Associative submanifolds of the 7-sphere

Jason D. Lotay
University College London

12 October 2011

Outline

- The \mathbf{G}_{2} geometry of the 7 -sphere
- Simple examples and basic theory
- Rigidity results and group orbits
- Ruled associative submanifolds and Chen's equality

G_{2} and $\operatorname{Spin}(7)$

G_{2}

- \exists closed 3-form φ_{0} on \mathbb{R}^{7} such that

$$
\mathrm{G}_{2}=\operatorname{Stab}\left(\varphi_{0}\right) \subseteq \mathrm{SO}(7)
$$

- $\mathbb{R}^{7} \cong \operatorname{Im} \mathbb{O} \Rightarrow \varphi_{0}(x, y, z)=g_{0}(x \times y, z)$.
- On M^{7}, admissible 3-form $\varphi \leftrightarrow G_{2}$ structure.

Spin(7)

- \exists closed self-dual 4-form Φ_{0} on \mathbb{R}^{8} such that

$$
\operatorname{Spin}(7)=\operatorname{Stab}\left(\Phi_{0}\right) \subseteq \operatorname{SO}(8)
$$

- $\mathbb{R}^{8} \cong \mathbb{O} \Rightarrow \Phi_{0}(x, y, z, w)=g_{0}(x \times y \times z, w)$.
- On M^{8}, admissible 4-form $\Phi \leftrightarrow \operatorname{Spin}(7)$ structure.

The G_{2} structure on \mathcal{S}^{7}

Consider $\mathbb{R}^{8} \backslash\{0\} \cong \mathbb{R}^{+} \times \mathcal{S}^{7}$.

- $\Phi_{0}=* \Phi_{0} \Rightarrow \Phi_{0}=r^{3} d r \wedge \varphi+r^{4} * \varphi$.
- $d \Phi_{0}=0 \Rightarrow d \varphi=4 * \varphi$ and $d * \varphi=0$.
- φ is a nearly parallel G_{2} structure on $\mathcal{S}^{7} \cong \operatorname{Spin}(7) / \mathrm{G}_{2}$.
- $\left(\mathcal{S}^{7}, \varphi\right)$ is a nearly G_{2} manifold.
M^{7} has a nearly parallel G_{2} structure \Leftrightarrow the cone $\mathbb{R}^{+} \times M^{7}$ has a torsion-free $\operatorname{Spin}(7)$ structure Φ, i.e. $\nabla \Phi=0$.

Theorem

- $\nabla \varphi=0 \Leftrightarrow d \varphi=d^{*} \varphi=0 \Leftrightarrow \operatorname{Hol}\left(g_{\varphi}\right) \subseteq \mathrm{G}_{2}$.
- $\nabla \Phi=0 \Leftrightarrow d \Phi=0 \Leftrightarrow \operatorname{Hol}\left(g_{\Phi}\right) \subseteq \operatorname{Spin}(7)$.

Submanifolds of \mathcal{S}^{7}

$\left(\mathcal{S}^{7}, \varphi\right) \rightsquigarrow$

- $\left.\varphi\right|_{U} \leq \operatorname{vol}_{U}$ for all oriented tangent 3-planes U;
- $\left.{ }^{*} \varphi\right|_{V} \leq \operatorname{vol}_{V}$ for all oriented tangent 4-planes V;
- $\left.* \varphi\right|_{v}=\left.\operatorname{vol}_{v} \Leftrightarrow \varphi\right|_{v} \equiv 0$.

Definition

- $A^{3} \subseteq \mathcal{S}^{7}$ is associative $\left.\Leftrightarrow \varphi\right|_{A}=\operatorname{vol}_{A}$.
- $C^{4} \subseteq \mathcal{S}^{7}$ is coassociative $\left.\Leftrightarrow * \varphi\right|_{C}=\left.\operatorname{vol}_{C} \Leftrightarrow \varphi\right|_{C} \equiv 0$.

Proposition

There are no coassociative submanifolds of \mathcal{S}^{7}.
Proof: C coassociative $\left.\left.\Rightarrow \varphi\right|_{c} \equiv 0 \Rightarrow d \varphi\right|_{c} \equiv 0 . d \varphi=4 * \varphi \Rightarrow$ $\left.* \varphi\right|_{C}=\operatorname{vol}_{C} \equiv 0 \Rightarrow$ Contradiction.

Complex geometry

Identify $\mathbb{R}^{8} \cong \mathbb{C}^{4}$.

- ω_{0} Kähler form, Ω_{0} holomorphic volume form \Rightarrow $\Phi_{0}=\frac{1}{2} \omega_{0} \wedge \omega_{0}+\operatorname{Re} \Omega_{0}$.
- $S^{4} \subseteq \mathbb{C}^{4}$ complex surface $\left.\Leftrightarrow \frac{1}{2} \omega_{0} \wedge \omega_{0}\right|_{S}=\operatorname{vol}_{S}$ and $\left.\Omega_{0}\right|_{S}=0$.
- $L^{4} \subseteq \mathbb{C}^{4}$ special Lagrangian $\left.\Leftrightarrow \omega_{0}\right|_{L}=0$ and $\left.\operatorname{Re} \Omega_{0}\right|_{L}=\operatorname{vol}_{L}$.
$A \subseteq \mathcal{S}^{7}$ associative \Leftrightarrow the cone $N=\mathbb{R}^{+} \times A$ satisfies $\left.\Phi_{0}\right|_{N}=\operatorname{vol}_{N}$.

Proposition

- $\Sigma^{2} \subseteq \mathbb{C P}^{3}$ holomorphic curve \Rightarrow the Hopf lift of Σ to \mathcal{S}^{7} is associative.
- $A^{3} \subseteq \mathcal{S}^{7}$ minimal Legendrian $\Rightarrow A$ is associative.

\mathcal{S}^{6} geometry

$\mathcal{S}^{6} \hookrightarrow \operatorname{Im} \mathbb{O} \rightsquigarrow$

- almost complex structure J given by $J_{x} u=x \times u$.
- almost symplectic form ω given by $\omega(u, v)=g(J u, v)$.

Definition

- $\Sigma^{2} \subseteq \mathcal{S}^{6}$ is a pseudoholomorphic curve $\left.\Leftrightarrow \omega\right|_{\Sigma}=\operatorname{vol}_{\Sigma}$.
- $L^{3} \subseteq \mathcal{S}^{6}$ is Lagrangian $\left.\Leftrightarrow \omega\right|_{L}=0$.

Identify $\mathbb{R}^{8} \cong \mathbb{R} \oplus \operatorname{Im} \mathbb{O}$.

Proposition

- $\Sigma^{2} \subseteq \mathcal{S}^{6}$ pseudoholomorphic curve \Leftrightarrow $\{(\cos t, \sigma \sin t): \sigma \in \Sigma, t \in(0, \pi)\} \subseteq \mathcal{S}^{7}$ is associative.
- $L^{3} \subseteq \mathcal{S}^{6}$ Lagrangian $\Leftrightarrow\{0\} \times L \subseteq \mathcal{S}^{7}$ is associative.

Properties of associative 3-folds

Theorem (Harvey \& Lawson 1982)

Associative submanifolds of \mathcal{S}^{7} are minimal.
A associative $\Leftrightarrow T_{x} A \subseteq \mathbb{R}^{7} \cong \operatorname{Im}(\mathbb{O} \rightsquigarrow$ associative subalgebra of \mathbb{O}.

Theorem (Harvey \& Lawson 1982)

Given $P^{2} \subseteq \mathcal{S}^{7}$ real analytic there locally exists associative A containing P. Moreover, A is locally unique.

Associative 3-folds in \mathcal{S}^{7} locally depend on 4 functions of 2 variables.

Constant curvature

Question (Chern 1971)

Does an isometric minimal immersion $\mathcal{S}^{3}(\kappa) \rightarrow \mathcal{S}^{7}$ have to be totally geodesic?

Theorem (L-)

Let $A(\kappa) \subseteq \mathcal{S}^{7}$ be associative with constant curvature κ. Then $\kappa=1, \frac{1}{16}$ or 0 and, in each case, $A(\kappa)$ is unique up to rigid motion.

- $A(1)$: totally geodesic orbit of $\operatorname{SU}(2) \curvearrowright \mathbb{C}^{2} \oplus \mathbb{C}^{2} \cong \mathbb{R}^{8}$.
- $A\left(\frac{1}{16}\right)$ (Ejiri 1981): Lagrangian orbit in \mathcal{S}^{6} of $\mathrm{SO}(3) \curvearrowright \mathcal{H}_{3}\left(\mathbb{R}^{3}\right) \cong \mathbb{R}^{7}$.
- $A(0)$ (Harvey \& Lawson 1982): minimal Legendrian orbit of $\mathrm{U}(1)^{3} \curvearrowright \mathbb{C}^{4} \cong \mathbb{R}^{8}$.

Group orbits

(Mashimo 1986) Lagrangian group orbits in \mathcal{S}^{6}.
(Marshall 1999) Minimal Legendrian group orbits in $\mathcal{S}^{2 n-1}$.

Theorem (L-)

Let $\mathrm{G} \subseteq \operatorname{Spin}(7)$ be a 3-dimensional Lie subgroup and let $A \subseteq \mathcal{S}^{7}$ be an associative G-orbit. Then either

- $A \subseteq \mathcal{S}^{6}$ is Lagrangian; or
- $\mathrm{G}=\mathrm{U}(1)^{3}$ and $A=A(0) \cong T^{3}$; or
- $\mathrm{G}=\mathrm{SU}(2) \curvearrowright S^{3} \mathbb{C}^{2} \cong \mathbb{R}^{8}$ and either
- $A=A^{\prime} \cong \operatorname{SU}(2)$ or
- $A=A^{\prime \prime} \cong \operatorname{SU}(2) / \mathbb{Z}_{3}$.
A^{\prime} : first known associative 3-fold not arising from other geometries.

Scalar and sectional curvature

Question (Chern 1970)

For a minimal submanifold A of a sphere, is the set of possible constant values of the scalar curvature S_{A} discrete?

Proposition (Li \& Li 1992)

$A^{3} \subseteq \mathcal{S}^{7}$ associative $\Rightarrow S_{A}$ does not take values in $[4,6)$, i.e. if $S_{A} \geq 4, A$ is totally geodesic.

Proposition (Dillen et al 1987, Leung 1995)

Let $A \subseteq \mathcal{S}^{7}$ be associative and K_{A} be the sectional curvature of A.

- $\inf K_{A}>\frac{5}{12} \Rightarrow A$ totally geodesic.
- $A \subseteq \mathcal{S}^{6}, \inf K_{A}>\frac{1}{16} \Rightarrow A$ totally geodesic.

Ruled associative 3 -folds and \mathcal{C}

Definition

$A^{3} \subseteq \mathcal{S}^{7}$ is ruled if it is fibered by oriented geodesic circles.

- Hopf lifts of holomorphic curves in $\mathbb{C P}^{3}$ and products with pseudoholomorphic curves in \mathcal{S}^{6} are ruled.
- The group orbits $A(0)$ and A^{\prime} are not ruled, but $A^{\prime \prime}$ is ruled. Ruled $A^{3} \subseteq \mathcal{S}^{7} \longleftrightarrow \Sigma^{2} \subseteq \mathcal{C}^{12}=\left\{\right.$ oriented geodesic circles in $\left.\mathcal{S}^{7}\right\}$. $\mathcal{C}=\operatorname{Gr}_{+}(2,8) \cong \operatorname{Spin}(7) / U(3) \rightsquigarrow$
Spin(7)-invariant almost complex structure on \mathcal{C}.

Proposition (Fox 2008)

Ruled associative $A \subseteq \mathcal{S}^{7} \longleftrightarrow$ pseudoholomorphic curve Σ in \mathcal{C}.

Pseudoholomorphic curves in \mathcal{C}

Given $\mathrm{U}(3) \subseteq \operatorname{Spin}(7) \exists$ unique $\mathrm{SU}(4) \subseteq \operatorname{Spin}(7)$ containing $\mathrm{U}(3)$. $\operatorname{Spin}(6) \cong \operatorname{SU}(4) \Rightarrow \mathcal{S}^{6} \cong \operatorname{Spin}(7) / \operatorname{SU}(4) \rightsquigarrow \mathbb{C P}^{3}$ fibration $\mathcal{C} \xrightarrow{\pi} \mathcal{S}^{6}$.

Theorem (Salamon 1985)

Let $\Sigma \subseteq \mathcal{C}$ be a pseudoholomorphic curve.

- $\pi(\Sigma)$ is a point $\Leftrightarrow \Sigma \subseteq \mathbb{C P}^{3}$ is a holomorphic curve.
- $\pi(\Sigma)$ is not a point $\Leftrightarrow \pi(\Sigma) \subseteq \mathcal{S}^{6}$ is a minimal surface.

Theorem (Fox 2008)

Let $\iota: \Sigma^{2} \rightarrow \mathcal{S}^{6}$ be a minimal immersion of a Riemann surface. There is a holomorphic $\mathbb{C P}^{1}$ subbundle $\mathcal{X}(\Sigma)$ of $\iota^{*}(\mathcal{C})$ such that

- $\Gamma^{2} \subseteq \mathcal{X}(\Sigma)$ defines a pseudoholomorphic lift of Σ to $\mathcal{C} \Leftrightarrow \Gamma$ is a holomorphic curve.

Chen's equality

Theorem (Chen 1993)

$A^{3} \subseteq \mathcal{S}^{7}$ associative $\Rightarrow \delta_{A}:=\frac{1}{2} S_{A}-\inf K_{A} \leq 2$.
Moreover, $\delta_{A}=2$ (Chen's equality) $\Rightarrow A$ is ruled.

Let $\Sigma \subseteq \mathcal{C}$ be a pseudoholomorphic curve.

- $\mathbb{C P}^{3}$ fibration $\pi: \mathcal{C} \rightarrow \mathcal{S}^{6} \rightsquigarrow$ splitting $T^{(1,0)} \mathcal{C}=\mathcal{H} \oplus \mathcal{V}$.
- There exist $\alpha^{\mathcal{H}}$ and $\alpha^{\mathcal{V}}$ triples of (1,0)-forms such that $\left.\alpha^{\mathcal{H}}\right|_{\Sigma}=0$ or $\left.\alpha^{\mathcal{V}}\right|_{\Sigma}=0 \Leftrightarrow \Sigma$ horizontal or vertical.
- Let $\beta=\alpha^{\mathcal{H}} \times \alpha^{\mathcal{V}}$ (i.e. $\beta_{1}=\alpha_{2}^{\mathcal{H}} \circ \alpha_{3}^{\mathcal{V}}-\alpha_{3}^{\mathcal{H}} \circ \alpha_{2}^{\mathcal{V}}$ etc).

Definition

Pseudoholomorphic curve $\Sigma \subseteq \mathcal{C}$ is linear $\left.\Leftrightarrow \beta\right|_{\Sigma}=0$.

Chen's equality and minimal 2-spheres

Theorem (L-)

- Associative 3-folds in \mathcal{S}^{7} satisfying Chen's equality \leftrightarrow linear pseudoholomorphic curves in \mathcal{C}.
- $\Sigma \subseteq \mathcal{C}$ linear $\Rightarrow \Gamma=\pi(\Sigma) \subseteq \mathcal{S}^{6}$ is an isotropic minimal surface, i.e. $\left\{h_{\Gamma}(v, v): v \in T_{x} \Gamma,|v|=1\right\}$ is a circle $\forall x$.
(Calabi 1967) A minimal \mathcal{S}^{2} in \mathcal{S}^{6} is isotropic.
\rightsquigarrow horizontal (hence linear) pseudoholomorphic curve in \mathcal{C}.
\rightsquigarrow associative 3 -fold in \mathcal{S}^{7} satisfying Chen's equality.

Theorem (L-)

Non-totally geodesic minimal $\mathcal{S}^{2} \subseteq \mathcal{S}^{6} \rightsquigarrow 1$-parameter family of isometric associative immersions in \mathcal{S}^{7} satisfying Chen's equality.

Summary

- Many examples using submanifolds of \mathbb{C}^{4} and \mathcal{S}^{6}.
- Constant curvature and homogeneous examples, including example not arising from known geometries.
- Ruled examples defined by minimal surfaces in \mathcal{S}^{6} and holomorphic data.
- Classification of examples satisfying Chen's equality using linear pseudoholomorphic curves in \mathcal{C}.
- 1-parameter families of isometric associative immersions in \mathcal{S}^{7} using minimal 2-spheres in \mathcal{S}^{6}.

