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A new algorithm (VOR-MFS) is presented for the solution of a generalized Hamiltonian
model of point vortex dynamics in an arbitrary two-dimensional computational domain.
The VOR-MFS algorithm utilizes the method of fundamental solutions (MFS) to obtain an
approximation to the model Hamiltonian by solution of an appropriate boundary value
problem. Unlike standard point vortex methods, VOR-MFS requires knowledge only of
the free-space (R2) Green’s function for the problem as opposed to the domain-adapted
Green’s function, permitting solution of a much wider range of problems. VOR-MFS is first
validated against a vortex image model for the case of (2D Euler) multiple vortex motion in
both circular and ‘Neumann-oval’ shaped domains. It is then demonstrated that VOR-MFS
can solve for quasi-geostrophic shallow water point vortex motion in the same domains.
The exponential convergence of the MFS method is shown to lead to good conservation
properties for each of the solutions presented.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The point vortex model of hydrodynamics is an important canonical problem with relevance to fluid turbulence, plasma
physics, statistical mechanics and dynamical systems theory. Newton [32] gives a thorough review of recent research and
some open problems (see also [29,38]). For the motion of N vortices in a simply connected domain D � R2, each with circu-
lation Ci (i ¼ 1; . . . ;N) the equations of motion are Hamiltonian,
Ci _xi ¼ �
@H
@yi

; Ci _yi ¼
@H
@xi

; i ¼ 1; . . . ;N: ð1Þ
The system (1) is unusual only in that the scaled vortex coordinates jCij1=2xi, where xi ¼ ðxi yiÞ
T , take the role of canonical

phase space coordinates.
In the most general formulation (e.g. [26]), the Hamiltonian can be written
Hðx1; . . . ;xNÞ ¼ �
XN

i¼1

XN

j¼iþ1

CiCjGðxi;xjÞ �
1
2

XN

i¼1

C2
i gðxi;xiÞ ð2Þ
and is a conserved quantity. The function Gðx;x0Þ is the Green’s function of the first kind for the domain D, defined by
LGðx;x0Þ ¼ dðx� x0Þ x; x0 2 D; ð3aÞ
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Gðx; x0Þ ¼ 0: x 2 @D: ð3bÞ
The linear elliptic operator L, which acts on the x variable only, is in most formulations of the problem taken to be the Lapla-
cian (L � r2), and the result is the point vortex dynamical system of the 2D Euler equations. However, as discussed below,
other choices of L result in alternative point vortex dynamics with relevance to various problems in geophysical fluid
dynamics. Here, we define generalized point vortex dynamics to refer to the dynamical system defined by (1)–(3) for any
choice of invertible and self-adjoint linear elliptic operator L. (Self-adjointness of L guarantees the symmetry
Gðx;x0Þ ¼ Gðx0;xÞ required below.) The remaining function gðx;x0Þ appearing in (2), which we shall term the residual Green’s
function (or the Robin function when L is the Laplacian operator), is defined by gðx;x0Þ ¼ Gðx;x0Þ � G0ðx;x0Þ where G0 is the
corresponding free-space (R2) Green’s function satisfying
LG0ðx;x0Þ ¼ dðx� x0Þ x; x0 2 R2; ð4aÞ
rG0ðx; x0Þj j ! 0 jx� x0j ! 1: ð4bÞ
A requirement in all that follows is that, given a specific operator L, an explicit expression (or means of numerical evalua-
tion) is available for the corresponding free space Green’s function G0ðx;x0Þ.

Numerical solution of the system (1) has understandably focused on the 2D Euler system, for which
L � r2; G0ðx;x0Þ ¼
1

2p
logðjx� x0jÞ:
Although most early calculations (e.g. [35]) have on focussed on circular or periodic domains for which explicit expressions
for G (and thus g) are available via the method of images, it has been long known [27] that the 2D Euler point vortex system
can be solved in any simply-connected domain D using the conformal map to the unit circle. The method exploits the so-
called Routh rule to make suitable modifications to the Hamiltonian H (see for example p. 130 of [32]). Recent work [7]
has extended these results to multiply-connected domains.

For systems governed by operators other than the Laplacian, however, the method of images is typically restricted to do-
mains with straight boundaries, and the Routh rule does not apply. Consequently, our aim here is to formulate a new algo-
rithm that solves (1) for a general linear operator L. In the case of the 2D Euler system the new algorithm has the advantage
of allowing solutions in domains for which an explicit conformal map is not known.

A first important example of point vortex dynamics governed by an operator other than the Laplacian is the so-called
‘quasi-geostrophic shallow water’ (QGSW) system [34], for which L is a modified Helmholtz operator
L � r2 � k2; G0ðx; x0Þ ¼ �
1

2p
K0ðkjx� x0jÞ; ð5Þ
where K0ð�Þ is a modified Bessel function of the second kind. Here k�1 has the dimension of length and is known as the Rossby
deformation radius. The system (5) is relevant to the dynamics of ocean vortices where typically k�1 is taken to be of the
order of 10–50 km. QGSW dynamics differs from that of 2D Euler in that the dynamical influence of QGSW vortices decays
rapidly on lengthscales � k�1, localizing the dynamics.

A second example is the ‘surface quasi-geostrophic’ (SQG) system [17], for which
L � �ð�r2Þ1=2
; G0ðx; x0Þ ¼ �

1
2p
ðjx� x0jÞ�1

:

The SQG system describes the motion induced by surface concentrated potential vorticity anomalies in the ocean or atmo-
sphere, or equivalently, surface potential buoyancy anomalies (ocean) or potential temperature anomalies (atmosphere) at
the planetary surface or tropopause [19]. The singularity associated with an SQG vortex is a simple pole rather than a
logarthmic singularity, and the result is a dynamics that is much more active on small scales [17]. The turbulent cascade
in the SQG model is also thought relevant to three-dimensional turbulence in the Euler equations [6].

Several different numerical algorithms have been employed to solve (1) in the 2D Euler case. Two major limitations of
such algorithms, that we do not try to resolve here, are firstly that OðN2Þ evaluations of the partial derivatives of G and g
are required at each timestep (though improvements could be made using approximate methods such as [16]) and secondly
that variable time-stepping is necessary in order to resolve trajectories on the intermittent occasions when vortices pass
close together. Bühler [3] describes these issues in the context of a standard adaptive algorithm for N vortices in a circular
domain. It is difficult to avoid the OðN2Þ costs without resorting to approximate methods (e.g. [5]), and efforts at calculations
for large N (N � 7000 at the time of writing) have instead been focussed on supercomputing efforts using specialized hard-
ware [42].

One important feature that must be respected by any such algorithm is the invariance of the Hamiltonian H. Symplectic
methods [36,43] have been shown to have greatly improved conservation properties at fixed time-step. However this tech-
nique also scales OðN2Þ, and can have poor stability properties when used with a variable time step (which is necessary for
large N simulations), though an alternative adaptive scheme is suggested in [30]. Two aspects of the symplectic method that
have yet to be explored are its effectiveness in bounded domains and for large N simulations. Extensive transformations of
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the Hamiltonian would also be required in order for it to be used with a symplectic integrator. Therefore, to keep the pre-
sentation simple, we use as our starting point a basic (but adaptive) algorithm in the spirit of that suggested by Bühler [3].

The new algorithm (VOR-MFS hereafter) is designed to solve the generalized point vortex problems detailed above by
exploiting the method of fundamental solutions (MFS hereafter), see [12,14] for detailed overviews. The idea of the MFS
is to approximate the dynamical influence of the domain boundary at each vortex location using a linear combination of
free-space (G0) Green’s function solutions (the fundamental solutions). The locations of the singularities associated with
the fundamental solutions lie outside D on a set of points known as the MFS charge points, and the weights attached to each
charge are chosen to satisfy the Dirichlet boundary condition (3b) on a discrete set of boundary points on @D. The method is
particularly simple to implement and has excellent convergence properties that will be discussed below. Apart from the re-
cent work of Wu et al. [41], who apply MFS to the relatively straightforward problem of the motion of a single 2D Euler vor-
tex outside an elliptical cylinder, to our knowledge VOR-MFS represents the first attempt to exploit the MFS in this context.

The article is structured as follows: Section 2 introduces the new algorithm VOR-MFS and reviews the relevant aspects of
the MFS method. A protocol for choosing numerical parameters to obtain numerical solutions to a pre-determined accuracy
is described. Section 3 describes a number of test-cases demonstrating the robustness of the new algorithm. Finally, in Sec-
tion 4 conclusions are presented along with possible directions for future research.

2. The VOR-MFS algorithm

2.1. The adaptive timestepping algorithm

The new algorithm VOR-MFS to be described below is built upon a standard adaptive time-stepping algorithm designed
to solve (1). The adaptive time-stepping component is deliberately chosen to be as simple as possible in order not to detract
from the new aspects described below, it is essentially that of Bühler [3], and proceeds by targeting solutions of (1) over
intervals of length Dt. To advance the solution from the current time t ¼ tn (tn ¼ nDt), the equations of motion are solved
repeatedly over the time interval ½tn; tn þ Dt�, by subdividing the interval into 2m substeps (m ¼ 1;2;3; . . .), and integrating
over the substeps using an explicit fourth-order Runge–Kutta method. If the solution at tn þ Dt obtained using 2m substeps
is denoted fxðmÞ1 ; . . . ;xðmÞN g, then the stopping criterion for the interval is defined to be
1
N

XN

i¼1

xðmÞi � xðm�1Þ
i

��� ��� < d; ð6Þ
i.e. the mean absolute vortex positions must converge to be less than d. The numerical parameter d controls the accuracy of
the VOR-MFS algorithm, and will be referred to as the tolerance parameter below.

The stopping criterion will be first met for some m ¼ m	, and the algorithm then moves onto the next time interval
½tnþ1; tnþ1 þ Dt�. In practice, when many vortices are present, the number of substeps required (i.e. 2m	 ), varies quite consid-
erably. This is due to intermittent episodes during which vortices pass close together, and it is the resolution of these epi-
sodes which explains the need for adaptivity.

If an exact expression for the Hamiltonian H is available, the equations of motion can be integrated directly using the
above method. The new algorithm VOR-MFS extends the above algorithm to situations where no such explicit expression
is available.

2.2. Use of the method of fundamental solutions

A standard problem for which the MFS has been designed is the boundary value problem
L/ðxÞ ¼ 0 x 2 D; ð7aÞ

/ðxÞ ¼ bðxÞ x 2 @D; ð7bÞ
where bðxÞ is specified on the domain boundary @D.
The MFS exploits the fact that the free-space Green’s function G0ðx;x0Þ (see Eq. (4a) above) satisfies LG0ðx;x0Þ ¼ 0 every-

where in D, provided that x0 lies outside D. The key idea in the MFS is simply to approximate /ðxÞ using a linear combination
/MðxÞ of M free-space Green’s functions, centered on a fixed set of points fy1; . . . ; yMg located outside D, known as the MFS
charge points. In summary,
/MðxÞ ¼
XM

k¼1

akG0ðx; ykÞ; x 2 D; yk R D; ð8Þ
where the fakg are a set of weights. The weights are determined by enforcing the boundary condition (7b) on a discrete set of
points fxB

j g located on @D. (For the purposes of the discussion here, and for the VOR-MFS algorithm, it will be assumed that
there are M such boundary points. In some circumstances it has been shown [39] that the use of a number greater than M can
be advantageous.) The result is a M-dimensional linear system in the fakg, i.e.
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Ga ¼ b; ð9Þ
where the M 
M matrix G has components fG0ðxB
j ; ykÞg, the vector a components fakg and the vector b components fbðxB

j Þg.
Eq. (9) can be solved for the fakg using a standard algorithm (e.g. the Gaussian elimination routine supplied by the software
package MATLAB). Note that the matrix G need only be inverted once at the beginning of a simulation. A possible limitation
with the MFS is that the linear system (9) can be ill-conditioned [22,23]. However there is evidence in the literature [2,13–
15] that apparent ill-conditioning of the MFS-problem presents minimal practical problems for the exponential convergence
of the solution in Helmholtz and Laplacian boundary value problems. The essence of the problem is that the object of interest
in the MFS problem is the convergence of the quantity /M in (8) and not the convergence of the individual charge weights
fag themselves. Kitagawa [22,23] has studied precisely this problem and has found that errors are magnified by a quantity
OðMÞ relative to the error when no ill-conditioning is present (which of course decreases exponentially in M). The essential
point is that those degrees of freedom in fag that cannot be determined accurately (due to ill-conditioning of the linear prob-
lem (9)) are precisely those that do not contribute significantly to /M .

In practice the ill-conditioning is not typically found to affect the accuracy of the MFS solutions. However, for a particular
set-up, it is recommended that the singular values of the matrix G are examined (i.e. prior to commencing a VOR-MFS
integration).

A detailed discussion of the convergence and stability of the MFS is given in [12,14] and references therein. For the illus-
trative problems of Laplace’s equation and the Helmholtz equation in the unit cylinder, it has been shown [1,20,21] that if
the MFS charge points are situated at radius R > 1 then the solution converges exponentially with M
max
x2D

/ðxÞ � /MðxÞj j ¼ O R�M
� �
provided that R <
ffiffiffiffiqp , where q is the radius of first singularity of the analytic continuation of the solution in the complex

plane. For other geometries, exponential convergence can also be attained, but the situation can be more complicated [1].
To use the MFS to solve (1) in the absence of an explicit expression for the domain Green’s function Gðx;x0Þ, note that by

subtracting (4a) from (3a) the following equation for the residual Green’s function gðx;x0Þ is obtained
Lgðx;x0Þ ¼ 0 x; x0 2 D; ð10aÞ
gðx;x0Þ ¼ �G0ðx;x0Þ: x 2 @D: ð10bÞ
Since the free-space Green’s function G0 is known everywhere, Eq. (10a) is exactly of the form (7a) (for given x0) and conse-
quently a standard MFS routine can be straightforwardly applied to solve for an MFS approximation gMðx;x0Þ to the residual
Green’s function, thus obtaining a corresponding approximation to Gðx;x0Þ.

The above approach can be extended to solve for an MFS approximation to the N-vortex Hamiltonian H (denoted HM) by
linearity, with still just a single MFS calculation required. The relevant boundary value problem is
L/ðxÞ ¼ 0 x 2 D; ð11aÞ

/ðxÞ ¼ �
XN

j¼1

CjG0ðx;xjÞ x 2 @D; ð11bÞ
which from (10a) has exact solution
/ðxÞ ¼
XN

j¼1

Cjgðx;xjÞ:
It is straightforward to verify that an alternative expression for the Hamiltonian (2) is
H ¼ �
XN

i¼1

XN

j¼iþ1

CiCjG0ðxi;xjÞ �
1
2

XN

i¼1

Ci/ðxiÞ:
A standard application of the MFS provides an approximate expression /M for / from (8), which allows us to define an MFS
Hamiltonian
HMðx1; . . . ;xNÞ ¼ �
XN

i¼1

XN

j¼iþ1

CiCjG0ðxi; xjÞ �
1
2

XN

i¼1

XM

k¼1

CiakG0ðxi; ykÞ; ð12Þ
where the fakg are the MFS weights obtained from the MFS solution of (11a).
The partial derivatives of the MFS Hamiltonian can be evaluated directly from (12) to integrate (1), bypassing the need for

an explicit expression for Gðx; x0Þ. Because H is a conserved quantity, a key test of the algorithm is conservation of HM . This
will be investigated below.
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2.3. The use of pseudo-images

One factor that strongly influences the accuracy and convergence of the MFS algorithm is the smoothness of the boundary
function bðxÞ in (7b) [1]. In particular, if bðxÞ varies on spatial scales comparable to the spacing between MFS charge points
(i.e. has significant spectral power at wavenumbers � MjDj�1=2 or greater, where jDj is the domain area), then the MFS solu-
tion will be unable to resolve the associated fine scale structure in bðxÞ near the domain boundary. Ref. [1] recommend up to
10 MFS charge points per wavelength for the case where bðxÞ consists of a single Fourier wavenumber, to obtain solutions
close to machine precision.

For the specific MFS boundary value problem (11a) solved in VOR-MFS the boundary function appearing on the r.h.s. re-
mains smooth everywhere on @D, except where a vortex approaches the boundary. A vortex xj located a distance e from the
domain boundary will induce a spectral peak in the boundary data at wavenumbers � e�1. If vortices are to move freely in
the domain, close encounters with the boundary are inevitable, and the MFS method will fail whenever e�1 J MjDj�1=2 for the
reason outlined above.

There turns out to be a simple solution of the above problem. If an additional ‘pseudo-image’ vortex of opposite sign is
placed at a suitable point x	j on the opposite side of the boundary @D to the ‘problem’ vortex xj, then the spectral peak in the
boundary data is smoothed and the MFS solution will retain its accuracy. There is considerable flexibility in the precise
choice of x	j , because all that is required is that as xj approaches the domain boundary (e! 0) is that x	j ! ~xj, (more precisely
it is required that lime!0jx	j � ~xjj=e ¼ 0), where ~xj is the reflected point generated by the nearest point on @D to xj, as illus-
trated in Fig. 1(a). For example, the locations of the exact 2D Euler images in the unit circle x	j ¼ xj=jxjj2 are easily shown to
converge towards the reflection point ~xj, as required. It is to be emphasized that the pseudo-image is not (necessarily) an
exact image of the vortex at xj, merely an approximate image that becomes exact in the limit e! 0.

One possible choice for the pseudo-image position x	j is the boundary reflection point ~xj itself. However, in some relatively
simple geometries ~xj is a discontinuous function of xj, which can lead to computationally undesirable jumps in the pseudo-
image position as xj evolves in time. In the examples below, knowledge of an explicit conformal map to the unit circle is
exploited to choose x	j , see below for details. Alternative methods of selecting x	j are no doubt possible. In practice pseu-
do-images are introduced smoothly as a vortex approaches the boundary. For example, in a circular domain with unit radius
the pseudo-image strength is set by the function
Fig. 1.
illustra
pseudo
of the p
Ĉj ¼ �Cj

0; 0 6 jxjj 6 R1;

jxj j�R1
R2�R1

� �2
; R1 < jxjj 6 R2;

1; R2 < jxjj 6 1:

8>><
>>:

ð13Þ
(a) Schematic illustrating the boundary reflection point ~x and a possible pseudo-image location x	 associated with a vortex at x. (b) Schematic
ting a typical configuration of vortices and pseudo-images in the unit circle domain (with N ¼ 4). For vortices in central white region jxjj 6 R1 no
-images are used. In the dark grey region jxjj > R2 a full strength pseudo-image is present, whereas in the light grey region R1 < jxjj 6 R2 the strength
seudo-image is gradually increased as the vortex moves closer to the boundary.
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In domains that are conformal to the unit circle a similar approach can be taken (see below). Fig. 1(b) illustrates schemat-
ically the three regions in (13), some vortices and pseudo-images, and the MFS charge points.

In the case where there are P 6 N pseudo-images, the MFS Hamiltonian is
HMðx1; . . . ;xNÞ ¼ �
XN

i¼1

XN

j¼iþ1

CiCjG0ðxi; xjÞ �
1
2

XN

i¼1

XM

k¼1

Ci ~akG0ðxi; ykÞ �
1
2

XN

i¼1

XP

j¼1

CiĈjðxjÞG0ðxi; x	j Þ; ð14Þ
where f~akg are the weights obtained from the MFS solution of
L/ðxÞ ¼ 0 x 2 D; ð15aÞ

/ðxÞ ¼ �
XN

j¼1

CjG0ðx;xjÞ �
XP

j¼1

ĈjG0ðx;x	j Þ x 2 @D: ð15bÞ
Placement of pseudo-images can become complicated (or even impossible) when parts of the domain are very thin (e.g. a flat
plate or protrusion), such as in [33]. Further, the convergence properties of the algorithm in this context will also be severely
reduced, as will be noted in the next section.

2.4. Selection of the location and number of MFS charge points in VOR-MFS

The optimal positioning of the MFS charge points fykg and boundary points fxB
kg is a topic that has received considerable

attention in the literature (see e.g. [1]). The optimal distance of the curve on which the charge points are situated from the
domain boundary @D depends in general upon the nature of the boundary data bðxÞ in Eq. (7b), as well as the curvature of the
domain boundary @D. A detailed analysis of the optimal location of fykg specific to the VOR-MFS problem awaits a future
study. The spacing of the charge points fykg along the chosen curve must reflect the curvature of @D itself. Unsurprisingly,
the best results are obtained if the charge points are concentrated near regions of high curvature.

As mentioned in Section 2.3, vortex motion around thin obstacles will lead to severely reduced convergence properties.
When the spacing between charge points exceeds the thickness of the obstacle, VOR-MFS is likely to have the more modest
quadratic convergence properties of a boundary integral method such as [33]. VOR-MFS is evidently not suited to this spe-
cific problem and as such the focus of the paper will be on domains with no thin sections.

Good results have been obtained in the unit circle domain by placing the charge points uniformly at radius R ¼ 1:1. In
other domains, a conformal map from the unit circle domain to D can be used to determine the positions of fykg based
on a simple distribution around the circle. The boundary points fxB

kg are placed uniformly around the circle R ¼ 1 and then
mapped unto @D. The use of the conformal map, where available, ensures that the charge points are concentrated in the de-
sired regions [1], however heuristic methods may well work where no conformal map is available.

Once an optimal curve for the MFS charge points fykg has been chosen, a crucial issue in optimizing the performance of
VOR-MFS is the choice of the number M of charge points. The basic adaptive time-stepping algorithm described in Section 2.1
above requires convergence of the mean vortex position to within a tolerance d (see Eq. 6) over a time interval Dt. For given d,
the optimal choice of M will be M	ðdÞ, defined to be the minimum value of M for which the accumulated error due to the MFS
approximation over the interval ½tn; tn þ Dt� is less than �d. Here � < 1 is a constant chosen to ensure that MFS errors at
M ¼ M	ðdÞ remain sufficiently small compared with the errors associated with the adaptive time-stepping scheme itself.

For a specific set-up, the value of M	ðdÞ can be estimated prior to a dynamical integration by the following procedure. A
set of random vortex positions fxig is first generated. The mean error in velocity ui at the vortex locations due to the MFS is
then defined to be
EðMÞ ¼ 1
N

XN

i¼1

uðMÞi � ui

��� ���; ð16Þ
where uðMÞi is the MFS estimate of ui. Next, the fact that MFS solutions converge exponentially in M, is exploited to write the
following estimate for EðMÞ
EðMÞ � 1
N

XN

i¼1

uðMÞi � uðMmaxÞ
i

��� ��� ¼ Ae�aM
; ð17Þ
where Mmax is the maximum number of points for which the MFS problem can be conveniently solved. Estimates for the real
constants A and a are found by using (17) to calculate EðMÞ for several values of M < Mmax and making a least squares fit to
log EðMÞ. The values of A and a thus obtained are specific to the problem being solved, and also depend to a certain extent on
numerical choices such as the locations of fykg, the values of R1, R2 etc. In practice a number of realizations of fxig are tested
and the ‘worst case’ values of A and a are used below.

Provided Dt is sufficiently small, the MFS error in mean vortex position over the time interval Dt can be estimated to be
EðMÞDt. The requirement that
EðMÞDt 6 �d ð18Þ



Fig. 2. MFS mean velocity error EðMÞ for (a) the 2D Euler system and (b) the QGSW system, with N ¼ 4; N ¼ 8 and N ¼ 16 in the unit circle. The results are
calculated from the ‘worst’ case outcome of ten uniformly distributed random configurations of the N vortices.
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is sufficient for the estimated MFS error to be less than the time-stepping error (by a factor �). Our estimate of M	ðdÞ is de-
fined by equality in the above relation, and using (17) is found to be
M	ðdÞ ¼ �
1
a

log
�d

ADt

� �
: ð19Þ
The important point evident from (19) is that M	ðdÞ has logarithmic dependence on d. Consequently, provided the constant a
is not too small, appropriately small values of d can be targeted at little additional cost in terms of MFS charge points. A con-
servative choice of � ¼ 10�3 is made in all integrations described below, to ensure that time-stepping errors dominate over
MFS errors.

The dependence of EðMÞ on N is shown in Fig. 2 for the neutral (equal numbers of positive and negative
vortices) in (a) the 2D Euler system (k ¼ 0) and (b) the QGSW system (k ¼ 1), with N ¼ 4; N ¼ 8 and N ¼ 16 in a
unit circle. Charge points are placed at a radius of 1:1, Dt ¼ 0:1 and Ci ¼ �1. Ten realizations of the vortex positions are
used for each calculation. It is clear from Fig. 2 that the mean error EðMÞ in the vortex velocities depends at most weakly
on N and on k.
2.5. Computational cost of VOR-MFS

The structure of the VOR-MFS Hamiltonian (14) makes possible simple scaling estimates for the computational costs of
VOR-MFS in comparison with an explicit numerical scheme designed to solve the same problem. How, for example, does the
VOR-MFS algorithm scale with vortex number N and the accuracy controlling (tolerance) parameter d?

First note that a single evaluation of the linear problem (9) requires M	ðdÞ2 multiplication operations. It follows that
the costs associated with solving the linear problem are overwhelmed by the costs associated with the evaluations of
the derivatives of the Hamiltonian (14) in (1), which (as argued below) requires at least M	ðdÞ2 evaluations of the
derivatives of the free space Green’s function. Hence the additional costs of solving the linear system (9) can be safely
neglected.

Comparing the costs of evaluating the derivatives of an image model Hamiltonian (Eq. (2), with Gðx;x0Þ given by e.g. (20)
below) to the VOR-MFS Hamiltonian (14), the former requires 4N2 evaluations of the derivatives of G0 and the latter
ðN þM	ðdÞ þ �PÞ2 evaluations, where �P < N is the average number of pseudo-images in use. For N � M	ðdÞ VOR-MFS therefore
becomes cheaper than the corresponding image model (since �P is roughly proportional to N). VOR-MFS is therefore very well-
suited to large N super-computer simulations of the type performed by Yatsuyanagi et al. [42]. Note that there is evidently an
optimization problem, which has not yet been explored in detail, concerning how to best choose the pseudo-image protocol
to minimize M	ðdÞ þ P in VOR-MFS.

The costs associated with decreasing the tolerance parameter d are primarily associated with the underlying adaptive
time-stepping scheme described above in Section 2.1. For the present fourth-order (RK4) scheme, a decrease in d by a factor
of sixteen results in a doubling of the number of substeps (m	 ! m	 þ 1) needed over each integration interval Dt. In VOR-
MFS there is an addition cost associated with an increase in the number of MFS points M	ðdÞ, but because this increase is
logarithmic in d the additional cost is relatively small, particularly if N is large.

A further cost for VOR-MFS, which applies when the system being integrated is no longer the 2D Euler system, is the addi-
tional cost of evaluating e.g. modified Bessel functions (see Eq. (5)), when calculating the gradients of H. This cost can be
considerable, and the use of fast Bessel function routines is recommended.
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3. Test cases for VOR-MFS

3.1. Test case I: multiple 2D Euler vortices in a circular domain

The first test for VOR-MFS will consider the dynamics of N 2D Euler vortices in a unit circle domain. The performance of
VOR-MFS will be tested against an exact ‘image’ model to be described.

The exact Hamiltonian H for the motion of N 2D Euler vortices in a unit circle is given by (2) with
Fig. 3.
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are give
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log x� x0j j � 1
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log 1� 2x � x0 þ jxj2jx0j2
� �

; ð20Þ
where the first term can be recognized to be G0ðx;x0Þ and the second is therefore gðx;x0Þ. Viewed as a function of x, (20) is
equivalent (up to a dynamically irrelevant function of x0) to the streamfunction induced in an unbounded domain by a vortex
of circulation þ1 at x0 plus a vortex of circulation �1 at the image location x	 ¼ x0=jx0j2. The exact expression for Gðx; x0Þ al-
lows (1) to be solved directly using the adaptive time-stepping routine described in Section 2.1. We refer to this model
henceforth as the image model.

Two tests used to assess VOR-MFS are conservation of the Hamiltonian H and of angular momentum
L ¼ 1
2p
XN

i¼1

Cijxij2: ð21Þ
Conservation of L follows from the rotational symmetry of the unit circle domain. The relative error measures
dHðtÞ ¼
HðtÞ � Hð0Þ

Hr

����
����; dLðtÞ ¼

LðtÞ � Lð0Þ
Lr

����
���� ð22Þ
are adopted as the principal means of evaluation of VOR-MFS accuracy. Here Hr and Lr are reference magnitudes for the Ham-
iltonian and angular momentum, chosen to be their mean and standard deviation respectively, as calculated from 100 sam-
ples based on uniformly distributed vortex positions. Recall that VOR-MFS uses convergence of mean vortex position as its
criterion for advancement (see Eq. (6)), hence conservation of H and L are not targetted directly. Numerical control over the
error measures dH and dL is therefore an important internal consistency check for the algorithm.

To compare results between the image model and VOR-MFS, the equations of motion (1) are integrated for 100 non-
dimensional time units with N ¼ 4 vortices (with circulations Ci ¼ þ1;þ1;�1;�1), using each model. The motion of four
vortices in a bounded domain is known to be chaotic in general [32] and consequently provides a robust test. Results for
three different values of the tolerance d are compared (d ¼ 10�6;10�8;10�10) with the integration interval set to be
Dependence of relative numerical error dHðDtÞ in the Hamiltonian H, at the end of a single integration interval Dt, upon the number of MFS charge
used by VOR-MFS (solid curves). The largest errors over 100 realizations of uniformly distributed random initial conditions are shown and results

n for several values of the adaptive time-stepping tolerance (d ¼ 10�6;10�8;10�10). Dashed lines show the corresponding error in the image model.
ues M ¼ M	ðdÞ obtained from Eq. (19) are illustrated as solid points on each curve.



Fig. 4. (a) Vortex trajectories as calculated using the image model over 20 nondimensional time units with tolerance parameter d ¼ 10�8. Black curves show
positive vortices and grey curves negative vortices. Initial positions are plotted as filled circles and final positions as crosses. (b) As (a) but for VOR-MFS with
M	ðdÞ ¼ 202.

Fig. 5. Time evolution of the error measures (a) dHðtÞ (Hamiltonian error) and (b) dLðtÞ (angular momentum error) during VOR-MFS model integrations
(solid curves) and the image model integrations (dashed curves). Three values of the tolerance parameter d ¼ 10�6;10�8;10�10 are shown with
M ¼ M	ðdÞ ¼ 156;202;248 the respective number of MFS charge points.
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Dt ¼ 0:1. For VOR-MFS, the MFS charge points are located at R ¼ 1:1, and the procedure detailed in Section 2.4 is followed to
set the number of MFS charge points to be M ¼ M	ðdÞ ¼ 156;202;248 respectively. Pseudo-images are introduced smoothly
for radii greater than R1 ¼ 0:8 and with R2 ¼ 0:9 (see Eq. 13) at positions x	j ¼ xj=jxjj2.

To confirm that the number of MFS points M ¼ M	ðdÞ is adequate in each case, Fig. 3 shows dHðDtÞ (Hr ¼ �0:366, 3 sig. fig.)
as a function of M for VOR-MFS (solid curves), and the corresponding error in the image model (dashed lines). The results are
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taken from the worst case of 100 short integrations (length Dt ¼ 0:1) with uniformly distributed random initial vortex place-
ments as initial conditions. Fig. 3 confirms that the method of Section 2.4 is broadly successful in selecting the minimum
value M ¼ M	ðdÞ for which errors due to MFS are significantly less than errors due to the adaptive time-stepping scheme
(dashed curves).

Fig. 4 illustrates vortex trajectories calculated using both the image model and VOR-MFS over 20 nondimensional time
units. Numerical parameters are d ¼ 10�8 and M	ðdÞ ¼ 202, as in the middle case above. The same initial conditions are used
in each case and it is clear from the figure that VOR-MFS accurately reproduces the image model trajectories during a period
in which the vortices make multiple circuits of the domain. The mean difference in vortex positions between the two runs at
t ¼ 20 is 1:3
 10�4. Due to the chaotic nature of the vortex evolution the mean difference grows exponentially and is
6:7
 10�1 at t ¼ 40. Beyond this time the two integrations diverge completely. Note that vortices are within the full pseu-
do-image region jxjj > R2 ¼ 0:9 (see Eq. (13)) for just 7% of the integration.

Fig. 5 shows the time evolution of dHðtÞ and dLðtÞ (Lr ¼ 0:593, 3 sig. fig.) over the full duration of the VOR-MFS model inte-
grations (solid curves, with M ¼ M	ðdÞ in each case) and image model integrations (dashed curves), where again
d ¼ 10�6;10�8;10�10 and M ¼ M	ðdÞ ¼ 156;202;248. It is evident that in both models dHðtÞ and dLðtÞ are controlled (linearly)
by the tolerance parameter d. Fig. 5 demonstrates that the growth of numerical errors in both H and L is comparable in each
model.

3.2. Test case II: multiple 2D Euler vortices in a Neumann oval

A more challenging test for VOR-MFS is to simulate point vortex dynamics in a domain with less symmetry than the unit
circle. Next VOR-MFS is therefore validated against an image model for 2D Euler dynamics in a domain bounded by a Neu-
mann oval [28]. Neumann ovals, constrained here to have equal area (p), are a one-parameter family of curves defined by the
conformal map from the unit circle
z ¼ FðZÞ ¼ aZ

1� q2Z2 ; a ¼ apðqÞ ¼
1� q4

ð1þ q4Þ1=2 : ð23Þ
Here the usual correspondence between the complex plane C and R2 is assumed, i.e. z ¼ xþ iy is identified with coordinates
x ¼ ðxyÞT in the Neumann oval domain and Z ¼ X þ iY with coordinates X ¼ ðX YÞT in the unit circle image domain. The
parameter q (0 6 q < 1) controls the shape of the Neumann oval. Here q ¼ 0:7 is chosen (q ¼ 0 maps the circle to itself).

An image model is available for any conformally mapped domain following application of the Routh rule [32]. Defining
X ¼ fðxÞ to be the R2 expression of the inverse map of (23), Z ¼ f ðzÞ, the Green’s function in D is simply
Gðx; x0Þ ¼ GcðfðxÞ; fðx0ÞÞ; ð24Þ
where Gc denotes the unit circle Green’s function given in (20). The image model is defined by (2) with Green’s function (24).
Notice that careful evaluation of terms of the form gðx;xÞ appearing in (2) is necessary, the important result being [32]
gðx;xÞ ¼ gcðfðxÞ; fðx0ÞÞ þ
1

2p
log f 0ðzÞj j;
where gc is the residual Green’s function in the unit circle (see Eq. (20)). A numerical image model designed to solve (1) for
the specific mapping defined by (23) has been implemented using the adaptive method of Section 2.1. The numerical image
model was validated by verifying conservation of H (see below).

The VOR-MFS model is designed as follows. According to [1], MFS charge points in conformal domains are optimally
placed when they do not enclose singularities of the Schwarz function associated with @D. The Schwarz function �z ¼ SðzÞ
is a complex form of the equation determining @D, i.e. if hðx; yÞ ¼ 0 defines @D in R2, then �z ¼ SðzÞ follows from resolving
the equation hððzþ �zÞ=2; ðz� �zÞ=2iÞ ¼ 0 in favor of �z. It is assumed here that SðzÞ is analytic in the neighborhood of @D.
For the particular case of (23) it can be shown that SðzÞ has singularities at
z� ¼ �i
apðqÞ2qð1þ q2Þ

2ð1� q4Þ2
; ð25Þ
which lie on the image axis outside @D. Taking these locations into account, a suitable curve for the charge points, illustrated
in Fig. 6, was found to be the Neumann oval with parameters q ¼ 0:73 and a ¼ ð1:3Þ1=2apðqÞ. The spacing of the MFS charge
points on this curve follows the ‘constant conformal radius’ method [1], i.e. the M charge points are equally spaced on the
unit circle and then mapped to their Neumann oval by (23). Fig. 6 shows that charge points are concentrated near the regions
of maximum curvature of @D. Calculations of M ¼ M	ðdÞ following the method of Section 2.4 reveal that a significantly great-
er number of charge points (approximately twice as many for the same d) are required for the oval as compared to the circle.

Pseudo-images are introduced much as for the unit circle. First define inner and outer Neumann ovals by (23) with
q1 ¼ 0:86 and a1 ¼ ð0:6Þ1=2apðq1Þ and q2 ¼ 0:78 and a2 ¼ ð0:76Þ1=2apðq2Þ respectively. Denoting the polar equations of the in-
ner and outer ovals by r ¼ R1ðhÞ and r ¼ R2ðhÞ respectively, the pseudo-image formula (c.f. Eq. (13)) used is



Fig. 6. Geometry of VOR-MFS for the Neumann oval integrations with 70 MFS charge points illustrated. Partial pseudo-images are used in the light grey
region and full pseudo-images in the dark grey region. Unfilled circles show the singularities z� of the Schwarz function given by (25).
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where hj ¼ tan�1ðyj=xjÞ. Pseudo-images are placed at the exact image point in the unit circle image domain and mapped back
to the Neumann oval. That is, if a vortex at xj maps to Xj in the image domain then the pseudo-image is placed at
x	j ¼ fðXj=jXjj2Þ.

Fig. 7 shows the time evolution of the error measure dHðtÞ (calculated using HM) during separate integrations with
N ¼ 4;N ¼ 8 and N ¼ 16 vortices and Hr ¼ �0:441;�0:895 and �1:70 to 3 sig. fig. respectively. Equal numbers of positive
and negative vortices are used in each case with circulations Ci ¼ �1. The numerical parameters used are integration interval
Dt ¼ 0:1, tolerance d ¼ 10�8 and number of MFS charge points M	ðdÞ ¼ 348. Good conservation properties are evident for all
three integrations.
Time evolution of error measure dHðtÞ for VOR-MFS integrations of N ¼ 4;8 and 16 2D Euler vortices (solid, dashed and dotted curves respectively.)
ue of the tolerance parameter was d ¼ 10�8 with M ¼ M	ðdÞ ¼ 348.
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3.3. Test case III: a solitary QGSW vortex in a Neumann oval

Arguably the main strength of VOR-MFS is its capacity to simulate point vortex dynamics in systems other than the 2D
Euler equations. One example of such a system is the quasi-geostrophic shallow water (QGSW) model discussed in the intro-
duction, see (5) for its free space Green’s function. Next VOR-MFS will be used to simulate the motion of a single QGSW vor-
tex in the Neumann oval.

Motion of a single vortex governed by (1) is well-known to be confined to isolines of the Hamiltonian H [32], which in the
case of a single vortex in a domain D is given by
Fig. 8.
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where gðx;x0Þ is the residual Green’s function for D. The Hamiltonian H can be approximated at any point x1 using MFS (by
HM , see Eq. (14)). An MFS estimate of the isolines of H can therefore be obtained by evaluating HM on a grid over D, and con-
touring the resulting function of x1.

The isolines of H for a QGSW vortex with Rossby radius k�1 ¼ 1 and circulation C1 ¼ þ1, calculated using the above meth-
od with M ¼ 374 charge points, is shown in Fig. 8(a). The isolines can be contrasted with those for a 2D Euler vortex shown in
Fig. 8(b). The main difference between the two systems is that the (boundary-induced) velocity field experienced by the vor-
tex is much weaker in the QGSW system towards the center of the domain. (Recall from (1) that u1 ¼ C�1

1 k
rx1 H and
therefore vortex velocities are proportional to the gradient of H.) The weaker velocities can be explained by the fact that
the dynamical influence of the QGSW vortex decays exponentially at distances J k�1, due to the modified Bessel dependence
in (5). A QGSW vortex placed a distance � k�1 from a domain boundary therefore moves as if the boundary is absent.

The thick dashed lines on Fig. 8 show dynamical trajectories calculated explicitly using VOR-MFS (for the QGSW vortex)
and the image model (for the 2D Euler vortex) for 35 non-dimensional time units. The initial condition is identical for both
runs x1ð0Þ ¼ ð0:805 0ÞT . However, the behavior is different due to the different dynamics: the QGSW vortex recirculates
Isolines of Hðx1Þ for (a) a solitary QGSW vortex with k�1 ¼ 1 and C1 ¼ 1 (calculated as HM with M ¼ 374), and (b) a solitary 2D Euler vortex, in the
nn oval given by (23) with q ¼ 0:7. The thick dashed lines in each panel show the dynamically calculated trajectory of a vortex with initial position
ð0:805 0ÞT over 35 time units, with d ¼ 10�8. The contour interval is 0.078 in both panels except for the grey dotted contour in (a) (at level 0.097)
to illustrate the predicted trajectory.
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within the same lobe, whereas the 2D Euler vortex circulates between the two lobes. It is also clear that, as expected, the 2D
Euler vortex travels considerably further during the same time period.

Fig. 9 shows the time evolution of dHðtÞ (Hr ¼ 0:216, 3 sig. fig.) during a further QGSW integration with x1ð0Þ ¼ ð0 0:3ÞT ,
over 100 non-dimensional time units, or approximately four complete circuits of the domain. Results are shown for three
different values of the tolerance parameter d ¼ 10�6;10�8 and 10�10, with corresponding numbers of MFS charge points
M	ðdÞ ¼ 290;374;460. The Hamiltonian error measure dHðtÞ is evidently linearly controlled by the tolerance parameter d.
Fig. 9. Time evolution of the error measure dHðtÞ (where H is estimated by HM) over 100 non-dimensional time units (corresponding to approximately four
complete circuits of the domain) for an QGSW vortex with k ¼ 1. Three values of the tolerance parameter d ¼ 10�6;10�8;10�10 are shown with
M ¼ M	ðdÞ ¼ 290;374;460 the respective number of MFS charge points.

Fig. 10. Time evolution of error measure dHðtÞ (where H is estimated by HM) for VOR-MFS integrations with N ¼ 2;4 and 8 QGSW vortices (solid, dashed and
dotted curves respectively). The value of the tolerance parameter was d ¼ 10�8 with M ¼ M	ðdÞ ¼ 348.
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3.4. Test case IV: multiple QGSW vortices in a Neumann oval

A final test for VOR-MFS is the simulation of the dynamics of many QGSW vortices in a Neumann oval. The dynamics of
two or more vortices are chaotic and therefore more challenging numerically. As above, the main means of validating the
algorithm is by verifying conservation of H (calculated as HM from Eq. (14)).

Fig. 10 shows the evolution of the error measure dHðtÞ for the Hamiltonian for three different runs with N ¼ 2;4 and 8
vortices and Hr ¼ �0:366;�0:719 and �1:16, to 3 sig. fig. respectively. Numerical parameters are as for the 2D Euler calcu-
lations described in Section 3.2. As in the 2D Euler case good convergence properties are evident.

4. Conclusions

A new algorithm VOR-MFS has been presented above. It is designed to solve generalized point vortex models in arbitrary
two-dimensional domains. The main advantages of the new algorithm are:

1. VOR-MFS requires knowledge of only the free-space (R2) Green’s function G0ðx;x0Þ of the point vortex model in question,
as opposed to the domain-adapted Green’s function (required e.g. by image-based models). VOR-MFS can therefore be
used to investigate the alternative point vortex models of geophysical interest discussed in the introduction (QGSW,
SQG, etc.). Additionally, VOR-MFS can be used to solve the 2D Euler system in domains for which the Green’s function
Gðx;x0Þ is not known explicitly or is expensive to calculate.

2. Subject to certain caveats [1], the MFS algorithm converges exponentially with the number of charge points M. Hence it is
practical to choose M in order that the error associated with using the VOR-MFS algorithm is comparable to that of the
underlying adaptive time-stepping scheme (see Section 2.4).

3. The number M of MFS charge points required converges as the number of vortices N !1. Consequently, for sufficiently
large N, VOR-MFS becomes no more expensive to integrate than an image model adapted to the same problem.

One difficulty for the MFS method occurs when parts of the domain D are very thin (e.g. a flat plate or protrusion). In such
domains VOR-MFS is likely to perform more like a boundary-integral method, similar to that in [33]. A further caveat, is that
complicated domains that require a large number of MFS charge points could result in numerical difficulties, due to limita-
tions associated with the size and apparent conditioning of the linear system (9). As discussed in Section 2.2, this presents
minimal practical problems.

The VOR-MFS algorithm opens up a number of interesting pathways for future research. For example, VOR-MFS could be
used to test statistical mechanics predictions of the behavior of the geophysical point vortex models mentioned above
[11,35]. Chen et al. [4] has demonstrated that MFS is effective in multiply connected domains, hence (for example) VOR-
MFS could be used to validate and extend recent results describing vortex trajectories around islands [8]. Another possibility
is that, with a few minor adaptations, VOR-MFS could be extended to study the dynamics of point vortex ‘hetons’ [18], i.e.
two-layer quasi-geostrophic vortices of relevance in oceanography [9,24,25]. Further, the dynamics of large ensembles of
three-dimensional quasi-geostrophic vortices has also prompted considerable interest [40], including numerical simulations
of single-signed point vortices in an unbounded domain [31,37]. There is potential for VOR-MFS to be extended to study the
three-dimensional system in bounded domains, permitting the study of ‘neutral’ systems in which vortices of both signs are
present.

Finally, it is interesting to speculate on whether or not the MFS algorithm could be used effectively to implement bound-
ary conditions in dynamical models with piece-wise constant vorticity (contour dynamics, e.g. [10]) or even in models aim-
ing to represent continuous vorticity distributions. In both cases the effective treatment of the continuous analogue of the
‘pseudo-images’ discussed in Section 2.3 above will be paramount.
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