try of \mathcal{S}' Simple example	les Rigidity	Ruled examples	Conclusion

Associative submanifolds of the 7-sphere

Jason D. Lotay

University College London

12 October 2011

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• The G₂ geometry of the 7-sphere

• Simple examples and basic theory

• Rigidity results and group orbits

• Ruled associative submanifolds and Chen's equality

Introduction G₂ geometry of S⁷ Simple examples Rigidity 000 Conclusion 0 G₂ and Spin(7)

 G_2

• \exists closed 3-form φ_0 on \mathbb{R}^7 such that

$$G_2 = \operatorname{Stab}(\varphi_0) \subseteq \operatorname{SO}(7).$$

- $\mathbb{R}^7 \cong \operatorname{Im} \mathbb{O} \Rightarrow \varphi_0(x, y, z) = g_0(x \times y, z).$
- On M^7 , admissible 3-form $\varphi \leftrightarrow G_2$ structure.

Spin(7)

 \bullet \exists closed self-dual 4-form Φ_0 on \mathbb{R}^8 such that

$$\mathsf{Spin}(7)=\mathsf{Stab}(\Phi_0)\subseteq\mathsf{SO}(8).$$

- $\mathbb{R}^8 \cong \mathbb{O} \Rightarrow \Phi_0(x, y, z, w) = g_0(x \times y \times z, w).$
- On M^8 , admissible 4-form $\Phi \leftrightarrow \text{Spin}(7)$ structure.

Consider
$$\mathbb{R}^8 \setminus \{0\} \cong \mathbb{R}^+ \times S^7$$
.

•
$$\Phi_0 = *\Phi_0 \Rightarrow \Phi_0 = r^3 dr \wedge \varphi + r^4 * \varphi.$$

•
$$d\Phi_0 = 0 \Rightarrow d\varphi = 4 * \varphi$$
 and $d*\varphi = 0$.

• φ is a nearly parallel G₂ structure on $\mathcal{S}^7 \cong \text{Spin}(7)/\text{G}_2$.

•
$$(\mathcal{S}^7, \varphi)$$
 is a nearly G_2 manifold.

 M^7 has a nearly parallel G₂ structure \Leftrightarrow the cone $\mathbb{R}^+ \times M^7$ has a torsion-free Spin(7) structure Φ , i.e. $\nabla \Phi = 0$.

Theorem

•
$$\nabla \varphi = 0 \Leftrightarrow d\varphi = d^* \varphi = 0 \Leftrightarrow \operatorname{Hol}(g_{\varphi}) \subseteq \mathsf{G}_2.$$

• $\nabla \Phi = 0 \Leftrightarrow d\Phi = 0 \Leftrightarrow \operatorname{Hol}(g_{\Phi}) \subseteq \operatorname{Spin}(7).$

 $(\mathcal{S}^7, \varphi) \rightsquigarrow$

- $\varphi|_U \leq \operatorname{vol}_U$ for all oriented tangent 3-planes U;
- $*\varphi|_V \leq \operatorname{vol}_V$ for all oriented tangent 4-planes V;
- $\varphi|_V = \operatorname{vol}_V \Leftrightarrow \varphi|_V \equiv 0.$

Definition

- $A^3 \subseteq S^7$ is associative $\Leftrightarrow \varphi|_A = \operatorname{vol}_A$.
- $C^4 \subseteq S^7$ is coassociative $\Leftrightarrow *\varphi|_C = \operatorname{vol}_C \Leftrightarrow \varphi|_C \equiv 0.$

Proposition

There are no coassociative submanifolds of S^7 .

Proof: *C* coassociative $\Rightarrow \varphi|_C \equiv 0 \Rightarrow d\varphi|_C \equiv 0$. $d\varphi = 4 * \varphi \Rightarrow *\varphi|_C = \operatorname{vol}_C \equiv 0 \Rightarrow \operatorname{Contradiction}.$

Identify $\mathbb{R}^8 \cong \mathbb{C}^4$.

• ω_0 Kähler form, Ω_0 holomorphic volume form $\Rightarrow \Phi_0 = \frac{1}{2}\omega_0 \wedge \omega_0 + \operatorname{Re}\Omega_0$.

• $S^4 \subseteq \mathbb{C}^4$ complex surface $\Leftrightarrow \frac{1}{2}\omega_0 \wedge \omega_0|_S = \text{vol}_S$ and $\Omega_0|_S = 0$.

• $L^4 \subseteq \mathbb{C}^4$ special Lagrangian $\Leftrightarrow \omega_0|_L = 0$ and $\operatorname{Re} \Omega_0|_L = \operatorname{vol}_L$.

 $A \subseteq S^7$ associative \Leftrightarrow the cone $N = \mathbb{R}^+ \times A$ satisfies $\Phi_0|_N = \operatorname{vol}_N$.

Proposition

- $\Sigma^2 \subseteq \mathbb{CP}^3$ holomorphic curve \Rightarrow the Hopf lift of Σ to S^7 is associative.
- $A^3 \subseteq S^7$ minimal Legendrian $\Rightarrow A$ is associative.

Introduction	G_2 geometry of \mathcal{S}^7	Simple examples	Rigidity	Ruled examples	Conclusion
0	000	○●○	000		O
\mathcal{S}^6 geon	netry				

 $\mathcal{S}^{\mathsf{6}} \hookrightarrow \mathsf{Im}\, \mathbb{O} \rightsquigarrow$

- almost complex structure J given by $J_x u = x \times u$.
- almost symplectic form ω given by $\omega(u, v) = g(Ju, v)$.

Definition

- $\Sigma^2 \subseteq S^6$ is a pseudoholomorphic curve $\Leftrightarrow \omega|_{\Sigma} = \operatorname{vol}_{\Sigma}$.
- $L^3 \subseteq S^6$ is Lagrangian $\Leftrightarrow \omega|_L = 0$.

Identify $\mathbb{R}^8 \cong \mathbb{R} \oplus \operatorname{Im} \mathbb{O}$.

Proposition

- $\Sigma^2 \subseteq S^6$ pseudoholomorphic curve \Leftrightarrow {(cos t, σ sin t) : $\sigma \in \Sigma$, $t \in (0, \pi)$ } $\subseteq S^7$ is associative.
- $L^3 \subseteq S^6$ Lagrangian $\Leftrightarrow \{0\} \times L \subseteq S^7$ is associative.

Theorem (Harvey & Lawson 1982)

Associative submanifolds of S^7 are minimal.

A associative $\Leftrightarrow T_x A \subseteq \mathbb{R}^7 \cong \operatorname{Im} \mathbb{O} \rightsquigarrow$ associative subalgebra of \mathbb{O} .

Theorem (Harvey & Lawson 1982)

Given $P^2 \subseteq S^7$ real analytic there locally exists associative A containing P. Moreover, A is locally unique.

Associative 3-folds in S^7 locally depend on 4 functions of 2 variables.

Introduction 0	G ₂ geometry of S ¹ 000	Simple examples	Rigidity ●○○	Ruled examples	Conclusion O
Constan	t curvature				

Question (Chern 1971)

Does an isometric minimal immersion $S^3(\kappa) \to S^7$ have to be totally geodesic?

Theorem (L-)

Let $A(\kappa) \subseteq S^7$ be associative with constant curvature κ . Then $\kappa = 1, \frac{1}{16}$ or 0 and, in each case, $A(\kappa)$ is unique up to rigid motion.

- A(1): totally geodesic orbit of $SU(2) \curvearrowright \mathbb{C}^2 \oplus \mathbb{C}^2 \cong \mathbb{R}^8$.
- $A(\frac{1}{16})$ (Ejiri 1981): Lagrangian orbit in S^6 of SO(3) $\curvearrowright \mathcal{H}_3(\mathbb{R}^3) \cong \mathbb{R}^7$.
- A(0) (Harvey & Lawson 1982): minimal Legendrian orbit of U(1)³ へ C⁴ ≅ R⁸.

Introduction O	G_2 geometry of \mathcal{S}^7 000	Simple examples	Rigidity ○●○	Ruled examples	Conclusion O
Group o	orbits				

(Mashimo 1986) Lagrangian group orbits in \mathcal{S}^6 .

(Marshall 1999) Minimal Legendrian group orbits in S^{2n-1} .

Theorem (L-)

Let $G \subseteq Spin(7)$ be a 3-dimensional Lie subgroup and let $A \subseteq S^7$ be an associative G-orbit. Then either

• $A \subseteq S^6$ is Lagrangian; or

•
$$\mathsf{G}=\mathsf{U}(1)^3$$
 and $\mathsf{A}=\mathsf{A}(0)\cong\mathsf{T}^3$; or

• $G = SU(2) \curvearrowright S^3 \mathbb{C}^2 \cong \mathbb{R}^8$ and either

•
$$A = A' \cong SU(2)$$
 or

• $A = A'' \cong SU(2)/\mathbb{Z}_3$.

A': first known associative 3-fold not arising from other geometries.

0	G ₂ geometry of S ⁷ 000	Simple examples 000	Rigidity ○○●	Ruled examples 0000	0
Scalar	nd sectional	curvature			

Question (Chern 1970)

For a minimal submanifold A of a sphere, is the set of possible constant values of the scalar curvature S_A discrete?

Proposition (Li & Li 1992)

 $A^3 \subseteq S^7$ associative $\Rightarrow S_A$ does not take values in [4,6), i.e. if $S_A \ge 4$, A is totally geodesic.

Proposition (Dillen et al 1987, Leung 1995)

Let $A \subseteq S^7$ be associative and K_A be the sectional curvature of A.

- inf $K_A > \frac{5}{12} \Rightarrow A$ totally geodesic.
- $A \subseteq S^6$, inf $K_A > \frac{1}{16} \Rightarrow A$ totally geodesic.

Definition

 $A^3 \subseteq S^7$ is ruled if it is fibered by oriented geodesic circles.

- Hopf lifts of holomorphic curves in \mathbb{CP}^3 and products with pseudoholomorphic curves in \mathcal{S}^6 are ruled.
- The group orbits A(0) and A' are not ruled, but A'' is ruled.

 $\mathsf{Ruled}\ A^3 \subseteq \mathcal{S}^7 \longleftrightarrow \Sigma^2 \subseteq \mathcal{C}^{12} = \{\mathsf{oriented}\ \mathsf{geodesic}\ \mathsf{circles}\ \mathsf{in}\ \mathcal{S}^7\}.$

$$\mathcal{C} = \mathsf{Gr}_+(2,8) \cong \mathsf{Spin}(7) / \mathsf{U}(3) \rightsquigarrow$$

Spin(7)-invariant almost complex structure on C.

Proposition (Fox 2008)

Ruled associative $A \subseteq S^7 \longleftrightarrow$ pseudoholomorphic curve Σ in C.

Given U(3) \subseteq Spin(7) \exists unique SU(4) \subseteq Spin(7) containing U(3). Spin(6) \cong SU(4) $\Rightarrow S^6 \cong$ Spin(7)/SU(4) $\rightsquigarrow \mathbb{CP}^3$ fibration $C \xrightarrow{\pi} S^6$.

Theorem (Salamon 1985)

Let $\Sigma \subseteq \mathcal{C}$ be a pseudoholomorphic curve.

- $\pi(\Sigma)$ is a point $\Leftrightarrow \Sigma \subseteq \mathbb{CP}^3$ is a holomorphic curve.
- $\pi(\Sigma)$ is not a point $\Leftrightarrow \pi(\Sigma) \subseteq S^6$ is a minimal surface.

Theorem (Fox 2008)

Let $\iota : \Sigma^2 \to S^6$ be a minimal immersion of a Riemann surface. There is a holomorphic \mathbb{CP}^1 subbundle $\mathcal{X}(\Sigma)$ of $\iota^*(\mathcal{C})$ such that

 Γ² ⊆ X(Σ) defines a pseudoholomorphic lift of Σ to C ⇔ Γ is a holomorphic curve.

Introduction	G_2 geometry of \mathcal{S}^7	Simple examples	Rigidity	Ruled examples	Conclusion
O	000		000	○○●○	O
Chen's e	equality				

Theorem (Chen 1993)

$$A^3 \subseteq S^7$$
 associative $\Rightarrow \delta_A := \frac{1}{2}S_A - \inf K_A \le 2.$

Moreover, $\delta_A = 2$ (Chen's equality) $\Rightarrow A$ is ruled.

Let $\Sigma \subseteq \mathcal{C}$ be a pseudoholomorphic curve.

- \mathbb{CP}^3 fibration $\pi: \mathcal{C} \to \mathcal{S}^6 \rightsquigarrow$ splitting $T^{(1,0)}\mathcal{C} = \mathcal{H} \oplus \mathcal{V}$.
- There exist $\alpha^{\mathcal{H}}$ and $\alpha^{\mathcal{V}}$ triples of (1,0)-forms such that $\alpha^{\mathcal{H}}|_{\Sigma} = 0$ or $\alpha^{\mathcal{V}}|_{\Sigma} = 0 \Leftrightarrow \Sigma$ horizontal or vertical.
- Let $\beta = \alpha^{\mathcal{H}} \times \alpha^{\mathcal{V}}$ (i.e. $\beta_1 = \alpha_2^{\mathcal{H}} \circ \alpha_3^{\mathcal{V}} \alpha_3^{\mathcal{H}} \circ \alpha_2^{\mathcal{V}}$ etc).

Definition

Pseudoholomorphic curve $\Sigma \subseteq C$ is linear $\Leftrightarrow \beta|_{\Sigma} = 0$.

Theorem (L-)

- Associative 3-folds in S⁷ satisfying Chen's equality ↔ linear pseudoholomorphic curves in C.
- Σ ⊆ C linear ⇒ Γ = π(Σ) ⊆ S⁶ is an isotropic minimal surface, i.e. {h_Γ(v, v) : v ∈ T_xΓ, |v| = 1} is a circle ∀x.

(Calabi 1967) A minimal S^2 in S^6 is isotropic.

- \rightsquigarrow horizontal (hence linear) pseudoholomorphic curve in $\mathcal{C}.$
- \rightsquigarrow associative 3-fold in \mathcal{S}^7 satisfying Chen's equality.

Theorem (L-)

Non-totally geodesic minimal $S^2 \subseteq S^6 \rightsquigarrow 1$ -parameter family of isometric associative immersions in S^7 satisfying Chen's equality.

- Many examples using submanifolds of \mathbb{C}^4 and $\mathcal{S}^6.$
- Constant curvature and homogeneous examples, including example not arising from known geometries.
- Ruled examples defined by minimal surfaces in \mathcal{S}^6 and holomorphic data.
- Classification of examples satisfying Chen's equality using linear pseudoholomorphic curves in C.
- 1-parameter families of isometric associative immersions in S⁷ using minimal 2-spheres in S⁶.