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Introduction

A key aspect of mathematics is the study of variational problems. These can vary from the purely analytic

to the very geometric. A classic geometric example is the study of geodesics, which are critical points

for the length functional on curves. As we know, understanding the geodesics of a given Riemannian

manifold allows us to understand some of the ambient geometry, for example the curvature. The higher

dimensional analogue would be to study critical points for the volume functional, and we would hope

(and it indeed turns out to be the case) that these critical points, called minimal submanifolds, encode

crucial aspects of the geometry of the manifold.

Just like the geodesic equation, we would expect (and it is true) that minimal submanifolds are defined

by a second order partial differential equation. Such equations are very difficult to solve in general, so

a key idea is to find a special class of minimal submanifolds, called calibrated submanifolds, which are

instead defined by a first order partial differential equation. The definition of calibrated submanifolds is

motivated by the properties of complex submanifolds in Kähler manifolds, and turns out to be useful in

finding minimizers for the volume functional rather than just critical points. However, finding examples

outside the classical complex setting turns out to be difficult, leading to important methods coming from

a variety of sources, as well as motivating the study of the deformation theory of these objects.

Calibrated submanifolds naturally arise when the ambient manifold has special holonomy, including

holonomy G2. In this situation, we would hope that the calibrated submanifolds encode even more,

finer, information about the ambient manifold, potentially leading to the construction of invariants. In

this setting, there is also a relationship between calibrated submanifolds and gauge theory: specifically,

connections whose curvature satisfies a natural constraint determined by the special holonomy group

(so-called instantons). For these reasons, calibrated submanifolds form a hot topic in current research,

especially in the G2 setting.

1 Minimal submanifolds

We start by analysing the submanifolds which are critical points for the volume functional. Let N be

a submanifold (without boundary) of a Riemannian manifold (M, g) and let F : N × (−ϵ, ϵ) → M be

a variation of N with compact support; i.e. F = Id outside a compact subset S of N with S open and

F (p, 0) = p for all p ∈ N . The vector field X = ∂F
∂t |N is called the variation vector field. We have the

following definition.

Definition 1.1. N is minimal if d
dt Vol(F (S, t))|t=0 = 0 for all variations F with compact support S

(depending on F ).

Remark Notice that we do not ask for N to minimize volume: it is only stationary for the volume.

Example. A plane in Rn is minimal since any small variation will have larger volume.

Example. Geodesics are locally length minimizing, so geodesics are minimal. However, as an example,

the equator in S2 is minimal but not length minimizing since we can deform it to a shorter line of latitude.
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For simplicity let us suppose that N is compact. We wish to calculate d
dt Vol(F (N, t))|t=0. Given

local coordinates xi on N we know that

Vol(F (N, t)) =

∫
N

√
det

(
g

(
∂F

∂xi
,
∂F

∂xj

))
volN .

Let p ∈ N and choose our coordinates xi to be normal coordinates at p: i.e. so that ∂F
∂xi

(p, t) = ei(t)

satisfy g(ei(0), ej(0)) = δij . If gij(t) = g(ei(t), ej(t)) then we know that

d

dt

√
det(gij(t))|t=0 =

1

2

∑
i g

′
ii(t)√

det(gij(t))
|t=0 =

1

2

∑
i

g′ii(0).

Now

1

2

∑
i

g′ii(0) =
1

2

∑
i

d

dt
g

(
∂F

∂xi
,
∂F

∂xi

)
|t=0

=
∑
i

g(∇Xei, ei)

=
∑
i

g(∇eiX, ei) = divN (X)

since [X, ei] = 0 (i.e. the t and xi derivatives commute). Moreover, we see that

divN (X) =
∑
i

g(∇eiX, ei) = divN X
T −

∑
i

g(X⊥,∇eiei) = divN X
T − g(X,H)

(since ∇eig(X
⊥, ei) = 0) where T and ⊥ denote the tangential and normal parts and

H =
∑
i

∇⊥
eiei

is the mean curvature vector. Overall we have the following.

Theorem 1.2. The first variation formula is

d

dt
Vol(F (N, t))|t=0 =

∫
N

divN (X) volN = −
∫
N

g(X,H) volN .

We deduce the following.

Definition 1.3. N is a minimal submanifold if and only if H = 0.

This is a second order nonlinear PDE. For a function f : U ⊆ Rk → Rn−k we shall see in Problem

Sheet 1 that Graph(f) is minimal if and only if

div

(
∇f√

1 + |∇f |2

)
= 0.

We see that we can write this equation as ∆f+Q(∇f,∇2f) = 0 where Q consists of nonlinear terms (but

linear in ∇2f). Hence, if we linearise this equation we just get ∆f = 0, so f is harmonic. In other words,

the minimal submanifold equation is a nonlinear equation whose linearisation is just Laplace’s equation:

this is an example of a nonlinear elliptic PDE, which we shall discuss further later.

Example. A plane in Rn is trivially minimal because if X,Y are any vector fields on the plane then

∇⊥
XY = 0 as the second fundamental form of a plane is zero.

Example. For curves γ, H = 0 is equivalent to the geodesic equation ∇γ̇ γ̇ = 0.

The most studied minimal submanifolds (other than geodesics) are minimal surfaces in R3, since here

the equation H = 0 becomes a scalar equation on a surface, which is the simplest to analyse. In general

we would have a system of equations, which is more difficult to study.
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Example. The helicoid M = {(t cos s, t sin s, s) ∈ R3 : s, t ∈ R} is a complete embedded minimal

surface, discovered by Meusnier in 1776.

Example. The catenoid M = {(cosh t cos s, cosh t sin s, t) ∈ R3 : s, t,∈ R} is a complete embedded

minimal surface, discovered by Euler in 1744 and shown to be minimal by Meusnier in 1776.

In fact the helicoid and the catenoid are locally isometric, and there is a 1-parameter family of locally

isometric minimal surfaces deforming between the catenoid and helicoid.

It took about 70 years to find the next minimal surface, but now we know many examples of minimal

surfaces in R3, as well in other spaces by studying the nonlinear elliptic PDE given by the minimal

surface equation. The amount of literature in the area is vast, with key results including the Lawson and

Willmore Conjectures, and minimal surfaces have applications to major problems in geometry including

the Positive Mass Theorem, the Penrose Conjecture and the Poincaré Conjecture.

2 Introduction to calibrations

As we have seen, minimal submanifolds are extremely important. However there are two key issues.

• Minimal submanifolds are defined by a second order nonlinear PDE system – therefore they are

hard to analyse.

• Minimal submanifolds are only critical points for the volume functional, but we are often interested

in minima for the volume functional – we need a way to determine when this occurs.

We can help resolve these issues using the notion of calibration, introduced by Harvey–Lawson (1982).

Definition 2.1. A differential k-form η on a Riemannian manifold (M, g) is a calibration if

• dη = 0 and

• η(e1, . . . , ek) ≤ 1 for all unit tangent vectors e1, . . . , ek on M .

Example. Any form with constant coefficients on Rn can be rescaled so that it is a calibration with at

least one plane where equality holds.

This example shows that there are many calibrations η, but the interesting question is: for which

planes V = Span{e1, . . . , ek} does η(e1, . . . , ek) = 1? More importantly, can we find submanifolds N so

that this equality holds on each tangent space? This motivates the next definition.

Definition 2.2. Let η be a calibration k-form on (M, g). An oriented k-dimensional submanifold N of

(M, g) is calibrated by η if η|N = volN , i.e. if for all p ∈ N we have η(e1, . . . , ek) = 1 for an oriented

orthonormal basis e1, . . . , ek for TpN .

Example. Any plane in Rn is calibrated. If we change coordinates so that the plane P is {x ∈ Rn :

xk+1 = . . . = xn = 0} then η = dx1 ∧ . . . ∧ dxk is a calibration and P is calibrated by η.

Notice that the calibrated condition is now an algebraic condition on the tangent vectors to N , so

being calibrated is a first order nonlinear PDE. We shall motivate these definitions further later, but for

now we make the following observation.

Theorem 2.3. Let N be a calibrated submanifold. Then N is minimal and moreover if F is any variation

compact support S then Vol(F (S, t)) ≥ Vol(S); i.e. N is volume-minimizing.

Proof. Suppose that N is calibrated by η and suppose for simplicity that N is compact. We will show

that N is homologically volume-minimizing.

Suppose that N ′ is homologous to N . Then,

Vol(N) =

∫
N

η =

∫
N ′
η ≤ Vol(N ′)
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by Stokes’ Theorem as dη = 0, since because N,N ′ are homologous there exists a compact manifold K

with boundary −N ∪N ′ and by Stokes’ Theorem

0 =

∫
K

dη =

∫
N ′
η −

∫
N

η.

We have the result by the definition of minimal submanifold.

We conclude this introduction with the following elementary result.

Proposition 2.4. There are no compact calibrated submanifolds in Rn.

Proof. Suppose that η is a calibration and N is compact and calibrated by η. Then dη = 0 so by the

Poincaré Lemma η = dζ, and hence

Vol(N) =

∫
N

η =

∫
N

dζ = 0

by Stokes’ Theorem.

Although there are many calibrations, having calibrated submanifolds greatly restricts the calibrations

you want to consider. The calibrations which have calibrated submanifolds have special significance and

there is a particular connection with special holonomy, due to the following observations.

Let G be a holonomy group of a Riemannian metric g on an n-manifold M . Then G acts on the

k-forms on Rn, so suppose that η0 is a G-invariant k-form. We can always rescale η0 so that η0|P ≤ volP
for all oriented k-planes P and equality holds for at least one P . Since η0 is G-invariant, if P is calibrated

then so is γ · P for any γ ∈ G, which usually means we have quite a few calibrated planes. We know by

the holonomy principle that we then get a parallel k-form η on M which is identified with η0 at every

point. Since ∇η = 0, we have dη = 0 and hence η is a calibration. Moreover, we have a lot of calibrated

tangent planes on M , so we can hope to find calibrated submanifolds.

3 Complex submanifolds

We would now like to address the question: where does the calibration condition come from? The answer

is from complex geometry. On R2n = Cn with coordinates zj = xj + iyj , we have the complex structure

J and the distinguished Kähler 2-form

ω =
n∑
j=1

dxj ∧ dyj =
i

2

n∑
j=1

dzj ∧ dzj .

More generally we can work with a Kähler manifold (M,J, ω). Our first key result is the following.

Theorem 3.1. On a Kähler manifold (M,J, ω), ωk

k! is a calibration whose calibrated submanifolds are

the complex k-dimensional submanifolds: i.e. submanifolds N such that J(TpN) = TpN for all p ∈ N .

Since dωk = kdω ∧ ωk−1 = 0, the theorem follows immediately from the following result.

Theorem 3.2 (Wirtinger’s inequality). For any unit vectors e1, . . . , e2k ∈ Cn,

ωk

k!
(e1, . . . , e2k) ≤ 1

with equality if and only if Span{e1, . . . , e2k} is a complex k-plane in Cn.

Before proving this we make the following observation, which is an exercise in Problem Sheet 2.

Lemma 3.3. If η is a calibration and ∗η is closed then ∗η is a calibration.
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Proof. We see that |ω
k

k! |
2 = n!

k!(n−k)! and volCn = ωn

n! so ∗ω
k

k! = ωn−k

(n−k)! . Hence, by the lemma, it is enough

to study the case where k ≤ n
2 .

Let P be any 2k-plane in Cn with 2k ≤ n. We shall find a canonical form for P . First consider

⟨Ju, v⟩ for orthonormal unit vectors u, v ∈ P . This must have a maximum, so let cos θ1 = ⟨Ju, v⟩ be this

maximum where 0 ≤ θ1 ≤ π
2 .

Suppose that w ∈ P is a unit vector orthogonal to Spanu, v. The function

fw(θ) = ⟨Ju, cos θv + sin θw⟩

has a maximum at θ = 0 so f ′w(0) = ⟨Ju,w⟩ = 0. Similarly we have that ⟨Jv,w⟩ = 0, and thus

w ∈ Span{u, v, Ju, Jv}⊥.
We then have two cases. If θ1 = 0 then v = Ju so we can set u = e1, v = Je1 and see that

P = Span{e1, Je1} × Q where Q is a 2(k − 1)-plane in Cn−1 = Span{e1, Je1}⊥. If θ1 ̸= 0 we have that

v = cos θ1Ju+sin θ1w where w is a unit vector orthogonal to u and Ju, so we can let u = e1, w = e2 and see

that P = Span{e1, cos θ1Je1+sin θ1e2}×Q where Q is a 2(k−1)-plane in Cn−2 = Span{e1, Je1, e2, Je2}⊥.
Proceeding by induction we see that we have an oriented basis {e1, Je1, . . . , en, Jen} for Cn so that

P = Span{e1, cos θ1Je1 + sin θ1e2, . . . , e2k−1, cos θkJe2k−1 + sin θke2k},

where 0 ≤ θ1 ≤ . . . ≤ θk−1 ≤ π
2 and θk−1 ≤ θk ≤ π − θk−1.

Since we can write ω =
∑n
j=1 e

j ∧ Jej we see that ωk

k! restricts to P to give a product of cos θj which

is certainly less than or equal to 1. Moreover, equality holds if and only if all of the θj = 0 which means

that P is complex.

Corollary 3.4.Compact complex submanifolds of Kähler manifolds are homologically volume-minimizing.

We know that complex submanifolds are defined by holomorphic functions; i.e. solutions to the

Cauchy–Riemann equations, which are a first-order PDE system.

Example. N = {(z, 1z ) ∈ C2 : z ∈ C \ {0}} is a complex curve in C2, and thus is calibrated.

Example. An important non-trivial example of a Kähler manifold is CPn, where the zero set of a system

of polynomial equations defines a (singular) complex submanifold.

4 Special Lagrangians

Complex submanifolds are very familiar, but can we find any other interesting classes of calibrated

submanifolds? The answer is that indeed we can, particularly when the manifold has special holonomy.

We begin with the case of holonomy SU(n) – so-called Calabi–Yau manifolds. The model example for

Calabi–Yau manifolds is Cn with complex structure J , Kähler form ω and holomorphic volume form

Υ = dz1 ∧ . . . ∧ dzn,

if z1, . . . , zn are complex coordinates on Cn.

Theorem 4.1. Let M be a Calabi–Yau manifold with holomorphic volume form Υ. Then Re(e−iθΥ) is

a calibration for any θ ∈ R.

Since dΥ = 0, the result follows immediately from the following result.

Theorem 4.2. On Cn, |Υ(e1, . . . , en)| ≤ 1 for all unit vectors e1, . . . , en with equality if and only if

P = Span{e1, . . . , en} is a Lagrangian plane, i.e. P is an n-plane such that ω|P ≡ 0.

Proof. Let e1, . . . , en be the standard basis for Rn and let P be an n-plane in Cn. There exists A ∈
GL(n,C) so that f1 = Ae1, . . . , fn = Aen is an orthonormal basis for P . Then Υ(Ae1, . . . , Aen) = detC(A)

so

|Υ(f1, . . . , fn)|2 = | detC(A)|2 = | detR(A)| = |f1 ∧ Jf1 ∧ . . . ∧ fn ∧ Jfn| ≤ |f1||Jf1| . . . |fn||Jfn| = 1

with equality if and only if f1, Jf1, . . . , fn, Jfn are orthonormal. However, this is exactly equivalent to

the Lagrangian condition, since ω(u, v) = g(Ju, v) so ω|P ≡ 0 if and only if JP = P⊥.
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Definition 4.3. A submanifold N of M calibrated by Re(e−iθΥ) is called special Lagrangian with phase

eiθ. If θ = 0 we say that N is simply special Lagrangian. By the previous theorem, we see that N is

special Lagrangian if and only if ω|N ≡ 0 (i.e. N is Lagrangian) and ImΥ|N ≡ 0 (up to a choice of

orientation so that ReΥ|N > 0).

Example. Consider C = R2 with coordinates z = x+ iy, complex structure J given by Jw = iw, Kähler

form ω = dx ∧ dy = i
2dz ∧ dz and holomorphic volume form Υ = dz = dx + idy. We want to consider

the special Lagrangians in C, which are 1-dimensional submanifolds or curves N in C = R2.

Since ω is a 2-form, it vanishes on any curve in C. Hence every curve is C is Lagrangian. For N to

be special Lagrangian with phase eiθ we need that

Re(e−iθΥ) = cos θdx+ sin θdy

is the volume form on N , or equivalently that

Im(e−iθΥ) = cos θdy − sin θdx

vanishes on N . This means that cos θ∂x + sin θ∂y is everywhere a unit tangent vector to N , so N is a

straight line given by N = {(t cos θ, t sin θ) ∈ R2 : t ∈ R} (up to translation), so it makes an angle θ with

the x-axis, hence motivating the term “phase eiθ”.

Notice that this result is compatible with the fact that special Lagrangians are minimal, and hence

must be geodesics in R2; i.e. straight lines.

Example. Consider C2 = R4. We know that ω = dx1 ∧ dy1 + dx2 ∧ dy2. We also know that ReΥ =

dx1 ∧ dx2 + dy2 ∧ dy1, which looks somewhat similar. In fact, if we let J ′ denote the complex structure

given by J ′(∂x1) = ∂x2 and J ′(∂y2) = ∂y1 , then ReΥ = ω′, the Kähler form corresponding the complex

structure J ′. Hence special Lagrangians in C2 are complex curves for a different complex structure.

In fact, we have a hyperkähler triple of complex structures J1, J2, J3, where J1 = J is the standard

one and J3 = J1J2 = −J2J1 so that J1 = J2J3 = −J3J2 and J2 = J3J1 = −J1J3, and the corresponding

Kähler forms are ω = ω1, ω2, ω3 which are orthogonal and the same length with Υ = ω2 + iω3.

This shows we should only consider complex dimension 3 and higher to find new calibrated subman-

ifolds.

Example. SU(n) acts transitively on the space of special Lagrangian planes with isotropy SO(n). So

any special Lagrangian plane is given by A · Rn for A ∈ SU(n) where Rn is the standard real Rn in Cn.
Given θ = (θ1, . . . , θn) we can define a plane P (θ) = {(eiθ1x1, . . . , eiθnxn) ∈ Cn : (x1, . . . , xn) ∈ Rn}

(where we can swap orientation). We see that P (θ) is is special Lagrangian if and only if ReΥ|P =

± cos(θ1 + . . .+ θn) = 1 so that θ1 + . . .+ θn ∈ πZ. Given any θ1, . . . , θn ∈ (0, π) with θ1 + . . .+ θn = π,

there exists a special LagrangianN (called a Lawlor neck) asymptotic to P (0)∪P (θ). It is diffeomorphic to

Sn−1×R. By rotating coordinates we have a special Lagrangian with phase i asymptotic to P (− θ
2 )∪P (

θ
2 ).

The simplest case is when θ1 = . . . = θn = π
n : here N is called the Lagrangian catenoid. When n = 2,

under a coordinate change the Lagrangian catenoid becomes the complex curve {(z, 1z ) ∈ C2 : z ∈ C\{0}}
that we saw before. When n = 3, the only possibilities for the angles are

∑
i θi = π, 2π, but if

∑
i θi = 2π

we can rotate coordinates and change the order of the planes so that P (0) ∪ P (θ) becomes P (0) ∪ P (θ′)
where

∑
i θ

′
i = π. Hence, given any pair of transverse special Lagrangian planes in C3, there exists a

Lawlor neck asymptotic to their union.

We can find special Lagrangians in Calabi–Yaus using the following easy result.

Proposition 4.4. Given a Calabi–Yau manifold (M,ω,Υ) and σ : M → M be such that σ2 = Id,

σ∗(ω) = −ω, σ∗(Υ) = Υ. Then Fix(σ) is special Lagrangian.

Example. Let X = {[z0, . . . , z4] ∈ CP4 : z50 + . . . + z54 = 0} (the Fermat quintic) with its Calabi–

Yau structure (which exists by Yau’s solution of the Calabi conjecture since the first Chern class of X

vanishes). Let σ be the restriction of complex conjugation on CP4 to X. Then the fixed point set of σ,

which is the real locus in X, is a special Lagrangian 3-fold (if it is non-empty). (There is a subtlety here:

σ is certainly an anti-holomorphic isometric involution for the induced metric on X, but this is not the
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same as the Calabi–Yau metric on X. Nevertheless, it is the case that σ satisfies the conditions of the

proposition above.)

Example. There exists a Calabi–Yau metric on T ∗Sn (the Stenzel metric) so that the base Sn is special

Lagrangian. When n = 2 this is a hyperkähler metric called the Eguchi–Hanson metric.

5 Constructing calibrated submanifolds

It is easy to construct complex submanifolds in Kähler manifolds algebraically. Constructing other

calibrated submanifolds is much more challenging because one needs to solve a nonlinear PDE, even in

Euclidean space. There are approaches in Euclidean space and other simple spaces which have involved

reducing the problem to ODEs or other simpler problems. For example, we have the following methods,

which you can find out more about in Dominic Joyce’s book “Riemannian holonomy groups and calibrated

geometry”.

• (Harvey–Lawson, Haskins, Goldstein, Joyce, L-) Symmetries/evolution equations.

• (Haskins, Carberry, McIntosh) Used integrable systems to study calibrated cones.

• (Bryant, Fox, Joyce, L-) Calibrated cones and ruled smoothings of these cones.

• (Karigiannis–Ionel–Min-Oo/–Min-Oo/–Leung) Vector sub-bundle constructions.

• (Bryant, Ionel, Fox, L-) Classification of calibrated submanifolds satisfying pointwise constraints

on their second fundamental form.

However, an important direction which has borne fruit in calibrated geometry and special holonomy

recently has been to study the nonlinear PDE head on, especially by perturbative and gluing methods.

We want to solve nonlinear PDE, so how do we tackle this? The idea is to use the linear case to help.

Suppose we are on a compact manifold N and recall the theory of linear elliptic operators L of order l

on N , including:

• the definition of ellipticity of L via the principal symbol σL (which encodes the highest order

derivatives in the operator) being an isomorphism;

• the use of Hölder spaces Ck,a to give elliptic regularity theory (so-called Schauder theory), namely

that if w ∈ Ck,a and Lv = w then v ∈ Ck+l,a and there is a universal constant C so that

∥v∥Ck+l,a ≤ C(∥Lv∥Ck,a + ∥v∥C0)

(and we can drop the ∥v∥C0 term if v is orthogonal to KerL);

• the adjoint operator L∗ and that σL∗ = (−1)lσ∗
L so that L∗ is elliptic if and only if L is elliptic; and

• the Fredholm theory of L, namely that KerL (and hence KerL∗) is finite-dimensional, and we can

solve Lv = w if and only if w ∈ (KerL∗)⊥.

We shall discuss this in a model example which we shall use throughout this section.

Example. The Laplacian on functions is given by ∆f = d∗df which in normal coordinates at a point

is given by f 7→ −
∑
i
∂2f
∂x2

i
, so it is a linear second order differential operator. We see that its principal

symbol is σ∆(x, ξ)f = −|ξ|2f which is an isomorphism for ξ ∈ T ∗
xN \ {0}, so ∆ is elliptic. We therefore

have that if h ∈ Ck,a(N) and ∆f = h then f ∈ Ck+2,a(N), and we have an estimate

∥f∥Ck+2,a ≤ C(∥∆f∥Ck,a + ∥f∥C0).

We also know that ∆∗ = ∆ and Ker∆ is given by the constant functions (since if f ∈ Ker∆ then

0 = ⟨f,∆f⟩L2 = ⟨f, d∗df⟩L2 = ∥df∥2L2
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so df = 0). Hence, we can solve ∆f = h if and only if h is orthogonal to the constants, i.e.
∫
N
h volN = 0.

The minimal submanifold operator P (f) = − div( ∇f√
1+|∇f |2

) is a nonlinear second order operator

whose linearisation L0P at 0 is ∆. Thus P is a nonlinear elliptic operator at 0. If we linearise P at f0
we find a more complicated expression depending on f0, but it is still a perturbation of the Laplacian.

Suppose we are on a compact manifold N and we want to solve P (f) = 0 where P is the minimal

submanifold operator on functions f . Let us consider regularity for f . We can re-arrange P (f) = 0 by

taking all of the second derivatives to one side as:

R(x,∇f(x))∇2f(x) = E(x,∇f(x))

where x ∈ N and R,E : Ck+1,a → Ck,a. Since L0P = ∆ is elliptic and ellipticity is an open condition

we know that the operator Lf (depending on f) given by

Lf (h)(x) = R(x,∇f(x))∇2h(x)

is a linear elliptic operator whenever ∥∇f∥C0 is small, in particular if ∥f∥C1,a is sufficiently small. The

operator Lf does not have smooth coefficients, but if f ∈ Ck,a then the coefficients R ∈ Ck−1,a.

Suppose that f ∈ C1,a and ∥f∥C1,a is small with P (f) = 0. Then Lf (f) = E(f) and Lf is a linear

second order elliptic operator with coefficients in C0,a and E(f) in C0,a. So by elliptic regularity we can

deduce that f ∈ C2,a. We have gained one degree of regularity, so we can “bootstrap”, i.e. proceed by

induction and deduce that any C1,a solution to P (f) = 0 is smooth.

Example. C1,a-minimal submanifolds (and thus calibrated submanifolds) are smooth.

Remark More sophisticated techniques can be used to deduce that C1-minimal submanifolds are real

analytic. Notice that elliptic regularity results are not valid for Ck spaces, so this result is not obvious.

We can also arrange our simple equation P (f) = 0 as ∆f + Q(∇f,∇2f) = 0, where Q is nonlinear

but linear in ∇2f . If we know that
∫
N
P (f) volN = 0, i.e. that P (f) is orthogonal to the constants, then

we can always solve ∆f0 = −Q(∇f,∇2f). We do know that
∫
N
P (f) volN = 0 since P has a divergence

form. This means we are in the setting for implementing the Implicit Function Theorem for Banach

spaces to conclude that we can always solve P (f) = 0 for some f near 0, and f will be smooth by our

regularity argument above. In general, we will use the following.

Theorem 5.1 (Implicit Function Theorem). Let X,Y be Banach spaces, let U ∋ 0 be open in X, let

P : U → Y with P (0) = 0 and L0P : X → Y surjective with finite-dimensional kernel K.

Then for some U , P−1(0) = {u ∈ U : P (u) = 0} is a manifold of dimension dimK. Moreover, if we

write X = K ⊕ Z, P−1(0) = GraphG for some map G from an open set in K to Z with G(0) = 0.

This gives us a way to describe all perturbations of a given calibrated submanifold, as we now see in

the special Lagrangian case.

Theorem 5.2 (McLean). Let N be a compact special Lagrangian in a Calabi–Yau manifold M . Then

the moduli space of deformations of N is a smooth manifold of dimension b1(N).

Remark One should compare this result to the deformation theory for complex submanifolds in Kähler

manifolds. There, one does not get that the moduli space is a smooth manifold: in fact, it can be singular,

and one has obstructions to deformations. It is somewhat remarkable that special Lagrangian calibrated

geometry enjoys a much better deformation theory than this classical calibrated geometry.

Proof. The tubular neighbourhood theorem gives us a diffeomorphism exp : S ⊆ ν(N) → T ⊆ M which

maps the zero section to N acting as the identity; in other words, we can write any nearby submanifold to

N as the graph of a normal vector field on N . We know that N is Lagrangian, so the complex structure

J gives an isomorphism between ν(N) and TN and the metric gives an isomorphism between TN and

T ∗N : v 7→ g(Jv, .) = ω(v, .) = αv. Therefore any deformation of N in T is given as the graph of a 1-form.

In fact, using the Lagrangian neighbourhood theorem, we can arrange that any N ′ ∈ T is the graph of a

1-form α, so that if fα : N → Nα is the natural diffeomorphism then

f∗α(ω) = dα and − ∗f∗α(ImΥ) = F (α,∇α) = d∗α+Q(α,∇α).
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Hence, Nα is special Lagrangian if and only if P (α) = (F (α,∇α), dα) = 0. This means that infinitesimal

special Lagrangian deformations are given by closed and coclosed 1-forms, which is the kernel of L0P .

Since ImΥ = 0 on N we have that [ImΥ] = 0 on Nα, so

P : C∞(S) → d∗(C∞(T ∗N))⊕ d(C∞(T ∗N)) ⊆ C∞(Λ0T ∗N ⊕ Λ2T ∗N).

If we let X = C1,a(T ∗N), Y = d∗(C1,a(T ∗N)) ⊕ d(C1,a(T ∗N)) and U = C1,a(S) we can apply the

Implicit Function Theorem if we know that

L0P : α ∈ X 7→ (d∗α, dα) ∈ Y

is surjective, i.e. given dβ + d∗γ ∈ Y does there exist α such that dα = dβ and d∗α = d∗γ? If we let

α = β + df then we need ∆f = d∗df = d∗(γ − β). Since∫
N

d∗(γ − β) volN = ±
∫
N

d ∗ (γ − β) = 0

we can solve the equation for f , and hence L0P is surjective.

Therefore P−1(0) is a manifold of dimension dimKerL0P = b1(N) by Hodge theory. Moreover, if

P (α) = 0 then Nα is special Lagrangian, hence minimal and since α ∈ C1,a we deduce that α is in fact

smooth.

Example. The special Lagrangian Sn in T ∗Sn has b1 = 0 and so is rigid.

Observe that if we have a special Lagrangian Tn in M then b1(Tn) = n and its deformations locally

foliate M , so we can hope to find special Lagrangian torus fibrations. This cannot happen in compact

manifolds without singular fibres, but still motivates the SYZ conjecture in Mirror Symmetry. The

deformation result also motivates the following theorem.

Theorem 5.3 (Bryant). Every compact oriented real analytic Riemannian 3-manifold can be isometri-

cally embedded in a Calabi–Yau 3-fold as the fixed point set of an involution.

Another well-known way to get a solution of a linear PDE from two solutions is simply to add them.

However, for a nonlinear PDE P (v) = 0 this will not work. Intuitively, we can try to add two solutions to

give us a solution v0 for which P (v0) is small. Then we may try to perturb v0 by v to solve P (v+v0) = 0.

Geometrically, this occurs when we have two calibrated submanifolds N1, N2 and then glue them

together to give a submanifold N which is “almost” calibrated, then we deform N to become calibrated.

If the two submanifolds N1, N2 are glued using a very long neck then one can imagine that N is almost

the disjoint union of N1, N2 and so close to being calibrated. If instead one scales N2 by a factor t and

then glues it into a singular point of N1, we can again imagine that as t becomes very small N resembles

N1 and so again is close to being calibrated. These two examples are in fact related, because if we rescale

the shrinking N2 to fixed size, then we get a long neck between N1 and N2 of length of order − log t.

However, although these pictures are appealing, they also reveal the difficulty in this approach: as t

becomes small, N becomes more “degenerate”, giving rise to analytic difficulties which are encoded in

the geometry of N1, N2 and N .

These ideas are used extensively in geometry, and particularly successfully in calibrated geometry

(e.g. Haskins–Kapouleas, Joyce, Y.-I. Lee, L-, Pacini). A particular simple case is the following, which

we will describe to show the basic idea of the gluing method.

Theorem 5.4. Let N be a compact connected 3-manifold and let i : N → M be a special Lagrangian

immersion with tranverse self-intersection points in a Calabi–Yau manifoldM . Then there exist embedded

special Lagrangians Nt such that Nt → N as t→ 0.

Remark One might ask about the sense of convergence here: for definiteness, we can say that Nt
converges to N in the sense of currents; that is, if we have any compactly supported 3-form χ on M then∫
Nt
χ→

∫
N
χ as t→ 0. However, all sensible notions of convergence of submanifolds will be true in this

setting.

9
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Proof. At each self-intersection point of N the tangent spaces are a pair of transverse 3-planes, which we

can view as a pair of tranverse special Lagrangian 3-planes P1, P2 in C3. Since we are in dimension 3, we

know that there exists a (unique up to scale) special Lagrangian Lawlor neck L asymptotic to P1 ∪ P2.

We can then glue tL into N near each intersection point to get a compact embedded (if we glue in a

Lawlor neck for every self-intersection point) submanifold St = N#tL. We can also arrange that St is

Lagrangian, i.e. that it is a Lagrangian connect sum.

Now we want to perturb St to be special Lagrangian. Since St is Lagrangian, by the deformation

theory we can write any nearby submanifold as the graph of a 1-form α, and this graph will be special

Lagrangian if and only if (using the same notation as in our deformation theory discussion)

Pt(α) = (− ∗ f∗α(ImΥ), f∗α(ω)) = 0.

Since St is Lagrangian but not special Lagrangian we have that

f∗α(ω) = dα and − ∗f∗α(ImΥ) = Pt(0) + d∗tα+Qt(α,∇α)

where Pt(0) = − ∗ ImΥ|St and d∗t = L0Pt, which is a perturbation of the usual d∗ since we are no longer

linearising at a point where Pt(0) = 0. By choosing α = df , we then have to solve

∆tf = −Pt(0)−Qt(∇f,∇2f)

where ∆t is a perturbation of the Laplacian.

For simplicity, let us suppose that ∆t is the Laplacian on St. The idea is to view our equation as a

fixed point problem. We know that if we let Xk = {f ∈ Ck,a(N) :
∫
N
f volN = 0} then ∆t : X

k+2 → Xk

is an isomorphism so it has an inverse Gt. We know by our elliptic regularity result that there exists a

constant C(∆t) such that

∥f∥Ck+2,a ≤ C(∆t)∥∆tf∥Ck,a ⇔ ∥Gth∥Ck+2,a ≤ C(∆t)∥h∥Ck,a

for any f ∈ Xk+2, h ∈ Xk.

We thus see that Pt(f) = 0 for f ∈ Xk+2 if and only if

f = Gt(−Pt(0)−Qt(f)) = Ft(f).

The idea is now to show that Ft is a contraction sufficiently near 0 for all t small enough. Then it will

have a (unique) fixed point near 0, which will also be smooth because it satisfies Pt(f) = 0 and hence

defines a special Lagrangian as the graph of df over St.

We know that Ft : X
k+2 → Xk+2 with

∥Ft(f1)− Ft(f2)∥Ck+2,a = ∥Gt(Qt(f1)−Qt(f2))∥Ck+2,a ≤ C(∆t)∥Qt(f1)−Qt(f2)∥Ck,a .

Since Qt and its first derivatives vanish at 0 we know that

∥Qt(f1)−Qt(f2)∥Ck,a ≤ C(Qt)∥f1 − f2∥Ck+2,a(∥f1∥Ck+2,a + ∥f2∥Ck+2,a).

Hence, Ft is a contraction on Bϵt(0) ⊆ Xk+2 if we can choose ϵt so that

2C(∆t)∥Pt(0)∥Ck,a ≤ ϵt ≤
1

2C(∆t)C(Qt)
.

(This also proves our earlier Implicit Function Theorem result by hand since there Pt(0) = P (0) = 0 so

we just need to take ϵt small enough.) In other words, we need that

• Pt(0) is small, so St is “close” to being calibrated and is a good approximation to Pt(f) = 0;

• C(∆t), C(Qt), which are determined by the linear PDE and geometry of N,L and St, are well-

controlled as t→ 0.

The statement of the theorem is then that there exists t sufficiently small and ϵt so that the contraction

mapping argument works.

10



Jason D. Lotay Calibrated Submanifolds

This is a delicate balancing act since as t → 0 parts of the manifold are collapsing, so the constants

C(∆t), C(Qt) above (which depend on t) can and typically do blow-up as t→ 0. To control this, we need

to understand the Laplacian on N,L and St and introduce “weighted” Banach spaces so that tL gets

rescaled to constant size (independent of t), and St resembles the union of two manifolds with a cylindrical

neck (as we described earlier). It is also crucial to understand the relationship between the kernels and

cokernels of the Laplacian on the non-compact N (without the intersection pts), L and compact St: here

is where connectedness is important so that the kernel and cokernel of the Laplacian is 1-dimensional.

Remark In more challenging gluing problems it is not possible to show that the relevant map is a

contraction, but rather one can instead appeal to an alternative fixed point theorem (e.g. Schauder fixed

point theorem) to show that it still has a fixed point.

6 Associative and coassociative submanifolds

We now want to introduce our calibrated geometry associated with G2 holonomy. The first key result is

the following.

Theorem 6.1. Let (M,φ) be a G2 manifold (so φ is a closed and coclosed definite 3-form). Then φ and

∗φ are calibrations.

This follows from the definition of G2 manifold and Problem Sheet 2. Let us look at the calibrated

planes and start with φ.

If u, v, w are unit vectors in R7 ∼= ImO (the imaginary octonions), then φ(u, v, w) = ⟨u × v, w⟩ = 1

if and only if w = u × v, so P = Span{u, v, w} is a copy of ImH in ImO, so Span{1, u, v, w} is an

associative subalgebra of O. Moreover, if we define a vector-valued 3-form χ on R7 by χ(u, v, w) =

[u, v, w] = u(vw) − (uv)w, known as the associator, we see that P is associative if and only if χ|P ≡ 0

(as was shown on Problem Sheet 3). Hence we call the calibrated planes associative. In general on a G2

manifold we can define a 3-form χ with values in TM using the pointwise formula.

For ∗φ we see that ∗φ|P = volP for a plane P if and only if φ|P⊥ = volP⊥ . Hence the planes calibrated

by ∗φ are the orthogonal complements of the associative planes, so we call them coassociative. We also

see from Problem Sheet 3 that P is coassociative if and only if φ|P ≡ 0.

We thus can define our calibrated submanifolds.

Definition 6.2. Submanifolds calibrated by φ are called associative 3-folds. Moreover, N is associative

if and only if χ|N ≡ 0.

Submanifolds calibrated by ∗φ are called coassociative 4-folds. Moreover, N is coassociative if and

only if φ|N ≡ 0.

A simple way to get associative and coassociative submanifolds is by using known geometries.

Proposition 6.3. Let x1, . . . , x7 be coordinates on R7 and let zj = x2j + ix2j+1 be coordinates on C3 so

that R7 = R× C3.

(a) N = R × S ⊆ R × C3 is associative/coassociative if and only if S is a complex curve/special

Lagrangian 3-fold with phase −i.

(b) N ⊆ {0} × C3 is associative/coassociative if and only if N is a special Lagrangian 3-fold/complex

surface.

Proof. We can write

φ = dx1 ∧ ω +ReΩ and ∗ φ =
1

2
ω2 − dx1 ∧ ImΥ.

For associatives, we see that φ|R×S = dx1∧volS if and only if ω|S = volS and φ|N = ReΥ|N for N ⊆ C3.

For coassociatives, we see that ∗φ|R×S = dx1 ∧ volS if and only if − ImΥ|S = volS and ∗φ|N = 1
2ω

2|N
for N ⊆ C3.

We can also produce examples in G2 manifolds with an isometric involution.
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Proposition 6.4. Let (M,φ) be a G2 manifold with an isometric involution σ ̸= id such σ∗φ = ±φ.
Then Fix(σ) is an associative/coassociative submanifold in M .

We also have explicit examples of associatives and coassociatives.

Example. The first explicit examples of associatives in R7 not arising from other geometries are given

by L- from symmetry/evolution equation considerations.

The first explicit non-trivial examples of coassociatives in R7 are given in Harvey–Lawson. There are

two dilation families: one which has one end asymptotic to a cone C on a non-round S3, and one which

has two ends asymptotic to C ∪ R4. The cone C was discovered earlier by Lawson–Osserman and was

the first example of a volume-minimizing submanifold which is not smooth (it is Lipschitz but not C1).

Example. In the Bryant–Salamon holonomy G2 metric on the spinor bundle of S3, the base S3 is

associative. In the Bryant–Salamon holonomy G2 metric on Λ2
+T

∗S4 and Λ2
+T

∗CP2, the base S4 and

CP2 are coassociative.

We now want to understand deformations of associatives and coassociatives, from which perturba-

tion/gluing results will follow. We begin with associatives.

Notice that if P is an associative plane, u ∈ P and v ∈ P⊥ then u × v ∈ P⊥ since φ(w, u, v) =

g(w, u× v) = g(v, w×u) = 0 for all w ∈ P since w×u ∈ P . Thus, if N is associative, cross product gives

a (Clifford) multiplication m : C∞(T ∗N ⊗ ν(N)) → C∞(ν(N)) (viewing tangent vectors as cotangent

vectors via the metric), hence using the normal connection ∇⊥ : C∞(ν(N)) → C∞(T ∗N ⊗ ν(N)) on

ν(N) we get a linear operator

/D = m ◦ ∇⊥ : C∞(ν(N)) → C∞(ν(N)).

We call /D the Dirac operator. We see that its principal symbol is given by σ/D(x, ξ)v = ξ × v, so /D is

elliptic, and we also have that /D∗ = /D.

Remark Since a 3-manifold is always spin, we have a spinor bundle S on N , a connection ∇ : C∞(S) →
C∞(T ∗M⊗S) (lift of the Levi-Civita connection) and we have Clifford multiplicationm : C∞(T ∗M⊗S) →
C∞(S) given by m(ξ, v) = ξ · v. Hence we have a composition /D = m ◦ ∇ : C∞(S) → C∞(S), which is a

first order linear differential operator called the Dirac operator. Locally it is given by /Dv =
∑
i ei · ∇eiv,

so we have that σ/D(ξ, v) = ξ · v. Hence /D is elliptic. Moreover /D is self-adjoint.

In fact, it is possible to see that the complexified normal bundle ν(N) ⊗ C = S⊗ V for a C2-bundle

V over N , so that the Dirac operator on ν(N) is just a “twist” of the usual Dirac operator on S.

Consider a compact associative N . We know that expv(N) = Nv, which is the graph of v, is associative

for a normal vector field v if and only if ∗ exp∗v(χ) ∈ C∞(TM |N ) is 0. In fact, it turns out that

F (v) = ∗ exp∗v(χ) ∈ C∞(ν(N)) since N is associative and

L0F (v) = ∗d(vyχ) = /Dv.

Here L0F is not typically surjective so we cannot apply our Implicit Function Theorem, except when

Ker /D = Ker /D∗ = {0}. Instead, we have the following by applying results from Problem Sheet 3, since

we know that index /D = dimKer /D − dimKer /D∗ = 0.

Theorem 6.5 (McLean). The expected dimension of the moduli space of deformations of a compact

associative 3-fold N in a G2 manifold is 0 and infinitesimal deformations of N are given by the kernel

of /D on ν(N). Moreover, if Ker /D = {0} then N is rigid.

Remark The dimension of the kernel of /D typically depends on the metric on N rather than just the

topology, so it is usually difficult to determine.

Example. For the associative N = S3 in S(S3), ν(N) = S(S3) so /D is just the usual Dirac operator. A

theorem of Lichnerowicz states that Ker /D = {0} as S3 has positive scalar curvature so N is rigid.

Example. Corti–Haskins–Nordström–Pacini construct rigid associative S1 × S2s in compact holonomy

G2 twisted connected sums.

For coassociatives, the deformation theory is much better behaved, like for special Lagrangians.
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Theorem 6.6 (McLean). Let N be a compact coassociative in a G2 manifold (or just a 7-manifold with

closed G2 structure). The moduli space of deformations of N is a smooth manifold of dimension b2+(N).

Proof. Since N is coassociative the map v 7→ vyφ = αv defines an isomorphism from ν(N) to a rank

3 vector bundle on N , which is Λ2
+T

∗N , the 2-forms on N which are self-dual (so ∗α = α). We can

therefore view nearby submanifolds to N as graphs of self-dual 2-forms.

We know that Nv = expv(N) is coassociative if and only if exp∗v(φ) = 0. We see that

d

dt
exp∗tv(φ)|t=0 = Lvφ = d(vyφ) = dαv.

Hence nearby coassociative N ′ to N are given by the zeros of P (α) = dα + Q(α,∇α). Moreover, since

φ = 0 on N , [φ] = 0 on N ′ and hence P : C∞(Λ2
+T

∗N) → d(C∞(Λ2T ∗N)).

Here P is not elliptic, but L0P = d has finite-dimensional kernel, the closed self-dual 2-forms, since

dα = 0 implies that d∗α = − ∗ d ∗ α = 0 so α is harmonic, and L0P has injective symbol so it is

overdetermined elliptic, which means that elliptic regularity still holds. Another way to deal with this

is to consider F (α, β) = P (α) + d∗β for β a 4-form. Now F−1(0) is the disjoint union of P−1(0) and

multiples of the volume form, as exact and coexact forms are orthogonal. Moreover, L0F (α, β) = dα+d∗β

is now elliptic. Overall, we can apply our standard Implicit Function Theorem if we know that

d(Ck+1,a(Λ2
+T

∗N)) = d(Ck+1,a(Λ2T ∗N)).

This is true because by Hodge theory if α is a 2-form, we can write α = d∗β + γ for a 3-form β and a

closed form γ, so dα = dd∗β = d(d∗β + ∗d∗β) and d∗β + d∗β is self-dual.

Example. The S4 and CP2 in the Bryant–Salamon metrics on Λ2
+T

∗S4 and Λ2
+T

∗CP2 have b2+ = 0 and

so are rigid.

For a K3 surface and T 4 we have b2+ = 3, so we can hope to find coassociative K3 and T 4 fibrations

of compact G2 manifolds. There is a programme for constructing a coassociative K3 fibration (with

singular fibres) by Kovalev. Towards completing this programme, L- constructed the first examples of

coassociative 4-folds with conical singularities in compact holonomy G2 twisted connected sums.

Again, we have a similar isometric embedding result for coassociative 4-folds, motivated by the defor-

mation theory result.

Theorem 6.7 (Bryant). Any compact oriented real analytic Riemannian 4-manifold whose bundle of

self-dual 2-forms is trivial can be isometrically embedded in a G2 manifold as the fixed points of an

isometric involution.

7 Cayley submanifolds

We now discuss our final class of calibrated submanifolds.

Theorem 7.1. On a Spin(7) manifold (M,Φ), Φ is a calibration.

This is immediate from the definition of Spin(7) manifold and Problem Sheet 2. We can thus define

our calibrated submanifolds.

Definition 7.2. The submanifolds calibrated by Φ are called Cayley submanifolds.

Remark The name Cayley submanifolds is because of the relation between the submanifolds and the

octonions or Cayley numbers O.

We can relate Cayley submanifolds to all of the other calibrated geometries we have seen.

Proposition 7.3. (a) Complex surfaces and special Lagrangian 4-folds in C4 are Cayley in R8 = C4.

(b) Write R8 = R × R7. Then R × S is Cayley if and only if S is associative in R7 and N ⊆ R7 is

Cayley in R8 if and only if N is coassociative in R7.
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Proof. (a) is immediate from the formula Φ = 1
2ω

2+ReΥ, since complex surfaces are calibrated by 1
2ω

2,

special Lagrangians are calibrated by ReΥ, Υ vanishes on complex surfaces and ω vanishes on special

Lagrangians.

(b) follows immediately from the formula Φ = dx1 ∧ φ+ ∗φ.

We can also use an isometric involution to construct Cayley submanifolds as in our previous calibrated

geometries.

Proposition 7.4. Let (M,Φ) be a Spin(7) manifold and let σ ̸= id be an isometric involution with

σ∗Φ = Φ. Then Fix(σ) is Cayley submanifold.

Example. The first interesting explicit examples of Cayleys in R8 not arising from other geometries

were given by L- and are asymptotic to cones.

Example. The base S4 in the Bryant–Salamon holonomy Spin(7) metric on S+(S4) is Cayley.

We now discuss deformations of a compact Cayley N , for which we need some discussion of algebra

related to Spin(7). Since Λ2(R8)∗ is 28-dimensional and the 21-dimensional Lie algebra of Spin(7) sits

inside the space of 2-forms, we must have a distinguished 7-dimensional subspace Λ2
7 of 2-forms on R8.

So what is this subspace? Let u, v ∈ R8. Then we can construct a 2-form u∧ v, viewing u, v as cotangent

vectors. We can also construct a 2-form from u, v by considering Φ(u, v, ., .). It is then true that

Λ2
7 = {u ∧ v +Φ(u, v, ., .) : u, v ∈ R8}.

When P is a Cayley plane and u, v ∈ P are orthogonal we see that Φ(u, v, ., .) = ∗(u ∧ v) so that

u ∧ v + Φ(u, v, ., .) is self-dual. Since Λ2
+P

∗ is 3-dimensional, we see that there must be a 4-dimensional

space E of 2-forms on P such that Λ2
7|P = Λ2

+P
∗ ⊕ E. Moreover, if u ∈ P and v ∈ P⊥ then m(u, v) =

u ∧ v +Φ(u, v, ., .) ∈ E and the map m : P × P⊥ → E is surjective.

Now let us move to a Cayley submanifold N in a Spin(7) manifold (M,Φ). On M we have a rank

7 bundle Λ2
7 of 2-forms and we have that Λ2

7|N = Λ2
+T

∗N ⊕ E for some rank 4 bundle E over N . The

map m above defines a (Clifford) multiplication m : C∞(T ∗N ⊗ ν(N)) → C∞(E) (viewing tangent

vectors as cotangent vectors via the metric), and thus using the normal connection ∇⊥ : C∞(ν(N)) →
C∞(T ∗N ⊗ ν(N)) we get a linear first order differential operator

/D+ = m ◦ ∇⊥ : C∞(ν(N)) → C∞(E).

Again this an elliptic operator called the positive Dirac operator, but it is not self-adjoint: its adjoint is

the negative Dirac operator from E to ν(N).

Remark If N is spin, the spinor bundle S splits as S+ ⊕ S−, and the Dirac operator /D splits into /D±
from S± to S∓ so that /D(v+, v−) = (/D−v−, /D+v+). Hence /D∗ = /D says that /D∗

± = /D∓.

It turns out that there exists a C2-bundle V on N so that ν(N)⊗C = S+ ⊗ V , E ⊗C = S− ⊗ V and
/D+ on ν(N) is a “twist” of the usual positive Dirac operator. However, not every 4-manifold is spin, so

we cannot always make this identification.

On O there exists a 4-fold cross product, whose real part gives Φ and whose imaginary part we call τ .

Perhaps unsurprisingly, a plane P is calibrated by Φ if and only if τ |P = 0. We can extend τ to a Spin(7)

manifold, except that we need a rank 7 vector bundle onM in which τ takes values: we have one, namely

Λ2
7. So we have that a submanifold N in a Spin(7) manifold is Cayley if and only if τ ∈ C∞(Λ4T ∗M ; Λ2

7)

vanishes on N .

Now suppose that N is a compact Cayley 4-fold. Then the zeros of the equation F (v) = ∗ exp∗v(τ)
for v ∈ C∞(ν(N)) define Cayley deformations (as the graph of v). We know that F takes values in

Λ2
7|N = Λ2

+T
∗N ⊕ E and it turns out that

L0F (v) = ∗d(vyτ) = /D+v

since N is Cayley. So, we potentially have a problem because F does not necessarily take values only

in E (and in general it will not just take values in E). However, the Cayley condition on N means
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that F (v) = 0 if and only P (v) = πEF (v) = 0, where πE is the projection onto E. Then the operator

P : C∞(ν(N)) → C∞(E) and L0P = /D+ is elliptic.

Again, we cannot say that L0P is surjective, so we have the following using the results of Problem

Sheet 3.

Theorem 7.5 (McLean). The expected dimension of the moduli space of deformations of a compact Cay-

ley 4-fold N in a Spin(7) manifold is ind /D+ = dimKer /D+−dimKer /D∗
+ with infinitesimal deformations

given by Ker /D+ on ν(N). Moreover,

ind /D+ =
1

2
σ(N) +

1

2
χ(N)− [N ].[N ],

where σ(N) = b2+(N) − b2−(N) (the signature of N), χ(N) = 2b0(N) − 2b1(N) + b2(N) (the Euler

characteristic of N) and [N ].[N ] is the self-intersection of N , which is the Euler number of ν(N).

Example. For the Cayley N = S4 in S+(S4), ν(N) = S+(S4) and /D+ is the usual positive Dirac

operator. Again, since N has positive scalar curvature, we see that Ker /D± = {0} so N is rigid.

8 The angle theorem

We now discuss a very natural and elementary problem in Euclidean geometry where calibrations play a

major, and perhaps unexpected, role.

If one takes two lines in R2 intersecting transversely, then their union is never length-minimizing. A

natural question to ask is: does this persist in higher dimensions? In other words, when is the union of

two transversely intersecting n-planes in R2n volume-minimizing? Two such planes are determined by

the n angles between them as follows.

Lemma 8.1. Let P,Q be oriented n-planes in R2n. There exists an orthonormal basis e1, . . . , e2n for

R2n such that P = Span{e1, . . . , en} and

Q = Span{cos θ1e1 + sin θ1en+1, . . . , cos θnen + sin θne2n}

where 0 ≤ θ1 ≤ . . . ≤ θn−1 ≤ π
2 and θn−1 ≤ θn ≤ π − θn−1. These angles are called the characterising

angles of P,Q.

Proof. The proof is very similar to the argument in Wirtinger’s inequality. Choose unit e1 ∈ P and

maximise ⟨e1, u1⟩ for u1 ∈ Q, and let en+1 ∈ P⊥ be defined by u1 = cos θ1e1 + sin θ1en+1. Now choose

e2 ∈ P ∩ e⊥1 and maximise ⟨e2, u2⟩ for u2 ∈ Q ∩ u⊥1 , then proceed by induction.

If the characterising angles of P,Q are θ1, . . . , θn and then the characterising angles of P,−Q are

ψ1, . . . , ψn where ψj = θj for j = 1, . . . , n− 1 and ψn = π − θn.

The idea is that the union of P ∪Q is area-minimizing if P,−Q are not too close together.

Theorem 8.2 (Angle Theorem, Lawlor–Nance). Let P,Q be oriented transverse n-planes in R2n and let

ψ1, . . . , ψn be the characterising angles between P,−Q. Then P ∪Q is volume-minimizing if and only if

ψ1 + . . .+ ψn ≥ π.

Notice that this criteria is impossible to fulfill in 1 dimension.

Proof. We will sketch the proof which involves calibrations in a fundamental way in both directions.

First if P ∪ Q does not satisfy the angle condition, we can choose coordinates by the lemma above

so that P = P (−ψ
2 ) and −Q = P (ψ2 ) where ψ = (ψ1, . . . , ψn) and P (ψ) = {(eiψ1,x1, . . . , e

iψnxn) :

(x1, . . . , xn) ∈ Rn} as given earlier. We know that we have a special Lagrangian Lawlor neckN asymptotic

to P (−ψ′

2 )∪P (ψ
′

2 ) for any ψ′ where
∑n
i=1 ψ

′
i = π. The claim is then that since

∑
ψi < π we can find ψ′ so

that
∑
ψ′
i = π and N ∩P (±ψ′

2 ) is non-empty (in fact, an ellipsoid). This is actually a way to characterise

N . Hence since N is calibrated by ImΥ and ImΥ|P∪Q < volP∪Q, P ∪Q cannot be volume-minimizing by

the usual Stokes’ Theorem argument for calibrated submanifolds. (Further details concerning this half

of the proof of the angle theorem can be found through the questions on Problem Sheet 4.)
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Second if P ∪Q does satisfy the angle condition, then (by choosing coordinates so that P = Rn and

Q is in standard position) we claim that it is calibrated by a so-called Nance calibration:

η(u1, . . . , un) = Re
(
(dx1 + u1dy1) ∧ . . . ∧ (dxn + undyn)

)
where u1, . . . , un ∈ S2 ⊆ ImH. If um = i for all m then η = ReΩ. This is a calibration by the question

on Problem Sheet 2 on torus forms and moreover we know P (θ) is calibrated by η(u) if and only if

n∏
j=1

(cos θj + sin θjuj) = 1.

We then just need to find the uj determined by θj . Notice that the condition that ψ1 + . . .+ ψn ≥ π if

and only if θn ≤ θ1+ . . .+ θn−1. If we write cos θj +sin θjuj = wjwj+1 where wn+1 = w1 and wj are unit

imaginary quaternions then the product condition is satisfied and we just need ⟨wj , wj+1⟩ = cos θj , which

is equivalent to finding n points on the unit 2-sphere so that d(wj , wj+1) = θj , where θn ≤ θ1+ . . .+θn−1.

This is possible, by consider an n-sided spherical polygon.

9 Gauge theory

A powerful tool in geometry and topology has been the study of gauge theory. The most notable case has

connections on principal bundles over 4-manifolds where the curvature is an anti-self-dual (or perhaps

self-dual) 2-form: so-called instantons on 4-manifolds. Donaldson studied the moduli space of these

instantons (using work of Taubes) to construct new invariants of smooth 4-manifolds which allows one to

distinguish between smooth structures on 4-manifolds, leading to homeomorphic but not diffeomorphic

4-manifolds, including so-called “fake” R4s. Donaldson–Thomas and Donaldson–Segal have outlined

a programme for studying gauge theory in higher dimensions, which has a close connection (no pun

intended) with calibrated submanifolds motivated by work of Tian. In this programme one hopes to

construct invariants, for example, for G2 manifolds.

We now discuss the setting in brief, giving an overview with no attempt to give a comprehensive

treatment. Let E be a principal G-bundle over a compact Riemannian manifoldM where G is a compact

Lie group (we may as well assume G = U(1), SO(3) or SU(2) to be concrete). A connection A on E is a

g-valued 1-form A on E. This defines a covariant derivative dA on forms on E which on 1-forms is given

by dAη = dη + 1
2 [A, η] where [A, η](u, v) = [A(u), η(v)] + [A(v), η(u)]. In particular, we get a g-valued

2-form FA on E given by FA = dAA. In fact, this form FA is horizontal (it vanishes on any vertical

vectors on E), so FA gives a 2-form on the manifold M with values in the adjoint bundle E ×G g.

We have a natural (Yang–Mills) energy functional on connections on E, namely E(A) = ∥FA∥2L2 , so

we can look for its critical points, just as in the first variation formula. We have automatically that

dAFA = 0 (this is the Bianchi identity), but we can also look at the equation d∗AFA = 0 where d∗A is the

adjoint map: these precisely define the critical points for E .

Definition 9.1. A connection A is Yang–Mills if d∗AFA = 0.

Yang–Mills connections are a big part of geometry (and physics), but the general equation is hard to

study (just as in the minimal submanifold case) as it is a second-order nonlinear PDE on the connection

A. Moreover, Yang–Mills connections are just critical points rather than absolute minima. Again, we

want to reduce to a first order PDE which gives absolute minima, just as in calibrated geometry. Just

as for calibrated geometry, one has to restrict to special situations to find these special connections. For

example, in 4 dimensions, we have the following definition.

Definition 9.2. If M is 4-dimensional, A is an ASD instanton if FA = − ∗ FA. We can also define SD

instantons by FA = ∗FA. Here ASD stands for anti-self-dual and SD stands for self-dual.

Suppose M is 4-dimensional. Notice that if A is an ASD/SD instanton then d∗AFA = ±dAFA = 0 and

thus an ASD/SD instanton is Yang–Mills, and we have reduced ourselves to a first order PDE (which

one can make elliptic). We also have that if A is any connection and we let F±
A denote the self-dual and

anti-self-dual parts of FA then

E(A) = ∥F+
A ∥2L2 + ∥F−

A ∥2L2 and ∥F+
A ∥2L2 − ∥F−

A ∥2L2 =

∫
M

tr(FA ∧ FA) = κ(P )
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where κ(P ) is a topological invariant given by characteristic classes by Chern–Weil theory. Depending

on the sign of κ(P ) we see that either ASD or SD instantons provide absolute minima since

E(A) = 2∥F+
A ∥2L2 − κ(P ) = 2∥F−

A ∥2 + κ(P ).

We assume that κ(P ) ≤ 0 so that ASD instantons give the minima. Then their moduli spaces lead to

the invariants of smooth 4-manifolds given by Donaldson.

We want to try to extend at least some of this picture to higher dimensions and we will do this in the

G2 case, though there are analogous pictures for the Calabi–Yau 3-fold and Spin(7) cases. Recall on a

G2 manifold we have a decomposition of the 2-forms into Λ2
7⊕Λ2

14 where the subscripts denote the ranks

of bundles and the fibres of Λ2
14 are identified with the Lie algebra of G2.

Definition 9.3. If M is a G2 manifold, A is a G2 instanton if

FA ∧ φ = − ∗ FA;

i.e. FA is of type Λ2
14. Moreover, A is a G2 instanton if and only if FA ∧ ∗φ = 0.

Example. The Levi-Civita connection on the standard principal G2-bundle over M given by the G2

structure is a G2 instanton.

Example. Clarke has constructed a symmetric G2 instanton on an SU(2)-bundle over the Bryant–

Salamon S(S3) so that at infinity it converges to a Hermitian Yang–Mills connection B over S3 × S3;

i.e. if (ω,Υ) are given by the SU(3) structure then

FB ∧ ω2 = 0 and FB ∧Υ = 0.

Hermitian Yang–Mills connections have been greatly studied and particularly on 6-manifolds by Bryant.

Notice if A is a G2 instanton then d∗AFA = 0 because dA(FA ∧ φ) = dAFA ∧ φ + FA ∧ dφ = 0, so

indeed A is Yang–Mills. Again, one can see this is a first order PDE (which one can make elliptic) and

given any connection A and letting π7, π14 denote the obvious projections we have that

E(A) = ∥π7FA∥2L2 + ∥π14FA∥2L2 and

∫
M

tr(FA ∧ FA ∧ φ) = 2∥π7FA∥2L2 − ∥π14FA∥2L2 = κ(P )

where κ(P ) is again topological by Chern–Weil theory. Hence E(A) = 3∥π7FA∥2L2 − κ(P ) so if κ(P ) ≤ 0

we get that G2 instantons minimize the Yang–Mills energy.

Aside from the analogies with the situation with calibrated geometries, we have concrete relationships

between gauge theory and calibrated geometry. A main motivational result is the following.

Theorem 9.4 (Tian). Let Ai be a sequence of G2 instantons on a compact G2 manifold. Then a

subsequence of Ai converges to a G2 instanton A away from a singular locus S of Hausdorff dimension

at most 3, and the 3-dimensional components N of S are associative.

Remark Unfortunately we do not know that N is a smooth submanifold, so it is only a possible very

singular associative submanifold.

This shows a striking relationship between G2 instantons and associative submanifolds. The interest-

ing problems in this direction (currently solved or being tackled by Walpuski and Haydys for example) are

to see this Tian result in practice and to reverse the process: given a possible limit associative submanifold

and limit G2 instanton, when does it appear as a limit of connections in this way, and can we understand

the limit connections well? Hence associative submanifolds and connections on them arise as building

blocks for constructing G2 instantons by gluing methods. This has been successfully implemented on

both Joyce’s compact holonomy G2 manifolds and in twisted connected sums, and the research is related

to Seiberg–Witten theory. One can also attempt to construct invariants of G2 manifolds by “counting”

G2 instantons and associative submanifolds, but this is still currently speculative.
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There are also related problems for so-called G2 monopoles, where one includes extra data of a Higgs

field ϕ ∈ C∞(M ;E ×G g), and studies the equation

FA ∧ ∗φ = ∗∇Aϕ.

This again is an analogue of a lower dimensional problem, now in dimension 3, where the monopole

or Bogomolnyi equation is FA = ∗∇Aϕ. One again hopes to find an invariant, now for non-compact

holonomy G2 manifolds, and there is a relationship with coassociative 4-folds since there is where the

Higgs field should “localise” in some limit.

Example. Oliveira has shown symmetric examples of G2 monopoles on SU(2) or SO(3)-bundles on

the Bryant–Salamon Λ2
+T

∗S4 and Λ2
+T

∗CP2 respectively where the Higgs field vanishes precisely on the

coassociative base.

There is a similar story in the Spin(7) case, so suppose that (M,Φ) is a Spin(7) manifold.

Definition 9.5. A connection A is a Spin(7) instanton if FA ∧ Φ = − ∗ FA.

Example. The Levi-Civita connection on the natural principal Spin(7)-bundle over M given by the

Spin(7) structure is a Spin(7) instanton.

Here Cayley submanifolds now arise as the singular loci and play a crucial role in constructing and

understanding these instantons. Fundamental work on Spin(7) instantons was undertaken in the thesis

of Lewis, a student of Joyce.

Example. Clarke constructs a symmetric Spin(7) instanton on the Bryant–Salamon S+(S4) which is

smooth away from the Cayley base S4 but blows up along the base.

This gauge theory and calibrated geometry story is really at the cutting edge of current research,

showing the importance of both of these topics, and especially calibrated submanifolds, in G2 and Spin(7)

geometry.
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