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Symplectic geometry
A symplectic manifold is a pair

(X,ω)

2n− dimensional manifold closed, non-degenerate 2-form

OO OO

A symplectic manifold admits an infinite-dimensional group of diffeomorphisms preserving ω (symplectomor-
phisms) denoted by Symp(X). Examples include:

◦ The phase space {(x1, . . . , x3, p1, . . . , p3) :} of a classical dynamical system. The symplectic form is∑3
i=1 dxi ∧ dpi and the time evolution associated to a Hamiltonian function is a symplectomorphism.

Symplectic geometry is a good setting for thinking about problems with periodic orbits of Hamiltonian
flows.

• Any complex projective variety inherits a Kähler form from the ambient projective space. This is in
particular a symplectic form. We know very little about the symplectic geometry of complex
projective varieties. We will concentrate on complex surfaces (4-dimensional symplectic manifolds).
Even for these little is known, except in the case of rational surfaces.

The next task is to see what symplectic geometry brings to the study of projective varieties.
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Consider a family of smooth projective varieties (with fixed Kähler class) over some base S. The study of
such families is the core of moduli theory. We will see that symplectic geometry offers a new perspective.

S

Basic idea from Hodge theory: One can replace the fibres of this family with the homology groups of
the fibres to obtain a vector bundle over S and there is a natural connection on this vector bundle called the
Gauss-Manin connection. The monodromy of this connection gives a representation

π1(S)→ Aut(H∗(X,C))

Symplectic monodromy: In fact we can do better by introducing a symplectic connection on the family
itself. The monodromy around a loop in S is now a symplectomorphism φ of the fibre. Varying the loop or the
connection changes φ but the monodromy is always a symplectomorphism. Therefore we get a distinguished
path component of π0(Symp(X)) and we have enhanced our monodromy representation

π1(S)→ π0(Symp(X))

This contains strictly more information than the homological counterpart mentioned earlier. In fact, we also
get a map

S → BSymp(X)

well-defined up to homotopy.

D5

It’s high time for an example. Consider D5, the blow-up of the projective plane at 5 points in general
position. For simplicity let’s order the points. We have a universal family of blow-ups over the configuration
space

S = Confgen,ord
5 (CP2)/PGL(3,C)

There is a unique smooth conic CP1 through five points in general position. Therefore to every configuration
in S we can assign a configuration of five points in CP1:

S → Conford
5 (CP1)/PGL(2,C)

and in fact this assignment is a homeomorphism. The configuration space on the right is a classifying space for
the pure braid group on 5 strands on S2.

Theorem 1 (Seidel). The map S → BSymp(D5) induces injections on all homotopy groups. In particular, the
component group of Symp(D5) contains the pure braid group on 5 strands on S2.

This uses pseudoholomorphic curves. The idea is that there’s still a smooth rational curve through the five
exceptional curves in D5 when you work with non-integrable almost complex structures.
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Lagrangian spheres and Dehn twists
I now introduce some ideas which help us understand the symplectomorphisms in the example above more

geometrically. First of all, a Lagrangian submanifold is an n-dimensional submanifold of X on which ω
vanishes. These arise and are important in all the examples of symplectic manifolds mentioned before, but we’ll
concentrate on those relevant for projective varietes.

Vanishing cycles: Suppose we have a family of varieties over C which are all smooth except the fibre over 0
which has a single nodal singularity. Pick a path from x to 0 and look at the symplectic monodromy along this
path. Some set of points gets crushed to the node: in the illustration it’s a circle. In fact, this set is always a
Lagrangian sphere L. Varying the path changes L but only through Lagrangian isotopies.
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Monodromy: The monodromy around the unit circle is called a Dehn twist in L. In a family of curves this
is precisely the usual Dehn twist in a circle.

Example: Dehn twists for D5.
Suppose we bring two of the ordered points in CP2 together along a complex line joining them. This gives
a degeneration as above but in fact it’s not quite nodal: the monodromy is the square of a Dehn twist in a
Lagrangian sphere. This is because we ordered the points: it’s possible to get rid of this by base-change.

Under Seidel’s map from the pure braid group to the group of path components of the symplectomorphism
group, this squared Dehn twist came from the braid which is a full twist around a particular pair of points (see
A).
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We can represent this by the circle in B. Suppose instead we performed the full twist represented by the
circle in C. This corresponds to a Lagrangian sphere and since it is a different pure braid Seidel’s theorem
shows that the Dehn twist is not isotopic to the one given by B. If two Lagrangian spheres are isotopic through
Lagrangian spheres then the corresponding Dehn twists are isotopic through symplectomorphisms. Hence the
Lagrangian spheres corresponding to B and C are not isotopic through Lagrangian spheres. It’s not too hard
to show that they are isotopic as smooth submanifolds.

This phenomenon we call Lagrangian knotting.
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Lagrangian unknottedness

Seidel’s work has shown that knottedness is the rule rather than the exception. Let’s study some exceptions.

Theorem 2 (Hind). There is a unique Lagrangian sphere up to isotopy in the quadric surface S2 × S2 with
ω = ω0 ⊕ ω0

In S2 × S2 there is a well-known Lagrangian sphere, the antidiagonal :

{(x,−x) : x ∈ S2}

where − denotes the antipodal map. Hind’s theorem says that every Lagrangian sphere in S2 × S2 is isotopic
to that one.

Theorem 3 (Hind). There is a unique Lagrangian sphere up to isotopy in the cotangent bundle T ∗S2.

T ∗S2 is the phase space of classical dynamics on S2. The locus where all conjugate momenta vanish is
Lagrangian (the zero section). Hind’s theorem says that every Lagrangian sphere in T ∗S2 is isotopic to that
one.

Idea behind proof for S2 × S2: Given a Lagrangian sphere L,

1. Construct a pair of foliations F1 and F2 of S2 × S2 whose leaves are pseudoholomorphic curves in the
homology classes S2 × {?} and {?} × S2, such that L intersects each leaf exactly once, transversely (this
certainly exists for the antidiagonal sphere).

2. Use these foliations to construct an isotopy between L and the antidiagonal sphere.

The second part is a relativly easy application of Moser’s argument. The hard part is part 1, which uses
symplectic field theory (SFT).

leaves of F1

J0

· · ·

L

limits of leaves

JT

L

One splits S2 × S2 into W and V where W is a neighbourhood of L and V is its complement. Write M for
the interface and N for a collar neighbourhood of M . Then one constructs a family of almost Kähler metrics
gt which make N into a longer and longer neck. For each of these, Gromov’s theory of pseudoholomorphic
curves gives us the pseudoholomorphic foliations we desire and all that remains is to show that for large t the
leaves intersect L once transversely. To see this, take the limit as t → ∞: the leaves break up into punctured
holomorphic parts in V and W which we can analyse using methods of SFT. The result is that the W -part of
a leaf must be a single holomorphic plane intersecting L once transversely. This must also be true of leaves for
large t by the nature of the convergence.
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D2, D3 and D4

Complex curves can be classified coarsely by looking at the canonical class. There is a unique curve C with
c1(TC) > 0, namely CP1. The Enriques-Kodaira classification of complex surfaces tells us that there are ten
surfaces S with c1(TS) > 0, namely:

CP2 D1 D2 D3 D4 D5 D6 D7 D8

S2 × S2

Neither CP2 nor D1 contain any Lagrangian spheres for homological reasons. D5 and higher blow-ups exhibit
Lagrangian knotting phenomena. S2 × S2 contains a unique isotopy class of Lagrangian spheres. What about
D2, D3 and D4? If we try and construct a universal family over configurations of points in CP2, we get no
interesting phenomena because PGL(3,C) acts transitively on quadruples of points in CP2. This suggests the
following

Theorem 4 (E.). If L and L′ are homologous Lagrangian spheres in one of D2, D3 or D4 then they are isotopic
through Lagrangian spheres.

Idea of proof for D2: D2 is the blow-up of S2×S2 at a single point. If we can disjoin L from the exceptional
curve of this blow-up and from the proper transform of the diagonal then we have effectively moved it into a
neighbourhood of the antidiagonal sphere. This neighbourhood is isomorphic to a neighbourhood in T ∗S2, but
Hind proved isotopy uniqueness for Lagrangian spheres in T ∗S2. Therefore the proof proceeds as follows:

1. Find a family Jt of almost complex structures and a configuration Ct of Jt-holomorphic spheres repre-
senting the exceptional sphere and the proper transform of the diagonal such that J0 and C0 are standard
and such that CT is disjoint from L.

2. Construct a global isotopy φt : D2 → D2 such that Ct = φt(C0) and set Lt = φ−1
t (L) to get an isotopy of

L which disjoins it from C0.

3. Now appeal to Hind’s theorem to see that L is unique up to isotopy since the complement of C0 contains
a unique Lagrangian sphere up to isotopy.

C0

J0

· · ·

L

CT

JT

L

This leaves wide open the classification of Lagrangian spheres in D5. However, the following theorem is sugges-
tive:

Theorem 5 (E.). The map S → BSymp0(D5) defined earlier (where S is the classifying space of the pure
braid group on five strands for S2 and Symp0 denotes symplectomorphisms acting trivially on homology) is a
homotopy equivalence.

This implies that if there were any new “exotic” Lagrangian spheres other than the ones we already con-
structed as vanishing cycles, the corresponding Dehn twists would be indistinguishable from those around the
vanishing cycles. This leads me to

Conjecture 1. The only Lagrangian spheres in D5 are those arising as vanishing cycles from nodal algebraic
degenerations.
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