by the inner

region alone. Further, the expansion becomes invalid sufficiently far from the obstacle,
once |y| ∼ O(ǫ−1/2) where higher order terms in the series expansion become comparable
with those at leading order. Thus ηi

0 is determined by matching with an outer region
solution which is valid for |y| ∼ O(ǫ−1/2).

The variable Y = ǫ1/2y is next introduced, in order to capture the cross-stream scale
on which the leading order free surface height and streamwise velocity vary in the cross-
stream direction, in the outer region solution. The obstacle influences the outer region
only through the boundary condition at Y = 0. Throughout the rest of the domain
in the outer coordinates the bottom boundary is flat. In the outer region we seek far
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field asymptotic solutions, denoted by superscript o, of (2.1). Introducing a ‘slow’ time
variable τ = ǫt, terms of the form

u0 = uo
0(x, Y, τ) etc.

are substituted into the series expansion (2.7). At leading order

uo
0 = ηo

0(x, Y ), (2.12)

and

vo
0x = ηo

0Y + νηo
0 . (2.13)

At the next order, uo
1, vo

1 , ηo
1 satisfy an identical set of equations to (2.12-2.13), and hence

may be set to zero without loss of generality.
To obtain an equation for ηo

0 we must proceed to O(ǫ2), thereby introducing nonlinear
terms. The x-momentum and continuity equations give

uo
2x − ηo

2x = −νvo
0 + ηo

0τ − Γηo
0x + ηo

0η
o
0x, (2.14)

uo
2x − ηo

2x = −v0
0Y − ηo

0τ + Γηo
0x − 2ηo

0η
o
0x.

Eliminating uo
2, ηo

2 , and using relations (2.13) to eliminate terms involving vo
0 , gives

(2ηo
0τ + 3ηo

0η
o
0x − 2Γηo

0x)x − ν2ηo
0 + ηo

0Y Y = 0. (2.15)

Equation(2.15) is the (dispersionless) rotating Kadomtsev-Petviashvili equation (Kadomt-
sev & Petviashvili 1970; Grimshaw & Melville 1989).

The novel component here is the derivation of the appropriate boundary condition
on Y = 0, which is obtained by matching with the inner solution as follows. Matching
between the inner and outer regions requires

ηi
0(x) = lim

Y →0
ηo
0(x, Y ),

lim
y→±∞

ηi
1y(x, y) = lim

Y →0±
ηo
0Y (x, Y ), (2.16)

lim
y→±∞

vi
0(x, y) = lim

Y →0±
vo
0(x, Y ).

These are satisfied if, from (2.10) and (2.11), the single condition

[ηo
0Y ]+− =

∫ ∞

−∞

hxx(x, ŷ) dŷ, (2.17)

is enforced, where the square brackets denote the difference between evaluation at Y →
0+ and Y → 0−. The centre-line interface displacement ηi

0(x) and cross-stream velocity
V (x) in equation (2.10) are at this stage still unknown, and must be determined from the
solution itself a posteriori. The system involving equation (2.15) and (2.17) is symmetric
in ηo

0 about Y = 0, and if desired can be solved in the half-plane, Y > 0. Crucially,
however, (2.13) reveals that the leading order transverse velocity vo

0 is not antisymmetric
about Y = 0, as it is in the non-rotating problem, and the cross-stream velocity V (x)
on the inner region centre-line y = 0, determined by (2.10), will in general be non-zero.
Note that, whereas the leading order displacement ηo

0 is unchanged under a change in
sign of the rotation, the leading order transverse velocity vo

0 is reflected about Y = 0. As
recognised by Grimshaw & Melville (1989) the implication of non-zero V (x) on y = 0 is
that, despite the superficial appearance of reflectional symmetry in surface displacement
height, solving (2.15) and (2.17) for ηo

0 in the half-plane does not recover the solution
for flow over a half-obstacle when an infinite side-wall is present at y = 0. The physical
reason is that in the rotating system, the presence of the wall introduces a new wave, the
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Kelvin wave. The half-obstacle / sidewall problem will then have two distinct solutions
depending on the sign of the rotation.

In order to exploit the numerical methods of gas dynamics to find steady solutions of
(2.15), it is convenient to introduce

φ(x, Y ) =

∫ ∞

x

ηo
0(x̂, Y ) dx̂,

allowing (2.15) to be integrated to give the following system, valid in the half-plane
Y > 0,

(−2Γ− 3φx)φxx − ν2φ + φY Y = 0, (2.18)

subject to the boundary condition

φY (x, 0) = Kx(x) on Y = 0, where K(x) =

∫ ∞

0

h(x, ŷ) dŷ. (2.19)

With ν = 0, this system is the transonic small disturbance equation, or Kármán-Guderley
equation, for flow over a thin symmetric aerofoil with half-thickness ǫK(x). The aerofoil
shape K(x) is the (half) cross-sectional area of the obstacle. For rotating flow with ν 6= 0,
equation (2.18) is described here as the rotating transcritical small disturbance (rTSD
hereafter) equation.

For definiteness attention will be restricted in the following to two specific axisymmetric
obstacles, with nondimensional radial height profiles given by

h(r) =

{

1 − r2 r < 1,
0 r > 1,

Paraboloid, (PB) (2.20)

h(r) =
1

(1 + 4r2)3/2
‘Witch of Agnesi’, (WA).

These two obstacles represent relative extremes of behaviour, that of ‘compact’ and
‘non-compact’ obstacles respectively, found in the non-rotating study of ERJ07. The
second of the two obstacles has also been studied in detail in the nonrotating context by
several authors (see Schär & Smith 1993a; Jiang & Smith 2000). Note that both obstacles
have maximum height unity, for consistency with the non-dimensionalisation, and have
equal volume V = π/2. Hence differences in flow behaviour can be attributed purely to
differences in obstacle shape. The equivalent aerofoils for the two obstacles, illustrated
in ERJ07 (see their Fig. 1), are

K(x) =

{

2

3
(1 − x2)3/2 |x| < 1,

0 |x| > 1,
Paraboloid, (PB) (2.21)

K(x) =
1

2(1 + 4x2)
, ‘Witch of Agnesi’, (WA).

3. Transcritical rotating flows over three-dimensional obstacles in the

small disturbance limit

The transcritical asymptotic theory presented above for three-dimensional obstacles
reduces the three-parameter (M , F , B) problem for flow over an obstacle of finite height
to a two-parameter problem (Γ, ν) that is formally valid for small obstacles, M ≪ 1. The
parameter reduction allows the numerical construction of a regime diagram describing
the qualitative behaviour of transcritical rotating flow over a three-dimensional obstacle,
to compare with the two-dimensional obstacle regime diagram Fig. 2a. As in the two-
dimensional obstacle case, it can be expected that the regime diagram will be a reasonably
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accurate guide to behaviour even at finite values of M . In fact since there is no known
hysteresis behaviour for flow over simple axisymmetric three-dimensional obstacles (e.g.
Baines 1995) the M → 0 regime diagram may remain accurate for relatively high values
of M , as is shown in section 4 below.

3.1. Numerical solution of the rTSD

The rTSD equation (2.18), with the ‘equivalent aerofoil’ boundary condition (2.19) can
be solved by making relatively minor modifications to existing algorithms for the non-
rotating TSD equation developed in the study of flow over aerofoils in gas dynamics
(e.g. Cole & Cook 1986). The type-dependent finite difference scheme used to obtain the
solutions below was developed by Murman & Cole (1971) and refined by Engquist &
Osher (1980). The basic concept behind the technique is that a different finite-difference
stencil is used depending on whether the flow is locally subcritical and the equation
(2.18) is therefore locally elliptic (centred differences), is locally supercritical / hyperbolic
(upstream sided differences), or is in transition between the two at a shock (hydraulic
jump) or sonic line. The resulting difference equations are solved using the monotonic
implicit approximate-factorization scheme of Goorjian & Van Buskirk (1981), with the
low frequency modes damped by means of the multi-grid acceleration technique described
by Jameson (1979). The inclusion of the extra rotating term in (2.18) is straightforward,
and is found to have the effect of further stabilising the behaviour of all algorithms
tested. For supercritical oncoming flow, the boundary conditions are φx = 0 at the
upstream boundary, with outflow conditions on the upper and downstream boundaries.
For subcritical oncoming flow, in the absence of rotation, φ may be specified on the
lateral boundaries using the anticipated asymptotic form of the far field solution to the
TSD (e.g. Cole & Cook 1986). In rotating flow, the far field solution decays exponentially
with distance from the aerofoil, hence it is sufficient to set φ = 0 on (suitably distant)
lateral boundaries.

As discussed in detail in ERJ07, there are difficulties in obtaining numerical solutions
of (2.18) in a finite domain as |Γ| → 0. In the non-rotating case the domain size needs
to be extended indefinitely as this limit is approached, in order to prevent the upstream
hydraulic jump from reaching the upstream boundary of the domain, as well as to prevent
wave reflection from the lateral domain boundaries. Rotation alleviates these problems
to an extent, although solutions with |Γ| sufficiently close to zero remain problematic.
Solutions are therefore obtained on a range of domain sizes, depending on the values of Γ
and ν, from 10L× 10ǫ−1/2L to 40L× 40ǫ−1/2L. Grid spacings vary between δx = 0.05L
(low resolution) and δx = 0.01L (high resolution). For all of the numerical calculations,
care was taken on a case-by-case basis to ensure that the flow patterns and calculated
drags are unaffected by further increases in domain size, that the flow field in the vicinity
of the obstacle is steady, and that adequate convergence with respect to spatial resolution
has occurred.

3.2. Transcritical flows in the rTSD limit

Fig. 3 shows numerical solutions of the rTSD (2.18) for the paraboloid (PB) equiva-
lent aerofoil boundary conditions (2.19), with K(x) given by equation (2.21), at differ-
ent values of the similarity parameters Γ (criticality) and ν (rotation). Recall that the
equivalent aerofoil boundary conditions (2.19) represent the effect of the corresponding
three-dimensional obstacle (2.20) on the flow in the rTSD limit, and hence in this limit
the forcing from the obstacle is compressed onto the line Y = 0. The quantity contoured
is the leading order surface displacement field ηo

0(x, Y ) (= φx), and shaded regions are
regions of embedded supercritical flow (when the oncoming flow is subcritical, Γ < 0) or
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embedded subcritical flow (when the oncoming flow is supercritical, Γ > 0). Note that
the rTSD solutions for ηo

0(x, Y ) are symmetric about the centreline (Y = 0). Shallow
water flows at finite M are asymmetric about the centreline, but as will be seen below
this asymmetry enters the asymptotic theory at higher order. The different panels in
Fig. 3 illustrate typical flow patterns in the qualitatively different flow regimes found as
Γ and ν are varied: these flow patterns are described in more detail below.

Fig. 4a gives the regime diagram for the rTSD equation in (Γ, ν) parameter space for
the paraboloid obstacle. The regime boundaries are established numerically by repeatedly
finding steady solutions to the rTSD equation (2.18). The regime diagram is to be ex-
amined in conjunction with Fig. 3, where the corresponding flow patterns are illustrated
(note that each panel in Fig. 3 is labelled with the number of the appropriate regime).
The exact location in parameter space of the Fig. 3 example solutions are marked in
Fig. 4 as triangles.

In regime I the flow is entirely subcritical throughout the domain. The solution is
symmetric in x and rotation is found to cause the solution to decay more rapidly away
from the obstacle, causing the lateral extent of the disturbance field to be reduced relative
to its non-rotating counterpart. In regime II a region of supercritical flow appears near
the rear of the obstacle. Fluid is accelerated smoothly from subcritical to supercritical
past the obstacle (shaded region in panel), before abruptly decelerating to subcritical via
a hydraulic jump. In the regime diagram Fig. 4a, with increasing rotation the boundary
between regimes I and II moves closer to Γ = 0, reducing the region of parameter space
where transcritical solutions exist. Region II can be further subdivided into IIa and IIb
depending on whether the embedded supercritical flow remains attached to the obstacle
(IIa) or is detached (IIb, not shown). The detached (IIb) solution shows the characteristic
‘fishtail’ system of jumps behind the obstacle trailing edge characteristic of compressible
gas flow over an aerofoil (see, e.g. Chapman 2000). In regime IIa the effect of rotation
is sufficiently strong that the embedded region of supercritical flow lies entirely over the
obstacle, and the ‘fishtail’ system of jumps is destroyed.

For supercritical oncoming flow throughout region III, the displacement field differs
little from the corresponding non-rotating flows. The flow contains a single embedded
region of subcritical flow, enclosing the leading edge of the obstacle, with a hydraulic
jump at its upstream boundary beyond which the flow is undisturbed. Downstream of
the obstacle the flow returns to its undisturbed state through a supercritical leap; super-
critical leaps being distinguisable from hydraulic jumps in that they connect two regions
of supercritical flow, as opposed to allowing a transition between supercritical flow and
subcritical flow. In region IV, by contrast, the flow field no longer qualitatively resem-
bles that found in non-rotating flow. An embedded region of subcritical flow enclosing
the leading edge of the obstacle remains, but additional embedded regions of subcritical
flow appear to the rear of the obstacle. The nature of these further regions of embedded
subcritical flow allows region IV to be subdivided into IVa, IVb and IVc. In IVa two
embedded regions of subcritical flow are found downstream of the obstacle on either side
of the centreline Y = 0, seen in the shaded regions in the IVa panel of Fig. 3 to the rear
of the obstacle. Note that as Γ is decreased to cross the regime boundary between regions
III and IVa, these embedded subcritical regions are not found to migrate inwards from
infinity, rather they first appear at a finite distance from the obstacle. At the regime
boundary between IVa and IVb, the two embedded subcritical regions downstream join
at Y = 0 to form a single region, and a broad hydraulic jump is now present to the rear
of the obstacle. In the IVb panel of Fig. 3, this broad hydraulic jump forms the rear
of a ‘fishtail’ system of jumps, the first of which are supercritical leaps, initiated at the
obstacle trailing edge. If ν is increased towards the boundary between regions IVb and
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IVc in the regime diagram, the fishtail system of jumps occupies a progressively smaller
area, until the rear jump becomes attached to the rear of the obstacle in region IVc.
Region IVc is therefore characterised as having hydraulic jumps attached to both edges
of the obstacle, as can be seen in the IVc panel of Fig. 3.

With increasing Γ, or more supercritical oncoming flow, the strength and lateral ex-
tent of the hydraulic jump at the upstream edge of the obstacle decrease. If rotation
is sufficiently strong (ν & 2.5), the upstream jump disappears altogether, defining the
boundary with region V of parameter space. In region V there is no upstream jump, but
a jump remains at the downstream edge of the obstacle. Region V solutions therefore
no longer have a region of embedded subcritical flow enclosing the leading edge of the
obstacle, although embedded regions of subcritical flow remain at the obstacle rear. The
nature of these subcritical regions can be used to subdivide region V in a similar fashion
to region IV, and Fig. 3 shows a typical flow from region Vb. If Γ increases further,
the flow eventually becomes supercritical everywhere in region VI of parameter space.
Region VI flows are characterised by supercritical leaps lying approximately along the
‘Mach lines’ emanating from the leading and trailing edges of the obstacle.

Fig. 4b shows the equivalent regime diagram for the ‘Witch of Agnesi’ (WA) obstacle.
Flow regimes are labelled as for the paraboloid obstacle. For the ‘Witch of Agnesi’ obsta-
cle, no distinction can be made between regions of embedded subcritical or supercritical
flow lying on or off the obstacle, as the obstacle has no definite boundary, so there are
fewer regime subdivisions. Nevertheless the regime diagram has the same main qualita-
tive features as for the paraboloid obstacle. Perhaps the most notable difference between
the two obstacles is that at relatively high rotation rates (ν & 2), the transition from
regime IV solutions which have jumps both ahead of and behind the obstacle, to regime
V solutions in which only the rear jump is present, occurs at much lower values of Γ
for the ‘Witch of Agnesi’ obstacle. Further, the change in character of the supercritical
transition noted above occurs for ν ∼ 1.7, significantly lower than for the paraboloid ob-
stacle. Thus it appears that although solutions for the paraboloid and ‘Witch of Agnesi’
obstacles are qualitatively similar, the effects of rotation are felt somewhat more strongly
by the ‘Witch of Agnesi‘ obstacle than the paraboloid.

One of the most important aspects of the problem under investigation is to determine
the effect of rotation on the drag exerted by the obstacle on the flow in the transcritical
regime. As shown in ERJ07, drag in the rTSD limit is given by the drag on the ‘equivalent
aerofoil’ in the rTSD solution. In terms of the model parameters, and the displacement
height field, the drag is given by

D = M5/3

∫ ∞

−∞

ηo
0(x, 0)Kx(x) dx = M5/3D(Γ, ν),

where the function D(Γ, ν) must be determined numerically. Fig. 5 shows the drag func-
tion D(Γ, ν) for fixed values of ν calculated from a series of steady numerical solutions
of equation (2.18), for the paraboloid obstacle. In the non-rotating case (ν = 0) the drag
curve rises steeply on the subcritical side, plateaus at a fixed value, and then decays more
gradually on the supercritical side. Very similar drag curves were found for four other
obstacles in ERJ07. It is clear from Fig. 5 that rotation has a strong and systematic
effect on the drag exerted by the obstacle on the flow: as ν increases the range of Γ for
which significant drag is exerted is reduced at the subcritical end. For ν & 2 significant
drag is exerted only for significantly supercritical oncoming flows (Γ > 1) and as rotation
increases further the peak drag begins to decrease. At all values of ν investigated, the
drag is found to approximate its nonrotating value for sufficiently high Γ. Solid circles
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on each curve in Fig. 5 indicate the location of the regime boundaries of Fig. 4, and in
some cases these correspond to points of inflection on the corresponding drag curve.

4. Transcritical rotating flows over finite height three-dimensional

obstacles

The question naturally arises as to what extent solutions to the rTSD equation rep-
resent those of the full rotating shallow water equations. In ERJ07, the non-rotating
theory was found to be reasonably accurate for M . 0.4 and |Γ| . 1. Can each flow
regime discovered in the rTSD solutions above be identified at finite obstacle height M
in solutions of the rotating shallow water equations, especially once some of the assump-
tions underpinning the asymptotic theory hold weakly at best? Are drag and regime
boundary predictions still reasonable? These questions are addressed next.

4.1. Numerical solution of the rotating shallow water equations

The rotating shallow water equations (rSWE) are solved numerically using the CLAW-
PACK finite volume code (Conservation LAWs software PACKage, LeVeque 2002). CLAW-
PACK solves hyperbolic systems of equations, usually written in conservation form, using
an algorithm due to Roe (1981) in which the global problem under investigation is first
discretised into a set of local Riemann problems by assuming a piecewise discontinuous
form for the solution. The set of Riemann problems are linearised following Roe’s algo-
rithm and solved using Godunov’s upwind method (LeVeque 2002). The great advantage
of this algorithm is that, provided the governing equations can be written in conservation
form, the speed of propagation of shock discontinuities satisfying the global conservation
laws is accurately captured. Here CLAWPACK is adapted to solve the shallow water
equations (2.1) written in conservation form, and the relevant shock discontinuities are
the hydraulic jumps (2.2). The forcing terms due to the obstacle and rotation cannot
be included in the conservation form of (2.1), and are handled using Strang splitting,
where the time tendency at each step is split into a contribution from the unforced equa-
tions calculated using Roe’s method, and a separately computed contribution from the
forcing, evaluated using standard semi-implicit finite difference methods. Rotation terms
have previously been included following this technique by Kuo & Polvani (1997), and
one-dimensional solutions using this algorithm have been validated against analytical
solutions in ERJ05. Recent advances in finite-volume numerical schemes (Audusse et al.

2004; Bouchut et al. 2004) allow rotation to be incorporated into the equations with
greater formal accuracy than the present method, nevertheless the resolution required to
obtain high accuracy in the present calculations is not a limitation.

Very similar domain size problems occur for the rSWE integrations in the limit F → 1
as those described above for the rTSD integrations in the limit Γ → 0. Progressively
larger domain sizes are required as the limit is approached in each case. Solutions are
therefore obtained on domains ranging in size from 10L × 10L to 50L × 50L, with grid-
spacing ranging between δx = 0.05L (low resolution) to δx = 0.01L (high resolution).
The model is integrated forwards in time with an adjustable time-step based on the
Courant-Friedrichs-Lewy criterion (for details see, LeVeque 2002) until the flow in a
pre-determined region around the obstacle converges to satisfy a steady state numerical
criterion.

4.2. Transcritical flows in rotating shallow water

Fig. 6 shows steady height fields η = σ − 1 + Mh obtained from numerical integrations
of the rotating shallow water equations (2.1). The parameters (M, F, B) for each panel
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are M = 0.4 with F and B then chosen to set Γ and ν equal to their values in the
corresponding panel in Fig. 3 (see also triangles in Fig. 4). Contour intervals have been
scaled by ǫ for consistency with the transcritical asymptotic theory results of Fig. 3.
Note also that to facilitate direct comparison with Fig. 6, the aspect ratio in Fig. 3
has been selected to correspond to an obstacle height M = 0.4, i.e. a distance unit in
the Y −direction is ǫ−1/2 = M−1/3 ≈ 1.357 times longer than a distance unit in the
x−direction.

Comparison of Figs. 3 and 6 reveals that each of the different regimes identified for the
rTSD solutions can be seen to persist at finite obstacle height M = 0.4. Further, each flow
regime has been identified within the expected region of parameter space in the regime
diagram constructed for the rTSD equation (Fig. 4). In most cases the rTSD solutions in
Fig. 3 capture both quantitatively and qualitatively the important details of the rSWE
wake shown in Fig. 6, at least away from the obstacle itself. One exception is the case of
purely subcritical flow, (regime I, top left panel of Fig. 6), for which the solution to the
full rotating shallow water equations is somewhat different to the corresponding rTSD
solution. This disagreement arises because the disturbance to the free-surface elevation
in the regime I shallow water solution is confined largely over the obstacle, whereas the
rTSD solutions are formally valid only for the far-field. A further notable difference is
that in regime IVa an embedded region of subcritical flow to the rear of the obstacle
(shaded) exists only for y < 0.

The most obvious departure from the asymptotic solutions is the rather weak asymme-
try of the displacement height fields about y = 0 seen in Fig. 6. The asymmetry enters at
higher order in the asymptotic theory for the displacement height field. The asymmetry
in the cross-stream velocity v, however, is captured at leading order by the rTSD, as is
noted below. A further process of interest that is relegated to higher order in the rTSD
approximation is that of vorticity generation by the shock itself (see e.g. Schär & Smith
1993b). Analysis of the Fig. 6 rSWE solutions reveals that this is most significant for the
regime II solution, contributing to the observed asymmetry about y = 0, which is more
pronounced than that in the other regimes.

Fig. 7 shows the drag D exerted by the paraboloid obstacle on the flow, calculated
from the rSWE solutions, against the Froude number F of the oncoming flow. Results
are given for two different obstacle heights (M = 0.05 and M = 0.4), and are compared
for constant values of the similarity parameter ν, i.e. not for the same value of the rotation
parameter (inverse Burger number) B, but for the same value of BM−2/3 (= ν2) in order
to test the rTSD theory. The drag D is scaled by M2 to allow comparison between rSWE
solutions at different values of M and linear predictions (dashed curves). The dashed
curves are obtained from an exact linear theory of drag for which D ∝ M2. The linear
theory, which has been derived analytically, has been confirmed by comparison with
the numerical model in the appropriate parameter regime; the details will be discussed
elsewhere. The rTSD predictions (solid curves) are also shown in Fig. 7 for the obstacle
heights M = 0.05 and M = 0.4. Note that the appropriate rTSD curve of Fig. 5 must be
re-plotted for each value of M because the rTSD theory predicts that drag is proportional
to M5/3 in the rTSD limit (not M2). The solid rTSD curves are plotted only for a finite
range of Γ that encompasses the region where the rTSD theory might be expected to
apply, corresponding to a finite range in F that increases as M2/3. The transition to
purely supercritical flow in the rTSD solutions is marked by a solid circle on each curve.

The top left panel shows non-rotating results (ν = 0, see also ERJ07), the top right
panel results for rotation rates corresponding to ν = 2 and the bottom panels results
for ν = 5. Note that the bottom right panel repeats the results for ν = 5, but zooming
in on the dotted rectangle from the left hand panel, to illustrate the behaviour close to
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F = 1 for the M = 0.4 solutions. In each panel, the rSWE drags are plotted as triangles
(M = 0.05) and squares (M = 0.4). The rSWE drag curves follow the solid rTSD drag
curves close to F = 1 before joining the dashed linear drag curves at higher values
of F . As expected, the M = 0.05 results adhere more closely to the rTSD asymptotic
predictions than the M = 0.4 results. At higher values of ν, linear theory is accurate for a
greater range of Froude numbers F , whilst the range of F for which the rTSD accurately
predicts the rSWE drag is decreased. The results for the case with M = 0.05 and ν = 5
in fact show that linear theory accurately describes the drag at all values of F , and the
rTSD and linear drags almost coincide for F ∈ [1, 1.2]. For M = 0.4 and ν = 5 (bottom
right panel), by contrast, the rTSD theory predicts the drag much better within the range
F ∈ [1, 1.5], with linear theory being more accurate for F > 1.5. To summarise, a useful
rule to estimate drag over a finite obstacle up to M = 0.4, for all values of F and all
rotation rates, is simply to take the minimum of the rTSD drag prediction D(Γ, ν)M5/3

and the calculated linear drag.
To examine in more detail the breakdown of the weakly nonlinear rTSD theory as a

function of M , the location in obstacle height - Froude number (M, F ) parameter space
of the transitions from purely subcritical / supercritical flow to transcritical flow has
been calculated from the rTSD results for both nonrotating flow (ν = 0) and rotating
flow (ν = 2). Fig. 8 shows the calculated regime diagrams for the paraboloid obstacle.
The region of parameter space labelled SPC is corresponds to entirely supercritical flows,
the entirely subcritical flow regime is labelled SBC and the transcritical flow regime TC.
The locations in (M, F ) space where transition occurs in the numerical calculations are
labelled with stars. The predictions from the rTSD equation, which are expected to be
accurate for small M , are plotted as solid curves. The rTSD theory can be seen in Fig. 8
to predict these transitions accurately at finite M particularly in rotating flows. The
dotted curves show the corresponding results, valid for all M but particular to the case
of a paraboloic obstacle, for the case of one-dimensional flow over a ridge discussed in
section 2.2.

As noted in section 2, one feature of the rTSD asymptotic theory is that, although the
free surface displacement η and streamwise velocity u fields are symmetric in Y at leading
order, the leading order cross-stream velocity v is not anti-symmetric about Y = 0 (as
it would be in non-rotating flow). Fig. 9 compares the leading order v diagnosed from
an rTSD solution (using equation 2.13, upper panels) with that from the corresponding
rSWE solution for the M = 0.4 obstacle (lower panels). Note that contour intervals and
the Y -scale for the rTSD solution have been chosen to allow direct comparison with
an M = 0.4 rSWE solution. The surface displacement fields for the same flows can be
compared in the ‘regime IVb’ panels of Figs. 3 and 6 respectively. The results show that
the rTSD asymptotic theory captures the main asymmetric structure of the v field away
from the obstacle in the full rSWE solution. The upper right and lower right hand panels
show cross sections of the transverse velocity v along y = 1 (solid line) and y = −1
(dashed line) for the rTSD and rSWE respectively. Results have again been scaled for
consistency with the transcritical asymptotic theory, and show that the changes in v at
the hydraulic jumps have again been captured by the rTSD theory, although the rear
jumps are somewhat smaller in amplitude in the rSWE case, due to the proximity of the
obstacle.

5. Conclusions

One-and-a-half layer rotating flow over topography is, in the shallow water or small
aspect ratio limit, fully described by three parameters: M (non-dimensional obstacle
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height), F (upstream Froude number) and B (inverse Burger number). The results pre-
sented here reveal that in the transcritical regime (F ∼ 1), for sufficiently small M , a
parameter reduction is possible that allows the flow to be described by just two ‘similarity
parameters’ that measure the relative importance of criticality and rotation relative to to-
pographic forcing. In transcritical flow the effective topographic forcing varies with M1/2

in flow over a 2D obstacle and with M2/3 for flow over a 3D obstacle, and the relevant
similarity parameters are therefore found to be {Γ = (F − 1)M−1/2, ν = B1/2M−1/4}
and { Γ = (F − 1)M−2/3, ν = B1/2M−1/3} respectively.

Regime diagrams describing the qualitative flow behaviour as a function of the simi-
larity parameters have been constructed for both 2D and 3D obstacles (Figs. 2 and 4).
These reveal that rotation has remarkably similar effects despite the very different flow
geometries. For example, rotation is found to have a robust tendency to generate and /
or amplify hydraulic jumps found downstream of the obstacle. The physical reason for
the existence of these downstream jumps in rotating flow relates to the fact that a ‘lim-
iting amplitude’ exists for inertia-gravity waves generated downstream of the obstacle
(Shrira 1986; Grimshaw et al. 1998). If the topographic forcing exceeds that required
to generate a wavetrain of limiting amplitude, then a hydraulic ‘recovery’ jump appears
downstream within a single wavelength of the obstacle, and following the recovery jump
are waves at or below the limiting amplitude. Additionally, rotation acts to decrease the
amplitude of upstream hydraulic jumps, and for flow over a 3D obstacle also their lateral
extent. For ν & 2 (2D obstacles) or ν & 2 (3D obstacles) the nature of the supercritical
transition is found to change qualitatively, with hydraulic jumps first appearing to the
rear of the obstacle as the Froude number is reduced, rather than appearing upstream
as in non-rotating flow. For both the 2D and 3D obstacles the presence of rotation also
reduces the range of subcritical flows for which hydraulic jumps are found. However,
one important qualitative difference between the 2D and 3D obstacle cases remains the
presence of supercritical hysteresis, which occurs in non-rotating flow over 2D obstacles
(e.g. Baines & Davies 1980) as well as at low rotation rates (e.g. ERJ05), but has not
been discovered to occur for flow over axisymmetric 3D obstacles (e.g. ERJ07). Note that
supercritical hysteresis does not exist in the weakly nonlinear limit (M → 0) and hence
is not captured by the reduction to the similarity parameters. This is a limitation of the
similarity theory, albeit one that applies only to the 2D obstacle flows.

Drag predictions from the rTSD theory, together with a theory for linear supercritical
drag, combine to offer a reasonably complete description of the drag in the 3D obstacle
problem. A useful rule is found to be that the drag on a finite obstacle is given to a
reasonable approximation by the minimum of the rTSD and linear predictions. In the
transcritical regime rotation reduces the range of Froude numbers for which drag is
large. When rotation is strong, non-zero drag occurs only for significantly supercritical
oncoming flows. These results may provide useful insight for the design of orographic
gravity wave drag schemes for numerical weather prediction and climate models.

In the towing tank experiments of Fig. 1, rotation was also observed to attenuate the
amplitude and lateral extent of the upstream nonlinear ‘bow’ wave and to generate a
nonlinear wave downstream of the obstacle, just as in the rSWE results above. However,
dispersive effects are clearly important in the towing tank experiments, not least because
the observed disturbances resemble solitary waves rather than hydraulic jumps. Disper-
sion can be straightforwardly incorporated into the asymptotic trancritical theory given
here, following ERJ07. If the dispersive effects enter as for a single layer of fluid, equation
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(2.15) becomes,
(
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)

x

− ν2ηo
0 + ηo

0Y Y = 0, (5.1)

with the ‘equivalent aerofoil’ boundary condition (2.17) unchanged. Here the dispersion
parameter ∆ = δM−1/3, where δ = H/L is the relevant aspect ratio (layer depth divided
by horizontal obstacle scale). Comparison of solutions of (5.1) and shallow water results in
the non-rotating case, given in ERJ07, reveal that solitary waves often replace hydraulic
jumps in exactly the same location. Perhaps it is unsurprising that in the towing tank
experiments and in the current numerical investigation, rotation is thus seen to affect
non-dispersive and dispersive flows in similar ways. Further numerical exploration of the
behaviour of (5.1) is described elsewhere (Vilenski & Johnson 2004), and steady solutions
of a variant of (5.1) with dispersion of Benjamin-Davis-Acrivos type, appropriate for
a one-and-a-half layer fluid (Benjamin 1967; Davis & Acrivos 1967), are presented in
Johnson et al. (2006).

Transcritical rotating flow patterns may be observable in a wider range of geophysical
scenarios than those detailed above. A detailed understanding of the transcritical regime
may therefore be necessary in order to accurately parameterise mountain drag in some
climatological situations. Future rotating tank experiments will be of interest to deter-
mine how readily different steady flow regimes establish themselves, and to investigate
the transitions between them.
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Figure 1. Observed experimental interface elevations for an oblong obstacle towed at speed
U = 10cms−1 through the shallow layer of a two-layer fluid (H1 = 6cm, H2=54cm). Left
panel: Non-rotating experiment. Right panel: Rotating experiment. The Froude number for
both experiments (ratio of towing speed to interfacial gravity wave speed) is estimated to be in
the range F = 1.1 − 1.3, and the nondimensional mountain height is M = 0.5. For the rotating
experiment the period is T = 120s, corresponding to an inverse Burger number B ≈ 0.5. In each
panel the centre of the obstacle is marked by the ‘+’ at the origin. Solid contours show regions
where the interface rises (crests, marked C) and dashed contours depressed regions (troughs,
marked T). Adapted from Johnson et al. (2006, see their Fig. 5).
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Figure 2. The different flow regimes for steady rotating flow over a two-dimensional
parabolic ridge derived from Esler et al. (2005). Results depend on the three parameters, M
(non-dimensional obstacle height), F (Froude number of upstream flow) and B (inverse Burger

number), and are presented here as a function of the similarity parameters Γ = (F − 1)M−1/2

and ν = B1/2M−1/4. In the weakly nonlinear limit M → 0 (upper panel) the positions of the

boundaries between different flow regimes in (Γ, ν) parameter space become independent of M .
The lower panel shows the position of the regime boundaries at finite M = 0.4. A number of
flows show downstream recovery jumps (DRJ).
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Figure 3. Steady state height fields illustrating various regimes in the rTSD equation (2.18)
discussed in the text. Results are for the paraboloid obstacle, and are derived from numerical
solutions of the rTSD equation, with spatial resolution δx = δy = 0.01L. Contour intervals are
0.1ǫH in each panel (ǫ = M2/3). Values of Γ, ν are given in the top right of each panel; Roman
numerals in the bottom right corner of each panel indicate to which region of the regime diagram
(Figure 1) each solution belongs, the exact location of each solution being indicated in Figure 4
by a triangle. Regions of subcritical flow are shaded, except for the top right panel where the
shaded region indicates supercritical flow.
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Figure 4. Transcritical similarity parameter and rotation similarity parameter (Γ, ν) regime dia-
grams for steady solutions to the rTSD equation (2.18) corresponding to flow over the paraboloid
(upper panel) and ‘Witch of Agnesi’ (lower panel) obstacles. Triangles denote the location of
the example flows in Fig. 4. The grey ellipse gives the approximate position of the experiment
described in connection with Fig. 1. The regimes for the paraboloid are as follows: (I) Subcritical
flow everywhere. (IIa) Subcritical oncoming flow with a single embedded region of supercritical
flow extending behind the obstacle. (IIb) Subcritical oncoming flow with a single embedded
region of supercritical flow on the obstacle. (III) Supercritical oncoming flow with a single em-
bedded region of subcritical flow enclosing the leading edge of the obstacle. (IVa) Supercritical
oncoming flow with three embedded regions of subcritical flow. (IVb) Supercritical oncoming
flow with two regions of subcritical flow; the rear of which lies behind the trailing edge of the
obstacle. (IVc) Supercritical oncoming flow with two regions of subcritical flow; the rear of which
encloses the trailing edge of the obstacle. (Va) Supercritical oncoming flow with two embedded
regions of subcritical flow both behind the trailing edge of the obstacle. (Vb) Supercritical on-
coming flow with a single region of subcritical flow behind the trailing edge of the obstacle. (Vc)
Supercritical oncoming flow with a single region of subcritical flow enclosing the trailing edge
of the obstacle. (VI) Supercritical flow everywhere. Regimes for the ‘Witch of Agnesi’ obstacle
(lower panel) are as for the paraboloid, except that the distinction between ‘on’ and ‘off’ the
obstacle can no longer be made since the ‘Witch of Agnesi’ obstacle is not compact.
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Figure 5. The drag function D(Γ, ν) as a function of the transcritical similarity parameter Γ
for various fixed values of the rotation similarity parameter ν, calculated from a series of steady
numerical solutions of the rTSD (2.18) equation for the paraboloid (PB) obstacle forcing given
by (2.21). The dots on each curve give the value of Γ at the supercritical limit of the transcritical
regime. For larger values of Γ the drag is well-approximated by linear theory.
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Figure 6. Steady state height fields for rotating shallow water flow over the paraboloid obstacle
with non-dimensional height M = 0.4. Results are derived from numerical solutions of the
rotating shallow water equations, with spatial resolution δx = δy = 0.01L. Contour intervals
are 0.1ǫH in each panel, except for the top left panel in which the contour interval is 0.01ǫH .
Values of F , B are given in the top right of each panel and correspond to the values of Γ,ν in
Figure 3. Roman numerals in the bottom right corner of each panel indicate the region of the
regime diagram (Figure 4) to which each solution belongs, the exact location of each solution
being indicated in Figure 4 by a triangle. Regions of subcritical flow are shaded, except for the
top right panel where the shaded region indicates supercritical flow.
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Figure 7. Drag D, scaled by obstacle height M2, as a function of Froude number F for flow over
the paraboloid obstacle with the rotation parameter ν = 0,2,5. Triangles and squares each mark
the results of rotating shallow water model results for M = 0.05 and 0.4 respectively. The solid
lines show the transcritical similarity theory predictions for the drag in each case, as derived
from the rTSD numerical results (see also Fig. 5), with the Froude number corresponding to the
supercritical transition marked as a solid circle. The dashed curve shows the drag calculated for
linear supercritical flow.
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Figure 8. The flow regimes (SBC - subcritical, TC - transcritical, SPC - supercritical), in
obstacle height - Froude number (M ,F ) parameter space, for flow over the paraboloid obstacle
with ν = 0 (non-rotating) and ν = 2 (rotating). The solid lines show the predictions for the

supercritical and subcritical transitions calculated from the rTSD solutions (F = 1 + Γ+M2/3,

F = 1 − Γ
−

M2/3, for numerically determined constants Γ+, Γ
−

). The dotted curves show
the corresponding results for a two-dimensional obstacle, valid for all M . The non-rotating
2D obstacle curves are valid for any obstacle shape and are given by, e.g. Baines (1995). The
rotating 2D obstacle curves are particular to a parabolic obstacle, and are discussed in Esler
et al. (2005). Note that there are two curves on the supercritical side, as in the 2D obstacle
case a region of hysteresis exists in both non-rotating and rotating flow (e.g. Baines 1995). The
stars show the location of the actual transitions found in each case from a sequence of steady
numerical solutions of the rotating shallow water equations (2.1).
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Figure 9. Upper panels: (Left) Contour plot of the leading order tranverse velocity field vo
0(x, Y )

diagnosed from the rTSD solution for flow over the paraboloid (PB) obstacle with Γ = 0.7 and

ν = 2. The contour interval is 0.1ǫ3/2c, (note that ǫ3/2 = M = 0.4 allows comparison with the

lower panel results). (Right) Cross-sections of vo
0(x, Y ) at Y = 0.41/3 = 0.7368 (solid curve) and

Y = −0.7368 (dashed curve). (These values of Y are chosen to correspond to the edge of an the

obstacle of unit radius when M = 0.4 as below, and the v-axis is also scaled by ǫ3/2 = M = 0.4).
Lower panels: (Left) As for the upper panels but for v(x, y), the solution of the rotating shallow
water equations for the PB obstacle with M = 0.4, F = 1.3800, B = 2.1715 (giving Γ = 0.7 and
ν = 2), with contour interval 0.04c. (Right): Cross sections of v(x, y) at y = 1 (solid curve) and
y = −1 (dashed curve).


