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The circle of ideas I will discuss today has its roots in the study of
algebraic surfaces by Picard and Lefschetz.

The formulation I will describe was worked out in the late nineties by
Donaldson.

It has come to inform the way many people think about symplectic
geometry.

My goal (other than explaining the theory) is to get to some
interesting open questions which are combinatorial in flavour, but
which would have ramifications in symplectic geometry.
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Morse theory

Functions allow us to cut up manifolds.

In the picture below we see a height function f : T 2 → R.

Picture courtesy of Wikipedia.
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Morse theory

The topology of the level sets changes at critical levels.

These contain critical points where all derivatives of f vanish.

Picture courtesy of Wikipedia.
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Here’s an even simpler example.
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The function we’re most interested in for today’s purposes is

f (x) = x2

This has a unique critical point at the origin.
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Of course there are other critical points a function can have, for
example f (x) = x3 has an inflection point at 0...

...but this can be perturbed slightly and replaced by two quadratic
critical points.

Jonny Evans (ETH Zürich) Symplectic Picard-Lefschetz theory 17th April 2012 8 / 122



More generally:

Lemma (Morse lemma)

For a generic smooth function

the critical points are isolated

in suitable local coordinates centred at a critical point, the function
looks like a nondegenerate quadratic form.
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In two dimensions, the three possible quadratic critical points correspond
to the possible signatures of a nondegenerate real quadratic form.
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Complex Morse theory

The idea of ‘complex-valued Morse functions’ came from a paper of
Andreotti and Fraenkel, who used it to prove the Lefschetz
hyperplane theorem.

Similar ideas (in a different guise) were developed by Picard and
Lefschetz in their works on the topology of algebraic surfaces.

Thanks to insight of Arnold, Donaldson, Seidel and others, we now
know that symplectic geometry is the natural setting where these
ideas bear fruit.

We will start by looking at the simplest case: branched covers

Σ→ C ∪ {∞}

of the Riemann sphere by a Riemann surface Σ.
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Branched covers

Let T 2 be the 2-torus embedded in R3 and poke an axis through it.

Consider the 180o flip around this axis.
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Define two points to be equivalent if they are related by the flip.

A point where the axis pierces T 2 forms an equivalence class by itself.

All other points have equivalence classes of size two.

We’ll draw the quotient space of T 2 by this equivalence relation.
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In summary, we have the quotient map T 2 → S2:
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You should take my pictures with an ever-increasing dose of salt.

Just because I draw a space with an arrow down to another space
doesn’t mean that the preimage of a point is above that point.

To clarify matters, we’ll work out some preimages.
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Jonny Evans (ETH Zürich) Symplectic Picard-Lefschetz theory 17th April 2012 27 / 122
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We call this phenomenon monodromy.
This is reminiscent of analytic continuation for

√
z .

Take graph of z 7→
√

z .

Project onto z-plane.

This is the inverse
z 7→ z2.

This is precisely the local
model of our branched
cover near the singular
points.

Again, it’s quadratic!

Jonny Evans (ETH Zürich) Symplectic Picard-Lefschetz theory 17th April 2012 38 / 122



Lemma (Complex Morse lemma)

For a generic smooth map f : Σ→ Σ′, where Σ and Σ′ are Riemann
surfaces,

the critical points are isolated,

f looks like
z 7→ z2

in suitable local coordinates centred at a critical point.
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We can encode this data as follows.

A finite set C of branch points in the sphere (the critical values).

A finite set F (the preimage of a regular point).

A monodromy representation π1(S2 \ C )→ Sym(F ).

This representation must take simple loops which encircle a single
point in C to a transposition (ab) ∈ Sym(F ).
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In our example:

C is just the four branch points.

F is just two points (double branched cover).

The monodromy representation takes a small loop centred at a
branch point to the permutation which swaps the two points of F .

From this we can reconstruct the torus.
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Further examples

Example

Consider the complex variety

{x2 + y 2 = 1 : (x , y) ∈ C2} ∼= C∗.

The projection π : (x , y) 7→ x is a branched double cover.

There are two critical points (at ±1).

Over R, the real part is a circle.

The restriction of π to the real part is the simple Morse function on
the circle we began with.
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{x2 + y 2 = 1 : (x , y) ∈ C2} → C, (x , y) 7→ x

Real part
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This is a very important picture to bear in mind. We’ll come back to
it later.

One thing to notice is that as you move along [−1, 1] ⊂ C towards
either endpoint, the two points in the fibre collapse to a critical point.

Thought of another way, there are two ‘1-discs’: π−1[−1, 0] and
π−1[0, 1] coming out of the critical points which glue to give a circle.
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Example

Consider the complex variety

{x(x − 1)(x − 2) + y 2 = 1 : (x , y) ∈ C2}.

The projection π : (x , y) 7→ x is a branched double cover.

There are three critical points (at 0, 1, 2).

The total space is a punctured torus (affine elliptic curve).

It becomes harder to draw.
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{x(x − 1)(x − 2) + y 2 = 1 : (x , y) ∈ C2} → C, (x , y) 7→ x
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As before you can see 1-discs emerging from the critical points and
gluing up to give circles.

Though the intervals in the base meet at the middle critical value at
an angle of 180o , the circles upstairs meet at 90o .

We saw this earlier.
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It should be clear by now that these pictures are pretty inadequate:
we don’t see how the boundary of the punctured torus wraps twice
around the boundary of the disc (as it should).

The problem is a lack of dimensions. If we looked at the variety
{x(x − 1)(x − 2) + y 2 = 1 : (x , y) ∈ C2} in C2 and shone a light on it
(projected it to a copy of R3) it would have the following silhouette:
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Picard-Lefschetz theory

Lack of imagination nonwithstanding, we will press on into the next
relevant dimension, dimension 4.

That is, we are interested in holomorphic maps from a complex
surface to C or C ∪ {∞}.
The moral we carry over from Morse theory is that the local model for
critical points should be a nondegenerate quadratic form.

There is only one nondegenerate quadratic form over C.
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Local model

The local model for critical points is the map

π : C2 → C

π(x , y) = x2 + y 2

The regular fibres of this map are all smooth conics like the one we
met earlier.

There is one singular fibre x2 + y 2 = 0.

Since x2 + y 2 = (x + iy)(x − iy) this is a union of two complex lines
meeting transversely.

Unforunately this is hard to draw, so we draw it like a cone (upper
and lower halves being the two lines).
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Monodromy

For branched covers we saw that, for the local model z 7→ z2, the
monodromy simply swaps two points in the fibre.

We want to describe the monodromy of our new local model.

For branched covers it was clear how to transport preimages around a
lifted loop.

In our new model there’s no canonical way so we need a connection.
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Connection consists of:

A field of subspaces in T C2. Write Π(x ,y) ⊂ T(x ,y)C
2 for the

subspace at (x , y) ∈ C2.

Each subspace Π(x ,y) in the field projects isomorphically onto
Tπ(x ,y)C.
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A vector at π(x , y) in the base lifts uniquely to a horizontal vector in
Π(x ,y). Flowing along horizontal vector fields is called parallel transport.

We require that when we transport a fibre around a closed loop in the
base the parallel transport diffeomorphism has compact support.

We can also ensure that this diffeomorphism is area-preserving.
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Picard-Lefschetz theorem

So what diffeomorphism do we get?

Theorem (Picard, Lefschetz, Seidel)

The monodromy diffeomorphism for our local model is a Dehn twist.

This is best illustrated by a picture.
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The Dehn twist is both compactly-supported and area-preserving!

Note that although the diffeomorphisms in between seem to act
“noncompactly” - shifting the vertical red line near the top of each
fibre - the monodromy around the loop is compactly-supported.
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The proof of the theorem is long and explicit. Let me just sketch how you
might visualise it.

Each fibre x2 + y 2 = c has a projection (x , y)→ x .

For c = e iθ the critical points of this projection are

x = ±e iθ/2

Let’s watch the pictures again and keep track of this projection.
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Hopefully that helped!
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To encode a complex Morse function we now need a little more:

A surface F (the fibre).

A finite set C of critical points in S2.

A monodromy representation π1(S2 \ C )→ MCG(F ).

The group MCG(F ) is the mapping class group of the surface, i.e. the
component group of the group of diffeomorphisms. The monodromy
representation must take simple closed loops encircling a single critical
point to right-handed Dehn twists.
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For branched covers, each critical point had a 1-disc flowing out of it.

Here the real part of the local model is a 2-disc flowing out of the
critical point, living over the positive real axis.

The intersection of this disc with any fibre is called the vanishing
cycle (the red circle) because it vanishes into the critical point under
parallel transport.
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When two such discs meet they may glue up to give a 2-sphere. This
is called a matching cycle.

In this example we have projected the quadric surface
x2 + y 2 + z2 = 1 to the x-coordinate.
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We can also create chains of spheres this way.

In this example we have projected the Milnor fibre
x(x − 1)(x − 2) + y 2 + z2 = 1 to the x-coordinate.
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Lefschetz fibration

Definition

A Lefschetz fibration on a compact 4-manifold X is a smooth map
f : X → S2 whose critical points are isolated and locally diffeomorphic to
the quadratic model (x , y) 7→ x2 + y 2.

Remark

A Lefschetz fibration is not a fibration in the sense of topology.
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A source of Lefschetz fibrations

A natural source of Lefschetz fibrations is pencils of curves on
algebraic surfaces.

By pencil, I just mean a (complex) 1-parameter family.

For a moment let’s work with real pencils because they’re easier to
visualise.
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Example

The simplest pencil of curves is the pencil of lines through a point p in the
real plane R2. To get an S1-valued function we send each point q 6= p to
the corresponding real half-line −→pq. Equivalently we send re iθ ∈ C to θ.

Jonny Evans (ETH Zürich) Symplectic Picard-Lefschetz theory 17th April 2012 75 / 122



We would like to extend this to the whole of R2, but it simply doesn’t
work. We say p is a basepoint of the pencil.

The fix is to replace p by a copy of S1 so that the map extends.

Think of all half-lines emanating from p. Imagine you’re really
looking down on a spiral staircase centred at p and that the steps are
the half-lines. Furthermore, imagine that when you get to the top of
the stairs you reappear at the bottom.
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This process is called (oriented) blowing-up of the basepoint.

We call the resulting manifold R̃2. It’s actually an annulus.

When you do this, the map R2 \ {p} → S1 extends to R̃2.
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A similar trick works over C and replaces a point in C2 (or any
algebraic surface) by a copy of S2 ∼= CP1, the space of complex lines
through a point.

Corollary

A pencil of curves with at worst nodal singularities (quadratic critical
points) gives rise to a Lefschetz fibration once all the basepoints are blown
up.
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Generating a pencil
So the question remains: how do we generate pencils of curves with at
worst nodal singularities?

Suppose that X is a smooth projective variety. This means it’s cut out
of a complex projective space CPN by a finite system of polynomials.

Remember that CPN is a compactification of CN . The
compactification locus is a hyperplane CPN−1 (just like
CP1 = C ∪ {∞}.
Note that the hyperplanes through a fixed point p form a copy of
CPN−2.

A pencil of hyperplanes is just a complex line C ⊂ CPN−2.

Theorem (Bertini’s theorem)

Fix a smooth projective variety X ⊂ CPN . Then for almost every point
p ∈ CPN and almost every pencil of hyperplanes C through p, the
intersections T ∩ X for T ∈ C define a pencil of curves in X with at worst
nodal singularities.
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This is an algebro-geometric version of the Morse lemma. It says that by
perturbing the pencil of hyperplanes you can make the intersections T ∩ X
transverse except at a finite collection of quadratic critical points.
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Example (Pencil of cubics)

Let P and Q be homogeneous cubic polynomials in three variables. Then

λP + µQ = 0

definesa a pencil of cubic curves in CP2 as λ and µ vary (the resulting
cubic depends only on the ratio [λ : µ] ∈ CP1.

aThis arises as in Bertini’s theorem from a pencil of hyperplane section of
the cubic Veronese embedding of CP2 into CP9.
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You can see the nine basepoints where all the cubics intersect.

You can blow these up and obtain a space C̃P2
9 with a Lefschetz

fibration.

It turns out that there are twelve nodal cubics in the family. The
Lefschetz fibration therefore has twelve critical points.
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Area-preserving condition

I want to explain now why I required the monodromy maps to
preserve area.

The more structure our monodromy maps preserve, the more useful
they are (e.g. for distinguishing two fibrations).

In a family of complex projective curves there are two natural
structures on the fibres: the complex structure and the area form.

I’ll argue first that the complex structure cannot be preserved by
monodromy maps.
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In the above family of cubics, not all members are isomorphic as
complex curves.

Not only are some singular, but the isomorphism type even varies over
the regular fibres.
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Image from C. McMullen’s website
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If we have a Lefschetz fibration X → S2 whose fibres are elliptic
curves then there is a map from S2 →M (taking each fibre to its
isomorphism type).

In our cubic pencil example, this map has degree twelve, explaining
the twelve nodal fibres.

So no matter how hard we try, the complex structure of the fibres is
always going to vary (just for topological reasons - it has to wrap
twelve times around M).

However, it’s easy to check that each fibre has the same total area.

An area-preserving map is the best we can hope for.
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In higher dimensions, the area form is replaced by a symplectic form.
This is a nondegenerate closed 2-form.

“Definition”

A 2-form ω on X is something you can integrate over 2-dimensional
submanifolds Σ ⊂ X to get a number,∫

Σ
ω

ω is closed if ∫
Σ
ω =

∫
Σ′
ω

for any perturbation Σ′ of Σ.

You can think of it as antisymmetric quadratic form at each point.
This restricts to an area form on Σ which is what you integrate.

Nondegeneracy means nondegeneracy of this quadratic form.
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Theorem (Arnold)

There is a higher-dimensional version of a Dehn twist (the monodromy of a
quadratic map in higher dimensions) which preserves the symplectic form.

Note that the symplectic form on the fibres in the local model

(z1, z2, . . . , zn) 7→ z2
1 + · · ·+ z2

n

is the restriction to fibres of dx1 ∧ dy1 + · · ·+ dxn ∧ dyn where
zk = xk + iyk .

Having a monodromy which is a diffeomorphism preserving a
symplectic form is much stronger than just having a monodromy
which is a diffeomorphism.

There are many examples of symplectic diffeomorphisms which are
connected by a path of diffeomorphisms but not by a path of
symplectic diffeomorphisms.
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The relation to symplectic geometry

In our complex projective examples like the cubic pencil, the symplectic
form on the fibres is inherited from an ambient symplectic form on X . In
fact...

Theorem (Gompf)

Suppose X is a closed 4-manifold which admits a Lefschetz fibration
f : X → S2. Suppose moreover that the fibres are homologically nontrivial.
Then there is a symplectic form on X which makes the fibres into
symplectic curves. This form is unique up to deformation.

i.e. to specify a symplectic manifold, all you need to do is to write down
the monodromy representation of a Lefschetz fibration.
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This theorem is proved by a very explicit construction. It has a remarkable
converse.

Theorem (Donaldson)

Given a closed symplectic 4-manifold X there is a finite set of basepoints
such that the blow-up X̃ admits a Lefschetz fibration X̃ → S2 with
symplectic fibres.

i.e. if you write down all monodromy representations, you have all
symplectic manifolds (modulo blowing up/down).
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Let’s write down the monodromy representation for our cubic example.
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This theorem has been advertised as a reduction of the classification of
symplectic 4-manifolds to algebraic problems in the mapping class groups
of surfaces. This means two things:

If you start with the data of a Lefschetz fibration (monodromy
representation) then you get a symplectic manifold via Gompf.

You get all symplectic manifolds this way via Donaldson (modulo
blowing up).
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It turns out to be incredibly difficult to make use of this as a classification
scheme:

there is no good way of generating monodromy representations other
than taking a symplectic manifold and finding a Lefschetz fibration!

once you have two Lefschetz fibrations, it’s hard to tell when they
represent the same symplectic manifold.
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Indeed, it’s often easier to prove theorems about mapping class groups
using symplectic geometry than vice versa.

Theorem (Akbulut-Ozbgci, Stipsicz)

Consider the mapping class group of a surface with boundary. It is not
possible to write the identity as a nontrivial word of right-handed Dehn
twists.

One way to prove this (not the only way) is to use the putative word to
construct an “impossible symplectic manifold” which contradicts what we
know about the Seiberg-Witten invariants of symplectic 4-manifolds.

See Ozbagci-Stipsicz’s wonderful book “Surgery on Contact
3-Manifolds and Stein Surfaces” for more cool stuff like this.
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Here is a theorem about MCGs which really seems to need the Lefschetz
fibration picture and which can be proved in the same way:

Theorem (Smith 1999)

There is no relation in the MCG of a closed Riemann surface which
involves only right-handed Dehn twists around simple closed curves which
separate the surface.
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I said I’d give interesting combinatorial open problems. I think the second
of these points is harder to approach, so let me just say

Question

Is there a good algebraic way of coming up with monodromy
representations without recourse to symplectic geometry?

A monodromy representation is a representation of π1(S2 \ C ) in a
mapping class group. The group on the left is generated by simple loops
γ1, . . . , γk encircling the critical points modulo the relation that
γ1 · γ2 · · · γk = 1. So you need to:

Question (Reformulation)

Find factorisations of the identity (in a mapping class group) into
right-handed Dehn twists.
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Despite these difficulties, the Lefschetz fibration picture is absolutely
fundamental to the way many people think about symplectic geometry.

It provides the possibility of proving things by “dimensional
induction”:

Example

For example Paul Seidel computes Fukaya categories of K3 surfaces by
using a genus 3 Lefschetz fibration and reducing the computation to a
genus 3 curve.

It provides a natural setting for visualising and computing with one of
the most important objects in symplectic geometry: Lagrangian
submanifolds.

Jonny Evans (ETH Zürich) Symplectic Picard-Lefschetz theory 17th April 2012 101 / 122



Lagrangian submanifolds

Remember that a symplectic form on a 2n-manifold X consists of an
antisymmetric quadratic form ω at each point of X .

Definition

A Lagrangian submanifold L ⊂ X is an n-dimensional submanifold whose
tangent spaces are null spaces for ω, i.e.

ω(X ,Y ) = 0

for all tangent vectors X ,Y to L. In particular
∫
L ω = 0.
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Example

The simplest example of a Lagrangian submanifold is a circle in a Riemann
surface.

We have actually already seen some examples of Lagrangian submanifolds
in symplectic 4-manifolds! Remember our parallel transport maps?
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The way the connection is constructed is:

Consider the ambient symplectic form.

Notice that each fibre F is symplectic.

ω is a 2-form so it defines an ω-orthogonal complement TpFω, i.e.

TpX = TpF ⊕ TpFω

TpFω consists of vectors Y for which ω(X ,Y ) = 0 when X is vertical.

These are the blue planes of our symplectic connection.
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In particular, the horizontal vectors are symplectically orthogonal to
vertical vectors.

That means that a 1-dimensional Lagrangian in the fibre traces out a
2-dimensional Lagrangian L over a path!

Remember that to be Lagrangian you just need ω(X ,Y ) = 0 for all
X ,Y tangent to L.

As L is 2-d, it’s enough to check for X vertical and Y horizontal.
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Vanishing cycles are Lagrangian circles.

The 2-discs they trace out are Lagrangian!
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In particular the matching cycles that form when two vanishing cycles
agree are also Lagrangian.

Jonny Evans (ETH Zürich) Symplectic Picard-Lefschetz theory 17th April 2012 112 / 122



Theorem (Auroux-Muñoz-Presas)

Any Lagrangian sphere in a symplectic 4-manifold arises this way (for
some Lefschetz fibration).
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A more manageable combinatorial problem would be:

Question (Donaldson-Auroux)

Given the combinatorial data of a Lefschetz fibration, write down all the
matching cycles.

There might be infinitely many, but some of these might be isotopic
Lagrangian spheres.
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Many people are interested in Lagrangian tori.

Historically this is because in integrable systems, motions are
constrained to live on invariant Lagrangian tori which foliate phase
space.

For instance, Yuri Chekanov and your very own Felix Schlenk have
discovered a host of interesting Lagrangian tori even in the most
innocuous symplectic manifolds (Cn, projective spaces, products of
spheres).
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How might one obtain a Lagrangian torus from a Lefschetz fibration?

Idea

Take a vanishing cycle.

Transport it around a closed loop in the base.

Hope that it matches itself when it comes back!
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We have already seen one example where this works.
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For a second let’s change coordinates

x ′ = x + iy

y ′ = x − iy

so that the projection is
(x ′, y ′) 7→ x ′y ′

The torus we’re seeing is the Clifford torus:

{(e iθ, e iφ)} ∈ C2

which projects to the unit circle.
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You could also transport the vanishing cycle around a circle which
does not enclose the singular point.

This gives Chekanov’s torus, the very first exotic Lagrangian torus
found in C2.

Jonny Evans (ETH Zürich) Symplectic Picard-Lefschetz theory 17th April 2012 119 / 122



One might hope to construct more tori this way.

By a process called stabilisation it’s relatively easy to construct
Lefschetz fibrations on C2.

For example there is a fibration whose fibre is a 4-punctured sphere
and whose vanishing cycles are the three curves in the picture.
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There is a miraculous relation in the mapping class group of a
4-punctured sphere called the lantern relation.

(It arises from the monodromy of a pencil of conics in CP2!)

From this relation it is possible to deduce that the murky yellow curve
is preserved (up to isotopy) by the monodromy of this Lefschetz
fibration.

Therefore it yields a Lagrangian torus in C2! (non-monotone, for
those who care)
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Question

Find more Lagrangian tori this way! Give formulae for their basic invariants
(i.e. Maslov class and symplectic area class). When are they monotone?
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I hope I’ve given you a comprehensible (though far from comprehensive)
overview of the area:

where it came from,

some of the basic geometric ideas,

some of the (more combinatorially flavoured) interesting open
problems.

. Thank you for your attention.
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