◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Coassociative conifolds 2

Singularities and stability

Jason D. Lotay

University College London

12 August 2013

Introd	liction
muou	uction

Stability

Existence

Introduction

Compact coassociative $N^4 \subseteq (M^7, \varphi)$ compact G_2 manifold

- φ nondegenerate harmonic 3-form
- \rightsquigarrow metric g_{arphi} with $\operatorname{Hol}(g_{arphi})\subseteq {\sf G}_2$

•
$$\varphi|_N = 0 \Leftrightarrow *_{\varphi} \varphi|_N = \operatorname{vol}_N$$

Conically singular

Aim: understand and use "stability"

Motivation

- SYZ conjecture → understand Mirror Symmetry of CY 3-fold using SL fibrations
- "suggests" SL fibrations exist and SLs encodes CY geometry
- "suggests" coassociative fibrations exist and coassociatives encode G₂ geometry
- Coassociative fibrations must have singular fibres
- Constructions of compact G₂ manifolds involve perturbation
- $\bullet \rightsquigarrow$ need to understand deformations of singular coassociatives

CS coassociative 4-folds

Definition

 $N \ CS \ if \exists \ cone \ C \cong (0, \infty) \times L$, compact $K, \ \epsilon > 0$, diffeomorphism $\Phi : (0, \epsilon) \times L \to N \setminus K$ and rate $\lambda \in (1, 2)$ such that $|\nabla^{j}(\Phi(r, x) - rx)| = O(r^{\lambda - j})$ for all $j \in \mathbb{N}$ as $r \to 0$

• *N* CS rate $\lambda_0 \rightsquigarrow N$ CS any rate $\lambda \in (1, \lambda_0] \Rightarrow$ choose $\lambda \sim 1$

Question: When is a singular coassociative CS?

Theorem (L. 2012)

N coassociative integral current, tangent cones multiplicity one and Jacobi integrable \Rightarrow N CS

 C Jacobi integrable ⇔ all infinitesimal deformations of C as coassociative cone are integrable

Stability

Deformations

Theorem (L. 2007)

N CS coassociative in $(M, \varphi) \Rightarrow$

- \exists finite-dimensional \mathcal{I} , \mathcal{O}
- \exists smooth map $\pi : \mathcal{I} \to \mathcal{O}$

such that moduli space $\mathcal{M}(N) \cong \pi^{-1}(0)$ locally and

$$\dim \mathcal{I} - \dim \mathcal{O} = b_+^2(N) - \dim \operatorname{Im}(H^2(N) \to H^2(L)) \\ - \sum_{\mu \in (-2,1]} m_L(\mu) + \dim \mathcal{C}$$

- $b^2_+(N) = \dim\{\alpha \in L^2(\Lambda^2_+T^*N) : d\alpha = 0\}$
- $m_L(\mu) = \dim\{\gamma \in C^{\infty}(T^*L) : *d\gamma = (\mu + 2)\gamma, d * \gamma = 0\}$
- C is $G_2 \ltimes \mathbb{R}^7$ orbit of C (can generalise to deformation family)

200

Int	rod	LICT	inn
	I O O	u u u	

Stability

Existence

Proof idea

Solve
$$G(\alpha, \beta) = F(\alpha) + d^*\beta = 0$$
 for $(\alpha, \beta) \in L^2_{k,\lambda}(\Lambda^2_+ \oplus \Lambda^4)$

• Key difficulty:

$$d(L^2_{k,\lambda}(\Lambda^2_+)) \oplus d^*(L^2_{k,\lambda}(\Lambda^4)) \neq d(L^2_{k,\lambda}(\Lambda^2)) \oplus d^*(L^2_{k,\lambda}(\Lambda^4))$$

- Difference in spaces is ${\cal O}$
- $\bullet \ \mathrm{d} {\it G}|_0$ not surjective \Rightarrow Implicit Function Theorem does not apply
- Define $H(\alpha, \beta, \gamma) = G(\alpha, \beta) + \gamma$ for $\gamma \in \mathcal{O}$
- $dH|_0$ surjective \Rightarrow use Implicit Function Theorem

•
$$H^{-1}(0) = \mathcal{I} \cong \operatorname{Ker} \operatorname{d} G|_0$$
 smooth

•
$$G^{-1}(0) = \operatorname{Ker} \{ H^{-1}(0) \rightarrow \mathcal{O} \}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Stability index

Proposition (L. 2012)

$$\dim \mathcal{O} \leq \operatorname{ind}(\mathcal{C}) = \sum_{\mu \in (-1,1]} m_L(\mu) - \dim \mathcal{O}$$

- ind(C) stability index of C
- $ind(C) \ge 0$

•
$$\operatorname{ind}(C) = 0 \Rightarrow \mathcal{M}(N)$$
 smooth

- $\operatorname{ind}(C) = 0 \Rightarrow N$ "stable" under deformations of φ , i.e. given φ_s there exists N_s with $\varphi_s|_{N_s} \equiv 0$
- ind(C) measures obstructions to deforming N

Stability

≣ જીવભ

Twisted connected sums

Question: Are there examples of CS coassociative 4-folds? (Kovalev 2003, CHNP 2012) Take Z_{\pm} asymptotically cylindrical CY 3-folds

- $Z^6_{\pm} \sim \mathcal{S}^1 imes \mathbb{R}^+ imes Y^4_{\pm}$, Y^4_{\pm} K3 surface
- $\mathcal{S}^1 imes Z^6_\pm \sim \mathcal{S}^1 imes \mathcal{S}^1 imes \mathbb{R}^+ imes Y^4_\pm$
- "Twisted connected sum": swap circles plus hyperkähler rotation $\rightsquigarrow (M^7, \psi)$, $d\psi = 0$, $d_{\psi}^* \psi$ "small"
- (Joyce 1994) Perturb $\psi \rightsquigarrow (M, \varphi)$ holonomy G_2 manifold

tr	\cap	n.		c^{1}	•	0	n
	Ū	С.	u '			0	

Stability

Existence

Strategy

- **Fact:** $N \subseteq Z_{\pm}$ complex surface $\rightsquigarrow N$ coassociative in (M, ψ)
 - N stable ⇒ ∃ coassociative deformation of N in holonomy G₂ manifold (M, φ)
 - Need singular complex surface which is CS and stable
 - Need Jacobi integrable tangent cones C with ind(C) = 0

N complex surface with ordinary double point singularities

- $C \cong C_{\mathbf{a}} = \{(0, z_1, z_2, z_3) \in \mathbb{R} \oplus \mathbb{C}^3 : a_1 z_1^2 + a_2 z_2^2 + a_3 z_3^2 = 0\}$ with $a_1, a_2, a_3 > 0$ and $a_1 + a_2 + a_3 = 3$
- $L_a \cong \mathbb{RP}^3 \subseteq S^5 \subseteq S^6$ Hopf lift of degree 2 holomorphic curve $\Sigma \cong \mathbb{CP}^1 \subseteq \mathbb{CP}^2$
- Need $m_{L_{\mathsf{a}}}(\mu)$ for $\mu \in (-1,1]$

Stability

Symmetric case

Want to solve $*d\gamma = (\mu + 2)\gamma$

Symmetric case: ${\bf a}=(1,1,1)\Rightarrow L=L_{(1,1,1)}\cong {\sf SU}(2)/\mathbb{Z}_2$ with left-invariant metric

• Write
$$\gamma = f_1\gamma_1 + f_2\gamma_2 + f_3\gamma_3$$

 \bullet Spectrum of $*\mathrm{d}$ related to spectrum of Δ

•
$$m_L(\mu) = \begin{cases} 7 & \mu = 0 \\ 16 & \mu = 1 \\ 0 & \mu \neq 0, 1 \end{cases}$$

• C deformation family of $C \Rightarrow$ dim $C = \dim \mathbb{R}^7 + \dim G_2 + 2 = 23$

•
$$ind(C) = m_L(0) + m_L(1) - \dim C = 0$$

Stability

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hopf lifts

L_{a} Hopf lift of holomorphic curve in \mathbb{CP}^{2}

Theorem (L. 2012)

L Hopf lift of holomorphic curve Σ degree d_Σ in $\mathbb{CP}^2 \Rightarrow$

$$m_L(\mu) = \left\{egin{array}{ccc} 0 & \mu \in (-1,0)\ d_{\Sigma}^2 + d_{\Sigma} + 1 & \mu = 0\ n_L(\mu(\mu+2)) & \mu \in (0,1)\ d_{\Sigma}^2 + 3d_{\Sigma} + n_L(3) & \mu = 1 \end{array}
ight.$$

where $n_L(\nu) = \dim\{f \in C^{\infty}(L) : \Delta f = \nu f\}$

- Fourier expansion of γ such that $*d\gamma = (\mu + 2)\gamma$
- $\gamma \leftrightarrow$ eigenfunctions of Δ plus $H^0(K_{\Sigma} \otimes H^{\mu+2})$

ヘロト 人間ト 人注ト 人注ト

æ

Existence

Lemma

 $C_{\mathbf{a}}$ Jacobi integrable and $\operatorname{ind}(C_{\mathbf{a}}) = 0$

•
$$m_{L_{a}}(\mu) = \begin{cases} 0 & \mu \in (-1,0) \\ 7 & \mu = 0 \\ n_{L_{a}}(\mu(\mu+2)) & \mu \in (0,1) \\ 10 + n_{L_{a}}(3) & \mu = 1 \end{cases}$$

• $\operatorname{ind}(C_{a}) = (n_{L_{a}}(3) - 6) + \sum_{\mu \in (0,1)} n_{L_{a}}(\mu(\mu+2))$
• $n_{L_{a}}(3) \ge 6 = \mathfrak{su}(3)^{\perp}$
• $m_{L_{a}}(1) \le m_{L_{(1,1,1)}}(1) = 16 \Rightarrow n_{L_{a}}(3) = 6$

Corollary (L. 2012)

 \exists N CS coassociative in twisted connected sum G₂ manifold