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Non-dispersive and weakly dispersive single-layer flows over axisymmetric obstacles,
of non-dimensional height M measured relative to the layer depth, are investigated.
The case of transcritical flow, for which the Froude number F of the oncoming flow
is close to unity, and that of supercritical flow, for which F > 1, are considered. For
transcritical flow, a similarity theory is developed for small obstacle height and, for
non-dispersive flow, the problem is shown to be isomorphic to that of the transonic
flow of a compressible gas over a thin aerofoil. The non-dimensional drag exerted
by the obstacle on the flow takes the form D(Γ )M5/3, where Γ = (F − 1)M−2/3

is a transcritical similarity parameter and D is a function which depends on the
shape of the ‘equivalent aerofoil’ specific to the obstacle. The theory is verified
numerically by comparing results from a shock-capturing shallow-water model with
corresponding solutions of the transonic small-disturbance equation, and is found
to be generally accurate for M � 0.4 and |Γ | � 1. In weakly dispersive flow the
equivalent aerofoil becomes the boundary condition for the Kadomtsev–Petviashvili
equation and (multiple) solitary waves replace hydraulic jumps in the resulting flow
patterns.

For Γ � 1.5 the transcritical similarity theory is found to be inaccurate and, for
small M , flow patterns are well described by a supercritical theory, in which the flow
is determined by the linear solution near the obstacle. In this regime the drag is shown

to be cdM
2/(F

√
F 2 − 1), where cd is a constant dependent on the obstacle shape.

Away from the obstacle, in non-dispersive flow the far-field behaviour is known to be
described by the N-wave theory of Whitham and in dispersive flow by the Korteweg–
de Vries equation. In the latter case the number of emergent solitary waves in the

wake is shown to be a function of A = 3M/(2δ2
√

F 2 − 1), where δ is the ratio of the
undisturbed layer depth to the radial scale of the obstacle.

1. Introduction
The flow of a single shallow layer of fluid over a three-dimensional (i.e. h = h(x, y))

obstacle has been investigated experimentally (e.g. by Lamb & Britter 1984), largely
because of its importance to the meteorological and oceanographic communities as
a simple model of observed flows around islands, mountains, capes and sea-mounts
(see e.g. Schär & Smith 1993a). In the shallow-water limit (or ‘non-dispersive’ limit,
as the phase speed of generated gravity waves is independent of wavenumber) the
flow behaviour is typically characterized using two parameters, the non-dimensional
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obstacle height M measured as the ratio of height to layer depth, and the Froude
number F , the ratio of the undisturbed flow speed to the gravity-wave speed. In
terms of these parameters, non-dispersive shallow-water models give qualitative,
and sometimes reasonable quantitative, predictions for various observed phenomena,
including vortex-shedding periods (Schär & Smith 1993b) and wake lengths (Smith &
Smith 1995). The above studies, however, concentrated primarily on flows where the
upstream velocity is subcritical (F � 1). The behaviour of a supercritical oncoming
flow (F > 1) has received less attention overall, although the different possible
behaviour regimes were identified and investigated by Jiang & Smith (2000). In
particular they showed that, for sufficiently large F , linear theory accurately predicts
the flow patterns near an axisymmetric obstacle even at relatively large values of
M . This result was shown to hold even when the flow exhibited strong nonlinearity
in the wakes to the sides of the obstacle. For F closer to unity, however, the flow
was found to become transcritical and the numerical solutions exhibited phenomena
such as upstream ‘bow shocks’ and downstream ‘V-waves’. The resulting flow patterns
appeared very similar to those observed for the transonic flow of a compressible
gas around an aerofoil, as might be expected from the well-known correspondence
between the shallow-water equations and the equations of compressible-gas dynamics.

An important caveat in the interpretation of the Jiang & Smith (2000) transcritical
results, however, concerns the validity of the mass- and momentum-conserving
hydraulic jumps that characterize the shallow-water solutions, for example the ‘bow
shocks’. Whilst these hydraulic jumps may sometimes be a good physical model for
the situation at breaking waves (Mei 1989; Baines 1995), they are an appropriate
model only for those physical situations where a regularizing dissipation dominates
over dispersive effects on scales typical of the jump width.

In many geophysical and laboratory situations it is dispersion that dominates.
For example, there are numerous observations of multiple solitary waves, which are
a distinctively dispersive phenomenon, in the flow upstream of obstacles, both in
atmospheric flows ahead of islands (Li et al. 2004; Badgley, Miloy & Childs 1969;
Burk & Haack 1999) and in laboratory experiments (Maxworthy, Dhieres & Didelle
1984; Johnson et al. 2006). In order to describe such dispersive phenomena, the third
important physical parameter in the problem, the ratio δ of the layer depth and
the obstacle width, must be treated as non-zero. Various approximations to the full
Euler equations are appropriate in the limit of small but non-zero δ, including both
the weakly forced case (i.e. M small), for which the flow evolution is described by a
forced Korteweg–de Vries (KdV hereafter) equation and its two-dimensional relatives
(Grimshaw & Smyth 1986; Kadomtsev & Petviashvili 1970; Akylas 1994), and also
the case of finite forcing (Green & Naghdi 1976; Choi & Camassa 1999). Solitary-
wave generation by moving pressure distributions has been widely studied for the
case of weak forcing, but principally with regard to the closely related problem of
ship-wave generation (e.g. Mei 1976; Katsis & Akylas 1987; Lee & Grimshaw 1990;
Li & Sclavounos 2002). However, exactly how the ship-wave results carry over to
the problem of flow over three-dimensional obstacles has yet to be made explicit.
In the case of two-dimensional obstacles, it has been shown in Grimshaw & Smyth
(1986) and subsequent studies that transcritical flows over small obstacles are often
unsteady, with solitary waves periodically propagating upstream from the obstacle.
Johnson & Vilenski (2004) looked at the intermediate problem of flow over a quasi-
three-dimensional obstacle, i.e. an obstacle which is elongated asymptotically in the
cross-stream direction. Numerical results were used to categorize the resulting flow
patterns into a supercritical V-wave regime, a soliton regime, an unsteady flow regime
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and a subcritical modulated-wavetrain regime as the Froude number of the oncoming
flow was reduced.

The current study will focus on flow over three-dimensional obstacles in the
transcritical (F ∼ 1) and supercritical (F > 1) flow regimes. Both non-dispersive
(shallow-water) and weakly dispersive flows will be considered, and for simplicity
attention will be restricted to axisymmetric obstacles. The above studies leave several
interesting questions unanswered. For example, is there a relationship between non-
dispersive shallow-water flow patterns over an obstacle and the corresponding weakly
dispersive flows? Are the resulting flows always steady? What determines whether
any such steady flows are purely subcritical, purely supercritical or transcritical (i.e.
containing a transition between regions of supercritical and subcritical flow)? Also,
how does the shape of the obstacle influence the resulting flow? Are properties other
than bulk properties such as the obstacle height and volume important in determining
the steady-flow response? In addition to the consideration of different flow-pattern
regimes, the results obtained are presented in terms of the drag exerted on the flow
by the obstacle. Drag is of particular interest to oceanographers, climate modellers
and researchers involved in the development of numerical weather-prediction models,
because of the need to parameterize the drag exerted by orography with spatial scales
below the model grid scale. The results herein have a wider importance in this context
than the restriction to single-layer flow might suggest because, as has been pointed
out in the context of two-dimensional flow (Grimshaw & Smyth 1986; Rottman &
Einaudi 1993), many results in the transcritical regime exactly correspond to those
obtained for stratified flows when a single trapped vertical mode is near resonance.
Throughout, results from compressible-gas dynamics (e.g. Chapman 2000) and ship
dynamics (e.g. Mei 1976) are exploited as far as possible, since many aspects are
shared between the related fields.

In § 2 the mathematical formulation of the problem is introduced and asymptotic
theories for small obstacle height M are derived for both transcritical and supercritical
regimes. Dispersive effects can be captured naturally in each analysis, at the same
order as the leading-order nonlinearity, by making a suitable scaling choice for
the aspect ratio δ. In § 3, the transcritical asymptotic theory is tested by comparing
numerical results of the transonic small disturbance (TSD) equation resulting from the
theory with numerical solutions of a shock-capturing shallow-water model. Weakly
dispersive flow is compared directly with the corresponding non-dispersive flow in the
transcritical limit. The different regimes of validity of the transcritical and supercritical
theories are determined, and the properties of non-dispersive and weakly dispersive
obstacle wakes in the supercritical regime are investigated. Finally, in § 4, conclusions
are drawn.

2. Asymptotic theories for small obstacle height
2.1. Physical scenario and model equations

The physical scenario to be considered is that of a single layer of inviscid fluid under
gravity g, with undisturbed depth H and constant density ρ0, flowing with an initially
uniform speed U from right to left over an axisymmetric obstacle of finite volume
with maximum height hm and radial scale L. The radial height profile of the obstacle
is described by a non-dimensional function h(r), where r is a radial coordinate in the
horizontal plane scaled with L, the distance from the centre of the obstacle. Without
loss of generality, h(0) is taken to be unity, and the volume V of the obstacle is set
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Obstacle h(r) K(x) G(X) cd

Witch of Agnesi
a3

(a2 + r2)3/2

a3

a2 + x2

−2a3

(X2 + a2)2
πa

2

(a = 1/2) (0.7854)

Gaussian exp

{
− r2

a2

} √
πa

2
exp

{
−x2

a2

}
−

√
π

a
exp

{
− X2

a2

}
a

(π

2

)3/2

(a = 1/
√

2) (1.3921)

cone 1 − r

a

√
a2 − x2

2
− 1

a
cosh−1

{
a

|X|

}
4a

3
(2ct − 1)

(a =
√

3/2) (r < a) − x2

2a
log

{√
a2 − x2 + a

|x|

}
(|X| < a) (1.3585)

(|x| < a)

hemi-ellipsoid

√
1 − r2

a2

π

4a
(a2 − x2) − π

2a

π2a

3

(a =
√

3/2) (r < a) (|x| < a) (|X| < a) (2.8491)

paraboloid 1 − r2 2

3
(1 − x2)

3
2 −2

√
1 − X2

32

15

(r < 1) (|x| < 1) (|X| < 1) (2.1333)

Table 1. Obstacle shapes investigated and related functions (see the main text). The five
obstacles have unit height and are normalized to have the same volume as the paraboloid
(V = π/2), using the given value of the non-dimensional constant a. ct is Catalan’s constant
(≈ 0.916).

according to

V = 2π

∫ ∞

0

rh(r) dr =
π

2
. (2.1)

These restrictions on h(r) ensure that comparisons of results for different obstacle
shapes are made between obstacles with identical height and volume. Table 1 lists
five obstacle shapes to be considered as examples, namely an obstacle with a ‘Witch
of Agnesi’-like profile (Jiang & Smith 2000), a Gaussian, a cone, a hemi-ellipsoid and
a paraboloid. The value of the non-dimensional constant a in each case is chosen to
satisfy (2.1).

The non-dimensional Euler equations for the flow scenario described above are

Du

Dt
= −px,

Dv

Dt
= −py,

δ2 Dw

Dt
= −pz − 1,

ux + vy + wz = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.2)
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where the advective derivative D/Dt = ∂t +(u−F )∂x +v∂y +w∂z. The equations (2.2)
are subject to the boundary conditions

ηt + (u − F )ηx + vηy = w on z = 1 + η(x, y, t),

M[(u − F )hx + vhy] = w on z = Mh(x, y),

p = 0 on z = 1 + η(x, y, t).

⎫⎬
⎭ (2.3)

The physical coordinates (x, y, z) have been scaled with (L, L, H ), the total velocity
u = (−F + u, v, w) with (c, c, cH/L), where c ≡

√
gH is the long-gravity-wave speed,

time t with L/c, pressure p with ρ0c
2 and the free-surface displacement η with H .

The three non-dimensional parameters discussed above now appear explicitly in (2.2),
(2.3): the aspect ratio δ = H/L, the Froude number F = U/c and the non-dimensional
obstacle height M = hm/H . Results will be presented in terms of δ, F and M in all
that follows.

Particular attention will be paid to the non-dispersive limit (δ = 0) of (2.2), (2.3),
which leads to the shallow-water equations

ut + (u − F )ux + vuy = −ηx,

vt + (u − F )vx + vvy = −ηy,

σt + [(u − F )σ ]x + [vσ ]y =0,

⎫⎬
⎭ (2.4)

where σ = 1 + η − Mh is the layer thickness. In order to model the physical situation
of breaking waves, the solutions of (2.4) are typically regularized by including the
possibility of mass- and momentum-conserving hydraulic jumps. Such jumps satisfy

−V [σ ]+− + [σ u · n]+− = 0,

−V [σ u · n]+− +
[
σ (u · n)2 + 1

2
σ 2

]+

− = 0,

}
(2.5)

where n is a horizontal unit vector normal to the jump and V is the jump velocity in the
direction of n. Square brackets denote the difference in quantities evaluated upstream
and downstream of the jump. Hydraulic jumps satisfying (2.5) are known to violate the
energy-conservation property of (2.2), (2.3). Therefore, there is an implicit assumption
that the non-dispersive limit of (2.2), (2.3) corresponds to a physical situation in
which an unspecified dissipation acts on the (unresolved) horizontal scale of the
jumps. Hence, as discussed above, there is an important distinction between the non-
dispersive (δ = 0) solutions of (2.2), (2.3) and solutions in the weakly dispersive (δ → 0)
limit, in which energy is conserved. Next, two different asymptotic regimes for small
obstacle height M will be considered: transcritical flow for which the Froude number
F is close to unity and supercritical flow for which F > 1. In each case, dispersive
effects are included by scaling δ2 with the free-surface displacement, which ensures
that dispersion enters the analysis at the same order as nonlinearity in each problem.

2.2. Transcritical flow: the equivalent-aerofoil regime

The relevant scaling regime for transcritical flow over an obstacle with small height
M � 1 is suggested by a derivation of the weakly two-dimensional KdV equation
(Kadomtsev & Petviashvili 1970, the KP equation hereafter) and the scaling regime
adopted for transonic flow over a thin aerofoil (see e.g. Chapman 2000). On the basis
of these previous works, the non-dimensional parameters

Γ = (F − 1)M−2/3, ∆ = δM−1/3 (2.6)

are taken to be of order unity. The parameter Γ will be referred to as the transcritical
similarity parameter (following the terminology of gas dynamics, see e.g. Chapman
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2000) and is the relevant measure of the degree of super criticality (F > 1, Γ > 0) or
sub-criticality (F < 1, Γ < 0) of the flow for a given obstacle height M . The parameter
∆ is a measure of the relative importance of dispersion in the system; the non-
dispersive limit discussed above corresponds to ∆ =0 and the weakly dispersive limit
corresponds to ∆ → 0.

Introducing a small parameter ε =M2/3 and seeking solutions of (2.2), (2.3) that
evolve on a ‘slow’ time scale τ = εt , the variables u, v, w, p and η may be expanded
in powers of ε1/2 as follows:

u= ε
(
u0 + ε1/2u1 + εu2 + · · ·

)
,

v = ε3/2
(
v0 + ε1/2v1 + εv2 + · · ·

)
,

w = ε
(
w0 + ε1/2w1 + εw2 + · · ·

)
,

p = 1 − z + ε
(
p0 + ε1/2p1 + εp2 + · · ·

)
,

η = ε
(
η0 + ε1/2η1 + εη2 + · · ·

)
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.7)

The expansions (2.7) are used to match leading-order asymptotic solutions of (2.2),
(2.3) in two separate regions defined by their cross-stream distance from the centre
of the obstacle at y = 0. Note that the leading-order scaling for v is O(ε3/2) ≡ O(M),
which is consistent with the weak two-dimensionality of the KP equation (Grimshaw
& Melville 1989) and implies that the cross-stream velocity v will enter at the same
order as the forcing terms due to the obstacle.

In the inner region, which describes the flow on streamlines that pass over or near
to the obstacle, the cross-stream coordinate is taken to be y. Denoting inner-region
variables with the superscript i and inserting the expansion (2.7) into (2.2), (2.3), at
leading order it is established that

ui
0 = pi

0 = ηi
0(x), wi

0 = −ηi
0xz. (2.8)

The leading-order solution is therefore described by an (as yet) undetermined
y-independent function ηi

0(x), except for the leading-order cross-stream velocity vi
0.

At the next order in the expansion we have

ui
1 = pi

1 = ηi
1(x, y), wi

1 = −
(
ηi

1x + vi
0y

)
z − hx. (2.9)

Inserting the above expression for wi
1 into the kinematic condition at the free surface

gives vi
0y = −hx . Integrating in y and using the fact that v = 0 on y =0 gives

vi
0(x, y) = −

∫ y

0

hx(x, ŷ) dŷ, (2.10)

the velocity vi
0 being related to the free-surface height through

vi
0x = ηi

1y. (2.11)

Proceeding to higher order, it becomes clear that ηi
0(x) is not now determined by

the inner-region expansion alone. Furthermore, the solution becomes invalid away
from the obstacle where |y| ∼ O(ε−1/2). At these distances, higher-order terms in the
series expansion become comparable with those at leading order. This indicates that
ηi

0 must be determined by matching with an outer-region solution which is valid for
|y| ∼ O(ε−1/2).

In the outer region the variable Y = ε1/2y is introduced to capture the cross-stream
scale on which the leading-order free-surface height and streamwise velocity vary in
the direction perpendicular to the oncoming flow. The influence of the obstacle is



Single-layer flow over an axisymmetric obstacle 215

experienced only through the boundary condition at Y = 0. Throughout the rest of
the domain in the rescaled coordinates, the bottom boundary is taken to be flat. In
the outer region we seek far-field asymptotic solutions, denoted by a superscript o, of
(2.2), (2.3) by substituting

u0 = uo
0(x, Y, z, τ ) etc.

for each variable in the series expansion (2.7). At leading order,

uo
0 = po

0 = ηo
0(x, Y ), wo

0 = −ηo
0xz, (2.12)

together with

vo
0x = ηo

0Y . (2.13)

At the next order, uo
1, vo

1 , wo
1 , po

1 , ηo
1 are found to satisfy a set of equations identical

to (2.12), (2.13) and hence may be set to zero without loss of generality. To obtain
an equation for ηo

0 we must proceed to O(ε2), thereby introducing nonlinear terms.
The derivation from here follows the standard derivation of the KP equation (see
e.g. Grimshaw & Melville 1989). The following relations between the O(ε2) terms are
obtained:

po
2 = ηo

2 +
∆2

2
ηo

0xx(1 − z2),

uo
2x = ηo

2x +
∆2

2
ηo

0xxx(1 − z2) + ηo
0τ − Γ ηo

0x + ηo
0η

o
0x,

wo
2 = z

(
−ηo

2x − ∆2

2
ηo

0xxx − vo
0Y − ηo

0τ + Γ ηo
0x − ηo

0η
o
0x

)
+ z3 ∆2

6
ηo

0xxx.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.14)

Inserting the above expression for wo
2 into the kinematic condition at the free surface

reveals that terms involving η2 cancel, to give(
2ηo

0τ + 3ηo
0η

o
0x − 2Γ ηo

0x +
∆2

3
ηo

0xxx

)
x

+ ηo
0YY = 0, (2.15)

where vo
0 has been eliminated using (2.13). Equation (2.15) is the KP equation, as

might be anticipated for the outer region. The novel component is the derivation of
the appropriate boundary condition on Y = 0, which is obtained by matching with
the inner solution. This results in the following conditions:

ηi
0(x) = limY→0 ηo

0(x, Y ),

limy→±∞ ηi
1y(x, y) = limY→0± ηo

0Y (x, Y ),

limy→±∞ vi
0(x, y) = limY→0± vo

0(x, Y ).

⎫⎪⎬
⎪⎭ (2.16)

Using (2.10) and (2.11) the matching conditions may be replaced by the single
condition [

ηo
0Y

]+

− = −
∫ ∞

−∞
hxx(x, ŷ) dŷ, (2.17)

where the square brackets denote the difference between evaluation at Y → 0+ and
Y → 0−. Note that for obstacles symmetric about y =0, including axisymmetric
obstacles, the boundary condition (2.17) for equation (2.15) can be replaced by a
‘line-charge’ forcing term on the right-hand side of (2.15) of the form

F (x, Y ) = −2δ(Y )Kxx(x), where K(x) =

∫ ∞

0

h(x, ŷ) dŷ (2.18)

and δ(Y ) is the Dirac delta function.
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Figure 1. (a) Obstacle profiles h(r) for the ‘Witch of Agnesi’ obstacle (WA), the Gaussian (GS),
the cone (CN), the hemi-ellipsoid (HE) and the paraboloid (PB). (b) The equivalent aerofoils
K(x) for the obstacles. (c) The supercritical, linear, far-field wake-height fields −XG(X) for
the obstacles. See table 1 for details.

To solve the non-dispersive (∆ =0) KP equation, it is convenient to introduce

φ(x, Y ) =

∫ ∞

x

ηo
0(x̂, Y ) dx̂,

allowing (2.15) to be integrated to give the following system, valid in the half-plane
Y � 0,

(−2Γ − 3φx) φxx + φYY = 0, with φY (x, 0) = Kx(x) on Y = 0. (2.19)

This equation may be recognised as the transonic small disturbance (TSD hereafter)
equation, or Kármán–Guderley equation, for flow over a thin symmetric aerofoil
with half-thickness εK(x). The ‘equivalent aerofoil’ half-thickness functions K(x) for
the five obstacles chosen as examples are given in table 1 and the aerofoil profiles
themselves are plotted in figure 1.

The transcritical asymptotic theory presented above has the advantageous effect of
reducing the three-parameter (M , F , δ) problem for flow over an obstacle of arbitrary
height to a two-parameter problem (Γ , ∆) valid for small obstacles M � 1. In
particular, in the case of non-dispersive flow (δ = ∆ =0) the transcritical theory yields
a one-parameter problem represented by the TSD equation (2.19), which has been
widely studied in the gas dynamics literature. Highly developed numerical methods
exist to determine accurate steady solutions to (2.19) and analytic similarity solutions
also exist, (e.g. Chapman 2000), although these do not seem to be easily related to the
flow patterns forced by a particular obstacle. By examining the equivalent-aerofoil
thickness profile K(x) of a given obstacle, insight from engineering studies of flow
over aerofoils may be used to anticipate the resulting flow patterns as well as the
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drag exerted by the obstacle on the flow. The drag on the obstacle, given by

D = M

∫ ∞

−∞

∫ ∞

−∞
p(x, y, h) hx(x, y) dx dy,

with dimensional units ρ0gH 2L, can be shown at leading order to be equal to

D = M5/3

∫ ∞

−∞
ηo

0(x, 0)Kx(x) dx = M5/3D(Γ ), (2.20)

i.e. M5/3 times the non-dimensional drag on the equivalent aerofoil in the TSD
solution, which is denoted D(Γ ).

In § 3, the range of validity of the transcritical theory is investigated numerically for
the case of non-dispersive flow. In particular, one further aspect of non-dispersive flow
over three-dimensional obstacles that has received considerable previous attention
(Schär & Smith 1993a; Baines 1995, figure 2.30 therein) is the location of the
boundaries between transcritical and supercritical flow, and between transcritical and
subcritical flow, as plotted on an (M , F )-diagram. A transcritical flow in this sense
simply describes a supercritical flow containing an embedded region of subcritical flow,
or a subcritical flow with an embedded region of supercritical flow. The boundaries
in (M , F ) parameter space described above are boundaries at which the embedded
region appears or vanishes. In the transcritical limit, the boundaries must exist at
fixed values, Γ = Γ− < 0 and Γ = Γ+ > 0, since the TSD equation (2.19) depends only
on the single parameter Γ . Hence for small obstacle height M , the transcritical theory
predicts that the regime boundaries occur at

F = 1 + Γ−M2/3 and F = 1 + Γ+M2/3 (Γ− < 0 < Γ+), (2.21)

where Γ− and Γ+ are constants that must be determined from numerical solutions
of (2.19) for each obstacle’s equivalent aerofoil K(x). The accuracy of the predictions
(2.21) for the regime boundaries is examined in § 3.

2.3. Supercritical flow

Here, an asymptotic theory for the flow past an obstacle is presented that is formally
valid for M � 1, F − 1 	 M2/3 (or Γ 	 1 in the terms of the previous section). As
with transcritical flow, the asymptotic theory is obtained by matching between an
inner region near the obstacle and an outer far field. Aspects of the theory have
been developed and discussed elsewhere (Gurevich et al. 1995, 1996; Jiang & Smith
2000; Johnson & Vilenski 2004), so the aim of the current section is to apply these
previous results to the specific problem under discussion, place it in context with
the transcritical theory above and introduce some new results specific to the case of
axisymmetric obstacles.

For non-dispersive and weakly dispersive flow with δ ∼ M1/2, the inner-region
solution of (2.2), (2.3) in the vicinity of the obstacle is given by linear theory and has
been discussed by Baines (1995) and Jiang & Smith (2000). Introducing ε = M as a
small parameter and expanding,

u= ε (u0 + εu2 + · · ·)
v = ε (v0 + εv2 + · · ·)
w = ε (w0 + εw2 + · · ·)
p = 1 − z + ε (p0 + εp2 + · · ·)
η = ε (η0 + εη2 + · · ·) ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.22)
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the leading-order solution is found to satisfy

(F 2 − 1)ηl
0xx − ηl

0yy = F 2hxx, (2.23)

where the superscript l has been introduced to denote the inner-region solution for the
supercritical problem. Using Green’s function techniques, Jiang and Smith obtained
the general solution (adapted here for right-to-left flow)

ηl
0(x, y) =

F 2

2γ

{∫ y

−∞
hx(−x − γ (y − ỹ), ỹ) dỹ +

∫ ∞

y

hx(−x + γ (y − ỹ), ỹ) dỹ

}
,

(2.24)

where γ =
√

F 2 − 1. It is useful at this stage to introduce a rotated coordinate system
(X±, Y±) = (x±γy, y∓γ x)/F for the regions y > 0 and y < 0 respectively. In y > 0, the
new coordinate system is rotated anticlockwise through an angle tan−1 γ , so that X+

measures distance perpendicular to the Mach lines given by x + γy = constant, and
Y+ measures the distance along these Mach lines. A similar, but clockwise, rotation
occurs for the coordinates in y < 0. In terms of these new coordinates, Johnson &
Vilenski (2004) noted that provided the obstacle height decays sufficiently rapidly at
large distances then as y → ± ∞ the solution (2.24) converges to

lim
y→±∞

ηl
0(x, y) =

F 2

2γ 2

∫ ∞

−∞

{
hx(ξ, (FX+ + ξ )/γ ) dξ y → +∞,

hx(−ξ, (ξ − FX−)/γ ) dξ y → −∞.
(2.25)

Equation (2.25) shows that the linear solution away from the obstacle tends to a
function of the single coordinate X±, the sign being taken according to whether we
are looking at y → ±∞. For definiteness, the upper half-plane y > 0 will be considered
hereafter (the lower half-plane solution being symmetric), and the subscript + will be
dropped.

For the particular case of an axisymmetric obstacle h = h(r), a change of variables
in the expression (2.25) results in

ηl
0(X) → − 1

γ
XG(X) where G(X) =

∫ ∞

|X|

h′(r)√
r2 − X2

dr. (2.26)

The drag D on the obstacle is easily shown to be equal to the sum of the momentum
fluxes of the outgoing waves. Hence, from symmetry considerations and on the basis
of the solution at large y > 0,

D = 2M2

∫ +∞

−∞
ul

0 vl
0 dx = 2M2F

∫ +∞

−∞
ul

0(X)vl
0(X) dX. (2.27)

It is clear from the linearized momentum equations that the velocities ul
0(X) and

vl
0(X) satisfy Ful

0 = ηl
0 and Fvl

0 = γ ηl
0 in the far field. Substituting into (2.27) gives

D = cd

M2

F
√

F 2 − 1
, (2.28)

where the constant cd is given by

cd = 2

∫ ∞

−∞
X2G(X)2 dX. (2.29)

Jiang & Smith (2000) gave the result (2.28) for the specific example of the ‘Witch of
Agnesi’ obstacle described in table 1. Here it has been shown that (2.28) is the general
form for the drag for all axisymmetric obstacles. The integrals in (2.26) and (2.29) are
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typically straightforward, and the results for the five example obstacles are given in
table 1. The general shape of the linear far-field wave, given by −XG(X), is plotted
in figure 1 for each obstacle. It is notable from table 1 that the relatively compact
obstacles (e.g. the hemi-ellipsoid or paraboloid) have significantly higher linear drags
(higher cd) compared with those for distributed obstacles (e.g. the Witch of Agnesi).

Supercritical flows are linear only in the vicinity of the obstacle because, in the
absence of explicit dissipation, the shallow-water waves generated at the obstacle will
steepen and break as they propagate (see e.g. Whitham 1974), regardless of their initial
amplitude. This behaviour can be examined by seeking far-field steady solutions of
(2.2), (2.3). In order to determine the behaviour of the solution further from the
obstacle, ‘stretched’ variables (X∗, Y∗) = ε(X, Y) can be introduced. Expanding (2.2),
(2.3) in powers of ε, according to (2.22), derivatives in the X- and Y-directions are
found to appear at different orders, and it is thereby natural to seek solutions of the
form η = ηf (X, Y∗) etc. The superscript f denotes the supercritical far-field solutions.
To ensure that dispersion enters the problem at the correct order, it is taken that the
variable

∆ = δM−1/2, (2.30)

is of order unity. At leading order, (2.2), (2.3) are satisfied by

u
f

0 =
η

f

0

F
, v

f

0 =
γ η

f

0

F
, p

f

0 = η
f

0 , w
f

0 = −η
f

0Xz.

To find an equation for η
f

0 , it is necessary to proceed to the next order, where it can
be shown from (2.2) that

w
f

2 =
∆

2

6
η

f

0XXX z3 −
(

η
f

2X + γ η
f

0Y∗
+ η

f

0 η
f

0X +
∆

2

2
η

f

0XXX

)
z.

Using this expression for w
f

2 in the kinematic condition at the free surface in (2.3),

terms involving η
f

2 are found to cancel and a far-field equation for the leading-order

height field η
f

0 is obtained:

2γ η
f

0Y∗
+ 3η

f

0 η
f

0X +
∆

2

3
η

f

0XXX = 0. (2.31)

Equation (2.31) is the familiar KdV equation, in which the ‘stretched’ space variable
Y∗ assumes the role of the time-like variable.

The ‘initial’ condition for (2.31) is determined by the matching condition with the
inner solution (2.24),

lim
Y∗→ 0+

η
f

0 = lim
y→+∞

ηl
0,

or, from (2.25),

η
f

0 (X, 0) = − 1

γ
XG (X) , (2.32)

with G(X) defined by (2.26). Johnson & Vilenski (2004) previously derived equation
(2.31) for the case of supercritical flow over an elongated ridge in the weakly dispersive
limit (the Kadomtsev–Petviashvili limit, see (2.15)). Here, it has been shown that the
solution applies equally to the more general problem of supercritical flow over a small
isolated obstacle (M � 1) at all Froude numbers satisfying F > 1, F − 1 	 M2/3.
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3. Validity of the asymptotic theories and behaviour at finite obstacle height
3.1. Numerical models used to test the asymptotic theory

Three separate numerical models have been used to investigate the range of validity
of the asymptotic theories by comparing the nonlinear behaviour at finite M to that
predicted by the transcritical asymptotic theory. The numerical models were designed
to solve the shallow-water equations (2.4), the TSD equation (2.19) and the KP
equation (2.15), respectively. In practice, throughout most of the domain all three
equations are hyperbolic when the oncoming flow is supercritical (F > 1, Γ > 0) and
elliptic when the oncoming flow is subcritical. As critical flow is approached (F → 1,
Γ → 0), a progressively larger computational domain and progressively longer time-
scale of integration are required to obtain solutions that are steady in the vicinity of
the obstacle. There are two main reasons that prevent steady solutions, where they
exist, being found for near-critical oncoming flow, as follows.

(a) Propagation of the solution at sufficient amplitude to the upstream boundary
may occur, thereby either invalidating the inflow condition or eventually interfering
with the solution near the obstacle in the periodic domain. Overcoming this problem
necessitates increasing the size of the domain in the x-direction as F approaches unity
(Γ → 0).

(b) Propagation of the solution at sufficient amplitude to the lateral boundaries
may occur, causing reflected waves or hydraulic jumps to interfere with the solution
in the vicinity of the obstacle. To prevent this, the size of the domain in the y-direction
must also be increased as F approaches unity (Γ → 0).
For these reasons a range of domain sizes was used with each model. For all the
numerical calculations, care was taken on a case-by-case basis to ensure that the
flow patterns and calculated drags were unaffected by further increases in domain
size, that the flow field in the vicinity of the obstacle was sufficiently steady and that
adequate convergence with respect to spatial resolution occurred.

For the shallow-water equations, the model chosen was the CLAWPACK finite-
volume code (Conservation LAWs software PACKage, LeVeque 2002), which is
designed to solve hyperbolic systems of equations, usually written in conservation
form. CLAWPACK uses an algorithm due to Roe (1981) in which the global problem
under investigation is discretized into a set of local Riemann problems by assuming
a piecewise-discontinuous form for the solution. The set of Riemann problems is
then linearized and solved using Godunov’s upwind method (LeVeque 2002). The
great advantage of this model is that, provided the governing equations can be
written in conservation form, the speed of propagation of shock discontinuities that
satisfy the global conservation laws can be captured accurately. For the current
work CLAWPACK was adapted to solve the shallow-water equations (2.4) written
in conservation form, and the relevant shock discontinuities were taken to be the
hydraulic jumps (2.5). Note that the forcing terms due to the obstacle cannot be
included in the conservation form of (2.4) and are handled using the method of Strang
splitting, for which the time tendency at each step is split into a contribution from
the unforced equations, calculated using Roe’s method, and a separately computed
contribution from the forcing, evaluated using standard finite-difference methods.
Symmetry considerations permit the solution to be calculated on the half-plane y � 0,
and solutions are obtained on domains ranging in size from 10L × 10L to 60L × 45L,
with grid-spacing ranging between δx = 0.1L (low resolution) to δx = 0.01L (high
resolution). The assumption of symmetry about y = 0 would be inappropriate if there
were a possibility that the obstacle wake might be unstable (Schär & Smith 1993b);



Single-layer flow over an axisymmetric obstacle 221

however, this is not the case for the results presented here. Outflow conditions
are imposed at the remaining boundaries, following Schär & Smith (1993a). The
model is integrated forwards in time with an adjustable time step based on the
Courant–Friedrichs–Lewy criterion (for details see, LeVeque 2002) until the flow
in a predetermined region around the obstacle converges to satisfy a steady-state
numerical criterion.

The second numerical model was used to find steady solutions of the TSD
equation (2.19) subject to forcing from the obstacle’s equivalent aerofoil (2.18). In
order to perform an entirely independent test on the CLAWPACK shallow-water
results, a different set of numerical techniques from the gas-dynamics literature
was used. The numerical algorithm employed was a type-dependent finite-difference
scheme, as developed by Murman & Cole (1971) and refined by Engquist & Osher
(1980). The basic concept behind the technique is that a different finite-difference
stencil is used depending on whether the flow is locally subsonic so that (2.19) is
locally elliptic (centred differences), locally supersonic so that (2.19) is hyperbolic
(upstream-sided differences) or in transition between the two at a shock or sonic
line. The resulting set of difference equations is solved using the monotonic implicit
approximate-factorization scheme of Goorjian & Van Buskirk (1981), with the low-
frequency modes damped by means of the multigrid acceleration technique described
by Jameson (1979). For a supercritical oncoming flow, the boundary conditions
are φx = 0 at the upstream boundary, with outflow conditions on the upper and
downstream boundaries. For a subsonic oncoming flow, φx and φy are specified on
the boundaries using the anticipated asymptotic form for the far-field solution of the
TSD (e.g. Cole & Cook 1986). The high level of sophistication of the algorithm allows
steady solutions of the TSD to be found on a high-resolution grid (2049 × 2049 to
4097 × 4097 grid points) within a few minutes on a workstation. The domain sizes
used are 40L × 40ε−1/2L to 60L × 60ε−1/2L, increasing as Γ approaches zero.

The third numerical model, used to solve the KP equation (2.15), is a standard
pseudo-spectral model similar to those described by Fornberg & Driscoll (1999)
and Johnson & Vilenski (2004). Equation (2.15) is solved on a doubly periodic
domain with size either 200L × 50ε−1/2L (small domain) or 400L × 50ε−1/2L (large
domain). The numerical resolutions used for the solutions shown are 2048 × 512
(small domain) and 4096 × 512 (large domain) Fourier modes, corresponding to
a grid spacing of approximately 0.02L × 0.02ε−1/2L. In order to avoid numerical
problems due to the excitation of Fourier modes associated with the grid scale, the
Dirac-delta-function forcing implied by (2.18) is replaced by a Gaussian function
(α̂/

√
πδY ) exp {−α̂2Y 2/δY 2}, which is equivalent to the Dirac delta function as the

grid spacing δY → 0. At sufficiently high resolution, the results were found to be
independent of the constant α̂ over a range of values, with α̂ = 1 used in the
calculations shown. The model is integrated forwards in time using a predictor–
corrector method with time step ∆τ = 0.02 until either a steady state criterion is
attained for the flow in the vicinity of the obstacle or waves generated by the obstacle
are found to have propagated throughout the domain, causing interference with the
solution at the obstacle and preventing further convergence. Integrations with Γ close
to zero were invariably affected by the latter problem.

3.2. Non-dispersive transcritical flow

In the limit of small M , non-dispersive transcritical flow is described by the TSD
equation (2.19) with the equivalent aerofoil boundary condition (2.18). In this limit,
non-dispersive shallow-water flow over an obstacle, which is a problem having two
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Figure 2. The drag function D(Γ ) vs. the transcritical similarity parameter Γ , as calculated
from a series of steady numerical solutions of the TSD (2.19). (a) Results for the five obstacles
detailed in table 1: ‘Witch of Agnesi’ (WA), Gaussian (GS), cone (CN), paraboloid (PB) and
hemi-ellipsoid (HE). The solid dot on each curve shows the location of Γ+, and for the dashed
region of each curve there is no numerical data because of the difficulty in obtaining results
for F close to unity. (b) The correlation between the rescaled supercritical drag coefficient
kc

2/3
d and the maximum transcritical drag Dm for the five obstacles. The inset, in which

D/c
2/3
d is plotted vs. Γ c

−2/3
d , shows the extent to which the five drag curves collapse onto a

single profile after application of the scaling described in the text. (c) The ‘Witch of Agnesi’
(WA) and (d) paraboloid (PB) results. The corresponding normalized drags D/M5/3 from the
shallow-water-model numerical calculations are plotted on (c, d) for comparison; the results
for obstacle heights M = 0.05, 0.1 and 0.4 are shown.

parameters (M , F ), is reduced to the single-parameter (Γ ) aerofoil problem. In this
section, the accuracy of predictions for drag and flow patterns from the aerofoil
problem are tested by comparison with numerical calculations of the full shallow-
water equations with an obstacle of finite height M , as described above.

Figure 2 shows the drag function D(Γ ) calculated from a series of steady numerical
solutions of the TSD equation (2.19) with values of Γ in the range [−1.5, 1.5].
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Figure 2(a) shows the drag function D(Γ ) calculated for each of the five equivalent
aerofoils K(x) corresponding to the five obstacles detailed in table 1. As might perhaps
have been anticipated from the engineering literature, the shape of the drag curve is
found to be remarkably similar for the different aerofoils. As Γ increases, the drag
becomes non-zero when a hydraulic jump and supercritical region first appear at
Γ = Γ− ≈ − 1.2. As Γ increases further, the drag increases until it reaches a plateau
region of values very close to the maximum attained. For Γ > 0.8, the drag begins to
decrease, and the flow eventually becomes entirely supercritical at Γ = Γ+, which lies
in the range 1.0–1.75 and is marked as a solid dot on each curve. At Γ = Γ+ the drag
is typically around 60%–70% of its peak value. Both the peak drag Dm and the value
of Γ+, which marks the boundary between supercritical and transcritical flow, vary
significantly between the different obstacles. Calculated values of Γ−, Γ+ and Dm are
given in table 2, and it is clear that for transcritical flow, just as for supercritical flow,
compact obstacles such as the hemi-ellipsoid and paraboloid exert more drag on the
flow than distributed obstacles such as the ‘Witch of Agnesi’.

Can the peak transcritical drag Dm be estimated from some easily calculable
property of the obstacle shape function h(r)? The strong degree of similarity between
the shapes of the five curves in figure 2(a) suggests that some simple rescaling
arguments may be useful. Changes in the transcritical drag can be seen to be closely
related to changes in the supercritical drag coefficient cd , defined in (2.29). As cd

increases (see table 1), Dm and the range of Γ for which D(Γ ) is uniformly large both
increase. One possibility is that the drag curves D(Γ ) collapse to some ‘universal’
drag curve under the rescalings Γ → Γ̃ c

β∗
d , M → M̃c

α∗
d . Consistency with (2.28) in the

limit M → 0, F → 1 + Γ M2/3 requires that 5α∗/3 + β∗/2 = 1. This leaves an arbitrary
choice for α∗, and the value giving the best fit empirically is found to be α∗ = 2/5
yielding, since the drag scales with M5/3,

Dm ≈ kc
2/3
d , (3.1)

with k a constant which can be estimated from a least-squares fit for the five obstacles
to be 1.156. Dm is plotted against kc

2/3
d in figure 2(b), and the extent to which the

rescaled drag curves collapse to a single curve is shown in the inset. It is to be
emphasized that the above relation is entirely empirical and has not been tested
for obstacles other than for the five under discussion. Nevertheless, it may prove to
be of use in understanding and developing drag parameterizations for oceanic and
atmospheric orography.

In figure 2(c, d) the particular cases of the ‘Witch of Agnesi’ and the paraboloid are
considered. In each case, the drag curve D(Γ ) is plotted along with the drag D, scaled
by M5/3, calculated from the corresponding shallow-water results with M = 0.05, 0.1
and 0.4. For the shallow-water results Γ is the transcritical similarity parameter
Γ = (F − 1)M−2/3. These plots allow the accuracy of the transcritical theory to be
assessed. It is interesting to note that the shallow-water results diverge from the TSD
results more rapidly for subcritical flow (Γ < 0) than for supercritical flow (Γ > 0).
For M � 0.4 the transcritical theory accurately predicts the peak drag, which occurs
in the shallow-water flow for Γ ≈ 0.7–0.9, to within an accuracy of 10%. On the
subcritical side, however, the prediction is in error, by as much as 50% in the case of
the paraboloid.

Figure 3 illustrates the self-similarity of transcritical flows over the ‘Witch of Agnesi’
obstacle at constant values of Γ . The upper panels show the TSD flow around the
equivalent aerofoil, the middle panels show the results for obstacle height M = 0.05
and the lower panels show the results for M = 0.4. Note that the y-axis in each
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Figure 3. Steady-state height fields η illustrating the transcritical similarity theory for flow
over the ‘Witch of Agnesi’ obstacle. The upper panels show results derived from numerical
solutions of the TSD equation ((2.19), with spatial resolution δx =0.01L and domain size 40L ×
40ε−1/2L), and the remaining panels are derived from numerical solutions of the shallow-water
equations ((2.4), with the following spatial resolutions and domain sizes: left, δx = 0.05L,
60L × 45L; right, 0.01L, 10L × 10L) for obstacle heights M = 0.05 and 0.4. The left-hand panels
show subcritical flow with transcritical similarity parameter Γ = −0.6, and the right-hand
panels show supercritical flow with Γ = 0.6. The contour intervals are 0.1εH in each panel
(ε = M2/3), and the y-axis extends from −2.5ε−1/2L to 2.5ε−1/2L (left panels) to −5ε−1/2L to
5ε−1/2L (right panels). Regions of supercritical flow (left-hand panels) and subcritical flow
(right-hand panels) are shaded.
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panel has been scaled by ε1/2 = M1/3, and the contour intervals have been scaled by
ε for consistency with the transcritical asymptotic theory. Hence the obstacle, where
plotted, appears elliptical in the lower panels. In the left-hand panels the oncoming
flow is subcritical (Γ = −0.6), and the shaded region indicates an isolated region
of supercritical flow, beginning ahead of the obstacle (or aerofoil) and extending
to a hydraulic jump at its rear. In the right-hand panels the oncoming flow is
supercritical (Γ = 0.6), and the shading indicates a region of subcritical flow. At the
upstream boundary of the subcritical region is a hydraulic jump ahead of which the
flow is undisturbed. For both the subcritical and supercritical oncoming flows, the
TSD and M = 0.05 pictures appear nearly identical, but for the M = 0.4 case some
differences are apparent as the transcritical asymptotic theory becomes inaccurate.
The differences in the flow patterns are much more pronounced for the subcritical
flows, because in subcritical flow the disturbance is concentrated in a much smaller
region in the vicinity of the obstacle. As M increases, the overlap between the ‘inner’
flow region, where the flow passes over the obstacle, and the ‘outer’ flow region away
from the obstacle is much greater for subcritical flow. Therefore, for subcritical flow
one of the key assumptions of the transcritical theory becomes invalid at lower values
of M , as is also apparent in figure 2.

Figure 4 is a plot of the drag D, scaled this time by M2, against the Froude number
F of the oncoming flow. The upper panel shows the results for the ‘Witch of Agnesi’
obstacle and the lower panel the results for the paraboloid. The numerical results
have been replotted with this scaling to emphasize the different regions of validity
of the transcritical theory and the supercritical theory. The dashed curve in each
picture is the linear supercritical drag (2.28), and the series of solid curves shows
the TSD prediction for the transcritical drag, as previously plotted in figure 2, for
the obstacle heights M = 0.05, 0.1 and 0.4. These TSD drag curves are plotted for
Γ− <Γ < 1.5 in each case, with Γ+ illustrated as a solid point. The shallow-water
numerical results for obstacle heights M = 0.05, 0.1 and 0.4 are plotted as symbols
(triangles, diamonds and squares respectively). It is clear that for each obstacle and
for M = 0.05 and 0.1 in particular, the calculated drags follow the TSD prediction for
Froude numbers F satisfying Γ− <Γ � Γ+. For F satisfying Γ ∼ Γ+, the calculated
drags have begun to diverge from the TSD prediction and rapidly converge to
the supercritical linear prediction given by the dashed curve, which is accurate for
values of F corresponding to Γ � 1.5. These results indicate that the transition region
between the realms of validity of the transcritical and supercritical asymptotic theories
occurs rapidly and that the transcritical and supercritical theories together constitute
a complete description of the behaviour observed at obstacle heights up to M =0.4.
For M = 0.4, a similar picture is evident for each obstacle, except that it is clear that
(as seen previously in figure 2) the transcritical-theory prediction is less accurate for
subcritical oncoming flows.

Lamb & Britter (1984); Schär & Smith (1993a); Baines (1995) and Jiang & Smith
(2000) used experimental and numerical results to construct regime diagrams for flow
over three-dimensional obstacles. The shallow-water finite-volume numerical code
allows for accurate calculation of the boundaries between different flow regimes.
In particular, the accuracy of the predictions (2.21) for the boundaries between
transcritical and subcritical flow and between transcritical and supercritical flow can
be tested. In the TSD problem of flow over a thin aerofoil, the boundary between
the transcritical and supercritical flow regimes is easily calculated by varying the
parameter Γ until the subcritical region near the obstacle vanishes. In shallow-water
flow over the corresponding axisymmetric obstacle the situation can sometimes
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Figure 4. The drag D, scaled by the obstacle height M2, as a function of Froude number F for
flow over the ‘Witch of Agnesi’ obstacle (WA) and the paraboloid obstacle (PB) (see table 1).
The triangles, diamonds and squares mark the shallow-water-model results for M = 0.05, 0.1
and 0.4, respectively. The solid lines show the transcritical-similarity-theory predictions for the
drag in each case, as derived from the TSD numerical results (see also figure 2); the Froude
numbers corresponding to Γ =Γ+ are marked as solid circles. The dashed curve shows the
drag in linear supercritical flow as given by (2.28).
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Figure 5. The steady-state free-surface displacement (η = σ − 1 + Mh) calculated from
numerical solutions of the shallow-water equations (2.4). The plots illustrate the transition,
occurring for flow over the paraboloid obstacle with M = 0.4, between ((a) F =1.57)
supercritical flow with a single embedded region of subcritical flow (shaded), ((b) F = 1.58) two
separate regions of subcritical flow and ((c) F = 1.59) purely supercritical flow. The contour
interval is 0.1H in each panel, the dashed curves indicating negative surface displacements;
the zero contour is omitted.

be more complicated, as the isolated region of subcritical flow can split into two
regions, located on the flanks of the obstacle. This type of supercritical transition,
which occurs for the paraboloid (but not for the ‘Witch of Agnesi’), is illustrated
in figure 5. The three panels show the steady-flow height field for M = 0.4 and
F = 1.57, 1.58 and 1.59 respectively. At F = 1.57 a single ‘bow’ hydraulic jump is
situated ahead of the obstacle (Jiang & Smith 2000), behind which is a region of
subcritical flow (shaded). As F increases to 1.58 the bow jump at the centreline y =0
weakens and then disappears, and the subcritical region divides into two regions
located at the edge of the obstacle (middle panel). As F increases further to F = 1.59,
the two subcritical regions reduce in size and then disappear entirely. By F = 1.59
(right-hand panel) the bow jump has divided into two entirely supercritical ‘flank’
jumps to the sides of the obstacle. For the paraboloid obstacle, then, there are two
separate transition points, the first when the flow becomes supercritical everywhere
along the centreline of the obstacle and the second when the flow becomes supercritical
everywhere in the domain. The existence of these two separate transition points may
raise doubts concerning the validity of hydraulic theories derived from the behaviour
of the flow along the centre streamline (see e.g. Baines 1995, pp. 82–88). However,
further numerical results indicate that the parameter values of the transitions remain
close together even for larger obstacle heights (results not shown).

Figure 6 shows the calculated regime diagrams for both the ‘Witch of Agnesi’
and the paraboloid. The region of parameter space where entirely supercritical flow
is found is labelled SPC, that with subcritical flow SBC and that with transcritical
flow TC. Note that the transcritical theory of § 2 becomes formally accurate as
M → 0, F → 1, whilst remaining within the transcritical (TC) region of figure 6, and
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Figure 6. Illustrating the flow regimes (SBC, subcritical; TC, transcritical; SPC, supercritical),
in obstacle-height Froude–number (M ,F ) parameter space, for flow over the ‘Witch of Agnesi’
(WA) and paraboloid (PB) obstacles. The solid lines show the predictions (2.21) from
transcritical theory, formally valid for M � 1. The dotted curves show the corresponding
results for two-dimensional obstacles, valid for all M (see e.g. Baines 1995; note that there
are two curves on the supercritical side, since a region of hysteresis exists). The stars show
the location of the actual transitions found in each case from a sequence of steady numerical
solutions of the shallow-water equations (2.4). The triangles in the paraboloid panel mark the
transition from a single subcritical region to two distinct subcritical regions, as illustrated in
figure 5. Empirical regime diagrams, including aspects such as wake stability and penetration
of the fluid-layer surface by the obstacle, are given in Baines (1995) and Jiang & Smith (2000),
without the solid lines given by the theory presented here.

is approximately accurate throughout the entire TC region shown; the supercritical
theory, however, is formally accurate as M → 0 within the supercritical (SPC) region
and is approximately valid everywhere in the SPC region away from the transition
boundary. The introduction of dispersion (see the following subsection) does not
greatly alter these regions of validity. The locations in (M ,F )-space where transitions
have been found to occur in the numerical calculations are labelled on figure 6 with
stars, whereas diamonds mark the locations where the subcritical region is found to
divide into two in the paraboloid obstacle flows. The predictions from the transcritical
theory (2.21), expected to be accurate for small M , are plotted as a solid curve. The
dotted curves show the corresponding results, valid for all M , for two-dimensional
obstacles (see e.g. Baines 1995; note that there are two curves on the supercritical
side, as a region of hysteresis exists). The calculated locations of the transition curves
(the stars) diverge somewhat from the transcritical theory (the solid curves) for values
of M approaching 0.5, although this is perhaps not surprising as the transcritical
theory has been shown above to be less accurate when |Γ | is relatively large, as is in
the vicinity of the transition curves. Other interesting flow regimes, exist for M > 0.5.
For example, in subcritical oncoming flow the obstacle wakes are known to become
unstable (Schär & Smith 1993b), and at higher obstacle heights there is the possibility
of ‘drying out’ when the surface of the obstacle penetrates through the top of the
fluid layer (Schär & Smith 1993a; Jiang & Smith 2000).

In summary, the transcritical equivalent-aerofoil theory, formally valid for small
obstacle height (M � 1), describes most aspects of the full shallow-water flow
accurately up to M = 0.4, particularly the peak drag experienced by the obstacle,
which typically occurs for supercritical oncoming flow Γ ∼ 0.7. For certain aspects,
however, particularly the flow patterns and drag for subcritical oncoming flow and
the prediction of the exact locations of supercritical and subcritical transitions in
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parameter space, the transcritical predictions diverge from the shallow-water results
even at comparatively low obstacle heights. Nevertheless, the transcritical theory
appears to provide a robust way of comparing the effect of different axisymmetric
obstacles on the flow, and in particular the empirical formula (3.1) may be of use as
a practical method of estimating the peak drag exerted by obstacles on the flow for
a wide range of obstacles.

3.3. Weakly dispersive transcritical flow

How do weakly dispersive transcritical flows over axisymmetric obstacles differ from
non-dispersive flows? In flow over two-dimensional topography it is well known (e.g.
Grimshaw & Smyth 1986) that instead of a single upstream-propagating hydraulic
jump as in non-dispersive flow, an upstream-propagating cnoidal wavetrain is present
in the corresponding dispersive flow. The drag over the obstacle then varies in time
with the period of the cnoidal wavetrain. This raises the question whether the drag
is steady or unsteady in the case of flow over a three-dimensional obstacle. Does
two-dimensionality inhibit the upstream propagation of any nonlinear wavetrain that
is generated? How do the positions of nonlinear wavefronts relate to the positions of
hydraulic jumps in the corresponding non-dispersive flow? Some of these questions
were addressed by Johnson & Vilenski (2004), who considered flow over a quasi-three-
dimensional obstacle, i.e. an obstacle elongated asymptotically in the cross-stream dir-
ection. In contrast to the previous work, here we use the boundary conditions derived
from the equivalent aerofoil of the obstacles (2.18) to force the KP equation (2.15) in
order to find solutions consistent with flow over an axisymmetric three-dimensional
obstacle. The weakly dispersive results do not differ qualitatively from those of
Johnson & Vilenski (2004) or from those for flows forced from a moving pressure
distribution (Katsis & Akylas 1987; Lee & Grimshaw 1990) but are of particular
interest in that they allow the results for weakly dispersive and non-dispersive flows
to be compared directly, by examining the results from the TSD equation (2.19) under
identical forcing. Also, unlike the results of Johnson & Vilenski (2004) the current
results can be definitively associated with the flow over a specific physical obstacle
(in Johnson & Vilenski (2004) the obstacle’s cross-stream dimension varies as ε−1/2).

Figure 7 shows for comparison the steady height fields for non-dispersive and
weakly dispersive transcritical flows past the equivalent aerofoil corresponding to
the paraboloid obstacle. The upper panels are derived from steady solutions of
(2.19) at Γ = −0.3 and 0.5, representing the situation for typical subcritical and
supercritical oncoming flows, respectively. The lower panels show the corresponding
steady solutions of (2.15) with ∆ =0.5 and 0.25. Regions of supercritical flow, defined
by ηo

0 < 2Γ/3, are shaded in the left-hand panels, and regions of subcritical flow,
for which ηo

0 > 2Γ/3, are shaded in the right-hand panels. Considering first the
case of subcritical oncoming flow (Γ = −0.3), the non-dispersive flow has a region
of supercritical flow located to the rear of the equivalent aerofoil, followed by a
characteristic ‘fishtail’ system of hydraulic jumps. The corresponding dispersive flows
bear little resemblance to the non-dispersive flow. As expected from linear theory, a
wavetrain of dispersive waves is generated downstream of the obstacle. The wavetrain
has sufficient amplitude that the flow oscillates from subcritical to supercritical within
the phase of each wave, although the wavetrain itself exhibits no apparent sign of
nonlinearity as a consequence. Upstream of the obstacle’s equivalent aerofoil there is
a relatively weak wavetrain of dispersive waves.

In the case of supercritical oncoming flow (shown in the panels with Γ =0.5), there
are some striking similarities between the non-dispersive and dispersive height fields.
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Figure 7. Non-dispersive and dispersive transcritical height-field patterns ηo
0(x, Y ) for steady

flow around the paraboloid obstacle, in the transcritical limit. The top panels show the
height field derived from numerical solutions of the non-dispersive TSD equation (2.19) for
Γ = −0.3 (left) and Γ = 0.5 (right). The remaining panels show the corresponding results
obtained from numerical solutions of the dispersive KP equation (2.15) for two different
values of the dispersion parameter (0.5 and 0.25). The contour interval is 0.1εH in each panel,
negative contours are dashed and the zero contour is omitted. The shaded regions in the
left-hand panels correspond to regions of supercritical flow, whereas in the right-hand panels
the shading corresponds to regions of subcritical flow.
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∆= 0.5) and ∆ = 0.25, respectively. The non-dispersive and dispersive result were calculated
from steady numerical solutions of (2.19) and locally steady solutions of (2.15), respectively.

At the location of the steady upstream hydraulic jump in the non-dispersive flow,
there is a large-amplitude solitary wave in the dispersive flow with ∆ =0.5. In the
dispersive flow with ∆ =0.25 this single solitary wave is replaced by a pair of separate
solitary waves. In the non-dispersive flow the height field decreases uniformly behind
the upstream jump, eventually becoming negative and then returning at a downstream
jump (the ‘V-wave’) to the undisturbed height. In the dispersive flows, the height field
remains nearly constant in a relatively large region behind the initial solitary wave(s).
Linear wavetrains spread out dispersively in the region behind the constant-height-
field region, and the lines tracing out the centre of these wavetrains are almost exactly
coincident with the location of the downstream V-wave in the non-dispersive flow.

Figure 8 shows for comparison the drag function D(Γ ) for non-dispersive flow
and weakly dispersive flow with ∆ = 0.25 and 0.5 for the paraboloid obstacle. For
the dispersive flows, the drags plotted are the mean drags obtained for τ = 10–12
(small domain) or τ = 20–22 (large domain) for those flows where the rate of change
of the height field in the immediate vicinity of the obstacle satisfied a steady-state
criterion. For flows with Γ in the range [−0.2, 0.4] it was not found to be possible to
satisfy the steady state criterion using either of the chosen domains. In figure 8 the
drag can be seen to remain remarkably constant between each of the three scenarios.
The subcritical drag is increased slightly as dispersion increases, as is consistent with
the increasing amplitude of the wavetrains generated to the rear of the obstacle. For
supercritical oncoming flow (Γ > 0) the drag oscillates as a function of Γ as solitary
waves form and move ahead of the obstacle. As found by Johnson & Vilenski (2004),
the maxima in the drag correspond to situations with one or two distinct large-
amplitude solitary waves ahead of the obstacle, and the minima to the intermediate
situation. High values of drag are sustained for larger values of Γ when dispersion is
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weaker: in this case at least one solitary wave exists ahead of the obstacle for larger
values of Γ .

3.4. Non-dispersive supercritical flow

For small M in non-dispersive supercritical flow, the steady-flow pattern away from
the obstacle for y > 0 is described by the wake equation (2.31) with ∆= 0, i.e. a
Hopf equation. The ‘initial’ condition at Y∗ = 0 is given by the linear far-field solution
(2.32). Whitham (1974) discussed the nature of the solution as Y∗ increases away from
the obstacle. Solutions of the Hopf equation ((2.31), with ∆= 0) become multivalued
and must be regularized by hydraulic jumps, which, in order to conserve mass and
momentum in the flow, must obey an equal-areas rule (see pp. 39–53 of Whitham
1974). Regardless of the exact form of the topographic initial condition, far enough
from the obstacle the solution develops into an N-wave, in which the height field
is linear between two hydraulic jumps. For an antisymmetric initial condition such
as (2.32), the N-wave is centred on the Mach line X = 0 and, as Y∗ increases, the
distance of each jump from the Mach line increases uniformly. The N-wave asymptotic
solution for the current problem is given by

η
f

0 (X, Y∗) →

⎧⎪⎪⎨
⎪⎪⎩

2γ

3

X
Y∗

for |X| �

√
3AY∗

F 2 − 1

0 for |X| >

√
3AY∗

F 2 − 1

with A = −
∫ ∞

0

XG(X) dX. (3.2)

The parameter A is a measure of both the extent and the amplitude of the N-wave at
a fixed distance far from the obstacle. The values for A for the obstacles in table 1 are
1/2,

√
π/8,

√
3/8, π

√
3/8, 2/3 for the ‘Witch of Agnesi’, Gaussian, cone, hemi-ellipsoid

and paraboloid obstacles, respectively. These values of A do not differ greatly, i.e. the
amplitude of the N-wave far from the obstacle is relatively insensitive to the obstacle
shape, for obstacles with the same volume. This is in contrast with the drag exerted
by the obstacle on the flow in the supercritical regime, as seen in table 1.

Figure 9 shows the height field from a shallow-water calculation for the ‘Witch
of Agnesi’ obstacle with M =0.1, F = 1.3. The transcritical similarity parameter is
therefore Γ =1.392 > Γ+ = 1.012 for this obstacle. Hence supercritical theory might
be expected to be accurate for this flow. The solid dots marked on the figure show
the Whitham prediction (3.2) for the position of the hydraulic jumps marking the
boundary of the N-wave. Whitham’s formula, which predicts that the jumps should
have a parabolic profile centred on the Mach line, is seen to be accurate even close to
the obstacle. It is notable that Γ is not dramatically larger than Γ+, at which the flow
might be expected to switch between the transcritical and supercritical regimes, yet
the supercritical theory is accurate. This result reinforces the impression from figure 4
that the region of parameter space for which neither transcritical nor supercritical
theory is accurate is relatively small.

3.5. Weakly dispersive supercritical flow

In dispersive supercritical flow the wake development with increasing distance Y∗
from the obstacle is determined by the KdV equation (2.31) with the initial condition
at Y∗ = 0 given by (2.32) as in the non-dispersive case. Equation (2.31) together with
(2.32) can be rescaled into the canonical problem

ut − 6uuX + uXXX = 0 with u(X, 0) = AXG(X), (3.3)



Single-layer flow over an axisymmetric obstacle 233

–10 –5 0 5
Distance, L

–15

–10

–5

0

5

10

15

D
is

ta
nc

e,
 L

Figure 9. Steady-state free surface displacement (η = σ − 1 + Mh) flow over the ‘Witch
of Agnesi’ obstacle with M = 0.1, F = 1.3. The contour interval is 0.1H , with positive
displacements given by solid contours and negative displacements by dashed contours. The
zero contour is omitted. The solid dots show the Whitham prediction (3.2) for the location of
the hydraulic jumps associated with the front and rear of the N -wave.

the initial-condition amplitude A being given by

A =
3M

2δ2
√

F 2 − 1
. (3.4)

Note that A can be arbitrarily large without invalidating any assumption of the
theory of § 2.3, as δ may be arbitrarily small. Clearly, from (3.3), for a given obstacle
the supercritical obstacle wake is self-similar to the extent that its qualitative nature
is a function solely of the non-dimensional parameter A. For each obstacle, (3.3) can
be solved using the inverse scattering technique to obtain the exact solution for the
wake.

One fundamental question concerns the number of distinct solitary waves that will
emerge in the far field. To obtain this number as a function of A it is necessary only
to determine the number of discrete positive eigenvalues κ of the scattering problem

d2ψ

dX2
− (κ − u(X, 0)) ψ = 0 with ψ → 0 as X → ±∞ (3.5)

(e.g. Drazin & Johnson 1988). This eigenvalue problem may be solved numerically
using standard techniques. In practice, it is solved iteratively on a finite grid
−L < x <L, where L is chosen to be sufficiently large that u(±L, 0) ≈ 0. To obtain an
estimate κi for a specific eigenvalue κ at the ith iteration, the boundary conditions at
X = ±∞ are replaced by ψX = ∓√

κi−1ψ at X = ±L, where κi−1 is the previous estimate
for κ . Numerical results have been tested by comparison with the analytic solution
found for the hemi-ellipsoid obstacle presented in the Appendix, with agreement
obtained up to four significant figures.
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Obstacle Dm Γ− Γ+ A1 A2 A3 A4

Witch of Agnesi 1.030 −1.236 1.012 13.87 34.09 62.56 99.57
Gaussian 1.504 −1.225 1.100 20.76 61.86 124.0 207.1
cone 1.411 −1.237 1.034 22.51 71.68 148.3 252.3
hemi-ellipsoid 2.356 −1.208 1.739 29.09 95.06 198.7 340.1
paraboloid 1.810 −1.214 1.333 26.24 83.76 173.3 294.8

Table 2. Numerically calculated values of the maximum drag coefficient Dm for each obstacle in
the transcritical regime (max D = DmM5/3), and values of the transcritical similarity parameter
marking the boundary between subcritical and transcritical flow (Γ−) and supercritical and

transcritical flow (Γ+). Columns 5–8 give the values of A = 3M/(2δ2
√

F 2 − 1) separating
different solitary-wave regimes (A < A1, one solitary wave; A1 < A < A2, two solitary waves;
etc.) in the dispersive supercritical wakes of each obstacle. The values were obtained by
numerical solution of the scattering eigenvalue problem (3.5) except in the case of the
hemi-ellipsoid, for which an analytic solution is presented in Appendix A. The results are
accurate to the four significant figures given, on the basis of the convergence properties of the
hemi-ellipsoid numerical results.

Table 2 shows for each obstacle those specific values of A that mark the boundaries
between the single-solitary-wave regime (A < A1), the two-solitary-wave regime
(A1 < A < A2), the three-solitary-wave regime etc. It is clear that the dispersive
supercritical wakes of the less compact obstacles (particularly that of the Witch
of Agnesi) tend to break up into more solitary waves at lower values of A (i.e.
lower obstacle heights) when compared with the supercritical wakes of more compact
obstacles (the paraboloid or the hemi-ellipsoid). This is consistent with the fact
that broader potentials, such as those derived from the wakes of the less compact
obstacles, tend to have more discrete eigenvalues, each corresponding to a trapped
eigenfunction, for a given amplitude A.

4. Conclusions
The main contribution of this work has been to describe explicitly a similarity

theory for transcritical single-layer flow over a small isolated obstacle in terms of a
transcritical similarity parameter Γ = (F − 1)/M2/3. The problem has been found to
be isomorphic to that of transonic flow over a thin ‘equivalent aerofoil’ with thickness
proportional to the cross-sectional area of the obstacle. The utility and limitations of
the theory, for both non-dispersive and weakly dispersive flow, have been explored
numerically. In particular, the theory is found to be inaccurate for Γ � 1.5, and a
supercritical theory in which the flow is linear in the vicinity of the obstacle is found
to apply in its place. The influence of the obstacle shape on the drag exerted by the
obstacle on the flow has been described in the transcritical and supercritical regimes;
empirically, there is a surprisingly close relationship, (3.1), which may merit further in-
vestigation and may offer some insight of use in the development of parameterization
schemes for ocean circulation, climate and numerical weather-prediction models.

The current work also gives some insight into the similarities and differences
between two-dimensional weakly dispersive and non-dispersive transcritical and
supercritical flows. Historically, the non-dispersive shallow-water model has been
used to develop important paradigms of many laboratory and geophysical flow
phenomena. However, modern observational techniques, such as synthetic-aperture
radar (e.g. Li et al. 2004), raise the possibility that many mesoscale phenomena in
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the atmosphere and oceans are strongly dispersive in nature. Weakly nonlinear model
equations, such as the KP equation (2.15), and their strongly nonlinear counterparts
(Green & Naghdi 1976; Choi & Camassa 1999), are likely to be of great value in
understanding and interpreting such observations, as well as in the development of
parameterizations for general circulation models.

Of considerable interest is the relationship between the current results and those for
stratified flows over three-dimensional topography. There is no obstacle to deriving
the transcritical forced KP equation (2.15), following Grimshaw & Smyth (1986),
who consider flow over a two-dimensional obstacle for the case of stratified flow
in the presence of a reflecting upper boundary. In the stratified case critical flow,
corresponding to Γ = 0 in (2.15), occurs when a vertical normal mode of the
system becomes resonant to long-wave forcing. In practical situations, whether in
the laboratory, ocean or atmosphere, the most physically relevant mode is likely to
be the gravest mode, for which direct measurements of amplitude may be possible.
A further special case of interest is that of Boussinesq flow with two approximately
equal layers of different densities. In this particular physical situation, the scaling
in the derivation of (2.15) is necessarily altered and a cubic nonlinearity enters (e.g.
Grimshaw, Chan & Chow 2002). The effects of rotation and obstacle anisotropy also
merit further investigation.

E.R.J. and O.J.R. acknowledge funding from the UK Natural Environment
Research Council through grant no. NER/A/S/2000/01323 and research studentship
NER/S/A/2003/11387.

Appendix. The scattering problem for a hemi-ellipsoid
Here an analytic equation is derived for the eigenvalues κ of the scattering problem

(3.5) for the case of a hemi-ellipsoid obstacle. The reason that the hemi-ellipsoid case
is straightforward is that, from table 1, the potential u(X, 0) takes a simple form,

u(X, 0) = AXG(X) = A
{

−βX, |X| � a,

0, |X| > a,

where β = π/2a and the normalisation constant a =
√

3/2 as given in table 1. Hence
the scattering equation (3.5) has a general solution

ψ(X) =

⎧⎪⎨
⎪⎩

α1 exp {
√

κX}, X < −a,

α2Ai
(
A−2/3B−2/3(κ + ABX)

)
+ α3Bi

(
A−2/3B−2/3(κ + ABX)

)
, |X| � a,

α4 exp {−
√

κX}, X > a,

for constants α1–α4. Ai and Bi are Airy functions. Applying the matching conditions
that ψ , ψX are continuous at x = ± a, an eigenvalue equation for κ is obtained,

[Ai′(κ̃ − p) −
√

κ̃Ai(κ̃ − p)][Bi′(κ̃ + p) +
√

κ̃Bi(κ̃ + p)]

= [Ai′(κ̃ + p) −
√

κ̃Ai(κ̃ + p)][Bi′(κ̃ − p) −
√

κ̃Bi(κ̃ − p)]

where κ̃ = κA−2/3β−2/3 and p = β1/3A1/3a. The values A1, A2, A3, . . . that mark the
boundaries between the single-soliton, two-soliton and three-soliton etc. regimes may
be determined by setting κ̃ = 0 in the above equation, and the roots of the resulting
equation in A will then correspond to those values of A at which a new trapped
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eigenfunction with a positive eigenvalue emerges. This occurs at the roots of

Ai′(p)Bi′(−p) = Ai′(−p)Bi′(p),

which occur at pi = {3.248, 4.820, 6.163, 7.372, . . .}, for which, inserting the values of

a =
√

3/2, β = π/2a as above, we have Ai = {29.09, 95.06, 198.7, 340.1, . . .}. These are
the values of A presented for the hemi-ellipsoid obstacle in table 2.
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