Calibrated Submanifolds

Problem Sheet 1

- 1. Let $U \subseteq \mathbb{R}^2$ be an open set with compact closure and let $f: U \to \mathbb{R}$ be such that N = Graph(f) is a minimal surface in \mathbb{R}^3 . Let x, y be coordinates on \mathbb{R}^2 .
 - (a) Show that

$$\operatorname{div}\left(\frac{\nabla f}{\sqrt{1+|\nabla f|^2}}\right) = 0$$

and, equivalently, that

$$(1+f_y^2)f_{xx} + (1+f_x^2)f_{yy} - 2f_xf_yf_{xy} = 0.$$

Let ν be the upward pointing unit normal on N and define a 2-form η on $U \times \mathbb{R}$ by $\eta(u, v) = \nu . (u \times v)$ for vectors $u, v \in \mathbb{R}^3$.

- (b) Show that η is a calibration.
- (c) Deduce that if N' is any surface in $U \times \mathbb{R}$ with $\partial N' = \partial N$ then $\operatorname{Vol}(N') \ge \operatorname{Vol}(N)$.
- 2. (a) Let N be a submanifold in \mathbb{R}^n . Show that N is minimal if and only if the coordinate functions x_i on \mathbb{R}^n restricted to N are harmonic.

The maximum principle for harmonic functions states that a harmonic function on a compact set attains its maximum on the boundary.

- (b) By using the maximum principle and (a), or otherwise, show that there are no compact minimal submanifolds in Rⁿ.
- 3. Let M be Enneper's surface:

$$M = \left\{ \left(s - \frac{s^3}{3} + st^2, -t - s^2t + \frac{t^3}{3}, s^2 - t^2\right) \in \mathbb{R}^3 \, : \, s, t \in \mathbb{R} \right\}.$$

Show that M is a minimal surface which is not embedded.

- 4. Let x, y be coordinates on \mathbb{R}^2 .
 - (a) Let $\eta = \frac{1}{\sqrt{x^2 + y^2}} (x dx + y dy)$ on $\mathbb{R}^2 \setminus \{0\}$. Show that η is a calibration and describe its calibrated submanifolds.
 - (b) Let $\eta = \frac{1}{\sqrt{x^2 + y^2}} (dx \frac{x}{y} dy)$ for y > 0. Show that η is a calibration on the upper-half plane with the hyperbolic metric $\frac{dx^2 + dy^2}{y^2}$ and describe its calibrated submanifolds.